JP2008189782A - Resin composition for optically shaping three-dimensional article by surface exposure - Google Patents

Resin composition for optically shaping three-dimensional article by surface exposure Download PDF

Info

Publication number
JP2008189782A
JP2008189782A JP2007024783A JP2007024783A JP2008189782A JP 2008189782 A JP2008189782 A JP 2008189782A JP 2007024783 A JP2007024783 A JP 2007024783A JP 2007024783 A JP2007024783 A JP 2007024783A JP 2008189782 A JP2008189782 A JP 2008189782A
Authority
JP
Japan
Prior art keywords
optical
resin composition
dimensional
modeling
dimensional modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024783A
Other languages
Japanese (ja)
Other versions
JP5111880B2 (en
Inventor
Tsuneo Hagiwara
恒夫 萩原
Takashi Ito
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMET Inc
Original Assignee
CMET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMET Inc filed Critical CMET Inc
Priority to JP2007024783A priority Critical patent/JP5111880B2/en
Publication of JP2008189782A publication Critical patent/JP2008189782A/en
Application granted granted Critical
Publication of JP5111880B2 publication Critical patent/JP5111880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for optically shaping a three-dimensional article that can smoothly afford a molded article with good operability without causing warpage of the molded article at the time of optically shaping the three-dimensional article by surface exposure and can productively afford a three-dimensional molded article excellent in molding accuracy, dimensional accuracy, mechanical properties and external appearances. <P>SOLUTION: The resin composition for optically shaping a three-dimensional article by surface exposure comprises, as a radically polymerizable organic compound, a dimethacrylate compound (I) represented by general formula (I) (wherein R<SP>1</SP>is a hydrogen atom or a methyl group; R<SP>2</SP>is a hydrogen atom or a methyl group; and m and n are each independently an integer of 1-20). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は面露光方式によって光学的立体造形物を製造するために用いる光硬化性樹脂組成物および当該光硬化性樹脂組成物を用いて面露光方式によって立体造形物を製造する方法に関する。より詳細には、本発明は、面露光による光造形時(硬化時)の収縮が小さく、反りの発生が少なく、それによって良好な操作性で、造形精度、寸法精度、外観および力学的特性に優れる、反りのない光学的立体造形物を円滑に生産性良く製造することのできる面露光による光学的立体造形用の樹脂組成物および当該樹脂組成物を用いて面露光方式によって立体造形物を製造する方法に関する。   The present invention relates to a photocurable resin composition used for producing an optical three-dimensional object by a surface exposure method, and a method for producing a three-dimensional object by a surface exposure method using the photocurable resin composition. More specifically, the present invention has a small shrinkage at the time of optical modeling (curing) by surface exposure and little warping, thereby achieving good operability, modeling accuracy, dimensional accuracy, appearance and mechanical properties. An excellent three-dimensional object can be manufactured by surface exposure using a resin composition for optical three-dimensional modeling by surface exposure, which can smoothly produce an optical three-dimensional object without warping with good productivity. On how to do.

近年、三次元CADに入力されたデータに基づいて液状の光硬化性樹脂組成物を立体的に光学造形する方法が、金型などを作製することなく目的とする立体造形物を良好な寸法精度で製造し得ることから、広く採用されるようになっている。
光学的立体造形法の代表的な例としては、容器に入れた液状光硬化性樹脂の液面に所望のパターンが得られるようにコンピューターで制御されたスポット状の紫外線レーザー光を選択的に照射して所定厚みを硬化させ、ついで該硬化層の上に1層分の液状樹脂を供給し、同様に紫外線レーザー光で前記と同様に照射硬化させ、連続した硬化層を得る積層操作を繰り返すことによって最終的に立体造形物を得る方法を挙げることができる。この光学的立体造形方法は、形状のかなり複雑な造形物をも容易に且つ比較的短時間に得ることが出来る。
In recent years, a method for three-dimensional optical modeling of a liquid photocurable resin composition based on data input to a three-dimensional CAD has achieved good dimensional accuracy without producing a mold or the like. Have been widely adopted.
As a typical example of the optical three-dimensional modeling method, a spot-shaped ultraviolet laser beam controlled by a computer is selectively irradiated so that a desired pattern can be obtained on the liquid surface of the liquid photocurable resin placed in a container. Then, a predetermined thickness is cured, and then a liquid resin for one layer is supplied onto the cured layer, and similarly, it is irradiated and cured with an ultraviolet laser beam in the same manner as described above to repeat a lamination operation to obtain a continuous cured layer. The method of finally obtaining a three-dimensional molded item can be mentioned. With this optical three-dimensional modeling method, it is possible to easily obtain a model having a considerably complicated shape in a relatively short time.

また、近年、スポット状の紫外線レーザー光を用いる上記した従来法に代えて、光源として高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプやその他のレーザー光以外の光を発射するランプやLEDを用い、光源と光硬化性樹脂組成物よりなる造形面との間に、微小ドットエリアでの遮光および透光が可能な微小液晶シャッターを多数面状に配置した液晶描画マスク、または複数のデジタルマイクロミラーシャッターを面状に配置したいわゆるDMD(デジタルマイクロミラーデバイス)よりなる面状描画マスクを配置し、当該面状描画マスクを介して光硬化性樹脂よりなる造形面に光を照射して所定の断面形状パターンを有する光硬化樹脂層を順次積層させて立体造形物を製造する、面露光による立体造形技術が提案されている。面状描画マスクを用いる光学的立体造形技術は、光硬化性樹脂組成物よりなる造形面に光を面状で一度に照射して、面状の光硬化した断面形状パターンを形成することができるため、スポット状の紫外線レーザーを用いる点描方式に比べて光造形速度を大幅に向上させることが可能である。   In recent years, instead of the above-described conventional method using spot-like ultraviolet laser light, a high-pressure mercury lamp, ultra-high pressure mercury lamp, low-pressure mercury lamp or other lamp or LED that emits light other than laser light is used as a light source. A liquid crystal drawing mask or a plurality of digital micromirrors in which a large number of micro liquid crystal shutters capable of shielding and transmitting light in micro dot areas are arranged between a light source and a modeling surface made of a photocurable resin composition A planar drawing mask made of a so-called DMD (digital micromirror device) having a shutter arranged in a plane is arranged, and a modeling surface made of a photocurable resin is irradiated with light through the planar drawing mask to give a predetermined cross section. A three-dimensional modeling technique based on surface exposure, in which a three-dimensional model is manufactured by sequentially laminating photocurable resin layers having a shape pattern, has been proposed. The optical three-dimensional modeling technique using a planar drawing mask can form a planar photocured cross-sectional shape pattern by irradiating a modeling surface made of a photocurable resin composition with a planar surface at once. Therefore, it is possible to significantly improve the optical modeling speed as compared with the stippling method using a spot-like ultraviolet laser.

しかしながら、面状描画マスクを介して造形面に光を面状で照射する面露光による光学的立体造形技術による場合は、X,Y,Zの立体座標のうち、2軸(例えばX軸とY軸)方向に面状で樹脂の硬化固定が同時に行われ、硬化時の樹脂の収縮を抑制する緩和現象が残りの1軸(Z軸)のみに限定されるため、スポット状のレーザー光を用いて光造形を行う場合に比べて、光硬化時の収縮による「反り」が大きくなる傾向がある。光硬化時の反りが大きくなると、反り上がった造形途中の成形物に造形面上を移動する造形装置がぶつかって造形操作が中断されるなどのトラブルが発生する恐れがあり、造形操作の中断が生じない場合には得られる立体造形物に反り、歪み、変形などが発生し、目的どおりの寸法精度および外観を有し、反り、歪み、変形などのない高品質の立体造形物が得られにくくなる。かかる点から、面状描画マスクを介して造形面に光を面状で照射して立体造形物を製造する面露光方式による光学的立体造形では、光硬化時の収縮が小さく、しかも面露光によって反りが発生せず、寸法精度、造形精度および外観に優れる立体造形物を製造することのできる光学的立体造形用樹脂組成物の開発が求められている。   However, in the case of the optical three-dimensional modeling technology by surface exposure that irradiates the modeling surface with light in a planar manner through the planar drawing mask, two axes (for example, the X axis and the Y axis) of the three-dimensional coordinates of X, Y, and Z Since the resin is cured and fixed at the same time in the (axis) direction, and the relaxation phenomenon that suppresses the shrinkage of the resin during curing is limited to the remaining one axis (Z-axis), spot laser light is used. In comparison with the case of stereolithography, “warping” due to shrinkage during photocuring tends to increase. If warpage during photocuring increases, there is a risk of problems such as the modeling operation being interrupted by a modeling device that moves on the modeling surface against the warped molded product, and the modeling operation is interrupted. If it does not occur, the resulting three-dimensional object will be warped, distorted, deformed, etc., having the desired dimensional accuracy and appearance, and it is difficult to obtain a high-quality three-dimensional object without warping, distortion, deformation, etc. Become. From this point, in optical three-dimensional modeling by a surface exposure method in which a three-dimensional model is manufactured by irradiating light on the modeling surface in a planar manner via a planar drawing mask, shrinkage at the time of photocuring is small, and by surface exposure There is a demand for the development of a resin composition for optical three-dimensional modeling that can produce a three-dimensional model that does not warp and is excellent in dimensional accuracy, modeling accuracy, and appearance.

さらに、面状描画マスクを用いる面露光による光学的立体造形に用いられる光硬化性樹脂組成物においても、スポット状のレーザー光を用いる光学的立体造形に用いられる光硬化性樹脂組成物と同様に、低粘度で造形時の取り扱い性が良好であること、保存安定性に優れていること、活性エネルギー線による硬化感度が高いこと、光硬化して得られる立体造形物の力学的特性に優れることが求められている。   Furthermore, also in the photocurable resin composition used for optical three-dimensional modeling by surface exposure using a planar drawing mask, similarly to the photocurable resin composition used for optical three-dimensional modeling using spot-shaped laser light. , Low viscosity, good handling at the time of modeling, excellent storage stability, high curing sensitivity by active energy rays, excellent mechanical properties of three-dimensional objects obtained by photocuring Is required.

光学的立体造形用樹脂組成物としては、これまでスポット状のレーザー光を用いる光造形用樹脂組成物の開発が主として行われ、面露光による光造形用の樹脂組成物の開発はそれほど進んでいない。
スポット状のレーザー光を用いる光造形用樹脂組成物としては、従来、アクリレート系光硬化性樹脂組成物やエポキシ系光硬化性樹脂組成物などが用いられている。これらの中で、エポキシ系光硬化性樹脂組成物は寸法精度に優れる造形物を製造できることから、近年、広く用いられているが、エポキシ化合物の光重合に用いられる光重合開始剤(代表的にはトリアリーススルホニウム塩化合物など)の光吸収波長域は一般に半導体励起固体レーザー光の波長である355nm以下である。一方、面露光において光源として主に用いられている高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプなどから発射される光の波長域は一般に350〜400nm(多くは360〜400nm)であり、そのためエポキシ系光硬化性樹脂組成物を面露光方式の光学的立体造形に用いた場合には、樹脂が硬化しにくく、立体造形物を製造することは困難である。かかる点から、エポキシ系光硬化性樹脂組成物を面露光による光学的立体造形に用いるに当たっては、増感剤の併用が試みられているが、十分な反応性は確保できていない。
As a resin composition for optical three-dimensional modeling, development of a resin composition for optical modeling using spot-shaped laser light has been mainly performed so far, and development of a resin composition for optical modeling by surface exposure has not progressed so much. .
Conventionally, acrylate-based photocurable resin compositions, epoxy-based photocurable resin compositions, and the like are used as the resin composition for optical modeling using spot-shaped laser light. Among these, the epoxy-based photocurable resin composition has been widely used in recent years because it can produce a molded article with excellent dimensional accuracy, but is typically a photopolymerization initiator (typically used for photopolymerization of epoxy compounds). Is generally 355 nm or less, which is the wavelength of semiconductor-excited solid-state laser light. On the other hand, the wavelength range of light emitted from a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a low-pressure mercury lamp or the like mainly used as a light source in surface exposure is generally 350 to 400 nm (many is 360 to 400 nm). When the epoxy-based photocurable resin composition is used for surface three-dimensional optical three-dimensional modeling, the resin is hard to be cured and it is difficult to manufacture a three-dimensional model. From this point, when the epoxy photocurable resin composition is used for optical three-dimensional modeling by surface exposure, the combined use of a sensitizer has been attempted, but sufficient reactivity has not been ensured.

また、アクリレート系光硬化性樹脂組成物の重合に用いる光ラジカル重合開始剤としては、紫外線域から可視光域に至る各種化合物が知られている。それらの光ラジカル重合開始剤を用いた従来のウレタンアクリレート系光硬化性樹脂組成物や、従来の非ウレタン系アクリレート系光硬化性樹脂組成物は、十分な硬化性を示すが、反応が速すぎるために、制御が困難で、光造形を行った場合に、反りの発生が大きく、造形操作の中断や、得られる立体造形物の寸法精度や外観の不良を生じ易い。そのため、従来のウレタンアクリレート系光硬化性樹脂組成物や非ウレタン系アクリレート系光硬化性樹脂組成物は、スポット状のレーザー光を用いる光造形に比べて反りの発生の大きな面露光方式による光学的立体造形への使用は難しい。
例えば、ビスフェノールAのアルキレンオキサイド付加物のジアクリレートを含有する光学的立体造形用樹脂組成物が知られており(特許文献1を参照)、この光学的立体造形用樹脂組成物を用いてスポット状のレーザー光を使用して光造形を行った場合には、機械的特性に優れ、体積収縮率の低い立体造形物が得られる。しかしながら、本発明者らがこの光学的立体造形用樹脂組成物を用いて面露光方式によって光学的立体造形物を製造したところ、反りが大きく、外観、寸法精度、造形精度に優れる立体造形物を得ることができなかった。
Various compounds ranging from the ultraviolet region to the visible light region are known as photoradical polymerization initiators used for polymerization of the acrylate photocurable resin composition. Conventional urethane acrylate photocurable resin compositions using these radical photopolymerization initiators and conventional non-urethane acrylate photocurable resin compositions exhibit sufficient curability but are too fast to react. Therefore, it is difficult to control, and when optical modeling is performed, warping is large, and the modeling operation is interrupted, and the dimensional accuracy and appearance of the resulting three-dimensional model are likely to be poor. For this reason, conventional urethane acrylate photocurable resin compositions and non-urethane acrylate photocurable resin compositions are optically produced by a surface exposure method that generates a large amount of warpage as compared to stereolithography using spot-shaped laser light. Use for 3D modeling is difficult.
For example, a resin composition for optical three-dimensional modeling containing a diacrylate of an alkylene oxide adduct of bisphenol A is known (see Patent Document 1), and the resin composition for optical three-dimensional modeling is used to form a spot shape. When the laser modeling is performed using the laser beam, a three-dimensional modeled object having excellent mechanical properties and a low volume shrinkage rate is obtained. However, when the present inventors manufactured an optical three-dimensional object by the surface exposure method using this optical three-dimensional resin composition, the warp is large, and the three-dimensional object that is excellent in appearance, dimensional accuracy, and modeling accuracy is obtained. Couldn't get.

特開平7−228644号公報JP-A-7-228644 ポール・エフ・ヤコブ(Paul F. Jacobs)著、「Rapid Prototyping & Manufacturing, Fundamentals of Stereo-Lithography」,“Society of Manufacturing Engineers”,1992年,p28−39Paul F. Jacobs, “Rapid Prototyping & Manufacturing, Fundamentals of Stereo-Lithography”, “Society of Manufacturing Engineers”, 1992, p. 28-39.

本発明の目的は、面状描画マスクを介して造形面に光を面状で照射する面露光方式によって立体造形物を製造する光造形技術に用いたときに、収縮率が小さく、しかも反りの発生が少なくて、それによって光造形操作時の装置の停止などを生ずることなく、寸法精度、造形精度および外観に優れる、反り、変形、歪みのない立体造形物を生産性良く製造することのできる、面露光による光学的立体造形用の光硬化性樹脂組成物を提供することである。
さらに、本発明の目的は、上記した特性と併せて、粘度が低くて光造形時の取り扱い性に優れ、貯蔵時の経時安定性に優れ、しかも力学的特性、耐熱性などに優れる立体造形物を製造することのできる、面露光による光学的立体造形用の光硬化性樹脂組成物を提供することである。
そして、本発明の目的は、上記した面露光による光学的立体造形用の光硬化性樹脂組成物を用いて、面露光方式によって立体造形物を円滑に製造することのできる光学的立体造形方法を提供することである。
The object of the present invention is that the shrinkage rate is small and the warp is low when it is used in an optical modeling technique for producing a three-dimensional model by a surface exposure method in which light is irradiated onto the modeling surface in a planar manner via a planar drawing mask. It is possible to produce a three-dimensional modeled object that is excellent in dimensional accuracy, modeling accuracy, and appearance, without warping, deformation, and distortion with high productivity without causing the device to stop during the optical modeling operation. It is providing the photocurable resin composition for optical three-dimensional modeling by surface exposure.
Furthermore, the object of the present invention is a three-dimensional structure that has a low viscosity, excellent handling properties during optical modeling, excellent stability over time during storage, and excellent mechanical properties, heat resistance, etc. It is to provide a photocurable resin composition for optical three-dimensional modeling by surface exposure.
And the objective of this invention is using the photocurable resin composition for optical three-dimensional modeling by the above-mentioned surface exposure, and the optical three-dimensional modeling method which can manufacture a three-dimensional molded item smoothly by a surface exposure system. Is to provide.

上記の課題を解決すべく本発明者らは鋭意検討を重ねてきた。そして、上記した特許文献1に記載された発明の光学的立体造形用樹脂組成物で用いられているビスフェノールA系ジアクリレート化合物(すなわちビスフェノールAのアルキレンオキサイド付加物の両端にα位が水素原子であるアクリル酸が結合した化合物)の代わりに、ビスフェノール化合物のアルキレンオキサイド付加物の両端にα位にメチル基を有するメタクリル酸が結合した特定のビスフェノール系ジメタクリレート化合物を用いて光硬化性樹脂組成物を調製し、当該光硬化性樹脂組成物を用いて面露光方式によって立体造形物を製造したところ、当該光硬化性樹脂組成物は、硬化時の収縮が小さいだけでなく、反りが小さく、それによって光造形操作時に装置の停止などを生ずることなく、外観、寸法精度、造形精度に優れる、反り、歪み、変形のない立体造形物を円滑に製造できることを見出した。   In order to solve the above-mentioned problems, the present inventors have intensively studied. And the bisphenol A type diacrylate compound used in the resin composition for optical three-dimensional modeling of the invention described in Patent Document 1 described above (that is, the α-position is a hydrogen atom at both ends of the alkylene oxide adduct of bisphenol A). A photocurable resin composition using a specific bisphenol-based dimethacrylate compound in which methacrylic acid having a methyl group at the α-position is bonded to both ends of an alkylene oxide adduct of a bisphenol compound instead of a compound having a certain acrylic acid bonded When a three-dimensionally shaped article was produced by a surface exposure method using the photocurable resin composition, the photocurable resin composition not only has small shrinkage during curing, but also has a small warp. This ensures excellent appearance, dimensional accuracy, and modeling accuracy without causing equipment to stop during stereolithography. In other words, it has been found that a three-dimensional model without distortion and deformation can be produced smoothly.

また、本発明者らは、前記した特定のビスフェノール系ジメタクリレート化合物を含有する光硬化性樹脂組成物は、粘度が低くて光造形時の取り扱い性に優れ、貯蔵時の経時安定性に優れること、しかも当該光硬化性樹脂組成物を用いて面露光方式によって製造した立体造形物は力学的特性に優れることを見出した。
さらに、本発明者らは、前記した特定のビスフェノール系ジメタクリレート化合物を含有する光硬化性樹脂組成物中に、所定の割合でトリシクロデカンジメタノールジメタクリレートを更に含有させると、低収縮性、低反り性、低粘度、保存安定性などの特性に加えて、面露光方式による光学的立体造形で得られる立体造形物の力学的特性および耐熱性が向上することを見出した。
また、本発明者らは、前記した光硬化性樹脂組成物に含有させる光ラジカル重合開始剤の少なくとも一部として、アシルフォスフィンオキサイド系ラジカル重合開始剤を用いると、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、その他の非レーザー光を発射する光源を用いて面状描画マスクを介して面露光を行う際に、低収縮性、低反り性、低粘度、保存安定性などの特性を良好に維持しながら、良好な硬化性などを維持しながら、寸法精度、造形精度、外観などに優れる立体造形物を円滑に製造できることを見出し、それらの種々の知見に基づいて本発明を完成した。
In addition, the present inventors show that the photocurable resin composition containing the specific bisphenol-based dimethacrylate compound has a low viscosity, excellent handling properties during stereolithography, and excellent temporal stability during storage. And it discovered that the three-dimensional molded item manufactured by the surface exposure system using the said photocurable resin composition was excellent in a mechanical characteristic.
Furthermore, the inventors of the present invention can further reduce the shrinkage by adding tricyclodecane dimethanol dimethacrylate at a predetermined ratio in the photocurable resin composition containing the specific bisphenol dimethacrylate compound. In addition to properties such as low warpage, low viscosity, and storage stability, it has been found that the mechanical properties and heat resistance of a three-dimensional structure obtained by optical three-dimensional modeling by a surface exposure method are improved.
In addition, the present inventors use an acylphosphine oxide radical polymerization initiator as at least a part of the radical photopolymerization initiator contained in the above-described photocurable resin composition. When surface exposure is performed through a planar drawing mask using a lamp, low-pressure mercury lamp, or other light source that emits non-laser light, characteristics such as low shrinkage, low warpage, low viscosity, and storage stability are exhibited. While maintaining good, while maintaining good curability, etc., found that a three-dimensional molded article excellent in dimensional accuracy, modeling accuracy, appearance, etc. can be smoothly manufactured, and the present invention was completed based on these various findings .

すなわち、本発明は、
(1) ラジカル重合性有機化合物および光ラジカル重合開始剤を含有する、面露光による光学的立体造形用樹脂組成物であって、ラジカル重合性有機化合物として、下記の一般式(I);
That is, the present invention
(1) A resin composition for optical three-dimensional modeling by surface exposure, comprising a radical polymerizable organic compound and a photo radical polymerization initiator, wherein the radical polymerizable organic compound is represented by the following general formula (I):

Figure 2008189782

(式中、R1は水素原子またはメチル基、R2は水素原子またはメチル基、mおよびnはそれぞれ独立して1〜20の整数を示す。)
で表されるジメタクリレート化合物(I)を少なくとも含有することを特徴とする、面露光による光学的立体造形用樹脂組成物である。
Figure 2008189782

(Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, and m and n each independently represents an integer of 1 to 20)
The resin composition for optical three-dimensional modeling by surface exposure characterized by containing the dimethacrylate compound (I) represented by these.

そして、本発明は、
(2) 前記したジメタクリレート化合物(I)の含有量が、光学的立体造形用樹脂組成物に含まれるラジカル重合性有機化合物の合計質量に基づいて30〜100質量%である前記(1)の光学的立体造形用樹脂組成物である。
さらに、本発明は、
(3) ラジカル重合性有機化合物として、下記の化学式(II);
And this invention,
(2) The content of the dimethacrylate compound (I) described above is 30 to 100% by mass based on the total mass of the radical polymerizable organic compound contained in the optical three-dimensional resin composition. It is a resin composition for optical three-dimensional modeling.
Furthermore, the present invention provides:
(3) As a radically polymerizable organic compound, the following chemical formula (II);

Figure 2008189782

で表されるジメタクリレート化合物(II)を、ジメタクリレート化合物(I)100質量部に対して100質量部以下の割合で更に含有する前記(1)または(2)の光学的立体造形用樹脂組成物である。
Figure 2008189782

The resin composition for optical three-dimensional modeling according to (1) or (2), further comprising a dimethacrylate compound (II) represented by the formula (100) in a proportion of 100 parts by mass or less with respect to 100 parts by mass of the dimethacrylate compound (I): It is a thing.

また、本発明は、
(4) 光ラジカル重合開始剤の含有量が、光学的立体造形用樹脂組成物に含まれるラジカル重合性有機化合物の合計質量に基づいて0.1〜10質量%である前記(1)〜(3)のいずれかの光学的立体造形用樹脂組成物;および、
(5) 光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤を少なくとも含有し、波長350〜400nmの光の照射下に光学的立体造形物を製造するための光学的立体造形用樹脂組成物である前記(1)〜(4)のいずれかの光学的立体造形用樹脂組成物;
である。
The present invention also provides:
(4) The above (1) to (1), wherein the content of the photo radical polymerization initiator is 0.1 to 10% by mass based on the total mass of the radical polymerizable organic compound contained in the resin composition for optical three-dimensional modeling. 3) a resin composition for optical three-dimensional modeling according to any one of the above;
(5) An optical three-dimensional modeling resin for producing an optical three-dimensional object under irradiation of light having a wavelength of 350 to 400 nm, containing at least an acylphosphine oxide radical polymerization initiator as a photo radical polymerization initiator. The resin composition for optical three-dimensional modeling according to any one of (1) to (4), which is a composition;
It is.

さらに、本発明は、
(6) 前記(1)〜(5)のいずれかの光学的立体造形用樹脂組成物から形成した造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する1層分の光硬化した樹脂層を形成した後、当該光硬化した樹脂層の上に前記光学的立体造形用樹脂組成物からなる1層分の未硬化樹脂層よりなる造形面を形成し、当該造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する次の1層分の光硬化した樹脂層を形成する操作を立体造形物が得られるまで繰り返すことを特徴とする光学的立体造形物の製造方法;および、
(7) 波長が350〜400nmの光を、面状描画マスクを介して光学的立体造形用樹脂組成物よりなる造形面に照射する前記(6)の光学的立体造形物の製造方法;
である。
Furthermore, the present invention provides:
(6) A modeling surface formed from the resin composition for optical three-dimensional modeling according to any one of (1) to (5) is irradiated with light in a planar shape through a planar drawing mask to have a predetermined shape pattern. After forming a photocured resin layer for one layer, a modeling surface composed of an uncured resin layer for one layer made of the resin composition for optical three-dimensional modeling is formed on the photocured resin layer, Repeat the operation of irradiating the modeling surface with light through a planar drawing mask to form a photocured resin layer for the next one layer having a predetermined shape pattern until a three-dimensional model is obtained. A method for producing an optical three-dimensional object characterized by:
(7) The method for producing an optical three-dimensional object according to (6), wherein light having a wavelength of 350 to 400 nm is irradiated onto a modeling surface made of the resin composition for optical three-dimensional modeling through a planar drawing mask;
It is.

ビスフェノール骨格を有するジメタクリレート化合物(I)を含有する発明の光学的立体造形用樹脂組成物は、面露光によって立体造形物を製造する際の収縮(硬化収縮)が小さく、しかも反りが小さい。そのため、本発明の光学的立体造形用樹脂組成物を用いて面露光方式によって立体造形物を製造することにより、光造形操作時に装置の停止などを生ずることなく、寸法精度、造形精度および外観に優れる、反り、変形、歪みのない立体造形物を円滑に製造することができる。
本発明の光学的立体造形用樹脂組成物は、粘度が低くて光造形時の取り扱い性に優れ、貯蔵時の経時安定性に優れており、さらに本発明の光学的立体造形用樹脂組成物を用いて面露光方式によって光造形して得られる立体造形物は、力学的特性に優れている。
さらに、ジメタクリレート化合物(I)と共に、ジメタクリレート化合物(II)(トリシクロデカンジメタノールジメタクリレート)を含有する本発明の光学的立体造形用樹脂組成物は、低粘度、保存安定性、面露光による光造形における低収縮性、低反り性という上記した優れた特性に加えて、力学的特性及び耐熱性に一層優れる立体造形物を与える。
また、光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤を少なくとも含有する本発明の光学的立体造形用樹脂組成物は、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、紫外光LEDやその他の安価な非レーザーランプを光源として用いて、面露光により上記した優れた特性を備える立体造形物を円滑に製造することができる。
The resin composition for optical three-dimensional model | molding of the invention containing the dimethacrylate compound (I) which has a bisphenol skeleton has a small shrinkage | contraction (hardening shrinkage) at the time of manufacturing a three-dimensional model | molding by surface exposure, and also curvature is small. Therefore, by producing a three-dimensional model by the surface exposure method using the optical three-dimensional model resin composition of the present invention, it is possible to achieve dimensional accuracy, modeling accuracy, and appearance without causing an apparatus stop during the optical modeling operation. It is possible to smoothly manufacture a three-dimensional structure that is excellent, free from warpage, deformation, and distortion.
The resin composition for optical three-dimensional modeling of the present invention has a low viscosity and excellent handleability at the time of optical modeling, and has excellent temporal stability during storage, and further the resin composition for optical three-dimensional modeling of the present invention. The three-dimensional modeled object obtained by using the surface exposure method and performing the optical modeling has excellent mechanical properties.
Further, the resin composition for optical three-dimensional modeling of the present invention containing the dimethacrylate compound (II) (tricyclodecane dimethanol dimethacrylate) together with the dimethacrylate compound (I) has low viscosity, storage stability, and surface exposure. In addition to the above-described excellent properties such as low shrinkage and low warpage in stereolithography, the three-dimensional structure is further improved in mechanical properties and heat resistance.
Further, the resin composition for optical three-dimensional modeling of the present invention containing at least an acyl phosphine oxide radical polymerization initiator as a photo radical polymerization initiator is a high pressure mercury lamp, an ultra high pressure mercury lamp, a low pressure mercury lamp, an ultraviolet light. By using an LED or other inexpensive non-laser lamp as a light source, a three-dimensional object having the above-described excellent characteristics can be smoothly manufactured by surface exposure.

以下に本発明について詳細に説明する。
本発明の光学的立体造形用樹脂組成物は、面露光による光学的立体造形に用いる、ラジカル重合性有機化合物および光ラジカル重合開始剤を含有する光硬化性樹脂組成物であって、ラジカル重合性有機化合物として、下記の一般式(I);
The present invention is described in detail below.
The resin composition for optical three-dimensional modeling of the present invention is a photocurable resin composition containing a radical polymerizable organic compound and a photo radical polymerization initiator used for optical three-dimensional modeling by surface exposure, and is radical polymerizable. As an organic compound, the following general formula (I);

Figure 2008189782

(式中、R1は水素原子またはメチル基、R2は水素原子またはメチル基、mおよびnはそれぞれ独立して1〜20の整数を示す。)
で表される、ビスフェノール骨格を有するジメタクリレート化合物(I)を少なくとも含有することを特徴とする。
ここで、本明細書における「面露光による光学的立体造形」とは、光学的立体造形用樹脂組成物から形成した造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する1層分の光硬化した樹脂層を形成した後、当該光硬化した樹脂層の上に光学的立体造形用樹脂組成物からなる1層分の未硬化層よりなる造形面を形成し、当該未硬化の造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する次の1層分の光硬化した樹脂層を形成する操作を、目的とする立体造形物が得られるまで繰り返えして行う光造形技術をいう。
Figure 2008189782

(Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, and m and n each independently represents an integer of 1 to 20)
It contains at least dimethacrylate compound (I) having a bisphenol skeleton represented by
Here, “optical three-dimensional modeling by surface exposure” in the present specification means that a modeling surface formed from a resin composition for optical three-dimensional modeling is irradiated with light in a planar manner via a planar drawing mask. After forming a photocured resin layer for one layer having a shape pattern, a modeling surface made of an uncured layer for one layer made of a resin composition for optical three-dimensional modeling is formed on the photocured resin layer. Then, the operation for forming a photo-cured resin layer for the next one layer having a predetermined shape pattern by irradiating light on the uncured modeling surface in a planar manner through a planar drawing mask is an object. This is an optical modeling technique that is repeated until a three-dimensional model is obtained.

上記の一般式(I)で表されるジメタクリレート化合物(I)において、R1は水素原子またはメチル基であり、メチル基であることが材料入手性などの点から好ましい。また、上記の一般式(I)で表されるジメタクリレート化合物(I)において、R2は水素原子またはメチル基であり、水素原子であることが材料入手性などの点から好ましい。さらに、mおよびnはそれぞれ独立して1〜20の整数であり、mおよびnはいずれも2〜15、特に2〜12の整数であることが得られる立体造形物の物性の点から好ましい。また、mとnの合計が2〜30であることが好ましく、4〜30であることがより好ましく、特に4〜24であることが更に好ましい。
ジメタクリレート化合物(I)としては、ビスフェノールに対するアルキレンオキサイド基[−CH2CH(R2)−O−]の結合数m,nに応じて、種々の分子量のものが市販されており、例えば、新中村化学工業株式会社製のエトキシ化ビスフェノールAジメタクリレート「NKエステルBPE−100」(R2=H、m+n=2.6)、エトキシ化ビスフェノールAジメタクリレート「NKエステルBPE−200」(R2=H、m+n=約4)、「NKエステルBPE−500」(R2=H、m+n=約10)、「NKエステルBPE−900」(R2=H、m+n=約17)、「NKエステルBPE−1300」(R2=H、m+n=約30)などを挙げることができる。
In the dimethacrylate compound (I) represented by the above general formula (I), R 1 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of material availability. In the dimethacrylate compound (I) represented by the general formula (I), R 2 is a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of material availability. Further, m and n are each independently an integer of 1 to 20, and m and n are preferable from the viewpoint of the physical properties of a three-dimensional modeled object obtained from 2 to 15, particularly 2 to 12. Moreover, it is preferable that the sum total of m and n is 2-30, It is more preferable that it is 4-30, It is still more preferable that it is 4-24 especially.
As the dimethacrylate compound (I), those having various molecular weights are commercially available depending on the number of bonds m and n of the alkylene oxide group [—CH 2 CH (R 2 ) —O—] to bisphenol. Shin-Nakamura Chemical Co., Ltd. ethoxylated bisphenol A dimethacrylate “NK ester BPE-100” (R 2 = H, m + n = 2.6), ethoxylated bisphenol A dimethacrylate “NK ester BPE-200” (R 2 = H, m + n = about 4), “NK ester BPE-500” (R 2 = H, m + n = about 10), “NK ester BPE-900” (R 2 = H, m + n = about 17), “NK ester BPE-1300 ”(R 2 = H, m + n = about 30).

本発明の光学的立体造形用樹脂組成物は、光学的立体造形用樹脂組成物に含まれるラジカル重合性有機化合物の全質量に基づいて、ジメタクリレート化合物(I)を30〜100質量%の割合で含有することが好ましく、50〜100質量%の割合で含有することがより好ましく、70〜100質量%の割合で含有することが更に好ましい。
光学的立体造形におけるジメタクリレート化合物(I)の含有量が少ないと、反りが発生し、光造形操作の中断などが生じ易くなり、しかも最終的に得られる立体造形物の反りによる変形や歪みなどが大きくなって、外観の不良、寸法精度および造形精度の低下を生じ易くなる。
The resin composition for optical three-dimensional model | molding of this invention is a ratio of 30-100 mass% of dimethacrylate compounds (I) based on the total mass of the radically polymerizable organic compound contained in the resin composition for optical three-dimensional model | molding. It is preferable to contain in the ratio of 50-100 mass%, It is more preferable to contain in the ratio of 70-100 mass%.
If the content of the dimethacrylate compound (I) in the optical three-dimensional modeling is small, warping occurs, the optical modeling operation is likely to be interrupted, and deformation and distortion due to warping of the finally obtained three-dimensional modeling etc. Becomes larger, and it tends to cause poor appearance, reduced dimensional accuracy and modeling accuracy.

本発明の光学的立体造形用樹脂組成物は、ラジカル重合性有機化合物として、上記したジメタクリレート化合物(I)と共に、他の(メタ)アクリレート化合物、(メタ)アクリレート化合物以外のビニル系化合物などの他のラジカル重合性有機化合物を含有してもよい。特に、ジメタクリレート化合物(I)と共に、下記の化学式(II);   The resin composition for optical three-dimensional modeling of the present invention includes the above-mentioned dimethacrylate compound (I) as a radical polymerizable organic compound, other (meth) acrylate compounds, vinyl compounds other than (meth) acrylate compounds, and the like. You may contain another radically polymerizable organic compound. In particular, together with the dimethacrylate compound (I), the following chemical formula (II):

Figure 2008189782

で表されるジメタクリレート化合物(II)(トリシクロデカンジメタノールジメタクリレート)を含有すると、ジメタクリレート化合物(I)による反りの低減と併せて、立体造形物の力学的特性および耐熱性の向上が得られる。
Figure 2008189782

Including the dimethacrylate compound (II) (tricyclodecane dimethanol dimethacrylate) represented by the formula, the reduction in warpage due to the dimethacrylate compound (I) and the improvement of the mechanical properties and heat resistance of the three-dimensional structure can get.

本発明の光学的立体造形用樹脂組成物では、ジメタクリレート化合物(I)100質量部に対するジメタクリレート化合物(II)の含有量は、100質量部以下(0〜100質量部)であり、5〜100質量部であることが好ましく、10〜100質量部であることがより好ましく、15〜100質量部であることが更に好ましい。
ジメタクリレート化合物(II)の含有量が、ジメタクリレート化合物(I)の含有量よりも多くなると、反りの低減効果が得られにくくなる。
また、本発明の光学的立体造形用樹脂組成物では、反りの低減、力学的特性などの点から、組成物中に含まれるラジカル重合性有機化合物の全質量に対して、ジメタクリレート化合物(I)とジメタクリレート化合物(II)の合計含有量が、30〜100質量%であることが好ましく、50〜100質量%であることがより好ましく、70〜100質量%であることが更に好ましい。
In the resin composition for optical three-dimensional modeling of this invention, content of dimethacrylate compound (II) with respect to 100 mass parts of dimethacrylate compound (I) is 100 mass parts or less (0-100 mass parts), The amount is preferably 100 parts by mass, more preferably 10 to 100 parts by mass, and still more preferably 15 to 100 parts by mass.
When the content of the dimethacrylate compound (II) is larger than the content of the dimethacrylate compound (I), it is difficult to obtain a warp reduction effect.
In addition, in the resin composition for optical three-dimensional modeling of the present invention, the dimethacrylate compound (I) is used with respect to the total mass of the radical polymerizable organic compound contained in the composition from the viewpoints of reduction of warpage and mechanical properties. ) And the dimethacrylate compound (II) are preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and still more preferably 70 to 100% by mass.

本発明の光学的立体造形用樹脂組成物は、本発明の目的の妨げにならない範囲で、ジメタクリレート化合物(I)およびジメタクリレート化合物(II)以外の他のラジカル重合性有機化合物を、必要に応じて少割合(通常はラジカル重合性有機化合物の全質量に対して70質量%以下、より好ましくは50質量%以下、更に好ましくは30質量%以下の割合)で含有していてもよい。
本発明の光学的立体造形用樹脂組成物が含有し得る当該他のラジカル重合性有機化合物としては、例えば、ジメタクリレート化合物(I)およびジメタクリレート化合物(II)以外の(メタ)アクリレート系化合物、ジ(メタ)アクリレート系化合物、トリ(メタ)アクリレート系化合物、または4官能以上のポリ(メタ)アクリレート系化合物、イミド(メタ)アクリレート系化合物、(メタ)アクリルアミド系化合物、ビニル系化合物などを挙げることができる。
The resin composition for optical three-dimensional modeling of the present invention requires a radical polymerizable organic compound other than dimethacrylate compound (I) and dimethacrylate compound (II) as long as the object of the present invention is not hindered. Accordingly, it may be contained in a small proportion (usually 70 mass% or less, more preferably 50 mass% or less, still more preferably 30 mass% or less with respect to the total mass of the radical polymerizable organic compound).
Examples of the other radical polymerizable organic compound that may be contained in the resin composition for optical three-dimensional modeling of the present invention include, for example, (meth) acrylate compounds other than dimethacrylate compound (I) and dimethacrylate compound (II), Examples include di (meth) acrylate compounds, tri (meth) acrylate compounds, or poly (meth) acrylate compounds having 4 or more functional groups, imide (meth) acrylate compounds, (meth) acrylamide compounds, vinyl compounds, and the like. be able to.

より具体的には、他の(メタ)アクリレート系化合物としては、例えば2−エチルヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートやその他のジペンタエリスリトールポリ(メタ)アクリレート、前記したジオール、トリオール、テトラオール、ヘキサオールなどの多価アルコールのアルキレンオキサイド付加物の(メタ)アクリレートなどを挙げることができる。
また、ビニル系化合物としては、スチレン、ベンゼン環に置換基を有するスチレン、ジビニルベンゼン、ベンゼン環に置換基を有するジビニルベンゼン、N−ビニルカルバゾールなどを挙げることができる。
More specifically, as other (meth) acrylate compounds, for example, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, lauryl (meth) acrylate, Stearyl (meth) acrylate, isooctyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,4-butanediol di (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) ) Acrylates and other dipentaerythritol poly (meth) acrylates, and (meth) acrylates of alkylene oxide adducts of polyhydric alcohols such as diols, triols, tetraols, and hexaols.
Examples of the vinyl compound include styrene, styrene having a substituent on the benzene ring, divinylbenzene, divinylbenzene having a substituent on the benzene ring, and N-vinylcarbazole.

本発明の光学的立体造形用樹脂組成物で用いる光ラジカル重合開始剤としては、面露光による光学的立体造形に用いられる光源からの光を吸収して、光学的立体造形用樹脂組成物中に含まれるラジカル重合性有機化合物の重合を開始し得る光ラジカル重合開始剤であればいずれも使用できる。
一般的には、面露光による光学的立体造形は、波長が355nm以下のレーザー光を用いずに、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、紫外線蛍光灯などの光源から発射される波長が350〜400nmの紫外線を用いて行われる。そのため、本発明では、光ラジカル重合開始剤の少なくとも一部として、波長350〜400nmの紫外線を吸収してジメタクリレート化合物(I)、ジメタクリレート化合物(II)および場合により含まれる他のラジカル重合性化合物をラジカル重合する光ラジカル重合開始剤を用いることが好ましい。
As a radical photopolymerization initiator used in the resin composition for optical three-dimensional modeling of the present invention, light from a light source used for optical three-dimensional modeling by surface exposure is absorbed, and the resin composition for optical three-dimensional modeling is incorporated. Any radical photopolymerization initiator capable of initiating polymerization of the contained radically polymerizable organic compound can be used.
In general, optical three-dimensional modeling by surface exposure is performed using a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, and an ultraviolet LED without using a laser beam having a wavelength of 355 nm or less. (Light-emitting diode) and ultraviolet light emitted from a light source such as an ultraviolet fluorescent lamp is performed using ultraviolet light having a wavelength of 350 to 400 nm. Therefore, in the present invention, as at least a part of the radical photopolymerization initiator, it absorbs ultraviolet rays having a wavelength of 350 to 400 nm and absorbs the dimethacrylate compound (I), the dimethacrylate compound (II), and other radically polymerizable compounds optionally contained. It is preferable to use a photoradical polymerization initiator that radically polymerizes the compound.

本発明では、波長が350〜400nmの紫外線を吸収する光ラジカル重合開始剤のいずれもが使用できるが、そのうちでも、アシルフォスフィンオキサイド系ラジカル重合開始剤を光ラジカル重合開始剤の少なくとも一部として用いることが、硬化速度、立体造形物の力学的特性などの点から好ましい。
本発明において光ラジカル重合開始剤の少なくとも一部として好ましく用いられるアシルフォスフィンオキサイド系ラジカル重合開始剤としては、下記の一般式(IIIa)で表されるモノアシルフォスフィンオキサイド(IIIa)および下記の一般式(IIIb)で表されるジアシルフォスフィンオキサイド(IIIb)を挙げることができる。
In the present invention, any radical photopolymerization initiator that absorbs ultraviolet light having a wavelength of 350 to 400 nm can be used. Among them, an acylphosphine oxide radical polymerization initiator is used as at least part of the radical photopolymerization initiator. It is preferable to use it from the viewpoints of the curing speed, the mechanical properties of the three-dimensional structure, and the like.
As the acyl phosphine oxide radical polymerization initiator preferably used as at least part of the photo radical polymerization initiator in the present invention, monoacyl phosphine oxide (IIIa) represented by the following general formula (IIIa) and The diacylphosphine oxide (IIIb) represented by general formula (IIIb) can be mentioned.

Figure 2008189782

[式中、R3、R4、R5、R6、R7およびR8は、それぞれ独立して、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、フェニル基、ベンジル基、1個以上の置換基(例えば炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン、シアノ基、炭素数2〜5のアルコキシカルボニル基、1個または2個以上の炭素数1〜12のアルコキシ基および/またはハロゲン原子により置換された炭素数1〜8のアルキル基など)で置換された炭素数5〜8のアルキル基、フェニル基、ベンジル基などを示す。]
モノアシルフォスフィンオキサイド(IIIa)およびジアシルフォスフィンオキサイド(IIIb)としては、上記の一般式(IIIa)または一般式(IIIb)において、R3およびR5がフェニル基、炭素数1〜4のアルキル基、アルキル置換フェニル基または炭素数1〜4のアルコキシ基置換フェニル基で、R4、R6、R7およびR8が炭素数1〜4のアルコキシ基、ハロゲン原子、炭素数1〜4のアルキル基置換フェニル基または枝分かれしていてもよい炭素数1〜10のアルキル基であるものが、入手性などの点から好ましく用いられる。
Figure 2008189782

[Wherein, R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each independently represents an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a phenyl group, or benzyl. Group, one or more substituents (for example, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen, a cyano group, an alkoxycarbonyl group having 2 to 5 carbon atoms, one or two or more An alkyl group having 5 to 8 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms and / or an alkyl group having 1 to 8 carbon atoms substituted with a halogen atom), a phenyl group, a benzyl group, or the like; ]
As monoacylphosphine oxide (IIIa) and diacylphosphine oxide (IIIb), in the above general formula (IIIa) or general formula (IIIb), R 3 and R 5 are each a phenyl group, an alkyl having 1 to 4 carbon atoms. A group, an alkyl-substituted phenyl group, or an alkoxy group-substituted phenyl group having 1 to 4 carbon atoms, wherein R 4 , R 6 , R 7, and R 8 are an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and 1 to 4 carbon atoms An alkyl group-substituted phenyl group or an optionally branched alkyl group having 1 to 10 carbon atoms is preferably used from the viewpoint of availability.

本発明の光学的立体造形用樹脂組成物で用い得るモノアシルフォスフィンオキサイド(IIIa)およびジアシルフォスフィンオキサイド(IIIb)の具体例としては、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニル−フォスフィンオキサイドなどを挙げることができ、これらのうちの1種または2種以上を用いることができる。
これらは、波長350〜400nmの紫外線の吸収率が高く、入手が容易であるため、本発明の面露光方式による光学的立体造形おいてより好適に用いられる。
Specific examples of monoacylphosphine oxide (IIIa) and diacylphosphine oxide (IIIb) that can be used in the resin composition for optical three-dimensional modeling of the present invention include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Bis (2,4,6-trimethylbenzoyl) -phenyl-phosphine oxide and the like, and one or more of them can be used.
Since these have a high absorption rate of ultraviolet rays having a wavelength of 350 to 400 nm and are easily available, they are more suitably used in optical three-dimensional modeling by the surface exposure method of the present invention.

本発明の光学的立体造形用樹脂組成物は、光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤のみを含有していてもよいし、アシルフォスフィンオキサイド系ラジカル重合と共に他の光ラジカル重合開始剤を含有していてもよい。
本発明の光学的立体造形用樹脂組成物が含有し得る他の光ラジカル重合開始剤としては、例えば、ベンジルまたはそのジアルキルアセタール系化合物、フェニルケトン系化合物、アセトフェノン系化合物、ベンゾインまたはそのアルキルエーテル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物などを挙げることができる。
その場合に、他のラジカル重合開始剤として用い得るベンジルまたはそのジアルキルアセタール系化合物の具体例としては、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタールなどを挙げることができ;フェニルケトン系化合物の具体例としては1−ヒドロキシ−シクロヘキシルフェニルケトンなどを挙げることができ;アセトフェノン系化合物の具体例としてはジエトキシアセトフェノン、2−ヒドロキシメチル−1−フェニルプロパン−1−オン、4′−イソプロピル−2−ヒドロキシ−2−メチル−プロピオフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、p−ジメチルアミノアセトフェノン、p−tert−ブチルジクロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノンなどを挙げることができ;ベンゾイン系化合物の具体例としてはベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテルなどを挙げることができ;ベンゾフェノン系化合物の具体例としてはベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラースケトン、4,4′−ビスジエチルアミノベンゾフェノン、4,4′−ジクロロベンゾフェノンなどを挙げることができ;チオキサントン系化合物の具体例としてはチオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントンなどを挙げることができる。
The resin composition for optical three-dimensional modeling of the present invention may contain only an acyl phosphine oxide-based radical polymerization initiator as a photo-radical polymerization initiator, or other light together with the acyl phosphine oxide-based radical polymerization. A radical polymerization initiator may be contained.
Examples of other radical photopolymerization initiators that may be contained in the resin composition for optical three-dimensional modeling of the present invention include benzyl or its dialkyl acetal compound, phenyl ketone compound, acetophenone compound, benzoin or its alkyl ether compound. Compounds, benzophenone compounds, thioxanthone compounds, and the like.
In this case, specific examples of benzyl or dialkyl acetal compounds that can be used as other radical polymerization initiators include benzyl dimethyl ketal, benzyl-β-methoxyethyl acetal, etc .; specific examples of phenyl ketone compounds Examples include 1-hydroxy-cyclohexyl phenyl ketone; specific examples of acetophenone compounds include diethoxyacetophenone, 2-hydroxymethyl-1-phenylpropan-1-one, 4′-isopropyl-2- Hydroxy-2-methyl-propiophenone, 2-hydroxy-2-methyl-propiophenone, p-dimethylaminoacetophenone, p-tert-butyldichloroacetophenone, p-tert-butyltrichloroacetophenone, p-a Examples of benzoin compounds include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin normal butyl ether, and benzoin isobutyl ether; benzophenone compounds Specific examples of these include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone; specific examples of thioxanthone compounds include thioxanthone, 2 -Methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, etc. can be mentioned.

そのうちでも、本発明の光学的立体造形用樹脂組成物は、光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤を単独で含有するか、またはアシルフォスフィンオキサイド系ラジカル重合開始剤と共に、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(チバ・スペシャルティー・ケミカルズ社製「イルガキュア651」など)、1−ヒドロキシシクロヘキシルフェニルケトン(同社製「イルガキュア184」など)、2−ヒドロキシ−2−メチルプロピオフェノン(チバ・スペシャルティー・ケミカルズ社製「ダロキュア1173」)を含有することが好ましい。
特に、アシルフォスフィンオキサイド系ラジカル重合開始剤(そのうちでも2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド)と2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(チバ・スペシャルティー・ケミカルズ社製「イルガキュア651」など)を併用すると、前記した波長350〜400nmの紫外線による光学的立体造形用樹脂組成物の硬化が円滑に行われると共に、面露光による光学的立体造形の際の光硬化深度の調整が容易になって、寸法精度に優れ、しかも反りが一層低減した立体造形物を得ることができる。
Among them, the resin composition for optical three-dimensional modeling of the present invention contains an acyl phosphine oxide radical polymerization initiator alone as a photo radical polymerization initiator, or together with an acyl phosphine oxide radical polymerization initiator. 2,2-dimethoxy-1,2-diphenylethane-1-one (such as “Irgacure 651” manufactured by Ciba Specialty Chemicals), 1-hydroxycyclohexyl phenyl ketone (such as “Irgacure 184” manufactured by the same company), 2 It is preferable to contain -hydroxy-2-methylpropiophenone ("Darocur 1173" manufactured by Ciba Specialty Chemicals).
In particular, acylphosphine oxide radical polymerization initiators (among them, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) and 2,2-dimethoxy-1,2-diphenylethane-1-one (Ciba Special) When combined with “Irgacure 651” manufactured by Tea Chemicals, etc., the above-described resin composition for optical three-dimensional modeling is smoothly cured by ultraviolet rays having a wavelength of 350 to 400 nm, and at the time of optical three-dimensional modeling by surface exposure. It becomes easy to adjust the photocuring depth, and it is possible to obtain a three-dimensional molded article having excellent dimensional accuracy and further reducing warpage.

本発明の光学的立体造形用樹脂組成物は、ラジカル重合性有機化合物の合計質量に基づいて、光ラジカル重合開始剤を0.1〜10質量%(2種類以上の光ラジカル重合開始剤を含有する場合はその合計含有量)の割合で含有することが好ましく、0.2〜7質量%の割合で含有することがより好ましい。
本発明の光学的立体造形用樹脂組成物が、光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤のみを含有する場合は、ラジカル重合性有機化合物の合計質量に基づいて、アシルフォスフィンオキサイド系ラジカル重合開始剤を前記した0.1〜10質量%、特に0.2〜7質量%の割合で含有していることが好ましい。また、本発明の光学的立体造形用樹脂組成物がアシルフォスフィンオキサイド系ラジカル重合開始剤と共に他の光ラジカル重合開始剤(例えば2,2−ジメトキシ−1,2−ジフェニルエタン−1−オンなど)を含有する場合は、ラジカル重合性有機化合物の合計質量に基づいて、アシルフォスフィンオキサイド系ラジカル重合を0.1〜7質量%、特に0.2〜5質量%、および他の光ラジカル重合開始剤を0.1〜7質量%、特に0.2〜5質量%の割合で含有することが好ましい。
The resin composition for optical three-dimensional modeling of the present invention contains 0.1 to 10% by mass of a radical photopolymerization initiator (containing two or more kinds of radical photopolymerization initiators) based on the total mass of the radical polymerizable organic compound. When it does, it is preferable to contain in the ratio of the total content), and it is more preferable to contain in the ratio of 0.2-7 mass%.
When the resin composition for optical three-dimensional modeling of the present invention contains only an acyl phosphine oxide radical polymerization initiator as a photo radical polymerization initiator, the acyl phosphine is based on the total mass of the radical polymerizable organic compound. It is preferable that the fin oxide radical polymerization initiator is contained in the above-described proportion of 0.1 to 10% by mass, particularly 0.2 to 7% by mass. In addition, the resin composition for optical three-dimensional modeling of the present invention is an acyl phosphine oxide radical polymerization initiator and other photo radical polymerization initiators (for example, 2,2-dimethoxy-1,2-diphenylethane-1-one, etc.) ) Based on the total mass of the radically polymerizable organic compound, the acylphosphine oxide radical polymerization is 0.1 to 7% by mass, especially 0.2 to 5% by mass, and other photoradical polymerizations. It is preferable to contain the initiator in a proportion of 0.1 to 7% by mass, particularly 0.2 to 5% by mass.

本発明の光学的立体造形用樹脂組成物は、本発明の効果を損なわない限り、必要に応じて、顔料や染料等の着色剤、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、充填剤(架橋ポリマー粒子、シリカ、ガラス粉、セラミックス粉、金属粉等)、改質用樹脂などの1種または2種以上を適量含有していてもよい。   As long as the effects of the present invention are not impaired, the resin composition for optical three-dimensional modeling of the present invention, if necessary, colorants such as pigments and dyes, antifoaming agents, leveling agents, thickeners, flame retardants, oxidation agents An appropriate amount of one or two or more of an inhibitor, a filler (crosslinked polymer particles, silica, glass powder, ceramic powder, metal powder, etc.) and a modifying resin may be contained.

本発明の光学的立体造形用樹脂組成物の調製法は特に制限されず、例えば、ジメタクリレート化合物(I)および必要に応じて他のラジカル重合性有機化合物を所定の割合で混合した後に光ラジカル重合開始剤および必要に応じて添加剤などの他の成分を均一に混合する方法、ジメタクリレート化合物(I)、ジメタクリレート化合物(II)および必要に応じて他のラジカル重合性有機化合物を混合した後に光ラジカル重合開始剤および必要に応じて添加剤などの他の成分を均一に混合する方法などによって調製することができる。   The method for preparing the resin composition for optical three-dimensional modeling of the present invention is not particularly limited. For example, a photoradical after the dimethacrylate compound (I) and other radical polymerizable organic compound as necessary are mixed at a predetermined ratio. A method of uniformly mixing a polymerization initiator and other components such as an additive as necessary, dimethacrylate compound (I), dimethacrylate compound (II) and other radical polymerizable organic compound as necessary It can be prepared later by a method of uniformly mixing other components such as a radical photopolymerization initiator and, if necessary, an additive.

上記した本発明の光学的立体造形用樹脂組成物を用いて、面露光によって光学的立体造形を行って立体造形物を製造する。本発明の面露光による光学的立体造形方法においては、従来既知の面露光による光学的立体造形方法および装置のいずれもが使用できる。
本発明で好ましく採用され得る面露光による光学的立体造形法の代表例としては、光源からの光を、面状描画マスクを介して、本発明の光学的立体造形用樹脂組成物から形成された造形面に所定の面状の形状パターンで照射して、所定の面状の形状パターンを有する光硬化した硬化層を形成し、次いでこの硬化層の上に未硬化の1層分の光学的立体造形用樹脂組成物を供給して造形面を形成し、当該造形面に面状描画マスクを介して光を所定の面状の形状パターンで照射して、前記の硬化層の上にそれと連続(積層・接着)した所定の形状パターンを有する硬化層を新たに形成するという光造形操作(光積層操作)を、目的とする立体造形物が得られるまで繰り返す方法を挙げることができる。
Using the above-described resin composition for optical three-dimensional modeling of the present invention, optical three-dimensional modeling is performed by surface exposure to manufacture a three-dimensional modeled object. In the optical three-dimensional modeling method by surface exposure of the present invention, any of the conventionally known optical three-dimensional modeling methods and apparatuses by surface exposure can be used.
As a representative example of the optical three-dimensional modeling method by surface exposure that can be preferably employed in the present invention, light from a light source is formed from the optical three-dimensional modeling resin composition of the present invention through a planar drawing mask. The molded surface is irradiated with a predetermined planar shape pattern to form a photocured cured layer having the predetermined planar shape pattern, and then an optical solid for one uncured layer on the cured layer. A modeling resin surface is formed by supplying a modeling resin composition, and the modeling surface is irradiated with light through a planar drawing mask in a predetermined planar shape pattern, and continuous with the cured layer ( An example is a method of repeating an optical modeling operation (optical lamination operation) of newly forming a cured layer having a predetermined shape pattern (laminated and bonded) until a target three-dimensional modeled object is obtained.

本発明の面露光による光学的立体造形で用い得る光源としては、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、水銀灯、紫外線蛍光灯などを挙げることができる。
光源の形状、大きさ、数は特に制限されず、面状描画マスクの形状や寸法、形成しようとする光硬化断面形状パターンの形状や寸法などに応じて適宜選択することができ、光源は、例えば、点状、球状、棒状、面状であってもよいし、また点状や球状の光源を面状描画マスクの背部側に直接状に一列または複数列で配置してもよい。
The light source that can be used in the optical three-dimensional modeling by the surface exposure of the present invention includes a high pressure mercury lamp, an ultra high pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, an ultraviolet LED (light emitting diode), a mercury lamp, and an ultraviolet fluorescence. Lights can be mentioned.
The shape, size, and number of the light source are not particularly limited, and can be appropriately selected according to the shape and size of the planar drawing mask, the shape and size of the photocuring cross-sectional shape pattern to be formed, and the light source is For example, it may be dot-shaped, spherical, rod-shaped, or planar, and a dot-shaped or spherical light source may be directly arranged in one or more rows on the back side of the planar drawing mask.

また、光源は、面状描画マスクと共に連続移動可能に設けてもよいし、または造形精度の向上、造形速度の向上、装置の軽量化、保守性の向上などの目的で、光源を固定位置に動かないように設ける共に光源からの光を光ファイバー、ライトガイドやその他の光伝達手段を通して面状描画マスクの背部に導き、光ファイバーやライトガイドやその他の光伝達手段を面状描画マスクと共に連続移動可能に設けてもよい。
また、造形速度の向上のために複数の光源を用いて集光し光エネルギーを高くさせる方式を採ってもよい。特に光ファイバーやライトガイドなどを使用する場合は複数光源を集光させ易いというメリットがある。
In addition, the light source may be provided so as to be continuously movable together with the planar drawing mask, or the light source is fixed at a fixed position for the purpose of improving modeling accuracy, improving modeling speed, reducing the weight of the apparatus, and improving maintainability. It is installed so that it does not move, and the light from the light source is guided to the back of the planar drawing mask through optical fiber, light guide and other light transmission means, and the optical fiber, light guide and other light transmission means can be moved continuously with the planar drawing mask May be provided.
Moreover, you may employ | adopt the system which condenses and raises light energy using a some light source for the improvement of modeling speed. In particular, when an optical fiber or a light guide is used, there is an advantage that a plurality of light sources can be easily condensed.

本発明では、造形精度の向上、造形速度の向上、装置の軽量化、保守性の向上、装置コストのダウンなどの目的で、光源の種類、形状、数、面状描画マスクの形状や寸法などに応じて、光源からの光を面状描画マスクに良好に導くための手段(例えば集光レンズ、フレネルレンズなど)、また面状描画マスクによって形成されたマスク画像(面状描画マスクを通った光画像)を光学的立体造形用樹脂組成物よりなる造形面の所定位置に高造形精度で照射させるための手段(例えば投影レンズ、プロジェクタレンズなど)を配置することが好ましい。   In the present invention, for the purpose of improving modeling accuracy, improving modeling speed, reducing the weight of the apparatus, improving maintainability, reducing the cost of the apparatus, etc., the type, shape, number, and shape and dimensions of the planar drawing mask, etc. In accordance with the above, means for favorably guiding light from the light source to the planar drawing mask (for example, a condensing lens, a Fresnel lens, etc.), and a mask image formed by the planar drawing mask (passed through the planar drawing mask) It is preferable to arrange means (for example, a projection lens, a projector lens, etc.) for irradiating a predetermined position on the modeling surface made of the optical three-dimensional modeling resin composition with high modeling accuracy.

本発明の面露光による光学的立体造形では、面状描画マスクとして、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを面状に配置した面状描画マスク、または微小ドットエリアでの遮光と造形面に向けての光の反射が可能を複数のデジタルマイクロミラーシャッターを面状に配置したデジタルマイクロミラーデバイス(DMD)が好ましく用いられる。
これらの面状描画マスクは、微小ドットエリアでの遮光と透光が可能な複数の液晶などの微小光シャッター、または微小ドットエリアでの遮光と造形面に向けての光の反射が可能な複数の微小光シャッター(デジタルマイクロミラー)を面状(X−Y方向)に並列配置した正方形状または長方形状の面状描画マスクであることが好ましい。
面状描画マスクに配置する微小光シャッター(画素子)の数は特に制限されず、従来から知られているものなどを使用することができる。液晶シャッター(液晶表示素子)としては、例えば、QVGA(画素数=320ドット×240ドット)、VGA(画素数=640×480ドット)、SVGA(画素数=800×600ドット)、UXGA(画素数=1024×768ドット)、QSXGA(画素数=2560×2648ドット)などを用いることができ、これらの液晶シャッターは従来から広く販売されている。
また、デジタルマイクロミラーシャッターとしては、例えば、テキサスインスツルメンツ社製の「DLPテクノロジー」(登録商標)のDMD(画素数=1024×768ドット)などを使用することができる。
In the optical three-dimensional modeling by surface exposure according to the present invention, a planar drawing mask in which a plurality of minute liquid crystal shutters capable of shielding and transmitting light in a minute dot area are arranged as a planar drawing mask, or a minute dot area. A digital micromirror device (DMD) is preferably used in which a plurality of digital micromirror shutters are arranged in a plane so as to be capable of shielding light and reflecting light toward the modeling surface.
These planar drawing masks are a plurality of micro-light shutters such as a plurality of liquid crystals that can block and transmit light in a micro dot area, or a plurality of light blocks that can block light in a micro dot area and reflect light toward a modeling surface. It is preferable to use a square or rectangular planar drawing mask in which minute optical shutters (digital micromirrors) are arranged in parallel in a planar shape (XY direction).
The number of minute light shutters (image elements) arranged on the planar drawing mask is not particularly limited, and conventionally known ones can be used. As a liquid crystal shutter (liquid crystal display element), for example, QVGA (number of pixels = 320 dots × 240 dots), VGA (number of pixels = 640 × 480 dots), SVGA (number of pixels = 800 × 600 dots), UXGA (number of pixels) = 1024 × 768 dots), QSXGA (number of pixels = 2560 × 2648 dots), and the like, and these liquid crystal shutters have been widely sold.
Further, as the digital micromirror shutter, for example, DMD (number of pixels = 1024 × 768 dots) of “DLP Technology” (registered trademark) manufactured by Texas Instruments Inc. can be used.

本発明では、面露光方式による光学的立体造形であればいずれも採用でき、例えば、1層分の光硬化した樹脂層を形成する際に面状描画マスクによるマスク画像を各硬化樹脂層における形状パターンに応じて一定の静止した状態にして面状描画マスクを介して造形面に光を照射して、造形面に所定の形状パターンを有する1層分毎の光硬化した樹脂層を形成する操作を所望の形状の立体造形物が得られるまで繰り返して立体造形物を製造してもよいし、または面状描画マスクを造形面上で造形面に対して平行に連続的に移動させると共に面状描画マスクのマスク画像を動画的に連続的に変化させながら当該面状描画マスクを介して造形面に光を照射して所定の形状パターンを有する1層分毎の光硬化した樹脂層を形成する操作を所望の形状の立体造形物が得られるまで繰り返して立体造形物を製造してもよい。
光学的立体造形用樹脂組成物よりなる造形面に面状描画マスクを介して光を照射する際の光エネルギーの強度は、光学的立体造形用樹脂組成物の組成、製造を目的とする立体造形物の種類などに応じて異なり得るが、一般的には、生産性、得られる立体造形物の力学的特性などの点から、1層分の光硬化した樹脂層を形成するための造形面での単位面積当たりの積算光エネルギー量が1〜100mJ/cm2、特に2〜80mJ/cm2であることが好ましい。
In the present invention, any optical three-dimensional modeling by a surface exposure method can be adopted. For example, when forming a photocured resin layer for one layer, a mask image by a planar drawing mask is formed on each cured resin layer. Operation to form a photocured resin layer for each layer having a predetermined shape pattern on the modeling surface by irradiating the modeling surface with light through a planar drawing mask in a certain stationary state according to the pattern May be manufactured until a three-dimensional object having a desired shape is obtained, or a three-dimensional object may be manufactured, or a planar drawing mask may be continuously moved in parallel to the modeling surface on the modeling surface and planar. While continuously changing the mask image of the drawing mask in a moving image, the modeling surface is irradiated with light through the planar drawing mask to form a photocured resin layer for each layer having a predetermined shape pattern. The operation of the desired shape Repeat until the body shaped article is obtained may be manufactured three-dimensional object.
The intensity of light energy when irradiating the modeling surface made of the optical three-dimensional modeling resin composition through the planar drawing mask is the three-dimensional modeling for the purpose of the composition and production of the optical three-dimensional modeling resin composition. Although it may vary depending on the type of object, etc., in general, from the viewpoint of productivity, mechanical properties of the resulting three-dimensional structure, etc., it is a modeling surface for forming a one-layer photocured resin layer The integrated light energy amount per unit area is preferably 1 to 100 mJ / cm 2 , particularly preferably 2 to 80 mJ / cm 2 .

本発明の光学的立体造形用樹脂組成物は、面露光による光学的立体造形分野に幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するための形状確認モデル、部品の機能性をチェックするための機能試験モデル、鋳型を制作するためのマスターモデル、金型を制作するためのマスターモデル、試作金型用の直接型などを挙げることできる。特に、本発明の光学的立体造形用樹脂組成物は、精密な部品などの形状確認モデルや機能試験モデルの作製に威力を発揮する。より具体的には、例えば、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型、加工用などの用途に有効に用いることができる。   The resin composition for optical three-dimensional modeling of the present invention can be widely used in the field of optical three-dimensional modeling by surface exposure, and is not limited at all, but as a typical application field, it is an appearance in the middle of design. Shape verification model for verifying design, functional test model for checking the functionality of parts, master model for producing molds, master model for producing molds, direct molds for prototype molds, etc. Can be mentioned. In particular, the resin composition for optical three-dimensional modeling according to the present invention is effective for producing a shape confirmation model or a function test model of a precise part or the like. More specifically, for example, it can be effectively used for applications such as precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, models, mother dies, processing, etc. .

以下に本発明を実施例などによって具体的に説明するが、本発明は例に何ら限定されるものではない。
また、以下の例中、光学的立体造形用樹脂組成物の粘度、硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)、光硬化による収縮率(体積収縮率)、並びに光造形して得られた光造形物の力学的特性[引張り特性(引張破断強度、引張破断伸度、引張弾性率)、降伏強度、曲げ特性(曲げ強度、曲げ弾性率)]、表面硬度、反りおよび熱変形温度の測定または算出は、次のようにして行なった。
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to the examples.
Moreover, in the following examples, the viscosity of the resin composition for optical three-dimensional modeling, the curing depth (Dp), the critical curing energy (Ec) and the work curing energy (E 10 ), the shrinkage due to photocuring (volume shrinkage), As well as mechanical properties of optically shaped objects obtained by stereolithography [tensile properties (tensile rupture strength, tensile rupture elongation, tensile modulus), yield strength, bending properties (bending strength, flexural modulus)], surface hardness The measurement or calculation of warpage and heat distortion temperature was performed as follows.

(1)光学的立体造形用樹脂組成物の粘度:
光造形用樹脂組成物を25℃の恒温槽に入れて、光造形用樹脂組成物の温度を25℃に調節した後、B型粘度計(株式会社東京計器製)を使用して測定した。
(1) Viscosity of the resin composition for optical three-dimensional modeling:
The resin composition for optical modeling was placed in a constant temperature bath at 25 ° C., and the temperature of the resin composition for optical modeling was adjusted to 25 ° C., and then measured using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.).

(2)光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)及び作業硬化エネルギー(E10):
非特許文献1に記載されている理論にしたがって測定した。具体的には、光学的立体造形用樹脂組成物よりなる造形面(液面)に、超高圧水銀ランプ(波長域340〜380nmの紫外光、エネルギー強度2mW/cm2)からの光を照射して1層分の光硬化膜を形成させた。この操作を、硬化膜の形成時の光照射時間を1〜5秒の間で、例えば、1秒、2秒、3秒、4秒よび5秒と5段階に変化させることによって造形面への照射エネルギー量を変え、各照射エネルギー量により生成した光硬化膜を光硬化性樹脂組成物液から取り出して、未硬化樹脂を取り除き、各硬化膜の厚さを定圧ノギスで測定し、光硬化膜の厚さをY軸、照射エネルギー量をX軸としてプロットし、プロットして得られた直線の傾きから硬化深度を求めると共にX軸の切片を臨界硬化エネルギー[Ec(mJ/cm2)]とし、0.25mmの厚さに硬化させるのに必要な露光エネルギー量を作業硬化エネルギー[E10(mJ/cm2)]とした。
(2) Curing depth (Dp), critical curing energy (Ec) and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling:
Measurement was performed according to the theory described in Non-Patent Document 1. Specifically, a modeling surface (liquid surface) made of a resin composition for optical three-dimensional modeling is irradiated with light from an ultrahigh pressure mercury lamp (ultraviolet light in a wavelength range of 340 to 380 nm, energy intensity 2 mW / cm 2 ). One layer of photocured film was formed. By changing the light irradiation time during the formation of the cured film between 1 to 5 seconds, for example, 1 second, 2 seconds, 3 seconds, 4 seconds, and 5 seconds, this operation is performed on the modeling surface. The amount of irradiation energy was changed, the photocured film produced by each amount of irradiation energy was taken out from the photocurable resin composition liquid, the uncured resin was removed, the thickness of each cured film was measured with a constant pressure caliper, and the photocured film Is plotted with the Y-axis and the irradiation energy amount as the X-axis, and the cure depth is obtained from the slope of the straight line obtained by plotting, and the intercept of the X-axis is defined as the critical cure energy [Ec (mJ / cm 2 )]. The amount of exposure energy necessary for curing to a thickness of 0.25 mm was defined as work curing energy [E 10 (mJ / cm 2 )].

(3)収縮率:
光硬化させる前の光学的立体造形用樹脂組成物(液体)の比重(d0)と、光硬化して得られた光硬化物の比重(d1)から、下記の数式により収縮率を求めた。

収縮率(%)={(d1−d0)/d1}×100

その際に、光硬化させる前の光学的立体造形用樹脂組成物(液体)の比重(d0)は温度25℃で比重ビンを使用して測定した。また、光硬化して得られた光硬化物(造形物)の比重(d1)は温度25℃で、JIS Z8807に従って、液中で秤量する方法を採用し、ミラージュ貿易株式会社の「電子比重計SD−120L」を使用して測定した。
(3) Shrinkage rate:
From the specific gravity (d 0 ) of the resin composition for optical three-dimensional modeling (liquid) before photocuring and the specific gravity (d 1 ) of the photocured product obtained by photocuring, the shrinkage rate is obtained by the following formula. It was.

Shrinkage rate (%) = {(d 1 −d 0 ) / d 1 } × 100

At that time, the specific gravity (d 0 ) of the resin composition for optical three-dimensional modeling (liquid) before photocuring was measured at a temperature of 25 ° C. using a specific gravity bottle. Moreover, the specific gravity (d 1 ) of the photocured product (molded product) obtained by photocuring is a temperature of 25 ° C., adopting a method of weighing in a liquid according to JIS Z8807, “Mr. It measured using "total SD-120L".

(4)光造形物の引張り特性(引張破断強度、引張破断伸度、引張弾性率):
以下の実施例または比較例で作製した光造形物(JIS K−7113に準拠したダンベル形状の試験片)を用いて、JIS K−7113にしたがって、試験片の引張破断強度(引張強度)、引張破断伸度(引張伸度)および引張弾性率を測定した。
(4) Tensile properties of the optically shaped article (tensile breaking strength, tensile breaking elongation, tensile elastic modulus):
Using the optical modeling thing (the dumbbell-shaped test piece based on JIS K-7113) produced in the following examples or comparative examples, according to JIS K-7113, the tensile breaking strength (tensile strength) of the test piece, the tensile strength The breaking elongation (tensile elongation) and tensile modulus were measured.

(5)光造形物の降伏強度:
上記(3)の引張り特性の試験において、光造形物が弾性から塑性に移る点における強度を降伏強度とした。
(5) Yield strength of stereolithography:
In the tensile property test of (3) above, the yield strength was defined as the strength at which the optically shaped article moves from elasticity to plasticity.

(6)光造形物の曲げ特性(曲げ強度、曲げ弾性率):
以下の実施例または比較例で作製した光造形物(JIS K−7171に準拠したバー形状の試験片)を用いて、JIS K−7171にしたがって、試験片の曲げ強度および曲げ弾性率を測定した。
(6) Bending characteristics (bending strength, flexural modulus) of stereolithography:
The bending strength and the flexural modulus of the test piece were measured according to JIS K-7171 using the optically shaped article (bar-shaped test piece conforming to JIS K-7171) produced in the following examples or comparative examples. .

(7)造形後の表面硬度:
以下の実施例および比較例で作製した光造形物(JIS K−7113に準拠したダンベル形状の試験片)を洗浄した後、それに波長365nmの紫外線を3〜5mW/cm2の照射強度で照射し、照射後の光造形物の表面硬度を、高分子計器社製の「アスカーD型硬度計」を使用して、JIS K−6253に準拠して、デュロメーター法により測定した。
(7) Surface hardness after modeling:
After the optical modeling thing (dumbbell-shaped test piece based on JIS K-7113) produced in the following examples and comparative examples was washed, it was irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation intensity of 3 to 5 mW / cm 2. The surface hardness of the optically shaped article after irradiation was measured by a durometer method according to JIS K-6253 using an “Asker D-type hardness meter” manufactured by Kobunshi Keiki Co., Ltd.

(8)反り:
以下の実施例および比較例で作製した反り測定用の板状光造形物(縦×横×厚さ=100mm×100mm×5mm)を、洗浄して室温で乾燥した後、平坦な定盤の上に置き、当該板状光造形物の一方の端部(辺)を定盤に密着固定し、固定された端部と反対側のもう一方の端部の下面と定盤の表面との間の隔たり(空隙の寸法)を測定して、反り量(mm)とした。なお、板状光造形物の一方の端部の定盤への密着固定は、縦×横×厚さ=100mm×10mm×30mmの短冊状の重り(重さ約200g)を、板状光造形物の当該一方の端部の上に当該端部に沿って載せて行った。
(8) Warpage:
The plate-shaped stereolithography for warpage measurement (length × width × thickness = 100 mm × 100 mm × 5 mm) prepared in the following examples and comparative examples was washed and dried at room temperature, and then on a flat surface plate And place one end (side) of the plate-shaped stereolithography object in close contact with the surface plate, between the lower surface of the other end opposite to the fixed end and the surface of the surface plate The distance (the size of the gap) was measured and used as the amount of warpage (mm). In addition, the close fixation of one end portion of the plate-shaped stereolithography object to the surface plate is performed by using a strip-like weight (weight: about 200 g) of length × width × thickness = 100 mm × 10 mm × 30 mm. It was placed on the one end of the object along the end.

(9)光造形物の熱変形温度:
(i) 以下の実施例または比較例で作製した光造形物(JIS K−7171に準拠したバー形状の試験片)を使用し、東洋精機社製「HDTテスタ6M−2」を使用して、試験片に1.81MPaの荷重を加えて、JIS K−7207(A法)に準拠して、試験片の熱変形温度を測定した。
(ii) 以下の実施例または比較例で作製した光造形物(JIS K−7171に準拠したバー形状の試験片)を使用し、東洋精機社製「HDTテスタ6M−2」を使用して、試験片に0.45MPaの荷重を加えて、JIS K−7207(B法)に準拠して、試験片の熱変形温度を測定した。
(9) Thermal deformation temperature of stereolithography:
(I) Using the optically shaped article (bar-shaped test piece based on JIS K-7171) produced in the following examples or comparative examples, using “HDT Tester 6M-2” manufactured by Toyo Seiki Co., Ltd. A 1.81 MPa load was applied to the test piece, and the thermal deformation temperature of the test piece was measured in accordance with JIS K-7207 (Method A).
(Ii) Using the optically shaped article (bar-shaped test piece based on JIS K-7171) produced in the following examples or comparative examples, using “HDT Tester 6M-2” manufactured by Toyo Seiki Co., Ltd. A load of 0.45 MPa was applied to the test piece, and the thermal deformation temperature of the test piece was measured according to JIS K-7207 (Method B).

また、以下の実施例または比較例で用いたラジカル重合性有機化合物[ジメタクリレート化合物(I)、ジメタクリレート化合物(II)、その他のラジカル重合性有機化合物]および光ラジカル重合開始剤の種類および略号は、次のとおりである。   Further, types and abbreviations of radically polymerizable organic compounds [dimethacrylate compound (I), dimethacrylate compound (II), other radically polymerizable organic compounds] and photoradical polymerization initiators used in the following Examples or Comparative Examples Is as follows.

ジメタクリレート化合物(I)
(1)BPE−200:
下記の一般式(Ia)において、m+n=約4である、エトキシ化ビスフェノールAジメタクリレート(新中村化学工業株式会社製「NKエステル BPE−200」)
(2)BPE−500:
下記の一般式(Ia)において、m+n=約10である、エトキシ化ビスフェノールAジメタクリレート(新中村化学工業株式会社製「NKエステル BPE−500」)
(3)BPE−900:
下記の一般式(Ia)において、m+n=約17である、エトキシ化ビスフェノールAジメタクリレート(新中村化学工業株式会社製「NKエステル BPE−900」)
(4)BPE−1300:
下記の一般式(Ia)において、m+n=約30である、エトキシ化ビスフェノールAジメタクリレート(新中村化学工業株式会社製「NKエステル BPE−1300N」)
Dimethacrylate compound (I) :
(1) BPE-200:
In the following general formula (Ia), m + n = about 4, ethoxylated bisphenol A dimethacrylate (“NK Ester BPE-200” manufactured by Shin-Nakamura Chemical Co., Ltd.)
(2) BPE-500:
In the following general formula (Ia), m + n = about 10, ethoxylated bisphenol A dimethacrylate (“NK ester BPE-500” manufactured by Shin-Nakamura Chemical Co., Ltd.)
(3) BPE-900:
In the following general formula (Ia), m + n = about 17, ethoxylated bisphenol A dimethacrylate (“NK Ester BPE-900” manufactured by Shin-Nakamura Chemical Co., Ltd.)
(4) BPE-1300:
In the following general formula (Ia), m + n = about 30, ethoxylated bisphenol A dimethacrylate (“NK Ester BPE-1300N” manufactured by Shin-Nakamura Chemical Co., Ltd.)

Figure 2008189782
Figure 2008189782

ジメタクリレート化合物(II)
上記の化学式(II)で表されるトリシクロデカンジメタノールジメタクリレート(新中村化学工業株式会社製「NKエステル DCP」)
Dimethacrylate compound (II) :
Tricyclodecane dimethanol dimethacrylate represented by the above chemical formula (II) (“NK Ester DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.)

その他のラジカル重合性有機化合物
下記の一般式(IV)において、p+q=約4である、エトキシ化ビスフェノールAジアクリレート(新中村化学工業株式会社製「NKエステルA−BPE−4」)
Other radical polymerizable organic compounds :
In the following general formula (IV), p + q = about 4, ethoxylated bisphenol A diacrylate (“NK ester A-BPE-4” manufactured by Shin-Nakamura Chemical Co., Ltd.)

Figure 2008189782
Figure 2008189782

光ラジカル重合開始剤
(1)ダロキュアTPO:
2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(チバ・スペシャルティ・ケミカルズ社製「DAROCURR TPO])
(2)イルガキュア651:
2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(チバ・スペシャルティ・ケミカルズ社製「イルガキュア651」)
Photo radical polymerization initiator :
(1) Darocur TPO:
2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide ("DAROCUR R TPO" manufactured by Ciba Specialty Chemicals)
(2) Irgacure 651:
2,2-dimethoxy-1,2-diphenylethane-1-one (“Irgacure 651” manufactured by Ciba Specialty Chemicals)

《実施例1〜4》
(1) 下記の表1に示す種類のジメタクリレート化合物(I)(エトキシ化ビスフェノールAジメタクリレート)、ジメタクリレート化合物(II)[トリシクロデカンジメタノールジメタクリレート(NKエステル DCP)、並びに光ラジカル重合開始剤[2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(ダロキュアTPO)および2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(イルガキュア651)]を、下記の表1に示す割合で混合して、完全に溶解するまで25℃でよく撹拌混合して(撹拌混合時間約6時間)、無色透明な光学的立体造形用樹脂組成物を調製した。
これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表1に示すとおりであった。
<< Examples 1-4 >>
(1) Dimethacrylate compound (I) of the type shown in Table 1 below (ethoxylated bisphenol A dimethacrylate), dimethacrylate compound (II) [tricyclodecane dimethanol dimethacrylate (NK ester DCP), and radical photopolymerization Initiators [2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Darocur TPO) and 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651)] are shown in Table 1 below. The mixture was mixed at the indicated ratio and stirred and mixed well at 25 ° C. until completely dissolved (stirring and mixing time was about 6 hours) to prepare a colorless and transparent resin composition for optical three-dimensional modeling.
When the viscosity of the resin composition for optical three-dimensional modeling obtained by this was measured by the above-described method, it was as shown in Table 1 below.

(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表1に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 光源として超高圧水銀ランプ(120W、岩崎電気株式会社製)を備え、面状描画マスクとしてエプソン社製のTFT方式VGA(640×480画素)の液晶を備える光造形装置(シーメット株式会社製「LE3000」)を使用し、上記(1)で得られた光学的立体造形用樹脂組成物を用いて、造形面(光硬化性樹脂組成物の表面)への投影サイズ=35mm(装置の進行方向)×47mm(進行方向と直角の方向)(方形)、造形面での光エネルギー強度2mW/cm2の条件下に、光源、集光レンズ、面状描画マスクおよび投影レンズを一体にして約7mm/秒の速度で造形面に対して平行に進行方向に連続移動させ、その際に液晶よりなる面状描画マスクのマスク画像を形成しようとする断面形状パターンに応じて面状描画マスクの画像パターンを動画的に連続的に変えながら、積層厚み0.1mmで光照射して光造形を行なって、引張り特性測定のためのJIS K−7113に準拠したダンベル形状の立体造形物、曲げ特性測定のためのJIS K−7171に準拠したバー形状の立体造形物および反り測定用の板状光造形物(縦×横×厚さ=100mm×100mm×5mm)をそれぞれ作製した。この光造形操作において、光硬化層各部での照射時間は5秒、該各部での光照射量は8〜15mJであった。得られた試験片を用いて、JIS K−7113およびJIS K−7171に準拠して、その引張り特性、曲げ特性、表面硬度および熱変形温度を上記した方法で測定すると共に、反り量を上記した方法で測定したところ、下記の表1に示すとおりであった。
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in (1) above were measured by the above-described methods, As shown in Table 1.
Moreover, it was as having shown in following Table 1 when the shrinkage rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method.
(3) An optical modeling apparatus (Seamet Co., Ltd.) equipped with an ultra-high pressure mercury lamp (120 W, manufactured by Iwasaki Electric Co., Ltd.) as a light source and a TFT-type VGA (640 × 480 pixels) liquid crystal manufactured by Epson as a planar drawing mask. "LE3000" manufactured by using the resin composition for optical three-dimensional modeling obtained in (1) above, the projection size on the modeling surface (the surface of the photocurable resin composition) = 35 mm (of the apparatus (Traveling direction) x 47 mm (perpendicular to traveling direction) (square), light source intensity on the modeling surface is 2 mW / cm 2 , light source, condenser lens, planar drawing mask and projection lens are integrated The sheet is continuously moved in the direction of travel parallel to the modeling surface at a speed of about 7 mm / second, and the surface drawing mask is formed in accordance with the cross-sectional shape pattern for forming the mask image of the surface drawing mask made of liquid crystal. While continuously changing the image pattern of the disk in a moving image, performing light modeling by irradiating with light having a lamination thickness of 0.1 mm, a dumbbell-shaped three-dimensional model conforming to JIS K-7113 for measuring tensile properties, A bar-shaped three-dimensional modeled object conforming to JIS K-7171 for measuring bending properties and a plate-shaped modeled object for measuring warpage (vertical x horizontal x thickness = 100 mm x 100 mm x 5 mm) were prepared. In this stereolithography operation, the irradiation time in each part of the photocured layer was 5 seconds, and the light irradiation amount in each part was 8 to 15 mJ. Using the obtained test piece, in accordance with JIS K-7113 and JIS K-7171, the tensile properties, bending properties, surface hardness and thermal deformation temperature were measured by the above-described methods, and the amount of warpage was described above. When measured by the method, it was as shown in Table 1 below.

《比較例1》
(1) 実施例4において、BPE−200の85質量部の代わりに、上記の一般式(IV)で表されるエトキシ化ビスフェノールAジアクリレート(新中村化学工業株式会社製「NKエステルA−BPE−4」)85質量部を用いた以外は、実施例1〜4と同様にして光学的立体造形用樹脂組成物を調製した。これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表1に示すとおりであった。
(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表1に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた光学的立体造形用樹脂組成物を用いて、実施例1〜4の(3)と同様にして、面露光による光学的立体造形を行って各種試験用の試験片を製造し、その各種物性を上記した方法で測定したところ、下記の表1に示すとおりであった。
<< Comparative Example 1 >>
(1) In Example 4, instead of 85 parts by mass of BPE-200, ethoxylated bisphenol A diacrylate represented by the above general formula (IV) (“NK Ester A-BPE manufactured by Shin-Nakamura Chemical Co., Ltd.) -4 ") Except having used 85 mass parts, the resin composition for optical three-dimensional model | molding was prepared like Example 1-4. When the viscosity of the resin composition for optical three-dimensional modeling obtained by this was measured by the above-described method, it was as shown in Table 1 below.
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in (1) above were measured by the above-described methods, As shown in Table 1.
Moreover, it was as having shown in following Table 1 when the shrinkage rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method.
(3) Using the resin composition for optical three-dimensional modeling obtained in (1) above, in the same manner as in (1) of Examples 1 to 4, optical three-dimensional modeling by surface exposure is performed for various tests. When the various physical properties were measured by the methods described above, they were as shown in Table 1 below.

Figure 2008189782
Figure 2008189782

上記の表1の結果にみるように、実施例1〜4の光学的立体造形用樹脂組成物から得られた光硬化物(光造形物)は、反りが小さく、しかも引張試験において降伏点を示し、高い靭性を有している。   As seen in the results of Table 1 above, the photocured product (optical modeled product) obtained from the resin composition for optical three-dimensional modeling of Examples 1 to 4 has a small warpage and has a yield point in a tensile test. It has high toughness.

《実施例5〜8》
(1) 下記の表2に示す種類のジメタクリレート化合物(I)(エトキシ化ビスフェノールAジメタクリレート)、ジメタクリレート化合物(II)[トリシクロデカンジメタノールジメタクリレート(NKエステル DCP)並びに光ラジカル重合開始剤[2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(ダロキュアTPO)および2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(イルガキュア651)]を、下記の表2に示す割合で混合して、完全に溶解するまで25℃でよく撹拌混合して(撹拌混合時間約6時間)、無色透明な光学的立体造形用樹脂組成物を調製した。
これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表2に示すとおりであった。
(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表2に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)で得られた光学的立体造形用樹脂組成物を用いて、実施例1〜4の(3)と同様にして、面露光による光学的立体造形を行って各種試験用の試験片を製造し、その各種物性を上記した方法で測定したところ、下記の表2に示すとおりであった。
なお、以下の表2の結果にみるように、実施例5〜8の光学的立体造形用樹脂組成物から得られた光硬化物(光造形物)は反りが小さいものであった。しかも、実施例5、7および8の光学的立体造形用樹脂組成物から得られた光硬化物(光造形物)は、引張試験において降伏点を示し、高い靭性を有していた。
<< Examples 5 to 8 >>
(1) Dimethacrylate compound (I) of the type shown in Table 2 below (ethoxylated bisphenol A dimethacrylate), dimethacrylate compound (II) [tricyclodecane dimethanol dimethacrylate (NK ester DCP) and initiation of radical photopolymerization The agents [2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Darocur TPO) and 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651)] are shown in Table 2 below. The mixture was mixed at a ratio and stirred and mixed well at 25 ° C. until it was completely dissolved (stirring and mixing time was about 6 hours) to prepare a colorless and transparent resin composition for optical three-dimensional modeling.
When the viscosity of the resin composition for optical three-dimensional modeling obtained by this was measured by the method described above, it was as shown in Table 2 below.
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in (1) above were measured by the above-described methods, Table 2 shows the results.
Moreover, it was as showing in following Table 2 when the shrinkage rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method.
(3) Using the resin composition for optical three-dimensional modeling obtained in (1) above, in the same manner as in (1) of Examples 1 to 4, optical three-dimensional modeling by surface exposure is performed for various tests. The test pieces were manufactured and various physical properties thereof were measured by the methods described above, and the results were as shown in Table 2 below.
In addition, as seen in the results of Table 2 below, the photocured product (photofabricated product) obtained from the resin composition for optical three-dimensional modeling of Examples 5 to 8 had a small warpage. Moreover, the photocured product (photofabricated product) obtained from the resin compositions for optical three-dimensional modeling of Examples 5, 7 and 8 showed a yield point in the tensile test and had high toughness.

《比較例2》
(1) 実施例1において、BPE−200の100質量部の代わりに、上記の一般式(IV)で表されるエトキシ化ビスフェノールAジアクリレート(NKエステルA−BPE−4)100質量部を用いた以外は、実施例1と同様にして光学的立体造形用樹脂組成物を調製した。これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表2に示すとおりであった。
(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表2に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)で得られた光学的立体造形用樹脂組成物を用いて、実施例1〜4の(3)と同様にして、面露光による光学的立体造形を行って各種試験用の試験片を製造し、その各種物性を上記した方法で測定したところ、下記の表2に示すとおりであった。
<< Comparative Example 2 >>
(1) In Example 1, instead of 100 parts by mass of BPE-200, 100 parts by mass of ethoxylated bisphenol A diacrylate (NK ester A-BPE-4) represented by the above general formula (IV) is used. A resin composition for optical three-dimensional modeling was prepared in the same manner as in Example 1 except that. When the viscosity of the resin composition for optical three-dimensional modeling obtained by this was measured by the method described above, it was as shown in Table 2 below.
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in (1) above were measured by the above-described methods, Table 2 shows the results.
Moreover, it was as showing in following Table 2 when the shrinkage rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method.
(3) Using the resin composition for optical three-dimensional modeling obtained in (1) above, in the same manner as in (1) of Examples 1 to 4, optical three-dimensional modeling by surface exposure is performed for various tests. The test pieces were manufactured and various physical properties thereof were measured by the methods described above, and the results were as shown in Table 2 below.

Figure 2008189782
Figure 2008189782

《実施例9〜10》
(1) 下記の表3に示す種類のジメタクリレート化合物(I)(エトキシ化ビスフェノールAジメタクリレート)、ジメタクリレート化合物(II)[トリシクロデカンジメタノールジメタクリレート(NKエステル DCP)並びに光ラジカル重合開始剤[2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(ダロキュアTPO)および2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(イルガキュア651)]を、下記の表3に示す割合で混合して、完全に溶解するまで25℃でよく撹拌混合して(撹拌混合時間約6時間)、無色透明な光学的立体造形用樹脂組成物を調製した。
これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表3に示すとおりであった。
(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表3に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表3に示すとおりであった。
(3) 上記(1)で得られた光学的立体造形用樹脂組成物を用いて、実施例1〜4の(3)と同様にして、面露光による光学的立体造形を行って各種試験用の試験片を製造し、その各種物性を上記した方法で測定したところ、下記の表3に示すとおりであった。
<< Examples 9 to 10 >>
(1) Dimethacrylate compound (I) of the type shown in Table 3 below (ethoxylated bisphenol A dimethacrylate), dimethacrylate compound (II) [tricyclodecane dimethanol dimethacrylate (NK ester DCP) and initiation of radical photopolymerization The agents [2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Darocur TPO) and 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651)] are shown in Table 3 below. The mixture was mixed at a ratio and stirred and mixed well at 25 ° C. until it was completely dissolved (stirring and mixing time was about 6 hours) to prepare a colorless and transparent resin composition for optical three-dimensional modeling.
The viscosity of the resin composition for optical three-dimensional modeling thus obtained was measured by the method described above, and as shown in Table 3 below.
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in (1) above were measured by the above-described methods, As shown in Table 3.
Moreover, it was as showing in following Table 3 when the shrinkage rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method.
(3) Using the resin composition for optical three-dimensional modeling obtained in (1) above, in the same manner as in (1) of Examples 1 to 4, optical three-dimensional modeling by surface exposure is performed for various tests. The test pieces were manufactured and various physical properties thereof were measured by the methods described above, and the results were as shown in Table 3 below.

Figure 2008189782
Figure 2008189782

《実施例11〜12》
(1) 下記の表4に示す種類のジメタクリレート化合物(I)(エトキシ化ビスフェノールAジメタクリレート)、ジメタクリレート化合物(II)[トリシクロデカンジメタノールジメタクリレート(NKエステル DCP)並びに光ラジカル重合開始剤[2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(ダロキュアTPO)および2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(イルガキュア651)]を、下記の表4に示す割合で混合して完全に溶解するまで25℃でよく撹拌混合して(撹拌混合時間約6時間)、無色透明な光学的立体造形用樹脂組成物をそれぞれ調製した。
これにより得られた光学的立体造形用樹脂組成物の粘度を上記した方法で測定したところ下記の表4に示すとおりであった。
(2) 上記(1)で得られた光学的立体造形用樹脂組成物の硬化深度(Dp)、臨界硬化エネルギー(Ec)および作業硬化エネルギー(E10)を上記した方法で測定したところ、下記の表4に示すとおりであった。
また、上記(1)で得られた光学的立体造形用樹脂組成物の光硬化時の収縮率を上記した方法で測定したところ、下記の表4に示すとおりであった。
(3) 上記(1)で得られた光学的立体造形用樹脂組成物を用いて、実施例1〜4の(3)と同様にして、面露光による光学的立体造形を行って各種試験用の試験片を製造し、その各種物性を上記した方法で測定したところ、下記の表4に示すとおりであった。
<< Examples 11 to 12 >>
(1) Dimethacrylate compound (I) of the type shown in Table 4 below (ethoxylated bisphenol A dimethacrylate), dimethacrylate compound (II) [tricyclodecane dimethanol dimethacrylate (NK ester DCP) and initiation of radical photopolymerization The agents [2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Darocur TPO) and 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651)] are shown in Table 4 below. The mixture was thoroughly mixed at 25 ° C. until it was completely dissolved at a ratio (stir mixing time: about 6 hours) to prepare colorless and transparent resin compositions for optical three-dimensional modeling, respectively.
When the viscosity of the resin composition for optical three-dimensional modeling obtained by this was measured by the method described above, it was as shown in Table 4 below.
(2) When the curing depth (Dp), critical curing energy (Ec), and work curing energy (E 10 ) of the resin composition for optical three-dimensional modeling obtained in the above (1) were measured by the methods described above, Table 4 shows.
Moreover, when the shrinkage | contraction rate at the time of photocuring of the resin composition for optical three-dimensional modeling obtained by said (1) was measured by the above-mentioned method, it was as showing in following Table 4.
(3) Using the resin composition for optical three-dimensional modeling obtained in (1) above, in the same manner as in (3) of Examples 1 to 4, optical three-dimensional modeling by surface exposure is performed for various tests. When the various physical properties were measured by the methods described above, they were as shown in Table 4 below.

Figure 2008189782
Figure 2008189782

本発明の光学的立体造形用樹脂組成物は、面露光によって立体造形物を製造する際の収縮(硬化収縮)が小さく、しかも反りが小さいため、面露光による立体造形物の製造時に、光造形操作時に装置の停止などを生ずることなく、寸法精度、造形精度および外観に優れる、反りのない立体造形物を円滑に製造することができ、しかも粘度が低くて光造形時の取り扱い性に優れ、貯蔵時の経時安定性に優れている。さらに、本発明の光学的立体造形用樹脂組成物から得られる立体造形物は、力学的特性に優れている。
そのため、本発明の光学的立体造形用樹脂組成物を用いて、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物、金型、母型などのためのモデルや加工用モデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、その他の複雑な形状や構造を有する各種の立体造形物を、光造形時に装置の停止などのトラブルを生ずることなく、生産性良く製造することができる。
The resin composition for optical three-dimensional modeling of the present invention has small shrinkage (curing shrinkage) when manufacturing a three-dimensional model by surface exposure and small warpage. Without causing the device to stop during operation, etc., it is possible to smoothly produce a 3D model without warping, which is excellent in dimensional accuracy, modeling accuracy and appearance, and has low viscosity and excellent handleability during optical modeling, Excellent stability over time during storage. Furthermore, the three-dimensional molded article obtained from the resin composition for optical three-dimensional modeling of the present invention is excellent in mechanical properties.
Therefore, using the resin composition for optical three-dimensional modeling of the present invention, for precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, molds, mother dies, etc. Models, processing models, parts for designing complex heat medium circuits, parts for analyzing and planning the behavior of heat mediums with complex structures, and other various three-dimensional objects with complex shapes and structures during stereolithography It can be manufactured with high productivity without causing troubles such as stoppage of the apparatus.

Claims (7)

ラジカル重合性有機化合物および光ラジカル重合開始剤を含有する、面露光による光学的立体造形用樹脂組成物であって、ラジカル重合性有機化合物として、下記の一般式(I);
Figure 2008189782

(式中、R1は水素原子またはメチル基、R2は水素原子またはメチル基、mおよびnはそれぞれ独立して1〜20の整数を示す。)
で表されるジメタクリレート化合物(I)を少なくとも含有することを特徴とする、面露光による光学的立体造形用樹脂組成物。
A resin composition for optical three-dimensional modeling by surface exposure, comprising a radical polymerizable organic compound and a photo radical polymerization initiator, wherein the radical polymerizable organic compound is represented by the following general formula (I):
Figure 2008189782

(Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a methyl group, and m and n each independently represents an integer of 1 to 20)
The resin composition for optical three-dimensional model | molding by surface exposure characterized by including the dimethacrylate compound (I) represented by these.
前記したジメタクリレート化合物(I)の含有量が、光学的立体造形用樹脂組成物に含まれるラジカル重合性有機化合物の合計質量に基づいて30〜100質量%である請求項1に記載の光学的立体造形用樹脂組成物。   The optical content according to claim 1, wherein the content of the dimethacrylate compound (I) is 30 to 100% by mass based on the total mass of the radical polymerizable organic compound contained in the optical three-dimensional modeling resin composition. Three-dimensional modeling resin composition. ラジカル重合性有機化合物として、下記の化学式(II);
Figure 2008189782

で表されるジメタクリレート化合物(II)を、ジメタクリレート化合物(I)100質量部に対して100質量部以下の割合で更に含有する請求項1または2に記載の光学的立体造形用樹脂組成物。
As a radically polymerizable organic compound, the following chemical formula (II):
Figure 2008189782

The resin composition for optical three-dimensional model | molding of Claim 1 or 2 which further contains the dimethacrylate compound (II) represented by these in the ratio of 100 mass parts or less with respect to 100 mass parts of dimethacrylate compound (I). .
光ラジカル重合開始剤の含有量が、光学的立体造形用樹脂組成物に含まれるラジカル重合性有機化合物の合計質量に基づいて0.1〜10質量%である請求項1〜3のいずれか1項に記載の光学的立体造形用樹脂組成物。   The content of the photo radical polymerization initiator is 0.1 to 10% by mass based on the total mass of the radical polymerizable organic compound contained in the resin composition for optical three-dimensional modeling. The resin composition for optical three-dimensional modeling as described in the item. 光ラジカル重合開始剤として、アシルフォスフィンオキサイド系ラジカル重合開始剤を少なくとも含有し、波長350〜400nmの光の照射下に光学的立体造形物を製造するための光学的立体造形用樹脂組成物である請求項1〜4のいずれか1項に記載の光学的立体造形用樹脂組成物。   A resin composition for optical three-dimensional modeling for producing an optical three-dimensional object under irradiation with light having a wavelength of 350 to 400 nm, containing at least an acylphosphine oxide radical polymerization initiator as a photo radical polymerization initiator. The resin composition for optical three-dimensional model | molding of any one of Claims 1-4. 請求項1〜5のいずれか1項に記載の光学的立体造形用樹脂組成物から形成した造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する1層分の光硬化した樹脂層を形成した後、当該光硬化した樹脂層の上に前記光学的立体造形用樹脂組成物からなる1層分の未硬化樹脂層よりなる造形面を形成し、当該造形面に面状描画マスクを介して光を面状に照射して所定の形状パターンを有する次の1層分の光硬化した樹脂層を形成する操作を立体造形物が得られるまで繰り返すことを特徴とする光学的立体造形物の製造方法。   1 layer which has a predetermined shape pattern by irradiating light in a planar form on a modeling surface formed from the resin composition for optical three-dimensional modeling according to any one of claims 1 to 5 through a planar drawing mask After forming a photo-cured resin layer for one minute, a modeling surface composed of an uncured resin layer for one layer made of the resin composition for optical three-dimensional modeling is formed on the photo-cured resin layer, and the modeling is performed. It is characterized by repeating the operation of irradiating the surface with light through a surface drawing mask to form a photo-cured resin layer for the next layer having a predetermined shape pattern until a three-dimensional object is obtained. The manufacturing method of the optical three-dimensional molded item. 波長が350〜400nmの光を、面状描画マスクを介して光学的立体造形用樹脂組成物よりなる造形面に照射する請求項6に記載の光学的立体造形物の製造方法。   The manufacturing method of the optical three-dimensional molded item of Claim 6 which irradiates the modeling surface which consists of a resin composition for optical three-dimensional modeling through a planar drawing mask with light with a wavelength of 350-400 nm.
JP2007024783A 2007-02-02 2007-02-02 Resin composition for optical three-dimensional modeling by surface exposure Expired - Fee Related JP5111880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024783A JP5111880B2 (en) 2007-02-02 2007-02-02 Resin composition for optical three-dimensional modeling by surface exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024783A JP5111880B2 (en) 2007-02-02 2007-02-02 Resin composition for optical three-dimensional modeling by surface exposure

Publications (2)

Publication Number Publication Date
JP2008189782A true JP2008189782A (en) 2008-08-21
JP5111880B2 JP5111880B2 (en) 2013-01-09

Family

ID=39750188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024783A Expired - Fee Related JP5111880B2 (en) 2007-02-02 2007-02-02 Resin composition for optical three-dimensional modeling by surface exposure

Country Status (1)

Country Link
JP (1) JP5111880B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189783A (en) * 2007-02-02 2008-08-21 Cmet Inc Resin composition for optical stereoscopic molding by surface exposure
JP2010091732A (en) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
JP2010126542A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd Uv-curable resin composition and adhesion method using the same
JP2010229366A (en) * 2009-03-30 2010-10-14 Taiyo Ink Mfg Ltd Active energy ray-curable resin composition and cured product thereof
JP2014503385A (en) * 2010-11-28 2014-02-13 ストラタシス リミテッド System and method for additive manufacturing of objects
WO2014051046A1 (en) 2012-09-27 2014-04-03 Jnc株式会社 Polymerizable composition for photofabrication
WO2015020175A1 (en) * 2013-08-09 2015-02-12 ブラザー工業株式会社 Photo-curable resin composition, container, three-dimensional molded object production device, and production method for three-dimensional molded object
JP2015034245A (en) * 2013-08-09 2015-02-19 ブラザー工業株式会社 Photocurable resin composition, container, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
JP2015189942A (en) * 2014-03-28 2015-11-02 ブラザー工業株式会社 Photocurable resin composition, container, solid molding manufacturing installation and manufacturing method of solid molding
WO2016098636A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
JPWO2014065149A1 (en) * 2012-10-22 2016-09-08 綜研化学株式会社 Photocurable resin composition for imprint, method for producing imprint mold, and imprint mold
WO2018105463A1 (en) * 2016-12-05 2018-06-14 Dic株式会社 Photocurable resin composition for optical stereolithography
WO2020066736A1 (en) 2018-09-25 2020-04-02 Dic株式会社 Curable resin composition, cured product, and three-dimensional object
JP2020147623A (en) * 2019-03-11 2020-09-17 Dic株式会社 Cured product, three-dimensional shaped product and method for producing cured product
KR20210020871A (en) 2018-06-14 2021-02-24 제이엔씨 주식회사 Polymerizable composition, inkjet ink, heat-resistant soluble member, three-dimensional structure with support, and method for producing three-dimensional sculpture
WO2021125024A1 (en) 2019-12-19 2021-06-24 Dic株式会社 Curable resin composition, cured object, and three-dimensional object
JPWO2022009880A1 (en) * 2020-07-07 2022-01-13
WO2022209689A1 (en) 2021-04-02 2022-10-06 Dic株式会社 Curable resin composition for stereolithography, cured product, and three-dimensional object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187056A1 (en) 2020-03-17 2021-09-23 株式会社トクヤマデンタル Method for producing plate denture, curable stereolithographic composition, and plate denture production kit
EP4112665A4 (en) 2020-03-27 2024-04-10 Mitsui Chemicals Inc Photocurable composition, cured product, and dental product
WO2022202343A1 (en) 2021-03-23 2022-09-29 三井化学株式会社 Composition, optically molded article, and dental product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228644A (en) * 1994-02-21 1995-08-29 Teijin Seiki Co Ltd Resin composition for optically three-dimensional molding
JPH08301911A (en) * 1995-05-10 1996-11-19 Japan Synthetic Rubber Co Ltd Radiation-sensitive resin composition and bump forming material
JPH09183920A (en) * 1995-12-28 1997-07-15 Puresuteeji:Kk Ultraviolet-curing resin composition for formation of light-reflecting portion, light-reflecting portion made of cured coating film of said composition, and backlight unit made by using the same
JPH10101754A (en) * 1996-09-23 1998-04-21 Siemens Ag Photopolymer
JPH11503770A (en) * 1995-03-11 1999-03-30 ゼネカ・リミテッド Composition
JP2000143740A (en) * 1998-11-10 2000-05-26 Teijin Seiki Co Ltd Photo-curing resin composition
JP2003137938A (en) * 2001-11-07 2003-05-14 Daiso Co Ltd Curable composition having excellent optical characteristic
JP2003286316A (en) * 2002-01-22 2003-10-10 Omron Corp Curable resin composition and microstructural shapes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228644A (en) * 1994-02-21 1995-08-29 Teijin Seiki Co Ltd Resin composition for optically three-dimensional molding
JPH11503770A (en) * 1995-03-11 1999-03-30 ゼネカ・リミテッド Composition
JPH08301911A (en) * 1995-05-10 1996-11-19 Japan Synthetic Rubber Co Ltd Radiation-sensitive resin composition and bump forming material
JPH09183920A (en) * 1995-12-28 1997-07-15 Puresuteeji:Kk Ultraviolet-curing resin composition for formation of light-reflecting portion, light-reflecting portion made of cured coating film of said composition, and backlight unit made by using the same
JPH10101754A (en) * 1996-09-23 1998-04-21 Siemens Ag Photopolymer
JP2000143740A (en) * 1998-11-10 2000-05-26 Teijin Seiki Co Ltd Photo-curing resin composition
JP2003137938A (en) * 2001-11-07 2003-05-14 Daiso Co Ltd Curable composition having excellent optical characteristic
JP2003286316A (en) * 2002-01-22 2003-10-10 Omron Corp Curable resin composition and microstructural shapes

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189783A (en) * 2007-02-02 2008-08-21 Cmet Inc Resin composition for optical stereoscopic molding by surface exposure
JP2010091732A (en) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
JP2010126542A (en) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd Uv-curable resin composition and adhesion method using the same
JP2010229366A (en) * 2009-03-30 2010-10-14 Taiyo Ink Mfg Ltd Active energy ray-curable resin composition and cured product thereof
JP2014503385A (en) * 2010-11-28 2014-02-13 ストラタシス リミテッド System and method for additive manufacturing of objects
US10688715B2 (en) 2010-11-28 2020-06-23 Stratasys Ltd. System and method for additive manufacturing of an object
US10105903B2 (en) 2010-11-28 2018-10-23 Stratasys Ltd. System and method for additive manufacturing of an object
WO2014051046A1 (en) 2012-09-27 2014-04-03 Jnc株式会社 Polymerizable composition for photofabrication
US10040933B2 (en) 2012-09-27 2018-08-07 Jnc Corporation Polymerizable composition for stereolithography
JPWO2014065149A1 (en) * 2012-10-22 2016-09-08 綜研化学株式会社 Photocurable resin composition for imprint, method for producing imprint mold, and imprint mold
JP2015034245A (en) * 2013-08-09 2015-02-19 ブラザー工業株式会社 Photocurable resin composition, container, apparatus for manufacturing three-dimensional molded object, and method for manufacturing three-dimensional molded object
WO2015020175A1 (en) * 2013-08-09 2015-02-12 ブラザー工業株式会社 Photo-curable resin composition, container, three-dimensional molded object production device, and production method for three-dimensional molded object
JP2015189942A (en) * 2014-03-28 2015-11-02 ブラザー工業株式会社 Photocurable resin composition, container, solid molding manufacturing installation and manufacturing method of solid molding
WO2016098636A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Actinic-ray-curable inkjet ink composition for 3d printing, three-dimensional modeling method, and actinic-ray-curable inkjet ink set for 3d printing
JPWO2016098636A1 (en) * 2014-12-16 2017-08-17 富士フイルム株式会社 Actinic ray curable inkjet ink composition for 3D printing, three-dimensional modeling method, and actinic ray curable inkjet ink set for 3D printing
JP7268354B2 (en) 2016-12-05 2023-05-08 Dic株式会社 Photocurable resin composition for optical stereolithography
WO2018105463A1 (en) * 2016-12-05 2018-06-14 Dic株式会社 Photocurable resin composition for optical stereolithography
JPWO2018105463A1 (en) * 2016-12-05 2020-05-28 Dic株式会社 Photocurable resin composition for optical three-dimensional modeling
KR20210020871A (en) 2018-06-14 2021-02-24 제이엔씨 주식회사 Polymerizable composition, inkjet ink, heat-resistant soluble member, three-dimensional structure with support, and method for producing three-dimensional sculpture
WO2020066736A1 (en) 2018-09-25 2020-04-02 Dic株式会社 Curable resin composition, cured product, and three-dimensional object
KR20210064191A (en) 2018-09-25 2021-06-02 디아이씨 가부시끼가이샤 Curable resin composition, cured product and three-dimensional object
JP2020147623A (en) * 2019-03-11 2020-09-17 Dic株式会社 Cured product, three-dimensional shaped product and method for producing cured product
JP7395830B2 (en) 2019-03-11 2023-12-12 Dic株式会社 Medical three-dimensional model, three-dimensional model, and method for producing medical three-dimensional model
WO2021125024A1 (en) 2019-12-19 2021-06-24 Dic株式会社 Curable resin composition, cured object, and three-dimensional object
KR20220119015A (en) 2019-12-19 2022-08-26 디아이씨 가부시끼가이샤 Curable resin composition, cured product and three-dimensional object
CN115768806A (en) * 2020-07-07 2023-03-07 三井化学株式会社 Photocurable composition, stereolithographic object, and dental product
WO2022009880A1 (en) * 2020-07-07 2022-01-13 三井化学株式会社 Photocurable composition, three-dimensional shaped article, and dental product
JPWO2022009880A1 (en) * 2020-07-07 2022-01-13
JP7429783B2 (en) 2020-07-07 2024-02-08 三井化学株式会社 Photocurable compositions, three-dimensional objects, and dental products
WO2022209689A1 (en) 2021-04-02 2022-10-06 Dic株式会社 Curable resin composition for stereolithography, cured product, and three-dimensional object
KR20230164045A (en) 2021-04-02 2023-12-01 디아이씨 가부시끼가이샤 Curable resin compositions, cured products, and three-dimensional sculptures for stereolithography

Also Published As

Publication number Publication date
JP5111880B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5111880B2 (en) Resin composition for optical three-dimensional modeling by surface exposure
JP5235056B2 (en) Resin composition for optical three-dimensional modeling by surface exposure
EP2135136B1 (en) Stereolithography resin compositions and three-dimensional objects made therefrom
JP4906334B2 (en) Photocurable resin composition
JP5478016B2 (en) Optical three-dimensional resin composition
JP5210645B2 (en) Optical three-dimensional resin composition
JP4906336B2 (en) Photocurable resin composition
JP2007001250A (en) Manufacturing method of fine pattern formed material
JP2008260812A (en) Resin composition for optically three-dimensional forming
JPH08224790A (en) Resin composition for optically stereoscopic molding
WO2015046134A1 (en) Curable composition for optical imprinting and pattern forming method
JP4409683B2 (en) Optical molding resin composition, method for producing the same, and optical molding
JP7271138B2 (en) Photocurable material composition and cured product thereof
JP5317503B2 (en) Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP2021003890A (en) Photocurable resin composition for three-dimensional modeling and method for producing article
JP5334389B2 (en) Photo-curable resin composition for optical three-dimensional modeling and three-dimensional modeling
JP5012462B2 (en) Photocurable composition for stereolithography, carbonized article, and method for producing the same
JP2008260787A (en) Photocurable resin composition for optical three-dimensional forming, and three-dimensionally formed product
JP2017145302A (en) Photocurable composition for stereolithography
JP2009203306A (en) Resin composition for optical three-dimensional shaping
JP6970673B2 (en) A photocurable resin composition for stereolithography production, a three-dimensional article produced using the composition, and a related production method.
US11787951B2 (en) Photocurable composition for three-dimensional molding, three-dimensional molded product, and method for producing three-dimensional molded product
JP5302022B2 (en) Optical three-dimensional resin composition
JP4007704B2 (en) Photocurable resin composition for optical three-dimensional modeling
JP2007238828A (en) Resin composition for optically formed three-dimensional article

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees