JP2007001250A - Manufacturing method of fine pattern formed material - Google Patents

Manufacturing method of fine pattern formed material Download PDF

Info

Publication number
JP2007001250A
JP2007001250A JP2005186741A JP2005186741A JP2007001250A JP 2007001250 A JP2007001250 A JP 2007001250A JP 2005186741 A JP2005186741 A JP 2005186741A JP 2005186741 A JP2005186741 A JP 2005186741A JP 2007001250 A JP2007001250 A JP 2007001250A
Authority
JP
Japan
Prior art keywords
fine pattern
mold
curable composition
substrate
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005186741A
Other languages
Japanese (ja)
Inventor
Yasuhide Kawaguchi
泰秀 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005186741A priority Critical patent/JP2007001250A/en
Publication of JP2007001250A publication Critical patent/JP2007001250A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient method of manufacturing a fine pattern formed material. <P>SOLUTION: The method of manufacturing a fine pattern formed material comprises carrying out a process of combining a substrate and a mold having a fine pattern and causing a hardenable composition containing a polymerizable monomer, a fluorine-containing polymer and a polymerization initiator to be held between the surface of the substrate and the pattern surface of the mold and a process of polymerizing the polymerizable monomer in the hardenable composition to form a hardened product of the hardenable composition and releasing the mold from the hardened product to obtain a fine pattern formed material integrated with the substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細パターン形成体の製造方法に関する。   The present invention relates to a method for producing a fine pattern formed body.

近年、微細パターンを有するモールドの微細パターンを基材に転写する微細パターン形成体の製造方法、いわゆるナノインプリント法が注目されている。なかでも、モールドの微細パターン面と光硬化性組成物からなる基材とを押し付ける工程、光照射により光硬化性組成物を重合させて硬化物を形成する工程、該硬化物からモールドを剥離する工程を順に行って、光硬化性組成物の硬化物からなる微細パターン形成体を製造するナノインプリント法は、種々の微細構造を有する物品の製造方法として注目されている(特許文献1および2参照。)。   In recent years, a so-called nanoimprint method, which is a method for producing a fine pattern forming body in which a fine pattern of a mold having a fine pattern is transferred to a substrate, has attracted attention. Among them, a step of pressing the fine pattern surface of the mold and the substrate made of the photocurable composition, a step of polymerizing the photocurable composition by light irradiation to form a cured product, and peeling the mold from the cured product A nanoimprint method for producing a fine pattern formed body made of a cured product of a photocurable composition by sequentially performing the steps has attracted attention as a method for producing articles having various fine structures (see Patent Documents 1 and 2). ).

特表2004−504718号公報JP-T-2004-504718 特表2002−539604号公報Special Table 2002-539604

前記ナノインプリント法において高精度な微細パターン形成体を製造するために、光硬化性組成物は重合において体積収縮しにくい硬化物を形成するのが望ましい。さらに該硬化物はモールドから容易に剥離できるのが望ましい。しかし、これらの性質を満たす光硬化性組成物は知られていなかった。   In order to produce a highly accurate fine pattern-formed body in the nanoimprint method, it is desirable that the photocurable composition forms a cured product that hardly undergoes volume shrinkage during polymerization. Furthermore, it is desirable that the cured product can be easily peeled from the mold. However, no photocurable composition satisfying these properties has been known.

本発明者らは、鋭意検討の結果、含フッ素ポリマーを含む特定の硬化性組成物は、硬化における体積収縮率が低く、かつ形成される硬化物は離型性に優れることに注目し、該硬化性組成物を用いて高精度な微細パターン形成体を効率よく製造できることを見出した。   As a result of intensive studies, the present inventors have paid attention to the fact that a specific curable composition containing a fluorine-containing polymer has a low volume shrinkage during curing, and the formed cured product is excellent in releasability, It has been found that a highly accurate fine pattern formed body can be efficiently produced using the curable composition.

すなわち、本発明は下記の発明を提供する。
[1]下記工程1、下記工程2、下記工程3、および任意に下記工程4を順に行うことにより、モールドの微細パターンが転写された表面を有する下記硬化物からなる微細パターン形成体または基板と一体の該微細パターン形成体を得ることを特徴とする微細パターン形成体の製造方法。
工程1:基板と表面に微細パターンを有するモールドとを組み合わせて、重合性モノマー、含フッ素ポリマー、および重合開始剤を含む硬化性組成物を、該基板表面と該モールドのパターン面との間に挟持させる工程。
工程2:前記硬化性組成物中の重合性モノマーを重合させて該組成物を硬化物とする工程。
工程3:モールドおよび基板の少なくとも一方を硬化物から剥離して、微細パターン形成体、基板と一体の微細パターン形成体、またはモールドと一体の微細パターン形成体を得る工程。
工程4:上記工程3においてモールドと一体の微細パターン形成体を得た場合はモールドと微細パターン形成体を剥離する工程。
That is, the present invention provides the following inventions.
[1] By performing the following step 1, the following step 2, the following step 3, and optionally the following step 4 in order, a fine pattern forming body or substrate comprising the following cured product having a surface onto which the fine pattern of the mold has been transferred; A method for producing a fine pattern forming body, comprising obtaining the integrated fine pattern forming body.
Step 1: Combining a substrate and a mold having a fine pattern on the surface, a curable composition containing a polymerizable monomer, a fluorine-containing polymer, and a polymerization initiator is provided between the substrate surface and the pattern surface of the mold. The process of pinching.
Step 2: A step of polymerizing a polymerizable monomer in the curable composition to make the composition a cured product.
Process 3: The process of peeling at least one of a mold and a board | substrate from hardened | cured material, and obtaining the fine pattern formation body, the fine pattern formation body integral with a board | substrate, or the fine pattern formation body integral with a mold.
Process 4: The process of peeling a mold and a fine pattern formation body, when the fine pattern formation body integral with a mold is obtained in the said process 3.

[2]前記硬化性組成物が、実質的に溶剤を含まない硬化性組成物である[1]に記載の製造方法。
[3]前記硬化性組成物が、25℃における粘度が0.1〜200mPa・sの硬化性組成物である[1]または[2]に記載の製造方法。
[4]前記硬化性組成物中の含フッ素ポリマーの含有量が、0.01〜10質量%である[1]〜[3]のいずれかに記載の製造方法。
[5]前記含フッ素ポリマーが、重量平均分子量が500〜200000の含フッ素ポリマーである[1]〜[4]のいずれかに記載の製造方法。
[2] The production method according to [1], wherein the curable composition is a curable composition substantially free of a solvent.
[3] The production method according to [1] or [2], wherein the curable composition is a curable composition having a viscosity at 25 ° C of 0.1 to 200 mPa · s.
[4] The production method according to any one of [1] to [3], wherein the content of the fluoropolymer in the curable composition is 0.01 to 10% by mass.
[5] The production method according to any one of [1] to [4], wherein the fluoropolymer is a fluoropolymer having a weight average molecular weight of 500 to 200,000.

[6]モールドの微細パターンが、凸部と凹部を有する微細パターンであり該凸部の間隔の平均値が1nm〜500μmである[1]〜[5]のいずれかに記載の製造方法。   [6] The production method according to any one of [1] to [5], wherein the fine pattern of the mold is a fine pattern having convex portions and concave portions, and an average value of the interval between the convex portions is 1 nm to 500 μm.

本発明における硬化性組成物は、含フッ素ポリマーの存在下で重合性モノマーを重合させるため体積収縮率が小さい硬化物が得られる。そのため、モールドと基板の間に挟持させた状態で得た硬化物の表面には、モールドの微細パターンが高精度に転写されたパターンが形成する。さらに該硬化物は離型性に優れる。そのため、該パターンの形状を損なうことなくモールドから円滑に剥離できる。したがって、本発明によって効率のよい高精度なナノインプリントプロセスが提供される。   Since the curable composition in the present invention polymerizes the polymerizable monomer in the presence of the fluorine-containing polymer, a cured product having a small volume shrinkage is obtained. Therefore, a pattern in which the fine pattern of the mold is transferred with high accuracy is formed on the surface of the cured product obtained by being sandwiched between the mold and the substrate. Furthermore, the cured product is excellent in releasability. Therefore, it can be smoothly peeled from the mold without impairing the shape of the pattern. Therefore, the present invention provides an efficient and highly accurate nanoimprint process.

本発明においては、式(1)で表される化合物を化合物1と表す。他の式で表される化合物も同様に表す。   In the present invention, the compound represented by the formula (1) is represented as Compound 1. Compounds represented by other formulas are also represented in the same manner.

本発明の製造方法は、基板と表面に微細パターンを有するモールドとを組み合わせて、重合性モノマー、含フッ素ポリマー、および重合開始剤を含む硬化性組成物(以下、単に硬化性組成物ともいう。)を、該基板表面と該モールドのパターン面との間に挟持させる工程(以下、単に工程1ともいう。)、前記硬化性組成物中の重合性モノマーを重合させて該組成物を硬化物とする工程(以下、単に工程2ともいう。)、モールドおよび基板の少なくとも一方を硬化物から剥離して、微細パターン形成体、基板と一体の微細パターン形成体、またはモールドと一体の微細パターン形成体を得る工程(以下、単に工程3ともいう。)を順に行う。   The production method of the present invention combines a substrate and a mold having a fine pattern on its surface, and contains a curable composition containing a polymerizable monomer, a fluorinated polymer, and a polymerization initiator (hereinafter also simply referred to as a curable composition). ) Between the substrate surface and the pattern surface of the mold (hereinafter, also simply referred to as step 1), the polymerizable monomer in the curable composition is polymerized, and the composition is cured. Step (hereinafter, also simply referred to as Step 2), peeling at least one of the mold and the substrate from the cured product, forming a fine pattern forming body, a fine pattern forming body integral with the substrate, or forming a fine pattern integral with the mold Steps for obtaining a body (hereinafter also simply referred to as step 3) are sequentially performed.

さらに工程3においてモールドと一体の微細パターン形成体を得た場合は任意にモールドと微細パターン形成体を剥離する工程(以下、単に工程4ともいう。)を行う。工程1、工程2、工程3、および工程4の操作条件は後述する。   Further, when a fine pattern forming body integrated with the mold is obtained in Step 3, a step of peeling the mold and the fine pattern forming body arbitrarily (hereinafter also simply referred to as Step 4) is performed. The operation conditions of Step 1, Step 2, Step 3, and Step 4 will be described later.

本発明における硬化性組成物は、25℃における粘度が0.1〜200mPa・sであるのが好ましく、1〜100mPa・sであるのが特に好ましい。この場合、工程1におけるモールドの微細パターンと硬化性組成物の挟持が容易である。すなわち、他の操作(硬化性組成物を高温に加熱して低粘度にする操作等。)を行うことなく、硬化性組成物をモールドの微細パターン部分の全面に容易に接触できる。   The curable composition in the present invention preferably has a viscosity at 25 ° C. of 0.1 to 200 mPa · s, and particularly preferably 1 to 100 mPa · s. In this case, it is easy to sandwich the fine pattern of the mold and the curable composition in step 1. That is, the curable composition can be easily brought into contact with the entire surface of the fine pattern portion of the mold without performing other operations (such as an operation of heating the curable composition to a high temperature to make it low viscosity).

本発明における硬化性組成物は、実質的に溶剤を含まないのが好ましい。この場合、工程1におけるモールドの微細パターンと硬化性組成物の挟持が容易である。ただし硬化性組成物は、その調製に際して用いた溶剤を残存溶剤として含んでいてもよい。しかし、この場合も残存溶剤は極力除去されているのが好ましい。   The curable composition in the present invention preferably contains substantially no solvent. In this case, it is easy to sandwich the fine pattern of the mold and the curable composition in step 1. However, the curable composition may contain the solvent used in the preparation as a residual solvent. However, in this case as well, it is preferable that the residual solvent is removed as much as possible.

本発明における重合性モノマーは、25℃において液体であるか、または低融点(好ましくは融点60℃以下。)であるのが好ましい。重合性モノマーは、フッ素原子を含む重合性モノマーであってもよく、フッ素原子を含まない重合性モノマーであってもよい。また重合性モノマーは1種の重合性モノマーを用いても2種以上の重合性モノマーを用いてもよい。   The polymerizable monomer in the present invention is preferably liquid at 25 ° C. or has a low melting point (preferably a melting point of 60 ° C. or lower). The polymerizable monomer may be a polymerizable monomer containing a fluorine atom, or may be a polymerizable monomer containing no fluorine atom. The polymerizable monomer may be a single polymerizable monomer or two or more polymerizable monomers.

含フッ素原子を含む重合性モノマーとしては、フルオロ(メタ)アクリレート類、フルオロビニルエーテル類、フルオロジエン類、フルオロ環状モノマー類が挙げられる。ただし、本明細書において、フルオロアクリレートとフルオロメタクリレートを総称して、フルオロ(メタ)アクリレートと記す。   Examples of the polymerizable monomer containing a fluorine-containing atom include fluoro (meth) acrylates, fluorovinyl ethers, fluorodienes, and fluorocyclic monomers. However, in this specification, fluoroacrylate and fluoromethacrylate are collectively referred to as fluoro (meth) acrylate.

フルオロ(メタ)アクリレート類の具体例としては、CH=CHCOO(CH(CF10F、CH=CHCOO(CH(CFF、CH=CHCOO(CH(CFF、CH=C(CH)COO(CH(CF10F、CH=C(CH)COO(CH(CFF、CH=C(CH)COO(CH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCHCFCFH、CH=CHCOOCH(CFCFH、CH=CHCOOCH(CFCFH、CH=C(CH)COOCH(CFCF)H、CH=C(CH)COOCH(CFCFH、CH=C(CH)COOCH(CFCFH、CH=CHCOOCHCFOCFCFOCF、CH=CHCOOCHCFO(CFCFO)CF、CH=C(CH)COOCHCFOCFCFOCF、CH=C(CH)COOCHCFO(CFCFO)CF、CH=CHCOOCHCF(CF)OCFCF(CF)O(CFF、CH=CHCOOCHCF(CF)O(CFCF(CF)O)(CFF、CH=C(CH)COOCHCF(CF)OCFCF(CF)O(CFF、CH=C(CH)COOCHCF(CF)O(CFCF(CF)O)(CFF、CH=CFCOOCHCH(OH)CH(CFCF(CF、CH=CFCOOCHCH(CHOH)CH(CFCF(CF
CH=CFCOOCHCH(OH)CH(CF10F、CH=CFCOOCHCH(CHOH)CH(CF10F、CH=CHCOOCHCF(OCFCFOCFCHOCOCH=CH(nは4〜20の整数を示す。)が挙げられる。
Specific examples of fluoro (meth) acrylates include CH 2 ═CHCOO (CH 2 ) 2 (CF 2 ) 10 F, CH 2 ═CHCOO (CH 2 ) 2 (CF 2 ) 8 F, CH 2 ═CHCOO (CH 2) 2 (CF 2) 6 F, CH 2 = C (CH 3) COO (CH 2) 2 (CF 2) 10 F, CH 2 = C (CH 3) COO (CH 2) 2 (CF 2) 8 F, CH 2 = C (CH 3) COO (CH 2) 2 (CF 2) 6 F, CH 2 = CHCOOCH 2 (CF 2) 6 F, CH 2 = C (CH 3) COOCH 2 (CF 2) 6 F, CH 2 = CHCOOCH 2 ( CF 2) 7 F, CH 2 = C (CH 3) COOCH 2 (CF 2) 7 F, CH 2 = CHCOOCH 2 CF 2 CF 2 H, CH 2 = CHCOOCH (CF 2 CF 2) 2 H , CH 2 = CHCOOCH 2 (CF 2 CF 2) 4 H, CH 2 = C (CH 3) COOCH 2 (CF 2 CF 2) H, CH 2 = C (CH 3) COOCH 2 (CF 2 CF 2 ) 2 H, CH 2 = C (CH 3 ) COOCH 2 (CF 2 CF 2 ) 4 H, CH 2 = CHCOOCH 2 CF 2 OCF 2 CF 2 OCF 3 , CH 2 = CHCOOCH 2 CF 2 O (CF 2 CF 2 O) 3 CF 3, CH 2 = C (CH 3) COOCH 2 CF 2 OCF 2 CF 2 OCF 3, CH 2 = C (CH 3) COOCH 2 CF 2 O (CF 2 CF 2 O ) 3 CF 3, CH 2 = CHCOOCH 2 CF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F, CH 2 = CHCOOCH 2 CF (C 3) O (CF 2 CF ( CF 3) O) 2 (CF 2) 3 F, CH 2 = C (CH 3) COOCH 2 CF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F CH 2 ═C (CH 3 ) COOCH 2 CF (CF 3 ) O (CF 2 CF (CF 3 ) O) 2 (CF 2 ) 3 F, CH 2 ═CFCOOOCH 2 CH (OH) CH 2 (CF 2 ) 6 CF (CF 3 ) 2 , CH 2 = CFCOOCH 2 CH (CH 2 OH) CH 2 (CF 2 ) 6 CF (CF 3 ) 2 ,
CH 2 = CFCOOCH 2 CH (OH ) CH 2 (CF 2) 10 F, CH 2 = CFCOOCH 2 CH (CH 2 OH) CH 2 (CF 2) 10 F, CH 2 = CHCOOCH 2 CF 2 (OCF 2 CF 2 ) n OCF 2 CH 2 OCOCH = CH 2 (n is an integer of 4 to 20.) and the like.

フルオロビニルエーテル類の具体例としては、CF=CFO(CFF、CF=CFO(CFCOOCH等が挙げられる。
フルオロ環状モノマー類の具体例としては、下記化合物が挙げられる。
Specific examples of the fluorovinyl ethers include CF 2 ═CFO (CF 2 ) 3 F, CF 2 ═CFO (CF 2 ) 3 COOCH 3 and the like.
Specific examples of the fluorocyclic monomers include the following compounds.

Figure 2007001250
Figure 2007001250

フルオロジエンの具体例としては、CF=CFOCFCF=CF、CF=CFOCFCFCF=CF、CF=CFCFCF=CF、CF=CFCFCH=CH、CF=CFCFC(CF)(OH)CHCH=CH、CF=CFCFC(CF)(OH)CH=CH、CF=CFCHCH(CHC(CFOH)CHCH=CHが挙げられる。 Examples of fluoro-diene, CF 2 = CFOCF 2 CF = CF 2, CF 2 = CFOCF 2 CF 2 CF = CF 2, CF 2 = CFCF 2 CF = CF 2, CF 2 = CFCF 2 CH = CH 2, CF 2 = CFCF 2 C (CF 3) (OH) CH 2 CH = CH 2, CF 2 = CFCF 2 C (CF 3) (OH) CH = CH 2, CF 2 = CFCH 2 CH (CH 2 C (CF 3) 2 OH) CH 2 CH = CH 2 and the like.

フッ素原子を含まない重合性モノマーとしては、(メタ)アクリル酸、(メタ)アクリレート、(メタ)アクリルアミド、ビニルエーテル、ビニルエステル、アリルエーテル、アリルエステル、スチレン系化合物等が挙げられる。ただし、本明細書において、アクリル酸とメタクリル酸を総称して(メタ)アクリル酸と記し、アクリレートとメタクリレートを総称して(メタ)アクリレートと記す。   Examples of the polymerizable monomer not containing a fluorine atom include (meth) acrylic acid, (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, allyl ether, allyl ester, and a styrene compound. However, in this specification, acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid, and acrylate and methacrylate are collectively referred to as (meth) acrylate.

(メタ)アクリレートの具体例としては、下記の化合物が挙げられる。
フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、アリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等のモノ(メタ)アクリレート。
Specific examples of (meth) acrylates include the following compounds.
Phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, glycidyl (meth) ) Acrylate, tetrahydrofurfuryl (meth) acrylate, allyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N -Mono (meth) acrylates such as dimethylaminoethyl (meth) acrylate and dimethylaminoethyl (meth) acrylate.

1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリオキシエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート。
トリメチロールプロパントリ(メタ)アクリレート、ペンタアエリスリトールトリ(メタ)アクリレート等のトリ(メタ)アクリレート。
ジペンタエリスリトールヘキサ(メタ)アクリレート等のその他の(メタ)アクリレート。
1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) Di (meth) acrylates such as acrylate, polyoxyethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
Tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaaerythritol tri (meth) acrylate.
Other (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.

ビニルエーテルの具体例としては、エチルビニルエーテル、プロピルビニルエーテル、イソブチルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル、4−ヒドロキシブチルビニルエーテル等の(ヒドロキシアルキル)ビニルエーテルが挙げられる。
ビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、(イソ)酪酸ビニル、吉草酸ビニル、シクロヘキサンカルボン酸ビニル、安息香酸ビニルが挙げられる。
アルキルアリルエーテルとしては、エチルアリルエーテル、プロピルアリルエーテル、(イソ)ブチルアリルエーテル、シクロヘキシルアリルエーテル等が挙げられる。
アリルエステルの具体例としては、エチルアリルエステル、プロピルアリルエステル、イソブチルアリルエステルが挙げられる。
Specific examples of vinyl ethers include alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether and cyclohexyl vinyl ether, and (hydroxyalkyl) vinyl ethers such as 4-hydroxybutyl vinyl ether.
Examples of the vinyl ester include vinyl acetate, vinyl propionate, vinyl (iso) butyrate, vinyl valerate, vinyl cyclohexanecarboxylate, and vinyl benzoate.
Examples of the alkyl allyl ether include ethyl allyl ether, propyl allyl ether, (iso) butyl allyl ether, cyclohexyl allyl ether, and the like.
Specific examples of allyl esters include ethyl allyl ester, propyl allyl ester, and isobutyl allyl ester.

硬化性組成物中の重合性モノマーの含有量は、85〜98質量%が好ましく、87.5〜96質量%がより好ましく、90〜94質量%が特に好ましい。
また重合性モノマーは、1種の重合性モノマーを用いてもよく、2種以上の重合性モノマーを用いてもよい。
85-98 mass% is preferable, as for content of the polymerizable monomer in a curable composition, 87.5-96 mass% is more preferable, and 90-94 mass% is especially preferable.
As the polymerizable monomer, one type of polymerizable monomer may be used, or two or more types of polymerizable monomers may be used.

本発明における含フッ素ポリマーは、重量平均分子量が500〜200000であるのが好ましく、1000〜100000であるのがより好ましく、3000超50000以下であるのが特に好ましい。この範囲の含フッ素ポリマーは、硬化性組成物の他成分と相溶性が高く硬化性組成物を均一に調製しやすい。また含フッ素ポリマーのフッ素含有量は、30〜70質量%が好ましく、45〜70質量%が特に好ましい。この範囲の含フッ素ポリマーは離型性が高く工程3における硬化物の剥離が容易である。   The fluorine-containing polymer in the present invention preferably has a weight average molecular weight of 500 to 200000, more preferably 1000 to 100,000, and particularly preferably more than 3000 and 50000 or less. The fluorine-containing polymer in this range is highly compatible with other components of the curable composition and can easily prepare the curable composition uniformly. Moreover, 30-70 mass% is preferable, and, as for the fluorine content of a fluoropolymer, 45-70 mass% is especially preferable. The fluorine-containing polymer in this range has high releasability and easy peeling of the cured product in step 3.

含フッ素ポリマーは、ヘテロ原子を含有する含フッ素ポリマーが好ましく、窒素原子、酸素原子、硫黄原子、またはリン原子を含有する含フッ素ポリマーがより好ましく、水酸基、エーテル性酸素原子、エステル基、アルコキシカルボニル基、スルホニル基、燐酸エステル基、アミノ基、ニトロ基、またはケトン基を含有する含フッ素ポリマーが特に好ましい。ヘテロ原子を含有する含フッ素ポリマーは、硬化性組成物の他成分と相溶性が高く硬化性組成物を均一に調製しやすい。   The fluorine-containing polymer is preferably a fluorine-containing polymer containing a hetero atom, more preferably a fluorine-containing polymer containing a nitrogen atom, an oxygen atom, a sulfur atom, or a phosphorus atom, and a hydroxyl group, an etheric oxygen atom, an ester group, or an alkoxycarbonyl. A fluorine-containing polymer containing a group, a sulfonyl group, a phosphate ester group, an amino group, a nitro group, or a ketone group is particularly preferable. The fluorine-containing polymer containing a hetero atom is highly compatible with the other components of the curable composition and can easily prepare the curable composition uniformly.

含フッ素ポリマーの具体例としては、式CF=CR−Q−CR=CHで表される化合物を重合させて得た含フッ素ポリマー、CF=CFとCH=CHOCOCHを共重合させて得た含フッ素ポリマー、フルオロ(メタ)クリレートを重合させて得た含フッ素ポリマーが挙げられる(ただし、RおよびRは、それぞれ独立に、水素原子、フッ素原子、炭素数1〜3のアルキル基、または炭素数1〜3のフルオロアルキル基を示し、Qは酸素原子、式−NR−(Rは水素原子、炭素数1〜6のアルキル基、アルキルカルボニル基またはトシル基を示す。)で表される基、または官能基を有していてもよい2価有機基を示す。)。 Specific examples of the fluorine-containing polymer include a fluorine-containing polymer obtained by polymerizing a compound represented by the formula CF 2 = CR 1 -Q-CR 2 = CH 2 , CF 2 = CF 2 and CH 2 = CHOCOCH 3 Fluorine-containing polymer obtained by copolymerization and fluorine-containing polymer obtained by polymerizing fluoro (meth) acrylate (wherein R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, or a carbon number of 1). Represents an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group having 1 to 3 carbon atoms, Q is an oxygen atom, formula -NR 3- (R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylcarbonyl group, or tosyl. And a divalent organic group optionally having a functional group).

式CF=CR−Q−CR=CHで表される化合物の具体例としては、下記化合物が挙げられる。
CF=CFCHCH(C(CFOH)CHCH=CH
CF=CFCHCH(C(CFOH)CH=CH
CF=CFCHCH(C(CFOH)CHCHCH=CH
CF=CFCHCH(CHC(CFOH)CHCHCH=CH
CF=CFCHC(CH)(CHSOF)CHCH=CH
CF=CFCFC(CF)(OCHOCH)CHCH=CH
CF=CFCFC(CF)(OH)CH=CH
CF=CFCFC(CF)(OH)CHCH=CH
CF=CFCFC(CF)(OCHOCHCF)CHCH=CH
CF=CFCFC(CF)(OCHOCH)CHCH=CH
CF=CFOCFCF(O(CFOC25)CHCH=CH
CF=CFOCFCF(OCFCFCHNH)CHCH=CH
CF=CFOCFCF(O(CFCN)CH=CH
CF=CFOCFCF(OCFCFSOF)CHCH=CH
CF=CFOCFCF(O(CFPO(OC25)CHCH=CH
CF=CFOCFCF(OCFCFSOF)CHCH=CH
硬化性組成物中の含フッ素ポリマーの含有量は、0.01〜10質量%が好ましく、1〜7.5質量%がより好ましく、2〜5質量%が特に好ましい。
Specific examples of the compound represented by the formula CF 2 = CR 1 -Q-CR 2 = CH 2, include the following compounds.
CF 2 = CFCH 2 CH (C (CF 3) 2 OH) CH 2 CH = CH 2,
CF 2 = CFCH 2 CH (C (CF 3) 2 OH) CH = CH 2,
CF 2 = CFCH 2 CH (C (CF 3) 2 OH) CH 2 CH 2 CH = CH 2,
CF 2 = CFCH 2 CH (CH 2 C (CF 3) 2 OH) CH 2 CH 2 CH = CH 2,
CF 2 = CFCH 2 C (CH 3) (CH 2 SO 2 F) CH 2 CH = CH 2,
CF 2 = CFCF 2 C (CF 3) (OCH 2 OCH 3) CH 2 CH = CH 2,
CF 2 = CFCF 2 C (CF 3) (OH) CH = CH 2,
CF 2 = CFCF 2 C (CF 3) (OH) CH 2 CH = CH 2,
CF 2 ═CFCF 2 C (CF 3 ) (OCH 2 OCH 2 CF 3 ) CH 2 CH═CH 2 ,
CF 2 = CFCF 2 C (CF 3) (OCH 2 OCH 3) CH 2 CH = CH 2,
CF 2 = CFOCF 2 CF (O (CF 2 ) 3 OC 2 H 5 ) CH 2 CH═CH 2 ,
CF 2 = CFOCF 2 CF (OCF 2 CF 2 CH 2 NH 2 ) CH 2 CH═CH 2 ,
CF 2 = CFOCF 2 CF (O (CF 2) 3 CN) CH = CH 2,
CF 2 = CFOCF 2 CF (OCF 2 CF 2 SO 2 F) CH 2 CH═CH 2 ,
CF 2 = CFOCF 2 CF (O (CF 2 ) 3 PO (OC 2 H 5 ) 2 ) CH 2 CH═CH 2 ,
CF 2 = CFOCF 2 CF (OCF 2 CF 2 SO 2 F) CH 2 CH═CH 2 ,
The content of the fluoropolymer in the curable composition is preferably 0.01 to 10% by mass, more preferably 1 to 7.5% by mass, and particularly preferably 2 to 5% by mass.

重合開始剤は、光重合開始剤であっても熱重合開始剤であってもよく、光重合開始剤が好ましい。光重合開始剤を用いた場合、工程2の重合性モノマーの重合を低温で行うことができる。光重合開始剤とは、光によりラジカル反応またはイオン反応を引き起こす化合物をいう。   The polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator, and a photopolymerization initiator is preferred. When a photopolymerization initiator is used, the polymerizable monomer in step 2 can be polymerized at a low temperature. The photopolymerization initiator refers to a compound that causes a radical reaction or an ionic reaction by light.

光重合開始剤としては、下記の光重合開始剤が挙げられる。
アセトフェノン系光重合開始剤:アセトフェノン、p−(tert−ブチル)1’,1’,1’−トリクロロアセトフェノン、クロロアセトフェノン、2’,2’−ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2−ジメトキシ−2’−フェニルアセトフェノン、2−アミノアセトフェノン、ジアルキルアミノアセトフェノン等。
Examples of the photopolymerization initiator include the following photopolymerization initiators.
Acetophenone-based photopolymerization initiator: acetophenone, p- (tert-butyl) 1 ′, 1 ′, 1′-trichloroacetophenone, chloroacetophenone, 2 ′, 2′-diethoxyacetophenone, hydroxyacetophenone, 2,2-dimethoxy- 2'-phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone and the like.

ベンゾイン系光重合開始剤:ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニル−2−メチルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、ベンジルジメチルケタール等。   Benzoin-based photopolymerization initiator: benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2-methylpropane -1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl ketal and the like.

ベンゾフェノン系光重合開始剤:ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル−o−ベンゾイルベンゾエート、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン等。   Benzophenone photopolymerization initiator: benzophenone, benzoylbenzoic acid, benzoylmethyl benzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) Benzophenone etc.

チオキサントン系光重合開始剤:チオキサントン、2−クロロチオキサントン、2−メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントン等。   Thioxanthone photopolymerization initiators: thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, dimethylthioxanthone, and the like.

フッ素原子を含有する光重合開始剤:ペルフルオロ(tert−ブチルペルオキシド)、ペルフルオロベンゾイルペルオキシド等。   Photopolymerization initiators containing fluorine atoms: perfluoro (tert-butyl peroxide), perfluorobenzoyl peroxide and the like.

その他の光重合開始剤:α−アシルオキシムエステル、ベンジル−(o−エトキシカルボニル)−α−モノオキシム、アシルホスフィンオキサイド、グリオキシエステル、3−ケトクマリン、2−エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert−ブチルペルオキシピバレート等。   Other photopolymerization initiators: α-acyloxime ester, benzyl- (o-ethoxycarbonyl) -α-monooxime, acylphosphine oxide, glyoxyester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram Sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate and the like.

重合開始剤は、重合性モノマーの100質量部に対して重合開始剤は、0.001〜10質量部を用いるのが好ましく、0.01〜10質量部を用いるのがより好ましく、0.1〜5質量部を用いるのが特に好ましい。この範囲で、重合性モノマーの重合を短時間で実施できる。さらに重合開始剤の残渣が硬化物中に残存しにくい。   The polymerization initiator is preferably used in an amount of 0.001 to 10 parts by mass, more preferably 0.01 to 10 parts by mass, with respect to 100 parts by mass of the polymerizable monomer. It is particularly preferable to use ˜5 parts by mass. Within this range, the polymerizable monomer can be polymerized in a short time. Further, the residue of the polymerization initiator hardly remains in the cured product.

硬化性組成物は、光増感剤を含んでいてもよい。光増感剤の具体例としては、n−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルホスフィン、アリルチオ尿素、s−ベンジスイソチウロニウム−p−トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン等のアミン化合物が挙げられる。   The curable composition may contain a photosensitizer. Specific examples of photosensitizers include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzisothiuronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate. , Amine compounds such as triethylenetetramine and 4,4′-bis (dialkylamino) benzophenone.

硬化性組成物は、より離型性に優れる硬化物が得られることから、含フッ素界面活性剤を含むのが好ましく、フッ素含有量が10〜70質量%の含フッ素界面活性剤がより好ましく、フッ素含有量が10〜40質量%の含フッ素界面活性剤が特に好ましい。含フッ素界面活性剤は、水溶性であっても脂溶性であってもよい。
含フッ素界面活性剤は、アニオン性含フッ素界面活性剤、カチオン性含フッ素界面活性剤、両性含フッ素界面活性剤、またはノニオン性含フッ素界面活性剤が好ましい。硬化性組成物における相溶性と、その硬化物における分散性が良好であることから、ノニオン性含フッ素界面活性剤が特に好ましい。
The curable composition preferably contains a fluorine-containing surfactant, and more preferably a fluorine-containing surfactant having a fluorine content of 10 to 70% by mass, because a cured product having a better mold release property is obtained. A fluorine-containing surfactant having a fluorine content of 10 to 40% by mass is particularly preferable. The fluorine-containing surfactant may be water-soluble or fat-soluble.
The fluorine-containing surfactant is preferably an anionic fluorine-containing surfactant, a cationic fluorine-containing surfactant, an amphoteric fluorine-containing surfactant, or a nonionic fluorine-containing surfactant. Nonionic fluorine-containing surfactants are particularly preferred because of their good compatibility in the curable composition and good dispersibility in the cured product.

アニオン性含フッ素界面活性剤は、ポリフルオロアルキルカルボン酸塩、ポリフルオロアルキル燐酸エステル、またはポリフルオロアルキルスルホン酸塩が好ましい。これらのカチオン性界面活性剤の具体例としては、サーフロンS−111(商品名、セイミケミカル社製)、フロラードFC−143(商品名、スリーエム社製)、メガファークF−120(商品名、大日本インキ工業社製)等が挙げられる。   The anionic fluorine-containing surfactant is preferably a polyfluoroalkyl carboxylate, a polyfluoroalkyl phosphate, or a polyfluoroalkyl sulfonate. Specific examples of these cationic surfactants include Surflon S-111 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florard FC-143 (trade name, manufactured by 3M), Megafark F-120 (trade name, Dainippon Nippon). Ink Industries Co., Ltd.).

カチオン性含フッ素界面活性剤は、ポリフルオロアルキルカルボン酸のトリメチルアンモニウム塩、またはポリフルオロアルキルスルホン酸アミドのトリメチルアンモニウム塩が好ましい。これらのカチオン性界面活性剤の具体例としては、サーフロンS−121(商品名、セイミケミカル社製)、フロラードFC−134(商品名、スリーエム社製)、メガファークF−150(商品名、大日本インキ工業社製)等が挙げられる。   The cationic fluorine-containing surfactant is preferably a trifluoroammonium salt of polyfluoroalkylcarboxylic acid or a trimethylammonium salt of polyfluoroalkylsulfonic acid amide. Specific examples of these cationic surfactants include Surflon S-121 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florard FC-134 (trade name, manufactured by 3M), Megafark F-150 (trade name, Dainippon) Ink Industries Co., Ltd.).

両性含フッ素界面活性剤は、ポリフルオロアルキルベタインが好ましい。これらの両性界面活性剤の具体例としては、サーフロンS−132(商品名、セイミケミカル社製)、フロラードFX−172(商品名、スリーエム社製)、メガファークF−120(商品名、大日本インキ工業社製)等が挙げられる。   The amphoteric fluorine-containing surfactant is preferably polyfluoroalkyl betaine. Specific examples of these amphoteric surfactants include Surflon S-132 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florard FX-172 (trade name, manufactured by 3M), Megafark F-120 (trade name, Dainippon Ink and Company). Manufactured by Kogyo Co., Ltd.).

ノニオン性含フッ素界面活性剤は、ポリフルオロアルキルアミンオキサイド、またはポリフルオロアルキル・アルキレンオキサイド付加物が好ましい。これらのノニオン性界面活性剤の具体例としては、サーフロンS−145(商品名、セイミケミカル社製)、サーフロンS−393(商品名、セイミケミカル社製)、サーフロンKH−20(商品名、セイミケミカル社製)、サーフロンKH−40(商品名、セイミケミカル社製)、フロラードFC−170(商品名、スリーエム社製)、フロラードFC−430(商品名、スリーエム社製)、メガファークF−141(商品名、大日本インキ工業社製)等が挙げられる。   The nonionic fluorine-containing surfactant is preferably a polyfluoroalkylamine oxide or a polyfluoroalkylalkylene oxide adduct. Specific examples of these nonionic surfactants include Surflon S-145 (trade name, manufactured by Seimi Chemical), Surflon S-393 (trade name, manufactured by Seimi Chemical), and Surflon KH-20 (trade name, Seimi). Chemical Co., Ltd.), Surflon KH-40 (trade name, manufactured by Seimi Chemical Co., Ltd.), Florard FC-170 (trade name, manufactured by 3M), Florado FC-430 (trade name, manufactured by 3M), Megafark F-141 ( Product name, manufactured by Dainippon Ink & Chemicals, Inc.).

硬化性組成物が含フッ素界面活性剤を含む場合、硬化性組成物中の含フッ素界面活性剤の含有量は、0.01〜10質量%が好ましく、0.1〜5質量%が特に好ましい。この範囲において、硬化性組成物は、調整が容易であり、かつ離型性に優れた硬化物を形成できる。   When the curable composition contains a fluorine-containing surfactant, the content of the fluorine-containing surfactant in the curable composition is preferably 0.01 to 10% by mass, particularly preferably 0.1 to 5% by mass. . Within this range, the curable composition can be easily adjusted and can form a cured product excellent in releasability.

本発明における基板としては、シリコンウェハ、ガラス、石英ガラス、金属等の無機材料製基板;フッ素樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂等の有機材料製基板が挙げられる。硬化性組成物との密着性に優れる、表面処理(シランカップリング処理、シラザン処理等。)した基板を用いてもよい。
モールドとしては、シリコンウェハ、SiC、マイカ等の非透光材料製モールド;ガラス、ポリジメチルシロキサン、透明フッ素樹脂等の透光材料製モールドが挙げられる。
Examples of the substrate in the present invention include substrates made of inorganic materials such as silicon wafers, glass, quartz glass, and metals; substrates made of organic materials such as fluorine resins, silicone resins, acrylic resins, and polycarbonate resins. You may use the board | substrate which was excellent in adhesiveness with a curable composition and was surface-treated (a silane coupling process, a silazane process, etc.).
Examples of the mold include a mold made of a non-translucent material such as a silicon wafer, SiC, and mica; and a mold made of a translucent material such as glass, polydimethylsiloxane, and transparent fluororesin.

工程2における重合性モノマーの重合を光により行う場合、モールドは透光材料製モールドが好ましい。また透光材料製基板を用い、基板側から光を照射してもよい。工程2における硬化性組成物の重合を熱により行う場合には、耐熱性モールドと耐熱性基板を用いるのが好ましい。   When the polymerization of the polymerizable monomer in step 2 is performed by light, the mold is preferably a mold made of a translucent material. Alternatively, a light transmitting material substrate may be used and light may be irradiated from the substrate side. When the polymerization of the curable composition in step 2 is performed by heat, it is preferable to use a heat resistant mold and a heat resistant substrate.

本発明におけるモールドは、表面に微細パターンを有する。微細パターンは凸部と凹部を有する微細パターンが好ましい。該微細パターンにおいて凸部の間隔(L)の平均値は、1nm〜500μmが好ましく、1nm〜50μmが特に好ましい。凸部の幅(L)の平均値は、1nm〜100μmが好ましく、10nm〜10μmが特に好ましい。凸部の高さ(L)の平均値は、1nm〜100μmが好ましく、10nm〜10μmが特に好ましい。
凸部の形状としては、円柱状、角柱状、三角錐状、多面体状、半球状等が挙げられる。凸部の断面形状としては、断面四角形、断面三角形、断面半円形等が挙げられる。
The mold in the present invention has a fine pattern on the surface. The fine pattern is preferably a fine pattern having convex portions and concave portions. In the fine pattern, the average value of the interval (L 1 ) between the convex portions is preferably 1 nm to 500 μm, and particularly preferably 1 nm to 50 μm. The average value of the width (L 2 ) of the convex portion is preferably 1 nm to 100 μm, and particularly preferably 10 nm to 10 μm. The average value of the height (L 3 ) of the convex portion is preferably 1 nm to 100 μm, and particularly preferably 10 nm to 10 μm.
Examples of the shape of the convex portion include a cylindrical shape, a prismatic shape, a triangular pyramid shape, a polyhedral shape, and a hemispherical shape. Examples of the cross-sectional shape of the convex part include a cross-sectional quadrangle, a cross-sectional triangle, and a cross-sectional semicircle.

本発明においては、モールドの微細パターンの最小寸法が50μm以下、より小さくは500nm以下、さらに小さくは50nm以下であっても、微細パターンを高精度に硬化物に転写できる。微細パターンの最小寸法とは、モールド凸部高さ、モールド凹凸部間隔、およびモールド凸部長さのうち最小の値を意味する。最小寸法の下限は、特に限定されず、1nm以上が好ましい。   In the present invention, even if the minimum dimension of the fine pattern of the mold is 50 μm or less, smaller is 500 nm or less, and even smaller is 50 nm or less, the fine pattern can be transferred to the cured product with high accuracy. The minimum dimension of a fine pattern means the minimum value among mold convex part height, mold uneven | corrugated part space | interval, and mold convex part length. The minimum of the minimum dimension is not specifically limited, 1 nm or more is preferable.

つぎに本発明における工程1、工程2、工程3、および工程4を説明する。
工程1における硬化性組成物を、該基板表面と該モールドのパターン面との間に挟持させる工程は、0〜100℃にて行うのが好ましく、0〜60℃にて行うのが特に好ましい。
Next, step 1, step 2, step 3, and step 4 in the present invention will be described.
The step of sandwiching the curable composition in Step 1 between the substrate surface and the pattern surface of the mold is preferably performed at 0 to 100 ° C, particularly preferably at 0 to 60 ° C.

工程1の好ましい態様としては、下記工程11、下記工程12、下記工程13が挙げられる。
工程11:硬化性組成物を基板表面に配置し、次いで該硬化性組成物がモールドのパターン面に接するように、該基板と前記モールドとを押し合わせる工程。
工程12:硬化性組成物をモールドのパターン面に配置し、次いで基板表面が該硬化性組成物に接するように、前記基板と該モールドとを押し合わせる工程。
工程13:基板とモールドを組み合わせて、基板表面とモールドのパターン面との間に空隙を形成し、次いで該空隙に硬化性組成物を充填させる工程。
As a preferable aspect of the process 1, the following process 11, the following process 12, and the following process 13 are mentioned.
Step 11: placing the curable composition on the substrate surface, and then pressing the substrate and the mold together so that the curable composition contacts the pattern surface of the mold.
Step 12: A step of placing the curable composition on the pattern surface of the mold, and then pressing the substrate and the mold so that the substrate surface is in contact with the curable composition.
Step 13: A step of combining the substrate and the mold to form a void between the substrate surface and the pattern surface of the mold, and then filling the void with the curable composition.

工程11において硬化性組成物の配置は、ポッティング法、スピンコート法、ロールコート法、キャスト法、ディップコート法、ダイコート法、ラングミュアープロジェット法、真空蒸着法等の方法を用い、硬化性組成物を基板表面に被覆して行うのが好ましい。硬化性組成物は、基板全面に被覆させても基板一部のみに被覆させてもよい。また溶剤を含む硬化性組成物を用いる場合には、該硬化性組成物の塗膜を基板表面に形成し、次いで溶剤を留去させて硬化性組成物を基板表面に被覆させるのが好ましい。溶剤は、硬化性組成物を均一に溶解または分散する、沸点が80〜200℃の溶剤が好ましい。溶剤としては、キシレン、酢酸ブチル等の非フッ素系有機溶剤;ペルフルオロ(2−ブチルテトラヒドロフラン)、メチル(ペルフルオロイソプロピル)エーテル、メチル(ペルフルオロヘキシルメチル)エーテル、メチル(ペルフルオロオクチル)エーテル等の含フッ素系溶剤;水が挙げられる。   In step 11, the curable composition is arranged using a potting method, a spin coating method, a roll coating method, a casting method, a dip coating method, a die coating method, a Langmuir projet method, a vacuum deposition method, or the like. It is preferable to coat the substrate surface with an object. The curable composition may be coated on the entire surface of the substrate or only on a part of the substrate. Moreover, when using the curable composition containing a solvent, it is preferable to form the coating film of this curable composition on the substrate surface, and then to distill off the solvent and to coat the curable composition on the substrate surface. The solvent is preferably a solvent having a boiling point of 80 to 200 ° C., which uniformly dissolves or disperses the curable composition. Solvents include non-fluorine organic solvents such as xylene and butyl acetate; fluorine-containing systems such as perfluoro (2-butyltetrahydrofuran), methyl (perfluoroisopropyl) ether, methyl (perfluorohexylmethyl) ether, and methyl (perfluorooctyl) ether Solvent; water.

基板とモールドを押し合わせる際のプレス圧力(ゲージ圧)は、0超10MPa以下が好ましく、0.1〜5MPaがより好ましい。また基板とモールドを押し合わせる際の温度は、0〜100℃が好ましく、0〜60℃が特に好ましい。   The press pressure (gauge pressure) when pressing the substrate and the mold is preferably more than 0 and 10 MPa or less, and more preferably 0.1 to 5 MPa. Moreover, 0-100 degreeC is preferable and the temperature at the time of pressing a board | substrate and a mold is especially preferable 0-60 degreeC.

工程12において硬化性組成物の配置は、ポッティング法、スピンコート法、ロールコート法、キャスト法、ディップコート法、ダイコート法、ラングミュアープロジェット法、真空蒸着法等の方法を用い、硬化性組成物をモールドのパターン面に被覆して行うのが好ましい。硬化性組成物は、パターン面全面に被覆させてもパターン面一部のみに被覆させてもよい。また溶剤を含む硬化性組成物を用いる場合には、該硬化性組成物の塗膜をモールドのパターン面に形成し、次いで溶剤を留去させて硬化性組成物をモールドのパターン面に被覆させるのが好ましい。溶剤は工程11の溶剤と同じ溶剤を用いられる。   In step 12, the curable composition is disposed using a potting method, spin coating method, roll coating method, casting method, dip coating method, die coating method, Langmuir projet method, vacuum deposition method, or the like. It is preferable to carry out by covering the pattern surface of the mold. The curable composition may be coated on the entire pattern surface or only on a part of the pattern surface. When a curable composition containing a solvent is used, a coating film of the curable composition is formed on the pattern surface of the mold, and then the solvent is distilled off to coat the curable composition on the pattern surface of the mold. Is preferred. As the solvent, the same solvent as the solvent in Step 11 is used.

基板とモールドを押し合わせる際のプレス圧力(ゲージ圧)は、0超10MPa以下が好ましく、0.1〜5MPaがより好ましい。また基板とモールドを押し合わせる際の温度は、0〜100℃が好ましく、0〜60℃が特に好ましい。   The press pressure (gauge pressure) when pressing the substrate and the mold is preferably more than 0 and 10 MPa or less, and more preferably 0.1 to 5 MPa. Moreover, 0-100 degreeC is preferable and the temperature at the time of pressing a board | substrate and a mold is especially preferable 0-60 degreeC.

工程13において、空隙に硬化性組成物を充填する方法としては、毛細管現象により空隙に硬化性組成物を吸引する方法が挙げられる。該方法は、0〜100℃で行うのが好ましく、0〜60℃で行うのが特に好ましい。   In step 13, as a method of filling the void with the curable composition, a method of sucking the curable composition into the void by capillary action can be mentioned. The method is preferably performed at 0 to 100 ° C, particularly preferably at 0 to 60 ° C.

工程2における重合性モノマーの重合は、重合性モノマーの物性、重合開始剤の種類等を考慮して適宜、実施できる。重合における温度は、0〜100℃にて行うのが好ましく、0〜60℃にて行うのが特に好ましい。また重合は、熱または光により行うのが好ましく、光により行うのが特に好ましい。すなわち硬化性組成物における、重合性モノマーが光重合性モノマーであるか、または、重合開始剤が光重合開始剤であるのが好ましく、重合開始剤が光重合開始剤であるのが特に好ましい。重合を光により行う場合は、低温(0〜100℃が好ましく、0〜60℃が特に好ましい。)で重合性モノマーの重合が可能であり、かつ硬化における体積収縮を抑制できる。さらに生成する硬化物にクラック等の欠陥が生じにくい。   The polymerization of the polymerizable monomer in step 2 can be appropriately performed in consideration of the physical properties of the polymerizable monomer, the type of the polymerization initiator, and the like. The temperature in the polymerization is preferably 0 to 100 ° C, particularly preferably 0 to 60 ° C. The polymerization is preferably carried out by heat or light, particularly preferably by light. That is, the polymerizable monomer in the curable composition is preferably a photopolymerizable monomer, or the polymerization initiator is preferably a photopolymerization initiator, and the polymerization initiator is particularly preferably a photopolymerization initiator. When the polymerization is carried out by light, the polymerizable monomer can be polymerized at a low temperature (preferably 0 to 100 ° C., particularly preferably 0 to 60 ° C.), and volume shrinkage during curing can be suppressed. Furthermore, defects such as cracks are less likely to occur in the generated cured product.

光を照射する方法としては、透光材料製モールドを用い該モールド側から光照射する方法、透光材料製基板を用い該基板側から光照射する方法が挙げられる。光の波長は、200〜400nmの波長光が好ましい。また光照射時に系全体を適宜、加熱して重合性モノマーの重合を加速させてもよい。   Examples of the method of irradiating light include a method of irradiating light from the mold side using a translucent material mold, and a method of irradiating light from the substrate side using a translucent material substrate. The wavelength of light is preferably 200 to 400 nm. Further, the polymerization of the polymerizable monomer may be accelerated by appropriately heating the entire system during light irradiation.

工程3におけるモールドおよび基板の少なくとも一方を硬化物から剥離する際の温度は、0〜100℃が好ましく、0〜60℃が特に好ましい。
工程3において、モールドおよび基板を硬化物から剥離した場合には、モールドの微細パターンが転写された表面を有する硬化物からなる微細パターン形成体が得られる。工程3においてモールドを硬化物から剥離した場合には、基板と一体のモールドの微細パターンが転写された表面を有する硬化物からなる微細パターン形成体が得られる。
0-100 degreeC is preferable and, as for the temperature at the time of peeling at least one of the mold and board | substrate in process 3 from hardened | cured material, 0-60 degreeC is especially preferable.
In step 3, when the mold and the substrate are peeled from the cured product, a fine pattern formed body made of a cured product having a surface to which the fine pattern of the mold is transferred is obtained. When the mold is peeled off from the cured product in step 3, a fine pattern formed body made of a cured product having a surface onto which the fine pattern of the mold integral with the substrate is transferred is obtained.

工程3において基板を硬化物から剥離した場合には、モールドと一体のモールドの微細パターンが転写された表面を有する硬化物からなる微細パターン形成体が得られる。この場合、さらに工程4を行うことによりモールドの微細パターンが転写された表面を有する硬化物からなる微細パターン形成体が得られる。工程4において、モールドを硬化物から剥離する際の温度は、0〜100℃が好ましく、0〜60℃が特に好ましい。   When the substrate is peeled off from the cured product in step 3, a fine pattern formed body made of a cured product having a surface onto which the fine pattern of the mold integral with the mold is transferred is obtained. In this case, the fine pattern formed body which consists of hardened | cured material which has the surface where the fine pattern of the mold was transcribe | transferred by performing step 4 further is obtained. In step 4, the temperature at which the mold is peeled from the cured product is preferably 0 to 100 ° C, particularly preferably 0 to 60 ° C.

本発明の製造方法により得た微細パターン形成体は、表面にモールドの微細パターンが高精度に転写されている。該微細パターン形成体は、マイクロレンズアレイ、光導波路素子、光スイッチング素子、フレネルゾーンプレート素子、バイナリー光学素子、ブレーズ光学素子、フォトニクス結晶等の光学素子、反射防止部材、バイオチップ部材、マイクロリアクターチップ部材、触媒担持部材等として有用である。   In the fine pattern formed body obtained by the production method of the present invention, the fine pattern of the mold is transferred to the surface with high accuracy. The fine pattern forming body includes a microlens array, an optical waveguide element, an optical switching element, a Fresnel zone plate element, a binary optical element, a blazed optical element, an optical element such as a photonic crystal, an antireflection member, a biochip member, and a microreactor chip. It is useful as a member, a catalyst carrying member, and the like.

本発明を実施例により詳細に説明するが、本発明はこれらに限定されない。
重合性モノマーとして、下記化合物f1、下記化合物f2、下記化合物f3、下記化合物n1、および下記化合物n2からなる群から選ばれる1種以上の重合性モノマーを用いた。
The present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
As the polymerizable monomer, one or more polymerizable monomers selected from the group consisting of the following compound f1, the following compound f2, the following compound f3, the following compound n1, and the following compound n2 were used.

Figure 2007001250
Figure 2007001250

重合開始剤は、光重合開始剤(チバ・カイギー・スペシャリティー株式会社製、商品名:イルカギュア651)を用いた。   As the polymerization initiator, a photopolymerization initiator (manufactured by Ciba Kaigie Specialty Co., Ltd., trade name: IRKAGUA 651) was used.

なお体積収縮率とは、25℃にて、試験管(ガラス製)に光硬化性組成物をLの高さまで封入してから、高圧水銀灯(1.5〜2.0kHzにおいて255、315、および365nmに主波長を有する光源。)を15秒間、照射して形成する硬化物の高さをLとした場合の、[(L−L)/L]のパーセンテージとして求めた値を意味する。接触角は、水に対する接触角を示す。 Note The volumetric shrinkage at 25 ° C., after enclosing the tube (made of glass) in the photocurable composition to a height of L 1, the high-pressure mercury lamp (1.5~2.0kHz 255,315, And a light source having a dominant wavelength at 365 nm.) Value obtained as a percentage of [(L 1 −L 2 ) / L 1 ], where L 2 is the height of a cured product formed by irradiation for 15 seconds. Means. A contact angle shows the contact angle with respect to water.

[例1]含フッ素ポリマーの合成例
化合物f2の9.00g、1,4−ジオキサンの38.37gを、耐圧反応器(内容積50mL、ガラス製)に仕込み、つぎにジイソプロピルペルオキシジカーボネートの0.71gを仕込んだ。反応器内を凍結脱気してから、内温を40℃に保持して、18時間重合を行った。つぎにヘキサン中に反応器内容液を滴下した。凝集した固形分を回収し110℃にて40時間、真空乾燥して白色粉末状の、下記繰り返し単位1を含む非結晶性含フッ素ポリマー(フッ素含有量56.3質量%)(以下、ポリマー1という。)の6.33gを得た。ポリマー1は、ガラス転移点温度が118℃であり、数平均分子量が2600であり、重量平均分子量が4800であった。
[Example 1] Synthesis example of fluorine-containing polymer 9.00 g of compound f2 and 38.37 g of 1,4-dioxane were charged into a pressure-resistant reactor (internal volume 50 mL, glass), and then 0 of diisopropyl peroxydicarbonate. .71 g was charged. After freezing and degassing the inside of the reactor, polymerization was carried out for 18 hours while maintaining the internal temperature at 40 ° C. Next, the reactor contents were dropped into hexane. The agglomerated solid content was collected and vacuum-dried at 110 ° C. for 40 hours to form a white powdery amorphous fluorine-containing polymer containing the following repeating unit 1 (fluorine content: 56.3% by mass) (hereinafter, polymer 1 6.33 g of the product was obtained. Polymer 1 had a glass transition temperature of 118 ° C., a number average molecular weight of 2600, and a weight average molecular weight of 4800.

Figure 2007001250
Figure 2007001250

[例2]硬化性組成物の調整例
[例2−1]組成物1の調整例
バイヤル容器(内容積6mL)に、化合物f1の1.08g、化合物n1の1.16g、化合物n2の0.83g、およびポリマー1の0.08gを加え、つぎに光重合開始剤の0.11gを混合して、25℃における粘度が22mPa・sの光硬化性組成物(組成物1という。)を得た。組成物1の体積収縮率は4%であり、組成物1の硬化物の接触角は75°であった。
[Example 2] Preparation example of curable composition [Example 2-1] Preparation example of composition 1 In a vial container (internal volume 6 mL), 1.08 g of compound f1, 1.16 g of compound n1 and 0 of compound n2 .83 g and 0.08 g of polymer 1 were added, and then 0.11 g of the photopolymerization initiator was mixed, and a photocurable composition (referred to as composition 1) having a viscosity at 25 ° C. of 22 mPa · s. Obtained. The volume shrinkage of composition 1 was 4%, and the contact angle of the cured product of composition 1 was 75 °.

[例2−2]組成物2の調整例
バイヤル容器(内容積6mL)に、化合物f1の1.08g、化合物n1の1.16g、化合物n2の0.83g、ポリマー1の0.08g、およびノニオン系含フッ素界面活性剤(セイミケミカル社製、商品名:サーフロンS−393)の0.03gを加え、つぎに光重合開始剤の0.11gを混合して、25℃における粘度が24mPa・sの光硬化性組成物(組成物2という。)を得た。組成物2の体積収縮率は3%であり、組成物1の硬化物の接触角は94°であった。
[Example 2-2] Preparation example of composition 2 In a vial container (internal volume 6 mL), 1.08 g of compound f1, 1.16 g of compound n1, 0.83 g of compound n2, 0.08 g of polymer 1, and 0.03 g of a nonionic fluorine-containing surfactant (trade name: Surflon S-393, manufactured by Seimi Chemical Co., Ltd.) was added, then 0.11 g of a photopolymerization initiator was mixed, and the viscosity at 25 ° C. was 24 mPa · A photocurable composition of s (referred to as composition 2) was obtained. The volume shrinkage of composition 2 was 3%, and the contact angle of the cured product of composition 1 was 94 °.

[例2−3]組成物3の調整例
バイヤル容器(内容積6mL)に、化合物f2の0.08g、および化合物f3の0.89gを加え、つぎに光重合開始剤の0.04gを混合して、25℃における粘度が3mPa・sの光硬化性組成物(組成物3という。)を得た。組成物3の体積収縮率は19%であり、組成物1の硬化物の接触角は78°であった。
[Example 2-3] Preparation example of composition 3 To a vial container (internal volume 6 mL), 0.08 g of compound f2 and 0.89 g of compound f3 were added, and then 0.04 g of a photopolymerization initiator was mixed. Thus, a photocurable composition (referred to as composition 3) having a viscosity at 25 ° C. of 3 mPa · s was obtained. The volumetric shrinkage of composition 3 was 19%, and the contact angle of the cured product of composition 1 was 78 °.

[例3]微細パターン形成体の製造例
[例3−1(実施例)]微細パターン形成体の製造例(その1)
25℃にて、組成物1の1滴をシリコンウェハ上に垂らして、組成物1が均一に塗布されたシリコンウェハを得た。幅800nm、深さ180nm、長さ10μmの凹構造を表面に有する石英製モールドを、シリコンウェハ上の組成物1側に押し付けて、そのまま0.5MPa(ゲージ圧)でプレスした。
[Example 3] Production Example of Fine Pattern Formed Example [Example 3-1 (Example)] Production Example of Fine Pattern Formed Body (Part 1)
At 25 ° C., one drop of composition 1 was dropped on the silicon wafer to obtain a silicon wafer on which composition 1 was uniformly applied. A quartz mold having a concave structure with a width of 800 nm, a depth of 180 nm, and a length of 10 μm on the surface was pressed against the composition 1 side on the silicon wafer and pressed as it was at 0.5 MPa (gauge pressure).

つぎに25℃にて、モールド側から高圧水銀灯(1.5〜2.0kHzにおいて255、315、および365nmに主波長を有する光源。)を15秒間、照射して組成物1の硬化物を得た。25℃にて、モールドをシリコンウェハから剥離して、モールドの凹凸構造が反転したパターン構造(凸構造)を表面に有する組成物1の硬化物がシリコンウェハ上に形成された微細パターン形成体を得た。該凸構造の底面と頂上面の高さは、178〜180nmであった。   Next, at 25 ° C., a cured product of composition 1 is obtained by irradiation with a high-pressure mercury lamp (light source having main wavelengths of 255, 315, and 365 nm at 1.5 to 2.0 kHz) for 15 seconds from the mold side. It was. A fine pattern forming body in which a cured product of the composition 1 having a pattern structure (convex structure) on the surface is peeled off from a silicon wafer at 25 ° C. Obtained. The height of the bottom surface and the top surface of the convex structure was 178 to 180 nm.

[例3−2(実施例)]微細パターン形成体の製造例(その2)
例3−1における微細パターン形成体の製造において組成物1のかわりに組成物2を用いる以外は同様の方法を用いて、モールドの凹凸構造が反転したパターン構造(凸構造)を表面に有する組成物2の硬化物がシリコンウェハ上に形成された微細パターン形成体を得た。該凸構造の底面と頂上面の高さは、177〜180nmであった。
[Example 3-2 (Example)] Production example of fine pattern formed body (Part 2)
A composition having on the surface a pattern structure (convex structure) in which the concavo-convex structure of the mold is inverted, using the same method except that the composition 2 is used instead of the composition 1 in the production of the fine pattern formed body in Example 3-1. A fine pattern formed body in which the cured product of the product 2 was formed on the silicon wafer was obtained. The height of the bottom surface and the top surface of the convex structure was 177 to 180 nm.

[例3−3(比較例)]微細パターン形成体の製造例
例3−1における微細パターン形成体の製造において組成物1のかわりに、組成物3を用いる以外は同様の方法を用いて、モールドの凹凸構造が反転したパターン構造(凸構造)を表面に有する組成物3の硬化物がシリコンウェハ上に形成された微細パターン形成体を得た。該凸構造の底面と頂上面の高さは、142〜180nmであった。
[Example 3-3 (comparative example)] Production example of fine pattern formed body In the production of the fine pattern formed body in Example 3-1, instead of the composition 1, a similar method was used except that the composition 3 was used. A fine pattern formed body was obtained in which a cured product of the composition 3 having a pattern structure (convex structure) on the surface thereof in which the uneven structure of the mold was inverted was formed on a silicon wafer. The height of the bottom surface and the top surface of the convex structure was 142 to 180 nm.

以上の結果より、含フッ素ポリマーを含まない組成物3の硬化物は、モールドの凹凸構造が反転したパターン構造(凸構造)における底面と頂上面の高さの範囲が大きいのに対して、含フッ素ポリマーを含む、組成物1および組成物2の硬化物は、該範囲が小さい(すなわち、該パターン構造はモールドの凹凸構造を高精度に反転している。)のがわかる。したがって、本発明の製造方法によりモールドの微細パターンが高精度に転写された微細パターン形成体が製造できることがわかる。よって、本発明によって高精度なナノインプリントプロセスが実現される。
From the above results, the cured product of the composition 3 that does not contain the fluoropolymer has a large range of height between the bottom surface and the top surface in the pattern structure (convex structure) in which the uneven structure of the mold is inverted. It can be seen that the cured products of Composition 1 and Composition 2 containing a fluoropolymer have a small range (that is, the pattern structure reverses the concavo-convex structure of the mold with high accuracy). Therefore, it can be seen that a fine pattern formed body in which the fine pattern of the mold is transferred with high accuracy can be produced by the production method of the present invention. Therefore, a highly accurate nanoimprint process is realized by the present invention.

Claims (6)

下記工程1、下記工程2、下記工程3、および任意に下記工程4を順に行うことにより、モールドの微細パターンが転写された表面を有する下記硬化物からなる微細パターン形成体または基板と一体の該微細パターン形成体を得ることを特徴とする微細パターン形成体の製造方法。
工程1:基板と表面に微細パターンを有するモールドとを組み合わせて、重合性モノマー、含フッ素ポリマー、および重合開始剤を含む硬化性組成物を、該基板表面と該モールドのパターン面との間に挟持させる工程。
工程2:前記硬化性組成物中の重合性モノマーを重合させて該組成物を硬化物とする工程。
工程3:モールドおよび基板の少なくとも一方を硬化物から剥離して、微細パターン形成体、基板と一体の微細パターン形成体、またはモールドと一体の微細パターン形成体を得る工程。
工程4:上記工程3においてモールドと一体の微細パターン形成体を得た場合はモールドと微細パターン形成体を剥離する工程。
By performing the following step 1, the following step 2, the following step 3, and optionally the following step 4 in order, the fine pattern forming body or the substrate made of the following cured product having the surface onto which the fine pattern of the mold has been transferred is integrated. A method for producing a fine pattern forming body, comprising obtaining a fine pattern forming body.
Step 1: Combining a substrate and a mold having a fine pattern on the surface, a curable composition containing a polymerizable monomer, a fluorine-containing polymer, and a polymerization initiator is provided between the substrate surface and the pattern surface of the mold. The process of pinching.
Step 2: A step of polymerizing a polymerizable monomer in the curable composition to make the composition a cured product.
Process 3: The process of peeling at least one of a mold and a board | substrate from hardened | cured material, and obtaining the fine pattern formation body, the fine pattern formation body integral with a board | substrate, or the fine pattern formation body integral with a mold.
Process 4: The process of peeling a mold and a fine pattern formation body, when the fine pattern formation body integral with a mold is obtained in the said process 3.
前記硬化性組成物が、実質的に溶剤を含まない硬化性組成物である請求項1に記載の製造方法。   The method according to claim 1, wherein the curable composition is a curable composition substantially free of a solvent. 前記硬化性組成物が、25℃における粘度が0.1〜200mPa・sの硬化性組成物である請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the curable composition is a curable composition having a viscosity at 25 ° C. of 0.1 to 200 mPa · s. 前記硬化性組成物中の含フッ素ポリマーの含有量が、0.01〜10質量%である請求項1〜3のいずれかに記載の製造方法。   The production method according to claim 1, wherein the content of the fluorine-containing polymer in the curable composition is 0.01 to 10% by mass. 前記含フッ素ポリマーが、重量平均分子量が500〜200000の含フッ素ポリマーである請求項1〜4のいずれかに記載の製造方法。   The production method according to claim 1, wherein the fluoropolymer is a fluoropolymer having a weight average molecular weight of 500 to 200,000. モールドの微細パターンが、凸部と凹部を有する微細パターンであり該凸部の間隔の平均値が1nm〜500μmである請求項1〜5のいずれかに記載の製造方法。
The manufacturing method according to claim 1, wherein the fine pattern of the mold is a fine pattern having a convex portion and a concave portion, and an average value of the interval between the convex portions is 1 nm to 500 μm.
JP2005186741A 2005-06-27 2005-06-27 Manufacturing method of fine pattern formed material Withdrawn JP2007001250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186741A JP2007001250A (en) 2005-06-27 2005-06-27 Manufacturing method of fine pattern formed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186741A JP2007001250A (en) 2005-06-27 2005-06-27 Manufacturing method of fine pattern formed material

Publications (1)

Publication Number Publication Date
JP2007001250A true JP2007001250A (en) 2007-01-11

Family

ID=37687264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186741A Withdrawn JP2007001250A (en) 2005-06-27 2005-06-27 Manufacturing method of fine pattern formed material

Country Status (1)

Country Link
JP (1) JP2007001250A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189821A (en) * 2007-02-05 2008-08-21 Fujifilm Corp Photocurable composition
JP2009062433A (en) * 2007-09-05 2009-03-26 Bridgestone Corp Composition for imprint molding and molded product using it
WO2009101758A1 (en) 2008-02-14 2009-08-20 Daicel Chemical Industries, Ltd. Curable resin composition for nanoimprint
JP2009218554A (en) * 2008-02-15 2009-09-24 Toppan Printing Co Ltd Method for performing imprint and imprint mould, imprint device
JP2010018644A (en) * 2008-07-08 2010-01-28 Mitsubishi Rayon Co Ltd Curable composition and pattern-forming method
JP2010045163A (en) * 2008-08-12 2010-02-25 Fujifilm Corp Composition for nanoimprint
JP2010067621A (en) * 2007-09-11 2010-03-25 Fujifilm Corp Curable composition for nanoimprint, cured article, and method for producing same
JP2010067935A (en) * 2007-11-02 2010-03-25 Fujifilm Corp Curable composition for nanoimprint, cured article and method for manufacturing the same
JP2010076333A (en) * 2008-09-26 2010-04-08 Asahi Kasei E-Materials Corp Molded article, method for making molded article, and method for making transferred article transferred with molded article
WO2010050614A1 (en) * 2008-10-29 2010-05-06 Fujifilm Corporation Composition for imprints, pattern and patterning method
JP2010258349A (en) * 2009-04-28 2010-11-11 Jsr Corp Setting composition for nanoimprint lithography, and nanoimprint method
WO2011125800A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Curable composition for nanoimprint, semiconductor element, and nanoimprint method
JP2012109514A (en) * 2010-10-20 2012-06-07 Daikin Ind Ltd Resin mold material composition for imprint
WO2013047136A1 (en) * 2011-09-27 2013-04-04 富士フイルム株式会社 Curable composition for imprint, pattern forming method, and pattern
JP2013239535A (en) * 2012-05-14 2013-11-28 Toyo Gosei Kogyo Kk Optical imprint method
US9459525B2 (en) 2009-03-24 2016-10-04 Daicel Chemical Industries, Ltd. Curable composition for nanoimprinting and cured product
WO2018173930A1 (en) * 2017-03-23 2018-09-27 Agc株式会社 Curable composition for imprinting use, and replica mold and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071934A (en) * 2002-08-08 2004-03-04 Kanegafuchi Chem Ind Co Ltd Method for manufacturing fine pattern and transfer material
WO2004051714A2 (en) * 2002-12-04 2004-06-17 Hewlett-Packard Development Company, L.P. A polymer solution for nanoprint lithography to reduce imprint temperature and pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071934A (en) * 2002-08-08 2004-03-04 Kanegafuchi Chem Ind Co Ltd Method for manufacturing fine pattern and transfer material
WO2004051714A2 (en) * 2002-12-04 2004-06-17 Hewlett-Packard Development Company, L.P. A polymer solution for nanoprint lithography to reduce imprint temperature and pressure

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189821A (en) * 2007-02-05 2008-08-21 Fujifilm Corp Photocurable composition
JP2009062433A (en) * 2007-09-05 2009-03-26 Bridgestone Corp Composition for imprint molding and molded product using it
JP2010067621A (en) * 2007-09-11 2010-03-25 Fujifilm Corp Curable composition for nanoimprint, cured article, and method for producing same
JP2010067935A (en) * 2007-11-02 2010-03-25 Fujifilm Corp Curable composition for nanoimprint, cured article and method for manufacturing the same
WO2009101758A1 (en) 2008-02-14 2009-08-20 Daicel Chemical Industries, Ltd. Curable resin composition for nanoimprint
US8530539B2 (en) 2008-02-14 2013-09-10 Daicel Chemical Industries, Ltd. Curable resin composition for nanoimprint
JP2009218554A (en) * 2008-02-15 2009-09-24 Toppan Printing Co Ltd Method for performing imprint and imprint mould, imprint device
JP2010018644A (en) * 2008-07-08 2010-01-28 Mitsubishi Rayon Co Ltd Curable composition and pattern-forming method
JP2010045163A (en) * 2008-08-12 2010-02-25 Fujifilm Corp Composition for nanoimprint
JP2010076333A (en) * 2008-09-26 2010-04-08 Asahi Kasei E-Materials Corp Molded article, method for making molded article, and method for making transferred article transferred with molded article
WO2010050614A1 (en) * 2008-10-29 2010-05-06 Fujifilm Corporation Composition for imprints, pattern and patterning method
JP2010109092A (en) * 2008-10-29 2010-05-13 Fujifilm Corp Composition for nanoimprint, pattern, and patterning method therefor
US8980404B2 (en) 2008-10-29 2015-03-17 Fujifilm Corporation Composition for imprints, pattern and patterning method
US9690193B2 (en) 2009-03-24 2017-06-27 Daicel Corporation Curable composition for nanoimprinting and cured product
US9459525B2 (en) 2009-03-24 2016-10-04 Daicel Chemical Industries, Ltd. Curable composition for nanoimprinting and cured product
JP2010258349A (en) * 2009-04-28 2010-11-11 Jsr Corp Setting composition for nanoimprint lithography, and nanoimprint method
WO2011125800A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Curable composition for nanoimprint, semiconductor element, and nanoimprint method
JP2012109514A (en) * 2010-10-20 2012-06-07 Daikin Ind Ltd Resin mold material composition for imprint
CN103814427A (en) * 2011-09-27 2014-05-21 富士胶片株式会社 Curable composition for imprint, pattern forming method, and pattern
JP2013074015A (en) * 2011-09-27 2013-04-22 Fujifilm Corp Curable composition for imprint, method for forming pattern, and pattern
WO2013047136A1 (en) * 2011-09-27 2013-04-04 富士フイルム株式会社 Curable composition for imprint, pattern forming method, and pattern
JP2013239535A (en) * 2012-05-14 2013-11-28 Toyo Gosei Kogyo Kk Optical imprint method
WO2018173930A1 (en) * 2017-03-23 2018-09-27 Agc株式会社 Curable composition for imprinting use, and replica mold and method for producing same
JPWO2018173930A1 (en) * 2017-03-23 2020-01-23 Agc株式会社 Curable composition for imprint, replica mold and method for producing the same

Similar Documents

Publication Publication Date Title
JP2007001250A (en) Manufacturing method of fine pattern formed material
JP5286784B2 (en) Photocurable composition, fine pattern formed body, and method for producing the same
KR101652680B1 (en) Photocurable composition and manufacturing method for a molded body having a fine pattern on the surface
JP4904742B2 (en) Pattern forming method and article having pattern
JP5387406B2 (en) Method for producing molded body having fine pattern on surface
JP5182644B2 (en) Wire grid polarizer and method of manufacturing the same
JP5594147B2 (en) Photocurable composition and method for producing molded article having fine pattern on surface
JP2006110997A (en) Manufacturing method for transfer body, photocurable composition, and manufacturing method for fine structure
JP5978761B2 (en) Photocurable composition for imprint and method for producing molded article having fine pattern on surface
JP2006182011A (en) Mold for optically hardening resin molding, and manufacturing method of hardened article using the mold
JP2009214323A (en) Apparatus and method for manufacture of article having micro-pattern
WO2006030625A1 (en) Curable composition, process for producing fine structure, and method of forming pattern
JP2012156357A (en) Production method of molding having fine pattern on surface
JP2006137021A (en) Manufacturing method of transfer body
JP2011016351A (en) Method of manufacturing child mold and method of manufacturing article
JP2012000842A (en) Method of manufacturing molded body with fine pattern on surface
KR101757573B1 (en) Curable composition for imprinting
JP4736522B2 (en) Method of manufacturing processed substrate processed by etching
JP2011012163A (en) Method for producing photo-setting material, photo-setting material and article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110221