JP2008190444A - Fluid machine - Google Patents

Fluid machine Download PDF

Info

Publication number
JP2008190444A
JP2008190444A JP2007026620A JP2007026620A JP2008190444A JP 2008190444 A JP2008190444 A JP 2008190444A JP 2007026620 A JP2007026620 A JP 2007026620A JP 2007026620 A JP2007026620 A JP 2007026620A JP 2008190444 A JP2008190444 A JP 2008190444A
Authority
JP
Japan
Prior art keywords
lubricating oil
rotor
fluid machine
flowing
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007026620A
Other languages
Japanese (ja)
Other versions
JP4799437B2 (en
Inventor
Noriyuki Kobayashi
憲幸 小林
Akiyoshi Higashiyama
彰良 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2007026620A priority Critical patent/JP4799437B2/en
Priority to DE200860000678 priority patent/DE602008000678D1/en
Priority to EP20080001720 priority patent/EP1956244B1/en
Publication of JP2008190444A publication Critical patent/JP2008190444A/en
Application granted granted Critical
Publication of JP4799437B2 publication Critical patent/JP4799437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1027CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1072Oxygen (O2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid machine capable of achieving further miniaturization and the reduction of the weight of a hydraulic machine while improving reliability relating to the lubricating performance of the fluid machine by a simple mechanism. <P>SOLUTION: The fluid machine is provided with a rotary shaft 12 extending in a body 3 of a hermetic vessel 2 and rotatably supported via bearings 12, 28, a motor driving the rotary shaft by electricity supply and including a rotor 7 and a stator 8, a scroll unit 30 held at the upper side of the motor, a frame member 14 supporting the rotary shaft via the bearing, and a flow direction regulating means 80 regulating the direction of lubricating oil flowing down from a scroll unit side to a motor side to prevent lubricating oil supplied to the bearing from an oil storage chamber 23 from flowing into a stator side. The flow direction regulating means includes a guide member 82 fixed on the upper surface 7a of the rotor and leading the flowing-down lubricating oil to the upper surface, and a discharge path orienting the lubricating oil led to the upper surface toward the oil storage chamber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体機械に係り、詳しくは、密閉容器の下側に潤滑油を貯留する流体機械に関する。   The present invention relates to a fluid machine, and more particularly, to a fluid machine that stores lubricating oil below a sealed container.

この種の流体機械としての一例である密閉型圧縮機は冷凍空調機器等に用いられ、作動流体としての冷媒を圧縮する。この冷媒には通常、潤滑油が含まれている。この潤滑油は圧縮機内の摺動面や軸受等の潤滑のみならず、摺動面のシールとしての機能を有する。
しかしながら、この潤滑油が摺動面等に供給されない場合には圧縮機の故障を招くことになる。そこで、潤滑油の枯渇に起因する問題の解決を図る圧縮機が知られている(例えば、特許文献1参照)。
特開平10−47269号公報
A hermetic compressor, which is an example of this type of fluid machine, is used in a refrigeration air conditioner or the like, and compresses refrigerant as a working fluid. This refrigerant usually contains lubricating oil. This lubricating oil not only lubricates the sliding surfaces and bearings in the compressor, but also functions as a seal for the sliding surfaces.
However, if this lubricating oil is not supplied to the sliding surface or the like, the compressor will be damaged. Then, the compressor which aims at solution of the problem resulting from exhaustion of lubricating oil is known (for example, refer to patent documents 1).
Japanese Patent Laid-Open No. 10-47269

ところで、上述した従来の技術では電動機をバイパスしてスクロールユニットと貯油室とを接続するパイプが設けられており、このパイプは電動機の外周側に配設されている。
ここで、上記潤滑油の枯渇に起因する問題の解決を図る際には、圧縮機の重厚長大化を避ける点にも留意しなければならない。なぜならば、上記冷凍空調機器等に用いられ、密閉容器の下側に潤滑油を貯留する圧縮機においては、近年、一般家庭にも容易に配置させるべくより一層の小型・軽量化が求められているからである。
By the way, in the prior art mentioned above, the pipe which bypasses an electric motor and connects a scroll unit and an oil storage chamber is provided, and this pipe is arrange | positioned at the outer peripheral side of the electric motor.
Here, when trying to solve the problem caused by the depletion of the lubricating oil, it is necessary to pay attention to avoiding the heavy and long compressor. This is because, in compressors that are used in the above-described refrigeration and air-conditioning equipment and the like and store the lubricating oil below the hermetic container, in recent years, there has been a demand for further reduction in size and weight in order to easily arrange them in ordinary households. Because.

本発明は、このような課題に鑑みてなされたもので、簡単な機構で流体機械の潤滑性能に係る信頼性を向上しながら、流体機械のより一層の小型・軽量化を実現できる流体機械を提供することを目的とする。   The present invention has been made in view of such a problem, and a fluid machine capable of realizing further reduction in size and weight of a fluid machine while improving reliability related to the lubrication performance of the fluid machine with a simple mechanism. The purpose is to provide.

上記の目的を達成すべく、請求項1記載の流体機械は、筒状の胴部、及び該胴部の上側に形成される吐出室、並びに胴部の下側に形成される潤滑油の貯油室を有し、胴部内に吐出圧が作用する密閉容器と、胴部内を延び、軸受を介して回転自在に支持された回転軸と、胴部内に収容され、回転軸を通電により駆動させるとともに、該回転軸の周囲にて該回転軸と一体に回転されるロータ、及び該ロータの周囲にて該ロータを回転させるステータを有する電動機と、電動機の上側にて胴部内に収容され、回転軸に駆動されて作動流体の吸入から吐出の一連のプロセスを実施するスクロールユニットと、スクロールユニットと電動機との間に配設され、スクロールユニットを固定するとともに、軸受を介して回転軸を支持するフレーム部材と、貯油室から軸受に供された潤滑油のステータ側への流入を阻止すべく、スクロールユニット側から電動機側に流下する潤滑油の方向を規制する流れ方向規制手段とを具備し、流れ方向規制手段は、ロータの上面に固定され、流下する潤滑油を上面に導くガイド部材と、上面に導かれた潤滑油を貯油室に向かわせる排出路とを含むことを特徴としている。   In order to achieve the above object, a fluid machine according to claim 1 includes a cylindrical barrel, a discharge chamber formed above the barrel, and a lubricating oil reservoir formed below the barrel. A sealed container in which a discharge pressure acts in the body, a rotating shaft extending through the body and supported rotatably through a bearing, and housed in the body, and driving the rotating shaft by energization A rotor that is rotated integrally with the rotation shaft around the rotation shaft, and an electric motor having a stator that rotates the rotor around the rotor; A scroll unit that is driven by the cylinder to perform a series of processes from suction to discharge of the working fluid, and a frame that is disposed between the scroll unit and the electric motor and that fixes the scroll unit and supports the rotating shaft via a bearing. Parts and storage A flow direction restricting means for restricting the direction of the lubricating oil flowing down from the scroll unit side to the electric motor side in order to prevent the lubricant supplied to the bearing from the chamber from flowing into the stator side. And a guide member that is fixed to the upper surface of the rotor and guides the lubricating oil flowing down to the upper surface, and a discharge path that directs the lubricating oil guided to the upper surface to the oil storage chamber.

また、請求項2記載の発明では、請求項1において、ガイド部材は、上面にかしめ固定される底部と、フレーム部材側に開口する開口部とを有する有底筒状に形成されることを特徴としている。
更に、請求項3記載の発明では、請求項1又は2において、スクロールユニットから吐出される作動流体のガイド部材内への流入を阻止すべく、該ガイド部材を囲繞し、該作動流体と流下する潤滑油とを隔絶する仕切機構を更に具備することを特徴としている。
The invention according to claim 2 is characterized in that, in claim 1, the guide member is formed in a bottomed cylindrical shape having a bottom portion that is caulked and fixed to the upper surface and an opening portion that opens to the frame member side. It is said.
Furthermore, in the invention described in claim 3, in order to prevent the working fluid discharged from the scroll unit from flowing into the guide member according to claim 1 or 2, the guide member is surrounded and flows down with the working fluid. It further comprises a partition mechanism for isolating the lubricating oil.

更にまた、請求項4記載の発明では、請求項1から3のいずれかにおいて、排出路は、底部及びロータを一括貫通して形成されることを特徴とし、また、請求項5記載の発明では、請求項1から4のいずれかにおいて、作動流体が二酸化炭素からなる冷媒であることを特徴としている。   Furthermore, in the invention described in claim 4, in any one of claims 1 to 3, the discharge path is formed so as to penetrate through the bottom portion and the rotor, and in the invention described in claim 5, In any one of claims 1 to 4, the working fluid is a refrigerant composed of carbon dioxide.

従って、請求項1記載の本発明の流体機械によれば、貯油室内の潤滑油は軸受に供給され、軸受の潤滑や冷却を行うが、この潤滑油は流れ方向規制手段によりスクロールユニット側から電動機側に流下する方向が規制され、ステータ側への流入が阻止される。この流れ方向規制手段は、ロータの上面に固定され、流下する潤滑油をロータの上面に導くガイド部材と、ロータの上面に導かれた潤滑油を貯油室に向かわせる排出路とを含んで構成されている。よって、この潤滑油は胴部内に飛散することなく、総て貯油室に速やかに導かれて蓄えられる。この結果、潤滑油の回収を効率的に実施でき、ガイド部材を設けるだけの簡単な機構で潤滑油の供給不足に起因する流体機械の故障を確実に防止でき、流体機械の信頼性を向上できる。   Therefore, according to the fluid machine of the first aspect of the present invention, the lubricating oil in the oil storage chamber is supplied to the bearing and lubricates and cools the bearing. The lubricating oil is supplied from the scroll unit side by the flow direction regulating means. The direction of flow down to the side is restricted, and inflow to the stator side is prevented. The flow direction restricting means includes a guide member that is fixed to the upper surface of the rotor and guides the lubricating oil flowing down to the upper surface of the rotor, and a discharge path that directs the lubricating oil guided to the upper surface of the rotor to the oil storage chamber. Has been. Therefore, all the lubricating oil is promptly guided and stored in the oil storage chamber without being scattered in the body portion. As a result, the recovery of the lubricating oil can be performed efficiently, and the failure of the fluid machine due to the insufficient supply of the lubricating oil can be reliably prevented with a simple mechanism that simply provides the guide member, and the reliability of the fluid machine can be improved. .

しかも、胴部内における潤滑油の飛散を防止できるため、流下する潤滑油が作動流体と接触して作動流体中に含まれることが抑制され、流体機械外に流れる潤滑油の潤滑油率(OCR)が抑制可能となり、この潤滑油率の抑制により、冷凍システムの各熱交換器の効率が向上し、冷凍システムの省エネルギー化を実現できる。
また、請求項2記載の発明によれば、ガイド部材は有底筒状に形成され、その開口部をフレーム部材側に開口させて、その底部をロータの上面にかしめることにより、ガイド部材をロータと一体に組み付けるだけの簡単な機構で潤滑油率を抑制でき、流体機械のより一層の小型・軽量化、並びに流体機械の製造コストの低廉化が達成できる。
Moreover, since the scattering of the lubricating oil in the body portion can be prevented, the flowing lubricating oil is prevented from coming into contact with the working fluid and contained in the working fluid, and the lubricating oil ratio (OCR) of the lubricating oil flowing outside the fluid machine As a result, the efficiency of each heat exchanger of the refrigeration system can be improved and energy saving of the refrigeration system can be realized.
According to the second aspect of the present invention, the guide member is formed in a bottomed cylindrical shape, and the guide member is formed by opening the opening to the frame member side and caulking the bottom to the upper surface of the rotor. The lubricating oil rate can be suppressed with a simple mechanism that is assembled integrally with the rotor, and further reduction in the size and weight of the fluid machine and reduction in the manufacturing cost of the fluid machine can be achieved.

更に、請求項3記載の発明によれば、作動流体のガイド部材内への流入を阻止する仕切機構を有することにより、流下する潤滑油が作動流体と接触し作動流体中に含まれることが防止され、潤滑油率を確実に低減でき、潤滑油の供給不足に起因する流体機械の故障をより一層確実に防止できる。
更にまた、請求項4記載の発明によれば、流下する潤滑油はガイド部材の底部及びロータを一括貫通して形成される排出路を通じて貯油室に円滑に排出され、潤滑油の回収を更に効率的に実施でき、潤滑油の供給不足に起因する流体機械の故障を更に確実に防止できる。
Furthermore, according to the invention described in claim 3, by having the partition mechanism for preventing the working fluid from flowing into the guide member, the flowing lubricating oil is prevented from coming into contact with the working fluid and being contained in the working fluid. Therefore, the lubricating oil rate can be reliably reduced, and failure of the fluid machine due to insufficient supply of lubricating oil can be more reliably prevented.
Furthermore, according to the fourth aspect of the present invention, the lubricating oil flowing down is smoothly discharged to the oil storage chamber through a discharge passage formed through the bottom of the guide member and the rotor in a lump, and the recovery of the lubricating oil is further efficient. The failure of the fluid machine due to insufficient supply of lubricating oil can be prevented more reliably.

また、請求項5記載の発明によれば、作動流体として高圧に圧縮される二酸化炭素からなる冷媒が用いられて密閉容器の板厚等が増大した場合であっても、上記構成によれば、流体機械の更なる重厚長大化を招くことなく十分な量の潤滑油が確保できる。   Further, according to the invention described in claim 5, even when the thickness of the sealed container is increased by using a refrigerant made of carbon dioxide compressed to high pressure as the working fluid, according to the above configuration, A sufficient amount of lubricating oil can be ensured without further increasing the thickness of the fluid machine.

以下、図面により本発明の一実施形態について説明する。
図1は、本実施形態に係る流体機械の一例としての密閉型圧縮機を示す。この圧縮機1は冷凍空調装置やヒートポンプ式給湯機等の冷凍回路に組み込まれている。当該回路は、作動流体の一例である二酸化炭素冷媒(以下、冷媒と称する)が循環する経路を備え、圧縮機1は経路から冷媒を吸入し、圧縮して経路に向けて供出する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a hermetic compressor as an example of a fluid machine according to the present embodiment. The compressor 1 is incorporated in a refrigeration circuit such as a refrigeration air conditioner or a heat pump water heater. The circuit includes a path through which a carbon dioxide refrigerant (hereinafter referred to as a refrigerant), which is an example of a working fluid, circulates, and the compressor 1 sucks the refrigerant from the path, compresses it, and delivers it toward the path.

この圧縮機1はハウジング(密閉容器)2を備えており、ハウジング2の胴部3は、その上側及び下側が上蓋4及び下蓋5によってそれぞれ気密に嵌合されており、胴部3の内部が密閉され、吐出圧が作用している。
胴部3内には電動モータ(電動機)6が収容され、このモータ6内には回転軸12が配置されている。詳しくは、モータ6は、永久磁石を有するロータ7が回転軸12の外周側に固着され、このロータ7の外周側には電機子巻線9を有するステータ8が配置されている。なお、ステータ8の外周側の一部分が胴部3に圧入固定される。そして、電機子巻線9が通電されると、ロータ7は電機子巻線9で発生した磁界の回転に伴って回転し、回転軸12と一体的に回転する。また、回転軸12の上端側は軸受16を介して主軸フレーム(フレーム部材)14に回転自在に支持されている。
The compressor 1 includes a housing (sealed container) 2, and the body 3 of the housing 2 is airtightly fitted on the upper and lower sides by an upper lid 4 and a lower lid 5, respectively. Is sealed and discharge pressure is acting.
An electric motor (electric motor) 6 is accommodated in the body 3, and a rotating shaft 12 is disposed in the motor 6. Specifically, in the motor 6, a rotor 7 having a permanent magnet is fixed to the outer peripheral side of the rotating shaft 12, and a stator 8 having an armature winding 9 is disposed on the outer peripheral side of the rotor 7. A part of the outer peripheral side of the stator 8 is press-fitted and fixed to the body 3. When the armature winding 9 is energized, the rotor 7 rotates with the rotation of the magnetic field generated in the armature winding 9 and rotates integrally with the rotating shaft 12. Further, the upper end side of the rotary shaft 12 is rotatably supported by a main shaft frame (frame member) 14 via a bearing 16.

一方、回転軸12の下端側は軸受20を介して副軸フレーム18に回転自在に支持されている。また、回転軸12の下端側にはオイルポンプ22が装着されており、ポンプ22は下蓋5の内側に形成された貯油室23内の潤滑油を吸引する。この潤滑油は回転軸12の油路24を経て回転軸12の上端からモータ6やスクロールユニット30等に供給され、各摺動部分や軸受等の潤滑、並びに、摺動面のシールとして機能する。更に、このフレーム18の適宜位置には潤滑油の導入口19が形成されており、圧縮機1内の各摺動部分に供給された潤滑油は、後述の如く導入口19を介して貯油室23に貯留される。   On the other hand, the lower end side of the rotating shaft 12 is rotatably supported by the countershaft frame 18 via the bearing 20. An oil pump 22 is attached to the lower end side of the rotary shaft 12, and the pump 22 sucks lubricating oil in an oil storage chamber 23 formed inside the lower lid 5. The lubricating oil is supplied from the upper end of the rotating shaft 12 to the motor 6 and the scroll unit 30 through the oil passage 24 of the rotating shaft 12, and functions as a lubricant for each sliding portion and a bearing and a seal for the sliding surface. . Further, an inlet 19 for lubricating oil is formed at an appropriate position of the frame 18, and the lubricating oil supplied to each sliding portion in the compressor 1 is stored in the oil storage chamber via the inlet 19 as will be described later. 23 is stored.

上記ユニット30は胴部3内においてモータ6の上方に配置され、冷媒の吸入、圧縮及び吐出の一連のプロセスを実施する。詳しくは、このユニット30は、可動渦巻体52及び固定渦巻体32から構成されており、可動渦巻体52は鏡板54を備え、この鏡板54には固定渦巻体32の鏡板34に向けて延びた渦巻きラップが一体形成されている。これに対し、固定渦巻体32の鏡板34にも鏡板54に向けて延びる渦巻きラップが一体形成されている。そして、これら各渦巻きラップが互いに協働して圧縮室を形成し、この圧縮室は固定渦巻体32に対する可動渦巻体52の旋回運動により、渦巻きラップの径方向外周側から中心に向けて移動し、この際、その容積が減少される。   The unit 30 is disposed above the motor 6 in the body 3, and performs a series of processes of refrigerant suction, compression, and discharge. Specifically, the unit 30 includes a movable spiral body 52 and a fixed spiral body 32, and the movable spiral body 52 includes an end plate 54, and the end plate 54 extends toward the end plate 34 of the fixed spiral body 32. A spiral wrap is integrally formed. On the other hand, a spiral wrap extending toward the end plate 54 is also integrally formed on the end plate 34 of the fixed spiral body 32. These spiral wraps cooperate with each other to form a compression chamber, and the compression chamber moves from the radially outer peripheral side of the spiral wrap toward the center by the swirling motion of the movable spiral body 52 with respect to the fixed spiral body 32. In this case, the volume is reduced.

上述した可動渦巻体52に旋回運動を付与するため、鏡板54の下面側にはボス66が形成され、このボス66は軸受28を介して偏心軸26に回転自在に支持される。この偏心軸26は回転軸12の上端側に一体形成されている。なお、可動渦巻体52の自転は自転阻止ピン68により阻止されている。
一方、固定渦巻体32は主軸フレーム14に固定されており、鏡板34が圧縮室側と吐出室60側とを仕切っている。固定渦巻体32の中央部分の適宜位置には、圧縮室側に連通する吐出孔が鏡板34を貫通して穿設されており、この吐出孔は、固定渦巻体32の反スクロール側に配置された吐出弁62により開閉される。また、吐出弁62を含む固定渦巻体32の反スクロール側は吐出ヘッド64で覆われており、この吐出ヘッド64により、吐出弁62の開弁時における音が抑制される。
In order to impart a swiveling motion to the movable spiral body 52 described above, a boss 66 is formed on the lower surface side of the end plate 54, and this boss 66 is rotatably supported by the eccentric shaft 26 via a bearing 28. The eccentric shaft 26 is integrally formed on the upper end side of the rotary shaft 12. The rotation of the movable spiral body 52 is blocked by a rotation blocking pin 68.
On the other hand, the fixed spiral body 32 is fixed to the spindle frame 14, and the end plate 34 partitions the compression chamber side and the discharge chamber 60 side. A discharge hole communicating with the compression chamber side is formed at an appropriate position in the central portion of the fixed spiral body 32 through the end plate 34, and this discharge hole is disposed on the anti-scroll side of the fixed spiral body 32. The discharge valve 62 is opened and closed. Further, the anti-scroll side of the fixed spiral body 32 including the discharge valve 62 is covered with a discharge head 64, and the sound when the discharge valve 62 is opened is suppressed by the discharge head 64.

ところで、貯油室23内の潤滑油は、オイルポンプ22及び油路24を介してユニット30や軸受16,28等に供給された後、ユニット30側からモータ6側に流下するにあたり、その流れ方向が流れ方向規制手段80で規制されている。
具体的には、流れ方向規制手段80は、ロータ7の上面7aに固定され、この上面7aにユニット30側からモータ6側に流下する潤滑油を導くロータカバー(ガイド部材)82と、上面7aに導かれた潤滑油を貯油室23に向かわせるオイル排出路(排出路)84とを有して構成され、ユニット30や軸受16,28等に供給された潤滑油は、ステータ8側への流入を阻止すべく、その流れ方向が規制されて貯油室23で回収される。
By the way, the lubricating oil in the oil storage chamber 23 is supplied to the unit 30 and the bearings 16, 28, etc. via the oil pump 22 and the oil passage 24, and then flows in the direction of flow from the unit 30 side to the motor 6 side. Is regulated by the flow direction regulating means 80.
Specifically, the flow direction regulating means 80 is fixed to the upper surface 7a of the rotor 7, and a rotor cover (guide member) 82 for guiding lubricating oil flowing down from the unit 30 side to the motor 6 side to the upper surface 7a, and the upper surface 7a. And an oil discharge path (discharge path) 84 for directing the lubricating oil guided to the oil storage chamber 23, and the lubricating oil supplied to the unit 30, the bearings 16, 28, etc. is supplied to the stator 8 side. In order to prevent the inflow, the flow direction is regulated and the oil is stored in the oil storage chamber 23.

図2に示される図1のA−A方向からロータカバー82をみた図も参照すると、ロータカバー82は、底部82a及び開口部82b並びに筒部82cを有する有底筒となるカップ状に形成されている。
底部82aには、その略中央に回転軸12が挿入される軸孔、及び排出路84の一部をなす4つの孔、並びにかしめピン86の後述する挿入孔88の一部をなす4つの孔が穿孔されている。
Referring also to the view of the rotor cover 82 from the AA direction in FIG. 1 shown in FIG. 2, the rotor cover 82 is formed in a cup shape that forms a bottomed cylinder having a bottom portion 82a, an opening portion 82b, and a cylindrical portion 82c. ing.
The bottom portion 82a has a shaft hole into which the rotary shaft 12 is inserted, four holes forming a part of the discharge path 84, and four holes forming a part of an insertion hole 88 described later of the caulking pin 86. Is perforated.

図3に示される図2のB−B方向からみたロータカバー82及びロータ7並びに回転軸12のみの接続を表す断面図を参照すると、ロータカバー82は回転軸12を囲繞するとともに、底部82aが上面7aにかしめピン86にてかしめ固定されている。
かしめピン86は、底部82a及びロータ7を回転軸12と略平行に一括貫通される挿入孔88に挿入されてかしめられ、これよりロータカバー82はロータ7に固定される。また、開口部82bは主軸フレーム14側に開口するとともに、筒部82cは少なくとも主軸フレーム14の下端を囲繞するまで延設されている。更に、筒部82cの外径はロータ7の外径より小さく形成されている。
Referring to a cross-sectional view showing the connection of only the rotor cover 82 and the rotor 7 and the rotary shaft 12 as seen from the BB direction of FIG. 2 shown in FIG. 3, the rotor cover 82 surrounds the rotary shaft 12 and the bottom portion 82a is The upper surface 7a is fixed by caulking pins 86.
The caulking pin 86 is caulked by being inserted into an insertion hole 88 that penetrates the bottom portion 82 a and the rotor 7 substantially in parallel with the rotary shaft 12, whereby the rotor cover 82 is fixed to the rotor 7. The opening 82b opens to the spindle frame 14 side, and the cylinder 82c extends at least until it surrounds the lower end of the spindle frame 14. Further, the outer diameter of the cylindrical portion 82 c is smaller than the outer diameter of the rotor 7.

これにより、ロータカバー82はロータ7と一体的に回転しながら、ユニット30側からモータ6側に向けて流下する潤滑油の流れをロータカバー82の内側に規制し、この潤滑油のステータ8側への流入を阻止する。なお、これら挿入孔88及びかしめピン86は4組設けられているが、複数組設けられていれば良く、この組数に限定されない。また、これらの挿入孔88及びかしめピン86うちの一組をロータ7の回転バランスを調整する図示しないカウンタウエイトの固定に兼用しても良い。   As a result, the rotor cover 82 rotates integrally with the rotor 7 and restricts the flow of lubricating oil flowing from the unit 30 side toward the motor 6 side to the inner side of the rotor cover 82, and this lubricating oil on the stator 8 side. To prevent inflow. Although four sets of these insertion holes 88 and caulking pins 86 are provided, a plurality of sets may be provided, and the number of sets is not limited. Further, one set of the insertion hole 88 and the caulking pin 86 may be used for fixing a counterweight (not shown) that adjusts the rotational balance of the rotor 7.

一方、オイル排出路84は、挿入孔88と同様に、底部82a及びロータ7を回転軸12と略平行に一括貫通して形成され、オイル排出路84を経た潤滑油は導油孔19を介して貯油室23で回収される。なお、オイル排出路84も複数設けられるのが好ましい。
ここで再び図1をみると、主軸フレーム14とステータ8との間にはロータカバー82を囲繞するようにしてユニット30側からモータ6側に向けて流下する潤滑油の流路Fo(図中実線矢印で示す)とモータ6から吐出される冷媒の流路Fr(図中破線矢印で示す)とを仕切るオイル・冷媒仕切機構(仕切機構)90が配置されている。
On the other hand, like the insertion hole 88, the oil discharge path 84 is formed by penetrating the bottom 82a and the rotor 7 substantially in parallel with the rotary shaft 12, and the lubricating oil passing through the oil discharge path 84 passes through the oil guide hole 19. And collected in the oil storage chamber 23. A plurality of oil discharge paths 84 are preferably provided.
Referring again to FIG. 1, a lubricating oil flow path Fo (shown in the figure) flows from the unit 30 side toward the motor 6 side so as to surround the rotor cover 82 between the spindle frame 14 and the stator 8. An oil / refrigerant partitioning mechanism (partitioning mechanism) 90 that partitions a refrigerant flow path Fr (shown by a broken line arrow in the figure) discharged from the motor 6 is shown.

この仕切機構90は、主軸フレーム14側に突設される垂直円筒部90aと、冷媒の流路Frの一部をなす連通孔90bとを有して形成され、仕切部材90の下端側はステータ8に固定されている。
垂直円筒部90aは、ステータ8側からロータカバー82を囲繞して主軸フレーム14の下端側に嵌合されており、これより流路Frを通ってハウジング2内を循環する冷媒のロータカバー82の内側への流入が阻止され、流路Frと流路Foとが隔絶されることとなる。一方、連通孔90bは、垂直円筒部90aの外周側にその周方向に沿って複数穿孔された小孔である。
The partition mechanism 90 is formed having a vertical cylindrical portion 90a projecting on the spindle frame 14 side and a communication hole 90b forming a part of the refrigerant flow path Fr. The lower end side of the partition member 90 is a stator. 8 is fixed.
The vertical cylindrical portion 90a is fitted to the lower end side of the spindle frame 14 so as to surround the rotor cover 82 from the stator 8 side, and the refrigerant rotor cover 82 circulates in the housing 2 through the flow path Fr. Inflow to the inside is blocked, and the flow path Fr and the flow path Fo are isolated. On the other hand, the communication holes 90b are small holes perforated along the circumferential direction on the outer peripheral side of the vertical cylindrical portion 90a.

また、仕切機構90には、流路Frを構成する冷媒の下降流路と上昇流路とを隔絶しながら整流する整流部材92の下端側が嵌合されており、この整流部材92の上端側は主軸フレーム14に固定されている。
上述した圧縮機1によれば、回転軸12の回転に伴い、可動渦巻体52が自転することなく旋回運動する。この可動渦巻体52の旋回運動は、吸入パイプ70を介して胴部3内に取り込んだ冷媒をスクロールユニット30の外周側からその内部に向けて吸入させる。
Further, the partition mechanism 90 is fitted with a lower end side of a rectifying member 92 that rectifies while isolating the descending flow path and the rising flow path of the refrigerant constituting the flow path Fr, and the upper end side of the rectifying member 92 is It is fixed to the spindle frame 14.
According to the compressor 1 described above, as the rotary shaft 12 rotates, the movable spiral body 52 rotates without rotating. The swiveling motion of the movable spiral body 52 causes the refrigerant taken into the body 3 through the suction pipe 70 to be sucked from the outer peripheral side of the scroll unit 30 toward the inside thereof.

そして、圧縮室の容積が縮小すると、高圧の圧縮冷媒は、吐出孔を経て吐出室60に至り、図示しないユニット30を貫通する貫通路を経て仕切部材90における垂直円筒部90aの外周側で且つ整流部材92の内周側との間隙、及び連通孔90bを順次通過する。そして、この冷媒はステータ8内の電機子巻線9内の間隙を通って下降し、更にステータ8の外周側とハウジング2の内周側との間隙を上昇した後、吐出パイプ72を通じて圧縮機1外へ送出される。   When the volume of the compression chamber is reduced, the high-pressure compressed refrigerant reaches the discharge chamber 60 via the discharge hole, passes through the unit 30 (not shown), and on the outer peripheral side of the vertical cylindrical portion 90a of the partition member 90. It passes through the gap between the rectifying member 92 and the inner peripheral side and the communication hole 90b sequentially. Then, the refrigerant descends through a gap in the armature winding 9 in the stator 8, and further rises in a gap between the outer peripheral side of the stator 8 and the inner peripheral side of the housing 2. 1 is sent out.

一方、ユニット30や軸受16,28等に供された後にモータ6側に向けて流下する潤滑油の流路Foは、ロータカバー82及びオイル排出路84によって略鉛直方向に規制され、冷媒の流路Frと交わることはなく、ユニット30側からモータ6側に流下する潤滑油は導入口19を通じて貯油室23に導かれて蓄えられる。
以上のように、本実施形態によれば、貯油室23内の潤滑油はオイルポンプ22及び油路24を介してユニット30の摺動部分や軸受16,28に供給され、その潤滑や冷却の他、摺動面のシールとして機能するが、この潤滑油はロータカバー82及びオイル排出路84からなる流れ方向規制手段80によりユニット30側からモータ6側に流下する方向が規制され、ステータ8側への流入が阻止される。よって、ユニット30側からモータ6側に流下する潤滑油は胴部3内に飛散することなく、総て貯油室23に速やかに導かれて蓄えられる。
On the other hand, the flow path Fo of lubricating oil that flows toward the motor 6 after being supplied to the unit 30, the bearings 16, 28, etc. is regulated in a substantially vertical direction by the rotor cover 82 and the oil discharge path 84, so that the flow of the refrigerant Lubricating oil flowing down from the unit 30 side to the motor 6 side without crossing the path Fr is guided and stored in the oil storage chamber 23 through the inlet 19.
As described above, according to the present embodiment, the lubricating oil in the oil storage chamber 23 is supplied to the sliding portion of the unit 30 and the bearings 16 and 28 via the oil pump 22 and the oil passage 24, and the lubrication and cooling are performed. In addition, it functions as a seal for the sliding surface, but the flow direction of this lubricating oil from the unit 30 side to the motor 6 side is regulated by the flow direction regulating means 80 comprising the rotor cover 82 and the oil discharge path 84, and the stator 8 side Inflow is prevented. Therefore, all the lubricating oil flowing down from the unit 30 side to the motor 6 side is promptly stored in the oil storage chamber 23 without being scattered in the body portion 3.

この結果、潤滑油の回収を効率的に実施でき、カップ状のロータカバー82をロータ7の上面7aにかしめ固定するだけの簡単な機構で圧縮機1のより一層の小型・軽量化、並びに圧縮機1の製造コストの低廉化の達成を実現しながら、潤滑油の供給不足に起因する圧縮機1の故障、例えば、潤滑油の枯渇による摺動部分や軸受16,28の焼き付き等の不具合を確実に防止でき、圧縮機1の信頼性を向上できる。   As a result, the lubricating oil can be efficiently recovered, and the compressor 1 can be further reduced in size and weight and compressed by a simple mechanism that simply caulks and fixes the cup-shaped rotor cover 82 to the upper surface 7a of the rotor 7. While achieving reduction in the manufacturing cost of the machine 1, troubles such as failure of the compressor 1 due to insufficient supply of lubricating oil, for example, sliding parts due to exhaustion of lubricating oil and seizure of bearings 16 and 28, etc. This can be reliably prevented and the reliability of the compressor 1 can be improved.

しかも、胴部3内における潤滑油の飛散を防止できるため、ユニット30側からモータ6側に流下する潤滑油が冷媒と接触して冷媒中に含まれることが抑制され、圧縮機1外に流れる潤滑油の潤滑油率(OCR)が抑制可能となり、この潤滑油率の抑制により、冷凍システムの各熱交換器の効率が向上し、冷凍システムの省エネルギー化を実現できる。
また、冷媒のロータカバー82内への流入を阻止する仕切機構90を有することにより、流下する潤滑油が冷媒と接触し冷媒中に含まれることが防止され、潤滑油率を確実に低減でき、潤滑油の供給不足に起因する圧縮機1の故障をより一層確実に防止できる。
In addition, since the scattering of the lubricating oil in the body portion 3 can be prevented, the lubricating oil flowing down from the unit 30 side to the motor 6 side is prevented from coming into contact with the refrigerant and contained in the refrigerant, and flows out of the compressor 1. The lubricating oil rate (OCR) of the lubricating oil can be suppressed, and by suppressing this lubricating oil rate, the efficiency of each heat exchanger of the refrigeration system can be improved, and energy saving of the refrigeration system can be realized.
Further, by having the partition mechanism 90 that prevents the refrigerant from flowing into the rotor cover 82, it is possible to prevent the lubricating oil flowing down from coming into contact with the refrigerant and being included in the refrigerant, and to reliably reduce the lubricating oil rate. Failure of the compressor 1 due to insufficient supply of lubricating oil can be prevented more reliably.

更に、流下する潤滑油はロータカバー82の底部82a及びロータ7を一括貫通して形成されるオイル排出路84を通じて貯油室23に円滑に排出され、潤滑油の回収を更に効率的に実施でき、潤滑油の供給不足に起因する圧縮機1の故障を更に確実に防止できる。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
Furthermore, the lubricating oil flowing down is smoothly discharged to the oil storage chamber 23 through the oil discharge passage 84 formed through the bottom 82a of the rotor cover 82 and the rotor 7, and the recovery of the lubricating oil can be performed more efficiently. Failure of the compressor 1 due to insufficient supply of lubricating oil can be prevented more reliably.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では密閉型圧縮機に使用するスクロールユニット30を用いているが、密閉型のハウジング内で冷媒の吸入から吐出の一連のプロセスを実施し、冷媒の吐出圧が作用する潤滑油がハウジング内を循環するのであれば、他の圧縮機構や膨張機等を用いても良い。
また、上記実施形態では作動流体に二酸化炭素冷媒を用いているが、他の作動流体を用いても良い。但し、高圧に圧縮される二酸化炭素冷媒が用いられる場合には密閉容器の板厚等を増大せざるを得ないが、本実施形態の流れ方向規制手段80を使用すれば、圧縮機1の更なる重厚長大化を招くことなく十分な量の潤滑油が確保できる。
For example, although the scroll unit 30 used for the hermetic compressor is used in the above embodiment, a series of processes from the suction to the discharge of the refrigerant is performed in the hermetic housing, and the lubricating oil on which the refrigerant discharge pressure acts. May circulate in the housing, another compression mechanism, an expander, or the like may be used.
Moreover, in the said embodiment, although the carbon dioxide refrigerant is used for the working fluid, you may use another working fluid. However, when a carbon dioxide refrigerant compressed to a high pressure is used, the thickness of the sealed container must be increased. However, if the flow direction regulating means 80 of the present embodiment is used, the compressor 1 can be replaced. Thus, a sufficient amount of lubricating oil can be secured without incurring a significant increase in length.

本発明の一実施形態に係る密閉型圧縮機を示した縦断面図である。1 is a longitudinal sectional view showing a hermetic compressor according to an embodiment of the present invention. 図1のA−A方向からロータカバーをみた平面図である。It is the top view which looked at the rotor cover from the AA direction of FIG. 図2のB−B方向からみたロータカバー及びロータ並びに回転軸のみの接続を表す断面図である。It is sectional drawing showing the connection of only a rotor cover, a rotor, and a rotating shaft seen from the BB direction of FIG.

符号の説明Explanation of symbols

1 密閉型圧縮機(流体機械)
2 ハウジング(密閉容器)
3 胴部
6 電動モータ(電動機)
7 ロータ
7a 上面
8 ステータ
12 回転軸
14 主軸フレーム(フレーム部材)
16 軸受
23 貯油室
28 軸受
30 スクロールユニット
60 吐出室
80 流れ方向規制手段
82 ロータカバー(ガイド部材)
82a 底部
82b 開口部
84 オイル排出路(排出路)
90 オイル・冷媒仕切機構(仕切機構)
1 Hermetic compressor (fluid machine)
2 Housing (closed container)
3 Body 6 Electric motor (electric motor)
7 Rotor 7a Upper surface 8 Stator 12 Rotating shaft 14 Spindle frame (frame member)
16 Bearing 23 Oil storage chamber 28 Bearing 30 Scroll unit 60 Discharge chamber 80 Flow direction regulating means 82 Rotor cover (guide member)
82a Bottom 82b Opening 84 Oil discharge path (discharge path)
90 Oil / refrigerant partition mechanism

Claims (5)

筒状の胴部、及び該胴部の上側に形成される吐出室、並びに前記胴部の下側に形成される潤滑油の貯油室を有し、前記胴部内に吐出圧が作用する密閉容器と、
前記胴部内を延び、軸受を介して回転自在に支持される回転軸と、
前記胴部内に収容され、前記回転軸を通電により駆動させるとともに、該回転軸の周囲にて該回転軸と一体に回転されるロータ、及び該ロータの周囲にて該ロータを回転させるステータを有する電動機と、
前記電動機の上側にて前記胴部内に収容され、前記回転軸に駆動されて作動流体の吸入から吐出の一連のプロセスを実施するスクロールユニットと、
前記スクロールユニットと前記電動機との間に配設され、前記スクロールユニットを固定するとともに、前記軸受を介して前記回転軸を支持するフレーム部材と、
前記貯油室から前記軸受に供された潤滑油の前記ステータ側への流入を阻止すべく、前記スクロールユニット側から前記電動機側に流下する潤滑油の方向を規制する流れ方向規制手段とを具備し、
前記流れ方向規制手段は、前記ロータの上面に固定され、前記流下する潤滑油を前記上面に導くガイド部材と、前記上面に導かれた潤滑油を前記貯油室に向かわせる排出路とを含むことを特徴とする流体機械。
A sealed container having a cylindrical body, a discharge chamber formed above the body, and a lubricating oil storage chamber formed below the body, and a discharge pressure acts in the body When,
A rotating shaft extending through the body and rotatably supported via a bearing;
The rotor is housed in the body, drives the rotating shaft by energization, and rotates around the rotating shaft integrally with the rotating shaft, and a stator that rotates the rotor around the rotor. An electric motor,
A scroll unit that is housed in the barrel on the upper side of the electric motor and driven by the rotating shaft to perform a series of processes from suction to discharge of working fluid;
A frame member disposed between the scroll unit and the electric motor, fixing the scroll unit, and supporting the rotating shaft via the bearing;
Flow direction regulating means for regulating the direction of the lubricating oil flowing from the scroll unit side to the electric motor side in order to prevent the lubricating oil provided to the bearing from flowing from the oil storage chamber to the stator side. ,
The flow direction restricting means includes a guide member that is fixed to the upper surface of the rotor and guides the lubricant flowing down to the upper surface, and a discharge path that directs the lubricant guided to the upper surface toward the oil storage chamber. A fluid machine characterized by
前記ガイド部材は、前記上面にかしめ固定される底部と、前記フレーム部材側に開口する開口部とを有する有底筒状に形成されることを特徴とする請求項1に記載の流体機械。   The fluid machine according to claim 1, wherein the guide member is formed in a bottomed cylindrical shape having a bottom portion that is caulked and fixed to the upper surface, and an opening portion that opens to the frame member side. 前記スクロールユニットから吐出される作動流体の前記ガイド部材内への流入を阻止すべく、該ガイド部材を囲繞し、該作動流体と前記流下する潤滑油とを隔絶する仕切機構を更に具備することを特徴とする請求項1又は2に記載の流体機械。   In order to prevent the working fluid discharged from the scroll unit from flowing into the guide member, it further includes a partition mechanism that surrounds the guide member and isolates the working fluid from the flowing lubricant. The fluid machine according to claim 1 or 2, characterized in that 前記排出路は、前記底部及び前記ロータを一括貫通して形成されることを特徴とする請求項1から3のいずれか一項に記載の流体機械。   The fluid machine according to claim 1, wherein the discharge path is formed through the bottom portion and the rotor at once. 前記作動流体が二酸化炭素からなる冷媒であることを特徴とする請求項1から4のいずれか一項に記載の流体機械。   The fluid machine according to claim 1, wherein the working fluid is a refrigerant made of carbon dioxide.
JP2007026620A 2007-02-06 2007-02-06 Fluid machinery Expired - Fee Related JP4799437B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007026620A JP4799437B2 (en) 2007-02-06 2007-02-06 Fluid machinery
DE200860000678 DE602008000678D1 (en) 2007-02-06 2008-01-30 Scroll fluid machine
EP20080001720 EP1956244B1 (en) 2007-02-06 2008-01-30 Scroll fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007026620A JP4799437B2 (en) 2007-02-06 2007-02-06 Fluid machinery

Publications (2)

Publication Number Publication Date
JP2008190444A true JP2008190444A (en) 2008-08-21
JP4799437B2 JP4799437B2 (en) 2011-10-26

Family

ID=39469520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007026620A Expired - Fee Related JP4799437B2 (en) 2007-02-06 2007-02-06 Fluid machinery

Country Status (3)

Country Link
EP (1) EP1956244B1 (en)
JP (1) JP4799437B2 (en)
DE (1) DE602008000678D1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127438A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Compressor
CN102628442A (en) * 2011-02-07 2012-08-08 松下电器产业株式会社 Compressor
WO2012127755A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device
JP2012207541A (en) * 2011-03-29 2012-10-25 Sanyo Electric Co Ltd Scroll compression device
WO2016092688A1 (en) * 2014-12-12 2016-06-16 三菱電機株式会社 Compressor
US9388808B2 (en) 2011-03-24 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065556A (en) * 2008-09-09 2010-03-25 Sanden Corp Hermetic compressor
JP5232595B2 (en) * 2008-10-24 2013-07-10 三菱重工業株式会社 Multistage compressor
JP4896201B2 (en) * 2009-10-26 2012-03-14 三菱電機株式会社 Fuel supply device
JP5999922B2 (en) * 2012-02-24 2016-09-28 三菱重工業株式会社 Scroll compressor
CN103967784B (en) * 2013-01-29 2019-03-22 艾默生环境优化技术(苏州)有限公司 Compressor with a compressor housing having a plurality of compressor blades
KR102226456B1 (en) 2014-08-07 2021-03-11 엘지전자 주식회사 Compressor
KR102338126B1 (en) 2017-04-12 2021-12-10 엘지전자 주식회사 Scroll compressor
CN106979156B (en) * 2017-05-26 2019-01-25 广东美芝制冷设备有限公司 Compressor
CN109404289A (en) * 2017-08-16 2019-03-01 艾默生环境优化技术(苏州)有限公司 rotary machine
KR102309304B1 (en) * 2019-11-05 2021-10-07 엘지전자 주식회사 Compressor
KR102500686B1 (en) 2021-03-19 2023-02-17 엘지전자 주식회사 Hermetic compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170193A (en) * 2004-12-10 2006-06-29 Lg Electronics Inc Oil discharge prevention device of scroll compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047269A (en) * 1996-08-01 1998-02-17 Mitsubishi Electric Corp Scroll compressor
JP2000205157A (en) * 1999-01-13 2000-07-25 Hitachi Ltd Scroll compressor
JP4175148B2 (en) * 2003-03-12 2008-11-05 松下電器産業株式会社 Hermetic compressor
JP2006214399A (en) * 2005-02-07 2006-08-17 Matsushita Electric Ind Co Ltd Hermetic compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170193A (en) * 2004-12-10 2006-06-29 Lg Electronics Inc Oil discharge prevention device of scroll compressor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127438A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Compressor
CN102628442A (en) * 2011-02-07 2012-08-08 松下电器产业株式会社 Compressor
WO2012127755A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Scroll compression device
US9388808B2 (en) 2011-03-24 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9494155B2 (en) 2011-03-24 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
US9581160B2 (en) 2011-03-24 2017-02-28 Panasonic Intellectual Property Management Co. Ltd. Scroll compression device
US10227982B2 (en) 2011-03-24 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Scroll compression device
JP2012207541A (en) * 2011-03-29 2012-10-25 Sanyo Electric Co Ltd Scroll compression device
WO2016092688A1 (en) * 2014-12-12 2016-06-16 三菱電機株式会社 Compressor
JPWO2016092688A1 (en) * 2014-12-12 2017-06-01 三菱電機株式会社 Compressor

Also Published As

Publication number Publication date
EP1956244A2 (en) 2008-08-13
DE602008000678D1 (en) 2010-04-08
EP1956244A3 (en) 2008-10-01
JP4799437B2 (en) 2011-10-26
EP1956244B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4799437B2 (en) Fluid machinery
US10648471B2 (en) Scroll compressor
JP4542161B2 (en) Hermetic electric compressor
JP5080287B2 (en) Compressor motor
US8814546B2 (en) Compressor
JP6300829B2 (en) Rotary compressor
JP2008088929A (en) Hermetic compressor
JP2014129793A (en) Scroll compressor
JP2007285266A (en) Compressor
JP2007170402A (en) Compressor
US9181947B2 (en) Compressor
JP6633305B2 (en) Scroll compressor
WO2021049273A1 (en) Horizontal electric compressor
JP2008088930A (en) Hermetic compressor
WO2010029956A2 (en) Hermetic compressor
JP5493958B2 (en) Compressor
JP2008082224A (en) Hermetic compressor
JP5304679B2 (en) Compressor
JP5520762B2 (en) Scroll compressor, electric compressor
WO1998055767A1 (en) Horizontal scroll compressor
JP2017101557A (en) Hermetic type compressor
JP2020176526A (en) Scroll compressor
JP2021042686A (en) Horizontal electric compressor
JPH11132169A (en) Transverse installation type scroll compressor
JP4779937B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees