JP2008192764A - Method of manufacturing photoelectric conversion element - Google Patents

Method of manufacturing photoelectric conversion element Download PDF

Info

Publication number
JP2008192764A
JP2008192764A JP2007024632A JP2007024632A JP2008192764A JP 2008192764 A JP2008192764 A JP 2008192764A JP 2007024632 A JP2007024632 A JP 2007024632A JP 2007024632 A JP2007024632 A JP 2007024632A JP 2008192764 A JP2008192764 A JP 2008192764A
Authority
JP
Japan
Prior art keywords
semiconductor layer
intrinsic semiconductor
receiving surface
photoelectric conversion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024632A
Other languages
Japanese (ja)
Other versions
JP5127252B2 (en
Inventor
Manabu Komota
学 古茂田
Yasuhiro Okada
靖寛 岡田
Hiroki Okui
宏樹 奥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007024632A priority Critical patent/JP5127252B2/en
Publication of JP2008192764A publication Critical patent/JP2008192764A/en
Application granted granted Critical
Publication of JP5127252B2 publication Critical patent/JP5127252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which can achieve a high conversion efficiency, especially, in a hetero-junction photoelectric conversion element. <P>SOLUTION: The method of manufacturing the photoelectric conversion element comprises a crystal semiconductor substrate 10 having a first conductivity type, first intrinsic semiconductor layer 11 formed on the light receiving surface of the crystal semiconductor substrate 10, opposite conductivity type semiconductor layer 14 which is formed on the first intrinsic semiconductor layer 11 and has a conductivity type opposite to that of the crystal semiconductor substrate 10, second intrinsic semiconductor layer 12 formed on the non-light receiving surface of the crystal semiconductor substrate 10, and first conductivity type semiconductor layer 13 formed on the second intrinsic semiconductor layer 12. The method of manufacturing the photoelectric conversion element includes processes of: forming the first intrinsic semiconductor layer 11 on the light receiving surface of the crystal semiconductor substrate 10; and forming the second intrinsic semiconductor layer 12 on the non-light receiving surface of the crystal semiconductor substrate 10. These processes are performed continuously. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a photoelectric conversion element.

従来の光電変換素子の製造方法を、図1に示す光電変換素子を例にとって説明する。   A conventional method for manufacturing a photoelectric conversion element will be described by taking the photoelectric conversion element shown in FIG. 1 as an example.

図1において、1はn型単結晶シリコン基板、2はi型非晶質層、3はp型非晶質層、4はi型非晶質層、5はn型非晶質層、6は受光面側透明導電層、7は裏面側透明導電層、8は受光面側取出電極、および9は裏面側取出電極を示す。   In FIG. 1, 1 is an n-type single crystal silicon substrate, 2 is an i-type amorphous layer, 3 is a p-type amorphous layer, 4 is an i-type amorphous layer, 5 is an n-type amorphous layer, 6 Is a light receiving surface side transparent conductive layer, 7 is a back surface side transparent conductive layer, 8 is a light receiving surface side extraction electrode, and 9 is a back surface side extraction electrode.

このような光電変換素子は、次のような順序で形成されていた(例えば、特許文献1等参照)。   Such a photoelectric conversion element was formed in the following order (for example, refer patent document 1 etc.).

まず、n型単結晶シリコン基板1の一方の主面にi型非晶質層2をプラズマCVD法等により形成し、更にその上に、ジボラン(B)ガスをドーピングソースとしたプラズマCVD法によりp型非晶質層3を形成する。 First, an i-type amorphous layer 2 is formed on one main surface of an n-type single crystal silicon substrate 1 by a plasma CVD method or the like, and further, plasma using a diborane (B 2 H 6 ) gas as a doping source. A p-type amorphous layer 3 is formed by the CVD method.

次いで、n型単結晶シリコン基板1の他方の主面に、i型非晶質層4を形成し、更にその上にn型非晶質層5を形成する。   Next, an i-type amorphous layer 4 is formed on the other main surface of the n-type single crystal silicon substrate 1, and an n-type amorphous layer 5 is further formed thereon.

次にITOなどからなる受光面側透明導電層6および裏面側透明導電層7をスパッタ法等により形成する。   Next, the light-receiving surface side transparent conductive layer 6 and the back surface side transparent conductive layer 7 made of ITO or the like are formed by sputtering or the like.

そして、受光面側透明導電層6上には受光面側取出電極8、裏面側透明導電層7上には裏面側取出電極9をそれぞれ形成する。
特許第3653379号公報
Then, a light receiving surface side extraction electrode 8 is formed on the light receiving surface side transparent conductive layer 6, and a back surface side extraction electrode 9 is formed on the back surface side transparent conductive layer 7.
Japanese Patent No. 3653379

しかし、上述の従来技術によると、太陽電池の高効率化を達成する上で、以下のような問題があった。   However, according to the above-described conventional technology, there are the following problems in achieving high efficiency of the solar cell.

すなわち、上記に示す従来の製造方法では、非晶質層の形成順として、nn+接合側(n型単結晶シリコン基板1、i型非晶質層4、n型非晶質層5)のi型非晶質層4が、pn接合側(n型単結晶シリコン基板1、i型非晶質層2、p型非晶質層3)のi型非晶質層2やp型非晶質層3に次いで形成されているため、他層の形成する過程でnn+接合側の基板表面の自然酸化が進行するとともに、雰囲気からの不純物吸着に起因する表面汚染が生じることによって、nn+接合側で低い表面再結合速度を有する界面が得られないといった問題を有していた。   That is, in the conventional manufacturing method described above, as the formation order of the amorphous layers, i on the nn + junction side (n-type single crystal silicon substrate 1, i-type amorphous layer 4, n-type amorphous layer 5) is formed. The type amorphous layer 4 is an i type amorphous layer 2 or p type amorphous on the pn junction side (n type single crystal silicon substrate 1, i type amorphous layer 2, p type amorphous layer 3). Since the layer 3 is formed next to the layer 3, natural oxidation of the substrate surface on the nn + junction side progresses in the process of forming another layer, and surface contamination due to impurity adsorption from the atmosphere occurs. There was a problem that an interface having a low surface recombination velocity could not be obtained.

また、p型非晶質層3を、ジボラン(B)ガスをドーピングソースとしたプラズマCVD法により形成しているため、p型非晶質層3形成時の基板裏面側へのガスの周り込みや、分解種の基板裏面側への吸着汚染により、nn+接合側で低い表面再結合速度を有する界面が得られないといった問題を有していた。 Further, since the p-type amorphous layer 3 is formed by the plasma CVD method using diborane (B 2 H 6 ) gas as a doping source, the gas to the back side of the substrate when the p-type amorphous layer 3 is formed. In other words, an interface having a low surface recombination rate cannot be obtained on the nn + junction side due to the surrounding contamination of the nuclei and the adsorption contamination of the decomposition species on the back side of the substrate.

本発明はこのような問題に鑑みてなされたものであり、その目的は、特にヘテロ接合型光電変換素子において、高変換効率を実現するための製造方法を提供するものである。   This invention is made | formed in view of such a problem, The objective is providing the manufacturing method for implement | achieving high conversion efficiency especially in a heterojunction type photoelectric conversion element.

本発明の光電変換素子の製造方法は、一導電型を呈する結晶系半導体基板と、前記結晶系半導体基板の受光面に形成された第一の真性半導体層と、前記第一の真性半導体層上に形成され、前記結晶系半導体基板と逆の導電型を呈する逆導電型半導体層と、前記結晶系半導体基板の非受光面に形成された第二の真性半導体層と、前記第二の真性半導体層上に形成された一導電型半導体層と、を有して成る光電変換素子を製造する方法であって、
前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程と、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程とを続けて行うことを特徴とするものである。
A method for producing a photoelectric conversion element of the present invention includes a crystalline semiconductor substrate having one conductivity type, a first intrinsic semiconductor layer formed on a light receiving surface of the crystalline semiconductor substrate, and the first intrinsic semiconductor layer. A reverse conductivity type semiconductor layer having a conductivity type opposite to that of the crystalline semiconductor substrate, a second intrinsic semiconductor layer formed on a non-light-receiving surface of the crystalline semiconductor substrate, and the second intrinsic semiconductor A one-conductivity-type semiconductor layer formed on the layer, and a method of manufacturing a photoelectric conversion element comprising:
The step of forming the first intrinsic semiconductor layer on the light-receiving surface of the crystalline semiconductor substrate and the step of forming the second intrinsic semiconductor layer on the non-light-receiving surface of the crystalline semiconductor substrate are continuously performed. It is what.

特に、前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程に続いて、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程を行うことが好ましい。   In particular, following the step of forming the first intrinsic semiconductor layer on the light receiving surface of the crystalline semiconductor substrate, the step of forming the second intrinsic semiconductor layer on the non-light receiving surface of the crystalline semiconductor substrate may be performed. preferable.

また、前記第一の真性半導体層及び前記第二の真性半導体層を形成する工程に続いて、前記第二の真性半導体層上に一導電型半導体層を形成する工程と、前記第一の真性半導体層上に前記逆導電型半導体層を形成する工程とを、順に行うことが好ましい。   Further, following the step of forming the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, a step of forming a one-conductivity-type semiconductor layer on the second intrinsic semiconductor layer, and the first intrinsic semiconductor layer It is preferable to sequentially perform the step of forming the reverse conductivity type semiconductor layer on the semiconductor layer.

さらに、前記結晶系半導体基板がn型であることが好ましい。   Further, the crystalline semiconductor substrate is preferably n-type.

さらにまた、少なくとも一の前記真性半導体層は非単結晶相であることが好ましい。   Furthermore, it is preferable that at least one of the intrinsic semiconductor layers has a non-single crystal phase.

本発明の光電変換素子の製造方法は、一導電型を呈する結晶系半導体基板と、前記結晶系半導体基板の受光面に形成された第一の真性半導体層と、前記第一の真性半導体層上に形成され、前記結晶系半導体基板と逆の導電型を呈する逆導電型半導体層と、前記結晶系半導体基板の非受光面に形成された第二の真性半導体層と、前記第二の真性半導体層上に形成された一導電型半導体層と、を有して成る光電変換素子を製造する方法であって、
前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程と、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程とを続けて行うことから、清浄な表面状態を有した基板の両表面に真性半導体層が形成されるため、同界面で低い表面再結合速度を有する変換効率の高い光電変換素子の製造が可能となる。
A method for producing a photoelectric conversion element of the present invention includes a crystalline semiconductor substrate having one conductivity type, a first intrinsic semiconductor layer formed on a light receiving surface of the crystalline semiconductor substrate, and the first intrinsic semiconductor layer. A reverse conductivity type semiconductor layer having a conductivity type opposite to that of the crystalline semiconductor substrate, a second intrinsic semiconductor layer formed on a non-light-receiving surface of the crystalline semiconductor substrate, and the second intrinsic semiconductor A one-conductivity-type semiconductor layer formed on the layer, and a method of manufacturing a photoelectric conversion element comprising:
From the step of forming the first intrinsic semiconductor layer on the light receiving surface of the crystalline semiconductor substrate and the step of forming the second intrinsic semiconductor layer on the non-light receiving surface of the crystalline semiconductor substrate, Since the intrinsic semiconductor layers are formed on both surfaces of the substrate having a clean surface state, it is possible to manufacture a photoelectric conversion element having a high conversion efficiency having a low surface recombination speed at the same interface.

特に、前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程に続いて、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程を行うことが好ましく、これによってpn接合側領域において良好な内部電界を形成でき、より高い変換効率を有する光電変換素子の製造が可能となる。   In particular, following the step of forming the first intrinsic semiconductor layer on the light receiving surface of the crystalline semiconductor substrate, the step of forming the second intrinsic semiconductor layer on the non-light receiving surface of the crystalline semiconductor substrate may be performed. Preferably, this makes it possible to form a favorable internal electric field in the pn junction side region, and to manufacture a photoelectric conversion element having higher conversion efficiency.

また、前記第一の真性半導体層及び前記第二の真性半導体層を形成する工程に続いて、前記第二の真性半導体層上に一導電型半導体層を形成する工程と、前記第一の真性半導体層上に前記逆導電型半導体層を形成する工程とを、順に行うことから、逆導電型半導体層の形成に用いられるドーピング元素が付着しない清浄な表面状態を有した第二の真性半導体層上に一導電型半導体層が形成されるため、同界面でより低い表面再結合速度を有する変換効率の高い光電変換素子の製造が可能となる。   Further, following the step of forming the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, a step of forming a one-conductivity-type semiconductor layer on the second intrinsic semiconductor layer, and the first intrinsic semiconductor layer A step of forming the reverse conductivity type semiconductor layer on the semiconductor layer in order, and thus a second intrinsic semiconductor layer having a clean surface state to which a doping element used for forming the reverse conductivity type semiconductor layer does not adhere Since the one-conductivity-type semiconductor layer is formed thereon, it is possible to manufacture a photoelectric conversion element with high conversion efficiency having a lower surface recombination velocity at the same interface.

さらに、前記結晶系半導体基板がn型であることが好ましく、これによって第二の真性半導体層による表面再結合低減効果がp型の半導体基板を用いたときに比して大きくなり、上記の基板表面の清浄度の差異による表面再結合速度の低減効果がより顕著となり、高い変換効率を有する光電変換素子の製造が可能となる。   Furthermore, it is preferable that the crystalline semiconductor substrate is n-type, whereby the surface recombination reduction effect by the second intrinsic semiconductor layer is greater than when a p-type semiconductor substrate is used. The effect of reducing the surface recombination rate due to the difference in the cleanliness of the surface becomes more remarkable, and it becomes possible to manufacture a photoelectric conversion element having high conversion efficiency.

さらにまた、少なくとも一の前記真性半導体層は非単結晶相であることが好ましく、これによって半導体基板と真性半導体層とをヘテロコンタクトさせ、該界面で比較的大きなバンドオフセットを構成して低い再結合速度を実現することが可能となる。ここで非単結晶相とは、単結晶やこれと光学的バンドギャップまたは移動度ギャップに差異が見られない多結晶相を除いた相状態を有するものを意味する概念であり、例えば水素等の他元素の添加、合金化により結晶配列が変化し、少なくとも上記バンドギャップが完全結晶構造に比して変化したものを表すものであり、具体的には非晶質或いは微結晶質が該当する。   Furthermore, it is preferable that at least one of the intrinsic semiconductor layers has a non-single-crystal phase, whereby the semiconductor substrate and the intrinsic semiconductor layer are heterocontacted to form a relatively large band offset at the interface, thereby reducing recombination. It is possible to achieve speed. Here, the non-single crystal phase is a concept that means a phase having a single crystal or a polycrystalline phase excluding a polycrystalline phase in which no difference is observed in the optical band gap or mobility gap. This indicates that the crystal arrangement is changed by addition or alloying of other elements, and at least the band gap is changed as compared with the complete crystal structure, and specifically, amorphous or microcrystalline.

以下、本発明の光電変換素子とその製造方法について、詳細に説明する。   Hereinafter, the photoelectric conversion element of the present invention and the manufacturing method thereof will be described in detail.

まず、本発明における製造方法を図2に示す構造の光電変換素子において説明する。   First, the manufacturing method in the present invention will be described in the photoelectric conversion element having the structure shown in FIG.

<結晶系半導体基板の準備工程>
結晶系半導体基板として、例えばp型またはn型の単結晶または多結晶シリコンからなるシリコン基板10を用いることができる。ここで結晶系とは、単結晶、多結晶および微結晶を含む概念である。
<Preparation process of crystalline semiconductor substrate>
As the crystalline semiconductor substrate, for example, a silicon substrate 10 made of p-type or n-type single crystal or polycrystalline silicon can be used. Here, the crystal system is a concept including single crystal, polycrystal and microcrystal.

なお、以下においては結晶系半導体基板としてシリコンを用いた例について示すが、光電変換材料として適当な光学的バンドギャップやキャリア移動度を有する他の結晶材料を用いてもよい。シリコン以外の例としては、燐化インジウム、ガリウム砒素、セレン化インジウム銅、硫化インジウム銅、セレン化カドミウム、硫化カドミウム、硫化スズ、酸化銅、インジウム砒素、窒化インジウム、鉄シリサイド、セレン化インジウムガリウム銅、およびシリコンカーバイド等のシリコン系基板を用いることが可能である。   Note that although an example in which silicon is used as a crystalline semiconductor substrate will be described below, other crystal materials having an appropriate optical band gap and carrier mobility may be used as a photoelectric conversion material. Examples other than silicon include indium phosphide, gallium arsenide, indium copper selenide, indium copper sulfide, cadmium selenide, cadmium sulfide, tin sulfide, copper oxide, indium arsenide, indium nitride, iron silicide, indium gallium copper selenide. It is possible to use silicon-based substrates such as silicon carbide.

このシリコン基板10は、ボロン(B)またはリン(P)などの導電型決定元素を含有し、抵抗率は例えば0.3〜2.0Ω・cm程度であり、鋳造法などによって形成される。鋳造法によって形成されたインゴットを10cm×10cm〜25cm×25cm程度の大きさに切断し、300μm以下、より好ましくは200μm以下の厚みにスライスしてシリコン基板10とする。   The silicon substrate 10 contains a conductivity determining element such as boron (B) or phosphorus (P), and has a resistivity of, for example, about 0.3 to 2.0 Ω · cm, and is formed by a casting method or the like. An ingot formed by a casting method is cut into a size of about 10 cm × 10 cm to 25 cm × 25 cm, and sliced to a thickness of 300 μm or less, more preferably 200 μm or less to obtain a silicon substrate 10.

スライスされたシリコン基板10に対して、NaOH水溶液やKOH水溶液、あるいはフッ酸やフッ酸と硝酸の混合液等でごく微量エッチングすることによって、表面のダメージ層を除去する。   The damaged layer on the surface is removed by subjecting the sliced silicon substrate 10 to a very small amount of etching using an aqueous NaOH solution, an aqueous KOH solution, hydrofluoric acid, a mixed solution of hydrofluoric acid and nitric acid, or the like.

<表面凹凸の形成工程>
シリコン基板10の表面に凹凸構造を形成することが好ましい。
<Surface irregularity forming process>
It is preferable to form an uneven structure on the surface of the silicon substrate 10.

シリコン基板10として多結晶シリコン基板を用いる場合には、光入射面となる基板表面(受光面)側に、ドライエッチング法を用いて、微細な凹凸(粗面化)構造を形成することが好ましい。特にリアクティブイオンエッチング(RIE)法を用い、ガス濃度もしくはエッチング時間を制御することにより、その大きさを変化させることが可能である。   When a polycrystalline silicon substrate is used as the silicon substrate 10, it is preferable to form a fine concavo-convex (roughened) structure on the substrate surface (light-receiving surface) side that is a light incident surface by using a dry etching method. . In particular, the reactive ion etching (RIE) method is used, and the size can be changed by controlling the gas concentration or etching time.

この微細な凹凸構造の幅と高さは、例えばそれぞれ2μm以下に形成される。この微細な凹凸構造をシリコン基板10の略全面にわたって均一且つ正確に制御性を持たせて形成するためには、凹凸構造の幅と高さは1μm以下が好適である。この微細な凹凸のアスペクト比(凹凸の高さ/幅)は、0.5以上2以下であることが望ましい。このアスペクト比が2より大きい場合、製造過程で微細な凹凸が破損し、太陽電池セルを形成した場合にリーク電流が大きくなって良好な出力特性が得られない。さらに、拡散にて接合を形成するような場合には、凹凸の先端部と根元部においてドーピング濃度が異なって、均一な接合が形成されないといった問題が生じる。逆に、このアスペクト比が0.5より小さい場合、電極の接着強度が低下する。   The width and height of the fine concavo-convex structure are each set to 2 μm or less, for example. In order to form this fine concavo-convex structure over almost the entire surface of the silicon substrate 10 with uniform and accurate controllability, the width and height of the concavo-convex structure is preferably 1 μm or less. The aspect ratio of the fine irregularities (height / width of the irregularities) is desirably 0.5 or more and 2 or less. When this aspect ratio is larger than 2, fine irregularities are damaged in the manufacturing process, and when a solar battery cell is formed, a leak current becomes large and good output characteristics cannot be obtained. Further, in the case where the junction is formed by diffusion, there is a problem that the uniform concentration cannot be formed because the doping concentration is different between the tip portion and the root portion of the unevenness. On the contrary, when this aspect ratio is smaller than 0.5, the adhesive strength of the electrode is lowered.

リアクティブイオンエッチング法では、例えば三フッ化メタン(CHF3 )、塩素(Cl2 )、酸素(O2 )、および六フッ化硫黄(SF)などをプロセスガスとして、反応圧力1〜1000mTorr程度、プラズマ励起を行うRFパワー100〜800W程度で、処理を行う。その後、シリコン基板10の表面に残ったエッチング残渣を除去する。残渣を除去する方法としては、シリコン基板10を水槽内で超音波をかける方法などがある。この超音波を印加する装置の種類としては、通常市販されている主な洗浄用超音波装置の周波数は数十kHzから数百kHzで、印加する振動子も材質、形状、出力などが様々なタイプがあるが、この装置のタイプは表面の残渣除去の容易さによって選択することができる。残渣除去の容易さは凹凸の形状、大きさ、残渣の残量、基板の厚みなどによっても変化し、さらに超音波の周波数によっても変化するが、比較的残渣の除去が困難な条件であっても印加時間を長くすることで残渣の除去が可能である。また、水槽内の処理液にはフッ酸を少量添加してもよい。 In the reactive ion etching method, for example, a reaction pressure of about 1 to 1000 mTorr using trifluoromethane (CHF 3 ), chlorine (Cl 2 ), oxygen (O 2 ), sulfur hexafluoride (SF 6 ), and the like as process gases. The processing is performed at an RF power of about 100 to 800 W for performing plasma excitation. Thereafter, etching residues remaining on the surface of the silicon substrate 10 are removed. As a method of removing the residue, there is a method of applying ultrasonic waves to the silicon substrate 10 in a water tank. As the types of apparatuses for applying ultrasonic waves, the frequencies of main commercially available ultrasonic cleaning apparatuses are several tens of kHz to several hundreds of kHz, and the vibrators to be applied have various materials, shapes, outputs, etc. Although there are types, the type of this device can be selected depending on the ease of removing the residue on the surface. The ease of residue removal varies depending on the shape and size of the unevenness, the remaining amount of residue, the thickness of the substrate, etc., and also varies depending on the frequency of the ultrasonic wave. However, the residue can be removed by lengthening the application time. A small amount of hydrofluoric acid may be added to the treatment liquid in the water tank.

以上のようにして表面凹凸を形成した後、RCA洗浄等の清浄化処理、および酸化膜除去を目的とした希フッ酸処理を施し、水洗洗浄することによって、半導体基板の表面を清浄化する。   After the surface irregularities are formed as described above, the surface of the semiconductor substrate is cleaned by performing cleaning processing such as RCA cleaning and dilute hydrofluoric acid processing for the purpose of removing the oxide film, and cleaning with water.

なお、シリコン基板10に多結晶シリコン基板を用いる際には、従来周知のパッシベーション処理やゲッタリング処理をこの時点で施してもよい。   When a polycrystalline silicon substrate is used as the silicon substrate 10, a conventionally known passivation process or gettering process may be performed at this time.

<第一の真性半導体層の形成工程>
次に、シリコン基板10の受光面上、または上述のドライエッチング法により凹凸を形成した面上に、実質的に真性な第一の真性半導体層11を形成する。本明細書において、実質的に真性な半導体層とは、半導体層の形成時に意図的に導電型決定元素を添加せずに作製したものを広く指すものとする。
<First intrinsic semiconductor layer forming step>
Next, the substantially intrinsic first intrinsic semiconductor layer 11 is formed on the light receiving surface of the silicon substrate 10 or on the surface on which the irregularities are formed by the dry etching method described above. In this specification, a substantially intrinsic semiconductor layer broadly refers to a layer formed without intentionally adding a conductivity type determining element when forming a semiconductor layer.

形成方法として、プラズマCVD法に代表される化学的気相成長法、またはスパッタ法に代表される物理的気相成長法等の薄膜形成法を用いて形成する。このとき、第一の真性半導体層11を非晶質もしくは微結晶質といった非単結晶相とすることが好ましく、これにより、基板と半導体層をヘテロコンタクトさせ、該界面で比較的大きなバンドオフセットを構成して、低い再結合速度を実現することが可能となる。   As a forming method, a thin film forming method such as a chemical vapor deposition method typified by a plasma CVD method or a physical vapor deposition method typified by a sputtering method is used. At this time, it is preferable that the first intrinsic semiconductor layer 11 has a non-single crystal phase such as amorphous or microcrystalline, so that the substrate and the semiconductor layer are hetero-contacted, and a relatively large band offset is generated at the interface. This makes it possible to achieve a low recombination rate.

なお、第一の真性半導体層の材料としては、シリコンの他に、燐化インジウム、ガリウム砒素、セレン化インジウム銅、硫化インジウム銅、セレン化カドミウム、硫化カドミウム、硫化スズ、酸化銅、インジウム砒素、窒化インジウム、鉄シリサイド、セレン化インジウムガリウム銅、シリコンカーバイド、酸化亜鉛、酸化インジウム、硫化亜鉛、硫化インジウム、シリコンオキサイド、窒化シリコン等を用いることが好ましい。なお、後述する第二の真性半導体層、一導電型半導体層および逆導電型半導体層の材料としても、これらのものを用いることが好ましい。   As the material for the first intrinsic semiconductor layer, in addition to silicon, indium phosphide, gallium arsenide, indium copper selenide, indium copper sulfide, cadmium selenide, cadmium sulfide, tin sulfide, copper oxide, indium arsenide, Indium nitride, iron silicide, indium gallium copper selenide, silicon carbide, zinc oxide, indium oxide, zinc sulfide, indium sulfide, silicon oxide, silicon nitride, or the like is preferably used. In addition, it is preferable to use these also as a material of the 2nd intrinsic semiconductor layer mentioned later, a 1 conductivity type semiconductor layer, and a reverse conductivity type semiconductor layer.

<第二の真性半導体層の形成工程>
次いで、シリコン基板10の非受光面上に実質的に真性な第二の真性半導体層12を形成する。
<Second intrinsic semiconductor layer forming step>
Next, a substantially intrinsic second intrinsic semiconductor layer 12 is formed on the non-light-receiving surface of the silicon substrate 10.

本発明の手法においては、第一の真性半導体層11に続いて、後述のドープ層(一導電型半導体層13および逆導電型半導体層14)を形成する前に、第二の真性半導体層12を先に形成することを特徴とする。これにより光電変換素子の特性、特に開放電圧値に大きく影響する、裏面側接合部における表面再結合速度値を低下させることが可能となる。すなわち、半導体層を形成する前の基板の主面の表面状態が、接合特性に大きく影響を与えており、自然酸化膜の形成や雰囲気に起因する不純物吸着が進行する前に、清浄な基板の両主面に第一の真性半導体層11、次いで第二の真性半導体層12を形成することで、良好なヘテロ接合を形成することが可能となるものと考えられる。   In the method of the present invention, the second intrinsic semiconductor layer 12 is formed before the first intrinsic semiconductor layer 11 and the doped layers (one-conductivity type semiconductor layer 13 and reverse conductivity type semiconductor layer 14) described later are formed. Is formed first. As a result, it is possible to reduce the surface recombination velocity value at the back surface side joint, which greatly affects the characteristics of the photoelectric conversion element, particularly the open circuit voltage value. That is, the surface state of the main surface of the substrate before forming the semiconductor layer greatly affects the bonding characteristics, and before the formation of the natural oxide film and the adsorption of impurities due to the atmosphere proceed, the clean substrate It is considered that a good heterojunction can be formed by forming the first intrinsic semiconductor layer 11 and then the second intrinsic semiconductor layer 12 on both main surfaces.

<一導電型半導体層および逆導電型半導体層の形成工程>
次に、シリコン基板10と同じ導電型を呈する一導電型半導体層13を第二の真性半導体層12上に形成し、その後、シリコン基板10と逆の導電型を呈する逆導電型半導体層14を第一の真性半導体層11上に形成する。
<Formation process of one conductivity type semiconductor layer and reverse conductivity type semiconductor layer>
Next, a one-conductivity-type semiconductor layer 13 having the same conductivity type as that of the silicon substrate 10 is formed on the second intrinsic semiconductor layer 12, and then a reverse-conductivity-type semiconductor layer 14 having the opposite conductivity type to that of the silicon substrate 10 is formed. It is formed on the first intrinsic semiconductor layer 11.

導電型層がn型の場合では、水素(H)、シラン(SiH)およびフォスフィン(PH)を原料ガスとして、p型の場合では、水素(H)、シラン(SiH)およびジボラン(B)を原料ガスとして、プラズマCVD法、熱フィラメントCVD法、光CVD法等、既知の製膜手法を用いて形成する。 When the conductivity type layer is n-type, hydrogen (H 2 ), silane (SiH 4 ) and phosphine (PH 3 ) are used as source gases, and when p-type, hydrogen (H 2 ), silane (SiH 4 ) and Using diborane (B 2 H 6 ) as a source gas, it is formed using a known film forming method such as plasma CVD, hot filament CVD, or photo CVD.

このとき、本発明の手法として、一導電型半導体層13、次いで逆導電型半導体層14を順に形成することが好ましく、これにより、変換効率が優れた光電変換素子を作製することが可能となる。すなわち、逆導電型半導体層14を形成する場合には、導電型決定元素を含んだ原料ガス等を用いる必要があるが、この際に原料より生成した逆導電型を決定する元素成分が、所望しない基板表面に吸着、拡散することが生じるため、その部位において特性を低下せしめる逆接合や構造欠陥を形成してしまう。そこで、基板と同導電型の半導体層を先に形成し、後に逆導電型の半導体層を形成することで、上記の逆接合や欠陥等の発生を抑止し、高い変換効率を有する光電変換素子を作製することが可能となる。特にp型半導体層を形成する際に代表的に用いられるジボラン(B)は分解性が高いため、n型基板を用いて、p型半導体層によってpn接合を形成する場合には、本発明の効果が顕著に現れる。 At this time, as a method of the present invention, it is preferable to sequentially form the one-conductivity-type semiconductor layer 13 and then the reverse-conductivity-type semiconductor layer 14, whereby a photoelectric conversion element with excellent conversion efficiency can be manufactured. . That is, when forming the reverse conductivity type semiconductor layer 14, it is necessary to use a source gas containing a conductivity type determining element, but the element component that determines the reverse conductivity type generated from the material at this time is desired. Adsorption and diffusion on the surface of the substrate that does not occur will result in the formation of reverse bonding and structural defects that degrade the properties at that site. Therefore, by forming a semiconductor layer having the same conductivity type as that of the substrate first and then forming a reverse conductivity type semiconductor layer later, the photoelectric conversion element having high conversion efficiency can be prevented by preventing the occurrence of the reverse junction and defects described above. Can be produced. In particular, since diborane (B 2 H 6 ) typically used for forming a p-type semiconductor layer has high decomposability, when an n-type substrate is used and a pn junction is formed by the p-type semiconductor layer, The effect of the present invention appears remarkably.

なお、上述の各半導体層の形成前後にチャンバー内において水素プラズマ処理や炭酸ガスプラズマ処理等の表面改質処理、清浄化処理を導入してもよい。   Note that a surface modification treatment such as hydrogen plasma treatment or carbon dioxide gas plasma treatment or cleaning treatment may be introduced in the chamber before and after the formation of each semiconductor layer described above.

<反射防止膜の形成工程>
次に、反射防止層15を形成する。
<Antireflection film formation process>
Next, the antireflection layer 15 is formed.

反射防止層15の材料としては、例えば窒化珪素:SiNx膜(Si34ストイキオメトリを中心にして組成比(x)には幅がある)、SiOyNz膜(0<y、z<1)、TiO2、MgF2、ITO、ZnO、SnO2などを用いることができる。反射防止層15の構成は下地母材がシリコンである場合、屈折率は1.8〜2.3程度、厚み500〜1200Å程度にすればよい。 Examples of the material of the antireflection layer 15 include a silicon nitride: SiNx film (with a composition ratio (x) having a width centered on Si 3 N 4 stoichiometry), a SiOyNz film (0 <y, z <1). TiO2, MgF2, ITO, ZnO, SnO2 and the like can be used. The antireflection layer 15 may be configured so that the refractive index is about 1.8 to 2.3 and the thickness is about 500 to 1200 mm when the base material is silicon.

反射防止層15の製法としては、PECVD法、CatCVD法、蒸着法又はスパッタ法などが用いられる。   As a manufacturing method of the antireflection layer 15, a PECVD method, a CatCVD method, a vapor deposition method, a sputtering method, or the like is used.

<裏面電極の形成工程>
次に、一導電型半導体層13上に裏面電極16を形成する。
<Back electrode formation process>
Next, the back electrode 16 is formed on the one conductivity type semiconductor layer 13.

裏面電極16には低抵抗材料が用いられ、Al、Ag等が好適に用いられるが、一導電型半導体層13および裏面電極16界面での反射率向上のため、ITO、GaまたはAlがドープされたZnO、フッ素がドープされたSnO2等の金属酸化物から成る透明導電膜を挿入してもよい。裏面電極16はスパッタ法や蒸着法、プリント法、スプレー熱分解法等により形成される。裏面電極16は一導電型半導体層13上に略全面に形成するか、または格子状の形状等で部分的に形成してもよい。   A low-resistance material is used for the back electrode 16, and Al, Ag, etc. are suitably used, but ITO, Ga, or Al is doped to improve the reflectivity at the interface between the one-conductive semiconductor layer 13 and the back electrode 16. Alternatively, a transparent conductive film made of a metal oxide such as ZnO or fluorine doped SnO 2 may be inserted. The back electrode 16 is formed by sputtering, vapor deposition, printing, spray pyrolysis, or the like. The back electrode 16 may be formed on substantially the entire surface of the one-conductivity type semiconductor layer 13 or may be partially formed in a lattice shape or the like.

<受光面電極の形成工程>
次に、受光面電極17を、逆導電型半導体層14上または反射防止層15上に形成する。
<Light-receiving surface electrode formation process>
Next, the light receiving surface electrode 17 is formed on the reverse conductivity type semiconductor layer 14 or the antireflection layer 15.

反射防止層15に窒化珪素等の絶縁層を用いる場合には、予めパターニング製膜するか、受光面電極17を形成する部位をエッチング除去する等、開口部を設けておき、逆導電型半導体層14に直接コンタクトをとるように形成する。一方、反射防止層15にITO等の導電性材料を用いている場合には、反射防止層15上に受光面電極17を直接形成する。   In the case where an insulating layer such as silicon nitride is used for the antireflection layer 15, an opening is provided, for example, by patterning in advance or by etching away a portion where the light receiving surface electrode 17 is to be formed. 14 to be in direct contact. On the other hand, when a conductive material such as ITO is used for the antireflection layer 15, the light receiving surface electrode 17 is directly formed on the antireflection layer 15.

受光面電極17の材料としてはAl、Ag、Cu等が好適に用いられるが、逆導電型半導体層14または反射防止層15とのコンタクト抵抗を低減するため、Pd、Os、Au等の緩衝層を挿入してもよい。受光面電極17の形成方法としては、電極ペーストをプリント、ディスペンサー塗布等によって形成後、焼成を行う方法や、マスクを用いてスパッタ法、蒸着法等にて形成する方法が挙げられる。   As the material of the light receiving surface electrode 17, Al, Ag, Cu or the like is preferably used. However, in order to reduce the contact resistance with the reverse conductivity type semiconductor layer 14 or the antireflection layer 15, a buffer layer of Pd, Os, Au or the like. May be inserted. Examples of the method for forming the light-receiving surface electrode 17 include a method in which an electrode paste is formed by printing, dispenser application, and the like, followed by baking, or a method in which a mask is used to form by sputtering, vapor deposition, or the like.

このとき、シリコン基板10の表面に、微細な凹凸が形成されている場合には、これによって受光面電極17と下地の接触面積が増加し、さらに同電極と下地の界面の角度を引っ張り方向に対して平行に近づくことにより、受光面電極17の接合強度向上が図られる。   At this time, if fine irregularities are formed on the surface of the silicon substrate 10, this increases the contact area between the light receiving surface electrode 17 and the base, and further sets the angle of the interface between the electrode and the base in the pulling direction. On the other hand, the joint strength of the light-receiving surface electrode 17 can be improved by approaching parallel.

以上のようにして、本発明の光電変換素子の製造方法によって、特にシリコン系基板とシリコン系薄膜によって形成される光電変換素子において、高効率化を図ることができる。   As described above, high efficiency can be achieved by the photoelectric conversion element manufacturing method of the present invention, particularly in a photoelectric conversion element formed of a silicon substrate and a silicon thin film.

実施例として、本発明の製造方法によって図2に示す構造の光電変換素子を作製した結果について説明する。   As an example, the result of manufacturing a photoelectric conversion element having the structure shown in FIG. 2 by the manufacturing method of the present invention will be described.

まず、厚さ200μm、外形10cm×10cm、比抵抗1.5Ω・cmのn型多結晶シリコン基板10の表面のダメージ層をKOH水溶液でエッチングして洗浄した。   First, the damaged layer on the surface of the n-type polycrystalline silicon substrate 10 having a thickness of 200 μm, an outer shape of 10 cm × 10 cm, and a specific resistance of 1.5 Ω · cm was etched and washed with an aqueous KOH solution.

その後、リアクティブイオンエッチング法により、表面に凹凸構造を形成した。条件として、三フッ化メタン(CHF3 )を12.00sccm程度、塩素(Cl2 )を72sccm程度、酸素(O2 )を9sccm程度、および六フッ化硫黄(SF)を65sccm程度流しながら、反応圧力50mTorr程度、RFパワー500W程度で処理を行った。次いで、基板を希フッ酸水溶液中に浸漬し、超音波洗浄を行った。 Thereafter, a concavo-convex structure was formed on the surface by reactive ion etching. As conditions, while flowing about 12.00 sccm of trifluoromethane (CHF 3 ), about 72 sccm of chlorine (Cl 2 ), about 9 sccm of oxygen (O 2 ), and about 65 sccm of sulfur hexafluoride (SF 6 ), The treatment was performed at a reaction pressure of about 50 mTorr and an RF power of about 500 W. Next, the substrate was immersed in a dilute hydrofluoric acid aqueous solution and subjected to ultrasonic cleaning.

その後、水素雰囲気において少なくとも750℃に加熱した炉において、アニール処理を行った。   Thereafter, annealing was performed in a furnace heated to at least 750 ° C. in a hydrogen atmosphere.

次に、RCA洗浄によって表面の不純物を除去した後、表面酸化膜除去のため、1%のフッ酸水溶液に浸漬し、水洗を行った。   Next, after removing impurities on the surface by RCA cleaning, the substrate was immersed in a 1% hydrofluoric acid aqueous solution and washed with water to remove the surface oxide film.

次に基板の受光面側に、第一の真性半導体層11を、水素とシランを原料ガスとしてプラズマCVD法により5nmの膜厚で形成した。このときチャンバー内のガス圧力は2torr、RFパワーは20W、基板温度は200℃とした。   Next, the first intrinsic semiconductor layer 11 was formed on the light-receiving surface side of the substrate with a film thickness of 5 nm by plasma CVD using hydrogen and silane as source gases. At this time, the gas pressure in the chamber was 2 torr, the RF power was 20 W, and the substrate temperature was 200 ° C.

次いで、シリコン基板10の第一の真性半導体層11を形成した受光面と反対の非受光面(裏面)上に、第二の真性半導体層12を水素とシランを原料ガスとしてプラズマCVD法により5nmの膜厚で形成した。このときチャンバー内のガス圧力は2torr、RFパワーは20W、基板温度は200℃とした。   Next, on the non-light-receiving surface (back surface) opposite to the light-receiving surface on which the first intrinsic semiconductor layer 11 of the silicon substrate 10 is formed, the second intrinsic semiconductor layer 12 is formed to 5 nm by plasma CVD using hydrogen and silane as source gases. The film thickness was formed. At this time, the gas pressure in the chamber was 2 torr, the RF power was 20 W, and the substrate temperature was 200 ° C.

次に先の原料ガスにフォスフィンを添加し、第二の真性半導体層12上に、一導電型半導体層13となるn型の非晶質シリコン層を10nmの膜厚で積層した。このときチャンバー内のガス圧力は2torr、RFパワーは20W、基板温度は200℃とした。   Next, phosphine was added to the source gas, and an n-type amorphous silicon layer to be the one-conductivity type semiconductor layer 13 was stacked on the second intrinsic semiconductor layer 12 to a thickness of 10 nm. At this time, the gas pressure in the chamber was 2 torr, the RF power was 20 W, and the substrate temperature was 200 ° C.

さらに、水素とシランとジボランを原料ガスとしてプラズマCVD法により、第一の真性半導体層11上に、逆導電型半導体層14となるp型の非晶質シリコン層を5nmの膜厚で積層した。このときチャンバー内のガス圧力は2torr、RFパワーは20W、基板温度は200℃とした。   Further, a p-type amorphous silicon layer serving as the reverse conductivity type semiconductor layer 14 was stacked on the first intrinsic semiconductor layer 11 with a film thickness of 5 nm by plasma CVD using hydrogen, silane, and diborane as source gases. . At this time, the gas pressure in the chamber was 2 torr, the RF power was 20 W, and the substrate temperature was 200 ° C.

次いで、両面スパッタ装置を用いて基板の受光面側に反射防止層15となるITO層を85nmの膜厚で形成し、裏面側に緩衝層(不図示)となるITO層を40nmの膜厚にて積層した。   Next, an ITO layer serving as an antireflection layer 15 is formed with a film thickness of 85 nm on the light receiving surface side of the substrate using a double-sided sputtering apparatus, and an ITO layer serving as a buffer layer (not shown) is formed with a film thickness of 40 nm on the back surface side. And laminated.

次に、裏面側のITO層上に裏面電極16となるAg層を0.2μmの膜厚でスパッタ法により形成した。   Next, an Ag layer to be the back electrode 16 was formed on the ITO layer on the back side by a sputtering method with a film thickness of 0.2 μm.

最後に、受光面電極17を形成するため、低温硬化型のエポキシ樹脂を含む銀ペーストを、スクリーン印刷法を用いて、受光面側のITO層上にパターン形成し、200℃の低温にて焼成を行った。   Finally, in order to form the light-receiving surface electrode 17, a silver paste containing a low-temperature curing type epoxy resin is patterned on the ITO layer on the light-receiving surface side using a screen printing method, and baked at a low temperature of 200 ° C. Went.

この際、200℃といった低温焼成を行うため、実質的に平坦な面上、または単結晶シリコン基板にアルカリ水溶液等でエッチング処理を施して形成したなだらかな自生的凹凸構造を有する面上に形成した受光面電極の下地に対する接着強度は、600℃以上で焼成するタイプのそれに比して大きく劣ることが知られているが、本発明例のようにリアクティブイオンエッチング法により、表面に微細な凹凸構造を形成した下地上に形成することにより、接着強度を大幅に向上させることが可能となる。これは、微細な凹凸構造によって、受光面電極と下地の接触面積が増加し、さらに受光面電極と下地の界面の角度を引っ張り方向に対して平行に近づけたことにより、接合強度向上が図られたものと考えられる。   At this time, in order to perform low-temperature firing at 200 ° C., it was formed on a substantially flat surface, or on a surface having a gentle, spontaneous concavo-convex structure formed by etching a single crystal silicon substrate with an alkaline aqueous solution or the like. It is known that the adhesion strength of the light-receiving surface electrode to the base is greatly inferior to that of the type that is baked at 600 ° C. or higher. By forming the structure on the base on which the structure is formed, the adhesive strength can be greatly improved. This is because the contact area between the light-receiving surface electrode and the base increases due to the fine concavo-convex structure, and the angle of the interface between the light-receiving surface electrode and the base is made parallel to the tensile direction, thereby improving the bonding strength. It is thought that.

以上のようにして本発明の製造方法に基づき、光電変換素子の実施例1の作製を行った。   As described above, Example 1 of the photoelectric conversion element was produced based on the production method of the present invention.

また、実施例2〜4および比較例1及び2として、上記実施例1とは各半導体層の形成順のみを変えて光電変換素子を作製した。なお、それ以外の工程については実施例1と同様とした。   Further, as Examples 2 to 4 and Comparative Examples 1 and 2, photoelectric conversion elements were produced by changing only the formation order of the respective semiconductor layers from Example 1 described above. The other steps were the same as in Example 1.

本発明の実施例1〜4ならびに比較例1及び2の各半導体層の形成順を表1に示す。

Figure 2008192764
Table 1 shows the order of formation of the semiconductor layers of Examples 1 to 4 and Comparative Examples 1 and 2 of the present invention.
Figure 2008192764

最後に、本発明の実施例1〜4ならびに比較例1及び2の光電変換素子に、入射光強度が100mW/cm2に調整された擬似太陽光を照射し、特性評価を行った。特性評価結果を表2に示す。

Figure 2008192764
Lastly, the photoelectric conversion elements of Examples 1 to 4 of the present invention and Comparative Examples 1 and 2 were irradiated with pseudo-sunlight whose incident light intensity was adjusted to 100 mW / cm 2 to evaluate the characteristics. The characteristic evaluation results are shown in Table 2.
Figure 2008192764

まず、実施例1〜4は、比較例1及び2に対して、特に開放電圧および曲率因子の点で優れていることが分かる。これは、実施例1〜4では、清浄な表面状態を有した基板の両表面に、自然酸化膜の成長が進行する前に、迅速に真性半導体層が形成されるため、低欠陥密度の接合を得ることができ、同界面での低い表面再結合速度を実現することができたためであると推察される。   First, it can be seen that Examples 1 to 4 are superior to Comparative Examples 1 and 2 in terms of open circuit voltage and curvature factor. In the first to fourth embodiments, since the intrinsic semiconductor layer is rapidly formed on both surfaces of the substrate having a clean surface state before the growth of the natural oxide film proceeds, the low defect density bonding is performed. This is probably because a low surface recombination velocity at the same interface could be realized.

次に、実施例1及び3は、実施例2及び4に対して、特に曲線因子が優れていることが分かる。これは、特に基板と真性半導体層について、pn接合側領域の接合品質がnn+接合側領域の接合品質よりも特性に与える影響が大きいことを示しており、実施例1及び3では、先に形成を行ったpn接合側領域において良好な内部電界が形成されたためであると推察される。   Next, it can be seen that Examples 1 and 3 are particularly excellent in the fill factor as compared with Examples 2 and 4. This indicates that the junction quality of the pn junction side region has a larger influence on the characteristics than the junction quality of the nn + junction side region, particularly for the substrate and the intrinsic semiconductor layer. This is presumably because a good internal electric field was formed in the formed pn junction side region.

そして、実施例1は、実施例3に対して、短絡電流、開放電圧および曲率因子の全ての点で優れていることが分かる。これは、基板と逆導電型半導体層を形成する前に一導電型半導体層を形成したため、一導電型半導体層と真性半導体層との界面に逆接合等が形成されることなく、低欠陥密度のBSF構造が形成されたためであると推察される。   And it turns out that Example 1 is excellent with respect to Example 3 in all the points of a short circuit current, an open circuit voltage, and a curvature factor. This is because the one-conductivity-type semiconductor layer is formed before the substrate and the reverse-conductivity-type semiconductor layer are formed, so that a low junction density is not formed without forming a reverse junction or the like at the interface between the one-conductivity-type semiconductor layer and the intrinsic semiconductor layer. This is presumably because the BSF structure was formed.

以上により、本発明の製造方法、特に半導体層の形成順を規定することにより、高い変換効率を有する光電変換素子を作製することが可能である。   As described above, a photoelectric conversion element having high conversion efficiency can be manufactured by defining the manufacturing method of the present invention, particularly the order of forming the semiconductor layers.

なお、本発明例ではn型多結晶シリコン基板を用いた例について説明したが、p型多結晶シリコン基板、単結晶シリコン基板、または他の半導体基板を用いた際にも、同様の効果が期待できる。   In the example of the present invention, an example using an n-type polycrystalline silicon substrate has been described, but the same effect is expected when a p-type polycrystalline silicon substrate, a single crystal silicon substrate, or another semiconductor substrate is used. it can.

従来の光電変換素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the conventional photoelectric conversion element. 本発明の光電変換素子の製造方法によって形成した光電変換素子の一実施形態を示す図である。It is a figure which shows one Embodiment of the photoelectric conversion element formed with the manufacturing method of the photoelectric conversion element of this invention.

符号の説明Explanation of symbols

1・・・n型単結晶シリコン基板
2・・・i型非晶質層
3・・・p型非晶質層
4・・・i型非晶質層
5・・・n型非晶質層
6・・・受光面側透明導電層
7・・・裏面側透明導電層
8・・・受光面側取出電極
9・・・裏面側取出電極
10・・n型多結晶シリコン基板
11・・第一の真性半導体層
12・・第二の真性半導体層
13・・一導電型半導体層
14・・逆導電型半導体層
15・・反射防止層
16・・裏面電極
17・・受光面電極
DESCRIPTION OF SYMBOLS 1 ... n-type single crystal silicon substrate 2 ... i-type amorphous layer 3 ... p-type amorphous layer 4 ... i-type amorphous layer 5 ... n-type amorphous layer 6... Light receiving surface side transparent conductive layer 7... Back surface side transparent conductive layer 8... Light receiving surface side extraction electrode 9 .. Back surface side extraction electrode 10 .. n-type polycrystalline silicon substrate 11. Intrinsic semiconductor layer 12 .. Second intrinsic semiconductor layer 13 .. One conductivity type semiconductor layer 14 .. Reverse conductivity type semiconductor layer 15 .. Antireflection layer 16 .. Back electrode 17.

Claims (5)

一導電型を呈する結晶系半導体基板と、
前記結晶系半導体基板の受光面に形成された第一の真性半導体層と、
前記第一の真性半導体層上に形成され、前記結晶系半導体基板と逆の導電型を呈する逆導電型半導体層と、
前記結晶系半導体基板の非受光面に形成された第二の真性半導体層と、
前記第二の真性半導体層上に形成された一導電型半導体層と、を有して成る光電変換素子を製造する方法であって、
前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程と、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程とを続けて行うことを特徴とする光電変換素子の製造方法。
A crystalline semiconductor substrate exhibiting one conductivity type;
A first intrinsic semiconductor layer formed on the light receiving surface of the crystalline semiconductor substrate;
A reverse conductivity type semiconductor layer formed on the first intrinsic semiconductor layer and exhibiting a conductivity type opposite to that of the crystalline semiconductor substrate;
A second intrinsic semiconductor layer formed on the non-light-receiving surface of the crystalline semiconductor substrate;
A one-conductivity-type semiconductor layer formed on the second intrinsic semiconductor layer, and a method of manufacturing a photoelectric conversion element comprising:
The step of forming the first intrinsic semiconductor layer on the light-receiving surface of the crystalline semiconductor substrate and the step of forming the second intrinsic semiconductor layer on the non-light-receiving surface of the crystalline semiconductor substrate are continuously performed. A method for producing a photoelectric conversion element.
前記結晶系半導体基板の受光面に前記第一の真性半導体層を形成する工程に続いて、前記結晶系半導体基板の非受光面に第二の真性半導体層を形成する工程を行うことを特徴とする請求項1に記載の光電変換素子の製造方法。   A step of forming a second intrinsic semiconductor layer on the non-light-receiving surface of the crystalline semiconductor substrate is performed following the step of forming the first intrinsic semiconductor layer on the light-receiving surface of the crystalline semiconductor substrate. The manufacturing method of the photoelectric conversion element of Claim 1. 前記第一の真性半導体層及び前記第二の真性半導体層を形成する工程に続いて、前記第二の真性半導体層上に一導電型半導体層を形成する工程と、前記第一の真性半導体層上に前記逆導電型半導体層を形成する工程とを、順に行うことを特徴とする請求項1又は2に記載の光電変換素子の製造方法。   Following the step of forming the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, a step of forming a one conductivity type semiconductor layer on the second intrinsic semiconductor layer, and the first intrinsic semiconductor layer The method for producing a photoelectric conversion element according to claim 1, wherein the step of forming the reverse conductivity type semiconductor layer thereon is sequentially performed. 前記結晶系半導体基板がn型であることを特徴とする請求項1乃至3のいずれかに記載の光電変換素子の製造方法。   The method for manufacturing a photoelectric conversion element according to claim 1, wherein the crystalline semiconductor substrate is n-type. 少なくとも一の前記真性半導体層は非単結晶相であることを特徴とする請求項1乃至4のいずれかに記載の光電変換素子の製造方法。   The method for manufacturing a photoelectric conversion element according to claim 1, wherein at least one of the intrinsic semiconductor layers has a non-single-crystal phase.
JP2007024632A 2007-02-02 2007-02-02 Method for manufacturing photoelectric conversion element Expired - Fee Related JP5127252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024632A JP5127252B2 (en) 2007-02-02 2007-02-02 Method for manufacturing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024632A JP5127252B2 (en) 2007-02-02 2007-02-02 Method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2008192764A true JP2008192764A (en) 2008-08-21
JP5127252B2 JP5127252B2 (en) 2013-01-23

Family

ID=39752597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024632A Expired - Fee Related JP5127252B2 (en) 2007-02-02 2007-02-02 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5127252B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251856B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
KR101251878B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
KR101251857B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
JP2013513965A (en) * 2009-12-21 2013-04-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Back surface field type heterojunction solar cell and manufacturing method thereof
WO2013121538A1 (en) * 2012-02-15 2013-08-22 三菱電機株式会社 Semiconductor film manufacturing apparatus, semiconductor device manufacturing method, and semiconductor device
JP2014045187A (en) * 2012-08-28 2014-03-13 Lg Electronics Inc Method for manufacturing solar cell
US9123817B2 (en) 2010-10-12 2015-09-01 Samsung Electronics Co., Ltd. Transistors and electronic devices including the same
JP2016181629A (en) * 2015-03-24 2016-10-13 株式会社カネカ Device for manufacturing silicon substrate for solar battery and manufacturing method therefor
KR20190040157A (en) * 2019-04-05 2019-04-17 엘지전자 주식회사 Manufacturing method of solar cell
US11056601B2 (en) 2018-10-09 2021-07-06 Panasonic Corporation Solar cell
JP2022547903A (en) * 2019-09-05 2022-11-16 マイアー ブルガー (ジャーマニー) ゲゼルシャフト ミット ベシュレンクテル ハフツング Heterojunction backside emitter solar cell structure and method and apparatus for manufacturing such solar cell structure
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044461A (en) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof
JP2001339084A (en) * 2000-05-29 2001-12-07 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2004221437A (en) * 2003-01-17 2004-08-05 Sanyo Electric Co Ltd Photovoltaic device and manufacturing method thereof
JP2006237363A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044461A (en) * 1999-07-26 2001-02-16 Sanyo Electric Co Ltd Photovoltaic element and manufacture thereof
JP2001339084A (en) * 2000-05-29 2001-12-07 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2004221437A (en) * 2003-01-17 2004-08-05 Sanyo Electric Co Ltd Photovoltaic device and manufacturing method thereof
JP2006237363A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Photovoltaic device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513965A (en) * 2009-12-21 2013-04-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Back surface field type heterojunction solar cell and manufacturing method thereof
US9123817B2 (en) 2010-10-12 2015-09-01 Samsung Electronics Co., Ltd. Transistors and electronic devices including the same
KR101251856B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
KR101251878B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
KR101251857B1 (en) 2012-01-31 2013-04-10 현대중공업 주식회사 Method for manufacturing bifacial solar cell
WO2013121538A1 (en) * 2012-02-15 2013-08-22 三菱電機株式会社 Semiconductor film manufacturing apparatus, semiconductor device manufacturing method, and semiconductor device
US8889464B2 (en) 2012-08-28 2014-11-18 Lg Electronics Inc. Method for manufacturing solar cell
JP2014045187A (en) * 2012-08-28 2014-03-13 Lg Electronics Inc Method for manufacturing solar cell
JP2016181629A (en) * 2015-03-24 2016-10-13 株式会社カネカ Device for manufacturing silicon substrate for solar battery and manufacturing method therefor
US11056601B2 (en) 2018-10-09 2021-07-06 Panasonic Corporation Solar cell
KR20190040157A (en) * 2019-04-05 2019-04-17 엘지전자 주식회사 Manufacturing method of solar cell
KR102054977B1 (en) * 2019-04-05 2019-12-12 엘지전자 주식회사 Manufacturing method of solar cell
JP2022547903A (en) * 2019-09-05 2022-11-16 マイアー ブルガー (ジャーマニー) ゲゼルシャフト ミット ベシュレンクテル ハフツング Heterojunction backside emitter solar cell structure and method and apparatus for manufacturing such solar cell structure
EP3997741B1 (en) 2019-09-05 2023-03-29 Meyer Burger (Germany) GmbH Rear-emitter solar cell structure having a heterojunction, and method and device for producing same
US11967662B2 (en) 2019-09-05 2024-04-23 Meyer Burger (Germany) Gmbh Backside emitter solar cell structure having a heterojunction and method and device for producing the same

Also Published As

Publication number Publication date
JP5127252B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5127252B2 (en) Method for manufacturing photoelectric conversion element
US9871161B2 (en) Method for making crystalline silicon-based solar cell, and method for making solar cell module
JP5058184B2 (en) Method for manufacturing photovoltaic device
JP2009512214A (en) Method for manufacturing n-type polycrystalline silicon solar cell
JP2013239476A (en) Photovoltaic device and method of manufacturing the same, and photovoltaic module
JP2008034543A (en) Photoelectric conversion element, and manufacturing method thereof
JP2011054837A (en) Crystal silicon-based solar cell
TWI722078B (en) Manufacturing method of photoelectric conversion device
JP4340031B2 (en) Surface roughening method for solar cell substrate
WO2013128628A1 (en) Photovoltaic device
JP2014239150A (en) Solar cell and solar cell module
KR20100094325A (en) Method for fabricating silicon nano wire, solar cell including silicon nano wire and method for fabricating solar cell
JP6109107B2 (en) Solar cell and method for manufacturing the same
JP5307688B2 (en) Crystalline silicon solar cell
JP6115806B2 (en) Photovoltaic device
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
JP2011003654A (en) Crystal silicon-based solar cell
WO2013161145A1 (en) Backside bonded solar cell and method for manufacturing same
JP2013115057A (en) Method for manufacturing crystalline silicon solar cell
KR102049604B1 (en) Solar cell and Method of manufacturing the same
KR101115195B1 (en) Silicon heterojunction solar cell and method for fabricating the same
JP6990764B2 (en) Solar cells and their manufacturing methods
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
JP2011066213A (en) Photoelectric converter and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees