JP2008187846A - Permanent magnet type 2-phase rotary electric machine - Google Patents

Permanent magnet type 2-phase rotary electric machine Download PDF

Info

Publication number
JP2008187846A
JP2008187846A JP2007020429A JP2007020429A JP2008187846A JP 2008187846 A JP2008187846 A JP 2008187846A JP 2007020429 A JP2007020429 A JP 2007020429A JP 2007020429 A JP2007020429 A JP 2007020429A JP 2008187846 A JP2008187846 A JP 2008187846A
Authority
JP
Japan
Prior art keywords
pole
permanent magnet
rotor
poles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007020429A
Other languages
Japanese (ja)
Other versions
JP5015621B2 (en
Inventor
Masabumi Sakamoto
正文 坂本
Takaya Kato
隆弥 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP2007020429A priority Critical patent/JP5015621B2/en
Publication of JP2008187846A publication Critical patent/JP2008187846A/en
Application granted granted Critical
Publication of JP5015621B2 publication Critical patent/JP5015621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, simple and inexpensive permanent magnet type 2-phase rotary electric machine containing a stepping motor by employing two winding poles. <P>SOLUTION: This permanent magnet type 2-phase rotary electric machine includes a plurality of inductors on each end of a stator main pole, which is provided in such a manner so as to project inward from a roughly rectangular magnet substance, having two 2-phase type winding poles and two auxiliary poles. In the 1-phase of main pole, one winding pole is separated at a mechanical angle of almost 180° from one auxiliary pole and respective plurality of small teeth positions are displaced at an electrical angle of almost 180° from each other in the winding pole and the auxiliary pole. Two unit rotors A and B having a plurality (Nr) of teeth rotatably mounted through air gap, which sandwich two axially magnetized permanent magnets displaced by half pitch each other, are installed on the common rotating shaft to rotatably ensure air gap for assembly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は巻き線極と巻き線を有しない補助極で構成される固定子と2個の永久磁石を互いに逆方向に反発磁化したハイブリッド型永久磁石式回転子を組み合わせたステッピングモータ等の回転電機に関する。   The present invention relates to a rotating electrical machine such as a stepping motor in which a stator composed of a winding pole and an auxiliary pole not having a winding and a hybrid permanent magnet rotor in which two permanent magnets are repelled and magnetized in opposite directions. About.

小型で高トルク、低振動がOA機器等に使用されるステッピングモータ等の回転電機に
要求されている。この問題を解決するものとして本願発明者の一人はすでに次の特許を取得をしている。本願はこれらの先行特許の改良に関する。
There is a demand for a rotating electrical machine such as a stepping motor that is small and has high torque and low vibration used in OA equipment. In order to solve this problem, one of the inventors of the present application has already obtained the following patent. This application relates to improvements to these prior patents.

日本国特許第3762981号Japanese Patent No. 3762981 米国特許USP6781260B2US Patent USP67881260B2

1)ハイブリッド(以下HBと略す)のステッピングモータ等の多極回転電機で単位回転子を2個同軸で密着連結してお互いにその永久磁石同士を逆極性に磁化する構造の回転電機では特許文献1及び2に固定子主極を4個(本願の図5)とし2相巻き線として、不平衡電磁力をなくし2相8主極モータより高トルクを実現している。しかし巻き線インダクタンスが2相8主極モータより大きくなり低速回転領域では高トルクを実現しているが例えば回転子歯数50のステップ角が1.8度品では約1500rpm以上の回転領域では図6、図7に示した従来の2相8主極モータより電流が流れないためトルクが低下する問題があった。
2)特許文献1及び2に固定子主極を4個とした2相巻き線モータは2相8主極モータより巻き線が簡単で安価となるが、市場では更なる安価なモータの要求がある。
3)市場では2相8主極モータとトルクがほぼ同じで更に小形且つ安価なモータの要求が強くある。
1) In a rotating electric machine having a structure in which two unit rotors are closely and coaxially connected by a multipolar rotating electric machine such as a hybrid (hereinafter abbreviated as HB) stepping motor and their permanent magnets are magnetized in opposite polarities. Four stator main poles (1 and 2) (Fig. 5 of the present application) are used as two-phase windings to eliminate unbalanced electromagnetic force and achieve higher torque than a two-phase eight-main motor. However, the winding inductance is larger than that of the 2-phase 8-main pole motor, and high torque is realized in the low-speed rotation range. For example, in the rotation range of about 1500 rpm or more when the step angle with 50 rotor teeth is 1.8 degrees, 6. Since current does not flow from the conventional two-phase 8-main pole motor shown in FIG.
2) Although the two-phase winding motor having four stator main poles in Patent Documents 1 and 2 is simpler and cheaper than the two-phase eight main pole motor, there is a demand for a cheaper motor in the market. is there.
3) In the market, there is a strong demand for smaller and cheaper motors that have the same torque as the two-phase 8-main pole motors.

本発明を実現するには以下の手段による。
「手段1」
四辺形を含めた多角形や略環状の磁性体より突き出て設けた、2相式で2つの巻き線極と2つの補助極で構成された固定子主極の各先端に複数個の誘導子を有し、1相分の主極は1個の巻き線極と1個の補助極が機械角で略180°隔てた位置として各々の複数の小歯位置はお互いに電気角で180°隔てた位置とし、エアギャップを介して回転自在に設けられた複数Nr個の歯を有した回転子を2個で軸方向に磁化した永久磁石をお互いに歯ピッチの1/2ピッチ分ずらして挟持した単位回転子を2組、単位回転子AとBとして共通回転軸上に設けて、単位回転子AとBの近接あるいは隣接する回転子同士は歯位置が同一であり且つ同一極性に磁化されて、回転自在に単位回転子A側のブラケットと単位回転子B側のブラケットにて固定子両側よりエアギャップを確保して組立されることを手段とする永久磁石式回転電機。
「手段2」
手段1で回転子歯数はNr=4n±1であることを手段とする永久磁石式回転電機。
「手段3」
手段1で回転子は回転子周方向にN極とS極が交互に配置された円筒型永久磁石を含む回転子であることを手段とする永久磁石式回転電機。
「手段4」
請求項3において回転子の極対数が4n±1であることを手段とする永久磁石式回転電機。
「手段5」
手段1から4においてモータ出力軸位置が該環状形の固定子のセンターと異なる位置であることを手段とした小型化を実現する永久磁石式回転電機。
「手段6」
手段1及び2において永久磁石をフェライト磁石としたことを手段とする永久磁石式回転電機。
The present invention is realized by the following means.
"Means 1"
Plural inductors at each end of the stator main pole, which consists of two winding poles and two auxiliary poles in a two-phase system, protruding from a polygon including a quadrilateral or a substantially annular magnetic body. The main pole for one phase is a position where one wound pole and one auxiliary pole are separated by approximately 180 ° in mechanical angle, and each of the plurality of small tooth positions is separated by 180 ° in electrical angle from each other. Two permanent magnets magnetized in the axial direction with two rotors each having a plurality of Nr teeth provided rotatably through an air gap are sandwiched by shifting each other by a half pitch of the tooth pitch. Two sets of unit rotors, unit rotors A and B, are provided on a common rotating shaft, and adjacent or adjacent rotors of unit rotors A and B have the same tooth position and are magnetized to the same polarity. The unit rotor A side bracket and the unit rotor B side bracket can be rotated on both sides of the stator. Ri permanent magnet type rotating electric machine according to means to be assembled to secure the air gap.
"Means 2"
A permanent magnet type rotating electrical machine in which the number of rotor teeth in means 1 is Nr = 4n ± 1.
"Means 3"
A permanent magnet type rotating electrical machine in which the rotor in the means 1 is a rotor including a cylindrical permanent magnet in which N poles and S poles are alternately arranged in the circumferential direction of the rotor.
"Means 4"
4. A permanent magnet type rotating electrical machine according to claim 3, wherein the number of pole pairs of the rotor is 4n ± 1.
"Means 5"
A permanent magnet type rotating electrical machine that realizes a reduction in size by means that the motor output shaft position is different from the center of the annular stator in means 1 to 4.
"Means 6"
A permanent magnet type rotating electrical machine that uses a permanent magnet as a ferrite magnet in the means 1 and 2.

1)固定子は巻き線極と補助極含めて4個であるので4巻き線式に対しインダクタンスは焼く半分となり従来の8巻き線式とほぼ同じ巻き線インダクタンスとトルクが得られる。また従来の4主極(巻き線極)と比較して低速時のトルクは半分であるが高速時(約1500rpm時)はインダクタンスが小さいので勝る。
2)同一回転子径で従来の8巻き線極モータに対し、同程度の出力トルクでモータサイズが83%程度に小型化出来る。
3)薄型モータのHB機ではボンド磁石やフェライト磁石のような磁気エネルギーの低い安価な磁石でも使用が可能となりコストーパフォーマンスに優れた永久磁石式回転電機が提供できる。
4)2巻き線極のため巻き線が簡素で、特殊回転子により不平衡電磁力のない小型高トルクの回転電機が安価に提供できる。
1) Since there are four stators including the winding and auxiliary poles, the inductance is half that of the four-winding type, and the same winding inductance and torque as in the conventional eight-winding type can be obtained. In addition, the torque at the low speed is half that of the conventional four main poles (winding poles), but at high speeds (at about 1500 rpm), the inductance is small, which is better.
2) The motor size can be reduced to about 83% with the same output torque compared to the conventional 8-winding pole motor with the same rotor diameter.
3) With a thin motor HB machine, it is possible to use an inexpensive magnet with low magnetic energy, such as a bond magnet or a ferrite magnet, and a permanent magnet type rotating electrical machine with excellent cost performance can be provided.
4) Because of the two winding poles, the winding is simple, and a small rotor with high torque and no unbalanced electromagnetic force can be provided at low cost by a special rotor.

以下図面によって説明する。   This will be described below with reference to the drawings.

図1は本発明の省主極構造固定子である2相2巻き線極で2補助極の固定子と特殊HB型回転子の組み合わせによる回転電機の軸方向から見た構成図である。但し軸の図示は省略してある。1は固定子鉄心であり、略四辺形を含む多角形や円形形状も可能なものであり、2はハイブリッド(以下HBと略す)回転子の場合の図である。3は巻き線である。図1でY1−Y2軸とX1−X2軸の交点が出力軸位置である。出力軸位置より図1では外形を正方形とすれば巻き線3の分だけ、a>bとなる。またZ1−Z2軸に対し、回転子歯数Nr=4n±1と選べば線対称となる。図2は図1の軸を含めた断面図である。
固定子の2相2巻き線極で2補助極主極の各先端には複数個の誘導子を有し、1相分の主極は1個の巻き線極と1個の補助極が機械角で略180°隔てた位置として各々の複数の小歯位置はお互いに電気角で180°隔てた位置とし、エアギャップを介して回転自在に設けられた複数Nr個(図1では25個の歯が均等に配置されているが固定子極誘導子磁歯と対抗する部分のみ図示)の歯を有した回転子21,22の2個で軸方向に磁化した永久磁石51をお互いに歯ピッチの1/2ピッチ分ずらして挟持した単位回転子をもう一組(23、51、24)の計2組、単位回転子AとBとして共通回転軸4上に設けて、単位回転子AとBの近接あるいは隣接する回転子同士22と23 は歯位置が同一であり且つ同一極性に磁化されて、回転自在に単位回転子A側のブラケットと単位回転子B側のブラケットにて固定子両側よりエアギャップを確保して組立される。固定子(1)と(2)は機械角で180°隔てているのが望ましいが回転子歯数が後述するがnを1以上の整数として4n±1と等しくとらない場合は180度に近い値に設計することになる。
また2組の単位回転子は密着させてもよいが22と23を近接させてその間に薄い非磁性板や導電性板を入れると着磁がし易くなる。
このとき例えば図1及び図2を参照して1相のみ励磁され、N極の回転子21が1相のS極に励磁された巻き線主極(1)と対向していれば、1相分の補助極(2)はN極に磁化されてN極の回転子21とは非対向(歯と溝で対向し電気角で180度)の位相関係になる。逆に回転子のS極22とは1相分の補助極(3)は歯が対向することになる。そして回転子Aの回転子磁束は励磁1相分巻き線コイル3と鎖交することになる。このとき励磁されてない2相分の固定子主極の歯と回転子歯とは電気角で90度の位相関係にある。これらの回転子と固定子の歯位置関係は図3に示すようになる。また回転子Bも1相分固定子と同様に対向して軸方向に同じ2つの磁気回路が形成されるので1回転子の場合の半分と磁気回路が短くできる。
図1、図2より本発明はコイルが2個しかなく回転子軸がモータのセンターでなく異中心にあるためその分小形にできる。
FIG. 1 is a configuration diagram seen from the axial direction of a rotating electrical machine by a combination of a two-phase two-winding pole, which is a reduced-main-pole structure stator of the present invention, and a two auxiliary pole stator and a special HB type rotor. However, the illustration of the shaft is omitted. Reference numeral 1 denotes a stator core, which can be a polygon or a circle including a substantially quadrilateral, and 2 is a diagram of a hybrid (hereinafter abbreviated as HB) rotor. 3 is a winding. In FIG. 1, the intersection of the Y1-Y2 axis and the X1-X2 axis is the output shaft position. If the outer shape is a square in FIG. 1 from the position of the output shaft, a> b for the winding 3. If the number of rotor teeth Nr = 4n ± 1 is selected with respect to the Z1-Z2 axis, line symmetry is obtained. FIG. 2 is a cross-sectional view including the axis of FIG.
The stator is a two-phase, two-winding pole with two inductors at each end of the two auxiliary pole main poles. The main pole for one phase consists of one winding pole and one auxiliary pole. Each position of the plurality of small teeth is positioned 180 ° apart from each other by an electrical angle of 180 ° as a position separated by an angle of about 180 °, and a plurality of Nr pieces (25 pieces in FIG. 1) are rotatably provided through an air gap. The permanent magnets 51 magnetized in the axial direction by two rotors 21 and 22 having teeth of which teeth are evenly arranged but only the portion facing the stator pole inductor magnetic teeth are shown in the tooth pitch. Are provided on the common rotating shaft 4 as two sets (23, 51, 24) of unit rotators, which are sandwiched with a ½ pitch shift, and unit rotators A and B. Rotors 22 and 23 adjacent to or adjacent to B have the same tooth position and are magnetized to the same polarity so that they can rotate freely. Is assembled by securing the air gap from the stator sides in rotor unit A side of the bracket and the rotor unit B side of the bracket. It is desirable that the stators (1) and (2) are separated by 180 ° in mechanical angle. However, the number of teeth of the rotor will be described later, but if n is an integer equal to or greater than 1, it is close to 180 degrees. Design to value.
Two sets of unit rotors may be brought into close contact with each other. However, if 22 and 23 are brought close to each other and a thin nonmagnetic plate or conductive plate is inserted between them, magnetization becomes easy.
At this time, for example, referring to FIG. 1 and FIG. 2, if only one phase is excited and the N-pole rotor 21 is opposed to the wound main pole (1) excited by the one-phase S pole, one phase The auxiliary pole (2) of the minute is magnetized to the N pole and has a phase relationship that is not opposed to the rotor 21 of the N pole (opposed by teeth and grooves and 180 degrees in electrical angle). On the other hand, the auxiliary pole (3) for one phase is opposed to the S pole 22 of the rotor. Then, the rotor magnetic flux of the rotor A is linked to the exciting one-phase winding coil 3. At this time, the stator main pole teeth and rotor teeth of two phases which are not excited have a phase relationship of 90 degrees in electrical angle. The tooth positional relationship between these rotors and the stator is as shown in FIG. Further, the same magnetic circuit is formed in the axial direction facing the rotor B in the same manner as the one-phase stator, so that the magnetic circuit can be shortened to half that of the single rotor.
1 and 2, since the present invention has only two coils and the rotor shaft is not at the center of the motor but at a different center, the size can be reduced accordingly.

図4と図3で本発明の構成でも不平衡電磁力がキャンセルされることを説明する。
図3で固定子(1)と回転子21及び23で図4のラジアル方向吸引力F1、F4が発生する。同様に補助極(3)で回転子22及び23でF2、F3が発生する。これらのラジアル方向吸引力は打ち消しあっている。図4で前後ブラケットを各々6,7とし、8なる軸受けの中心に支点を取ったモーメント力Mでみてもキャンセルされる。
即ち
M=L+(L+L+L+L)F−(L+L)F-(L+L+L)F
(1)
また次の(2)(3)式が成立する。
=F=F=F (2)
=L (3)
(1)式の右辺に(2)、(3)を代入すれば
M=0 (4)
となりモーメント力Mはキャンセルされる。
ポイントは補助極によるF,Fが巻き線極のF,Fと漏洩磁束を無視すれば同じ値となることにある。
図5、図6、図7は従来技術の図である。図5は引例の特許文献1の巻き線を省略した図であり回転子は本願図2と同じものである。前述したように本願及び8巻き線極式に比べ巻き線が4個なのでインダクタンスが約2倍と大きく低速で通常の8巻き線極に対して後述するように約2倍の高トルクであるが高速回転にトルクが小さくなる問題があつた。これを本願のようにすれば低速時トルクは半分の8巻き線極と同じでコイルが2個となるためインダクタンスも半減するので高速時トルクは通常の8巻き線極並になる。図6は巻き線の図示を省略した通常の8巻き線極の固定子30と回転子31の2相HB型回転電機を示す図であり、図7は軸を含む断面図である。図7は前述したHB回転子でお互いに歯ピッチの1/2ずらせた歯位置に構成されている回転子31,32と軸方向に磁化された永久磁石33の単位回転子が使用されている。15、16は前後ブラケットである。
4 and 3 that the unbalanced electromagnetic force is canceled even in the configuration of the present invention.
In FIG. 3, the radial suction forces F <b> 1 and F <b> 4 of FIG. 4 are generated by the stator (1) and the rotors 21 and 23. Similarly, F2 and F3 are generated in the rotors 22 and 23 at the auxiliary pole (3). These radial suction forces cancel each other. In FIG. 4, the front and rear brackets are 6 and 7, respectively, and the moment force M with the fulcrum at the center of the bearing 8 is also cancelled.
That is, M = L 1 F 1 + (L 1 + L 2 + L 3 + L 4 ) F 4 − (L 1 + L 2 ) F 2 − (L 1 + L 2 + L 3 ) F 3
(1)
Further, the following equations (2) and (3) are established.
F 1 = F 2 = F 3 = F 4 (2)
L 2 = L 4 (3)
Substituting (2) and (3) into the right side of equation (1), M = 0 (4)
The moment force M is canceled.
The point is that F 2 and F 3 by the auxiliary pole have the same value as the winding poles F 1 and F 4 and the leakage magnetic flux is ignored.
5, 6 and 7 are diagrams of the prior art. FIG. 5 is a diagram in which the winding of Patent Document 1 is omitted, and the rotor is the same as FIG. As described above, since there are four windings compared to the present application and the 8-winding pole type, the inductance is about twice as large, and the torque is about twice as high as that of a normal 8-winding pole as described later. There was a problem that the torque became small at high speed rotation. If this is applied as in the present application, the torque at the low speed is the same as that of the half 8-winding pole and the number of coils is two, and the inductance is also halved. FIG. 6 is a view showing a two-phase HB type rotating electric machine having a stator 8 and a rotor 31 of a normal 8-winding pole, in which windings are not shown, and FIG. 7 is a cross-sectional view including a shaft. In FIG. 7, the above-described HB rotator uses the rotors 31 and 32 that are arranged at tooth positions shifted from each other by 1/2 of the tooth pitch and the unit rotor of the permanent magnet 33 magnetized in the axial direction. . Reference numerals 15 and 16 denote front and rear brackets.

引例の特許文献1の2相4主極と8主極固定子に同一の単位回転子を組み合わせた場合のトルクを前述した特許文献1で説明したが再度説明する。本願構成はこの引例特許文献1に示す2相4主極モータの約半分のトルクとなる。
T1=N NriΦm (5)
1相分トルクは(5)式で表される。Nrは回転子歯数、Nはコイル巻き数、iは電流、Φmは回転子からの永久磁石の磁束のコイルとの鎖交磁束である。
両者同一線径で同一トータル巻数Ntとする。また回転子から出るトータル磁束量は両者の固定子の歯数が例えば48(8主極は8×6=48、4主極では4×12=48)と等しいとした場合は両者の固定子鉄心の磁気抵抗差を無視し同じ値のΦtと近似できるので8主極機、4主極機の各1主極の巻数、磁束を各々N8
、N4、Φ8、Φ4として、次式が成立する。

Φ8=Φt/8 (6)
Φ4=Φt/4 (7)
N8=Nt/8 (8)
N2=Nt/4 (9)

(5)〜(9)式より、8主極 4主極機のトルク、T8、T4は各々以下となる。

T8=2*4(Nt/8)Nri(Φt/8)
=NtNiΦT/8 (10)
T2=2*2(Nt/4)Nri(Φt/4)
=NtNriΦt/4 (11)

(10)、(11)より、4主極機は従来の8主極機のモータより約2倍のトルクが出せることになる。しかし通常の単位回転子の場合、4主極機は不平衡電磁力が発生し騒音や振動が大きくなる。そこで不平衡電磁力が発生しない単位回転子AとBを近接させて近接回転子同士が同一極性となるようにするわけである。従って本願のものはコイルが2個なので巻き数が半分とすればトルクは4主極機の半分の従来の8主極機と同じで構造が極めて簡単な2巻き線で8巻き線式と同じトルクが得られまた不平衡電磁力が発生しないことになる。
The torque in the case where the same unit rotor is combined with the two-phase four main poles and the eight main pole stators of the cited patent document 1 has been described in the aforementioned patent document 1, but will be described again. The configuration of the present application is about half the torque of the two-phase four-main-pole motor shown in this Patent Document 1.
T1 = N NriΦm (5)
The torque for one phase is expressed by equation (5). Nr is the number of rotor teeth, N is the number of coil turns, i is the current, and Φm is the flux linkage with the coil of the permanent magnet flux from the rotor.
Both have the same wire diameter and the same total number of turns Nt. The total amount of magnetic flux generated from the rotor is equal to, for example, 48 when the number of teeth of both stators is equal to 48 (8 × 6 = 48 for 8 main poles, 4 × 12 = 48 for 4 main poles). Neglecting the magnetic resistance difference of the iron core, it can be approximated to the same value of Φt.
, N4, Φ8, Φ4, the following equation is established.

Φ8 = Φt / 8 (6)
Φ4 = Φt / 4 (7)
N8 = Nt / 8 (8)
N2 = Nt / 4 (9)

From the formulas (5) to (9), the torques of the 8 main pole 4 main pole machine, T8 and T4 are as follows.

T8 = 2 * 4 (Nt / 8) Nri (Φt / 8)
= NtN rT / 8 (10)
T2 = 2 * 2 (Nt / 4) Nri (Φt / 4)
= NtNriΦt / 4 (11)

From (10) and (11), the 4-main pole machine can output about twice as much torque as the motor of the conventional 8-main pole machine. However, in the case of a normal unit rotor, an unbalanced electromagnetic force is generated in the 4-main pole machine, and noise and vibration increase. Therefore, the unit rotors A and B that do not generate unbalanced electromagnetic force are brought close to each other so that the adjacent rotors have the same polarity. Therefore, since the present invention has two coils, if the number of turns is halved, the torque is the same as that of the conventional 8-main pole machine, which is half of the 4-main pole machine, and the structure is very simple and the same as the 8-wind type. Torque is obtained and no unbalanced electromagnetic force is generated.

本願の2巻き線極2補助主極の場合、望ましい回転子歯数Nrは図1を参照して以下の式から誘導される。

90/Nr=(−/+){(360/4)−360n/Nr} (12)

但しnは1以上の整数。
(12)式の左辺、及び右辺は本構成のステップ角を表すしこれを整理すると(9)式が得られる。

Nr=4n±1 (13)

Nは,2相2巻き線極2補助主極構造の望ましい形態となり図1のX軸とY軸は直交する。また固定子磁極(1)と(3)、及び(2)と(4)は機械角で180°の位置となる。
ステップ角は例えばn=19でNr=75となり、2相機では(90/Nr)度がステップ角となるので、1.2度ステップ角の固定子の回転電機が得られる。また図1の図示の例はn=6でN=25、3.6度ステップ角となる。
またZ軸で対称にすれば裏表交互積層とすれば珪素鋼鈑のフープ材の圧延厚み差を吸収できる。
In the case of the two-winding pole 2 auxiliary main pole of the present application, the desired number of rotor teeth Nr is derived from the following equation with reference to FIG.

90 / Nr = (− / +) {(360/4) −360 n / Nr} (12)

However, n is an integer of 1 or more.
The left side and the right side of the equation (12) represent the step angles of this configuration, and when this is arranged, the equation (9) is obtained.

Nr = 4n ± 1 (13)

Nr is a desirable form of a two-phase, two-winding pole, two auxiliary main pole structure, and the X axis and Y axis in FIG. 1 are orthogonal. The stator magnetic poles (1) and (3) and (2) and (4) are at a mechanical angle of 180 °.
The step angle is, for example, n = 19 and Nr = 75, and in a two-phase machine, the step angle is (90 / Nr) degrees, so that a stator rotating electric machine having a 1.2 degree step angle is obtained. The example shown in FIG. 1 is a N r = 25,3.6 ° step angle at n = 6.
Moreover, if it makes it symmetrical with Z axis | shaft, if it will be a back and front alternate lamination | stacking, the rolling thickness difference of the hoop material of a silicon steel plate can be absorbed.

図2で永久磁石は2個使用するので、低グレード磁石でも高いトルクが得られることを従来の2相8主極式の磁石1個使用の(図6、図7の構成)場合と比較して示す。従来の2相8主極式で使用する永久磁石は希土類磁石でネオジム磁石で残留磁束密度Brが1.3[T]を使用していた。これに対し、本願の場合は磁石が2個なので、磁石のBrは次式で得られる。

Br =1.3[T]×(1/2)(3/2)(4/8)=0.4875[T] (14)

式(14)の(1/2)は1個の磁石で励磁する回転子の外周面積が同一サイズの従来
の8主極と組み合わせた通常のHB型回転子と比較して略1/2になるため永久磁石から発生する磁束も半分でよいので磁石の面積が同じなら磁石の磁束密度は半分でよいとの理由、(3/2)は永久磁石の磁路長さが半減するために鉄心部でのパーミアンスが単純約2倍となるが、エアギャップや磁路の磁束密度の低下を考慮してトータルでパーミアンスが約3/2倍に近似したものである。(4/8)は(4主極/8主極)を意味しトルクは前述した(10)式と(11)式の関係から主極数に反比例することによるものである。
この(14)式におけるBrの値の磁石でBrが1.3[T](テスラ)のネオジム磁石を使用した8主極モータと同程度のトルクが得られることになる。式(14)の結果はコンピユターでの磁場解析結果とほぼ一致している。
このBrの値はフェライト磁石に相当する。フェライト磁石はBrが0.5[T]で保持力Hcj=275KA/m程度でその減磁曲線は磁束密度を垂直に保持力を水平に取った座標の第二象限で直線となり、磁路に組まれた永久磁石のパーミアンス係数を勾配とした原点を通過する直線と減磁曲線との交点が動作点となるがその動作点磁束密度はほぼ永久磁石のBrに比例することから近似的に(14)式が成立する。フェライト磁石は希土類磁石に比べて極めて安価であり、2個使用してもネオジム磁石より安くなる。即ち0.5[T]以下の磁石で十分実用トルクが得られる。0.5[T]以下の磁石であれば乾式や湿式の焼結フェライト磁石に限らず樹脂をバインダーとしたボンド(プラスチック)磁石でもよい。焼結フェライト磁石では例えば外形25mmで厚みは2mm程度が量産する限度であり、それより薄いと割れ不良が多発する。これをボンド磁石にすれば割れ不良は解決する。
2相4巻き線極固定子と前述の2連回転子で不平衡電磁力を抑えながら0.5[T]以下のローグレードの永久磁石を採用することにより、従来の高価なネオジム焼結磁石やサマリユムコバルト磁石のような希土類磁石を採用した同サイズモータに対しトルクを同等あるいは倍増することも可能であり今までにはない画期的な新技術といえる。
Since two permanent magnets are used in Fig. 2, the fact that high torque can be obtained even with low grade magnets is compared with the case of using a conventional two-phase 8-main pole type magnet (configuration in Figs. 6 and 7). Show. The conventional permanent magnet used in the two-phase 8-main pole type is a rare earth magnet, a neodymium magnet, and a residual magnetic flux density Br of 1.3 [T]. On the other hand, since there are two magnets in the case of the present application, the Br of the magnet is obtained by the following equation.

Br = 1.3 [T] x (1/2) (3/2) (4/8) = 0.4875 [T] (14)

In equation (14), (1/2) is approximately ½ the outer peripheral area of the rotor excited by one magnet compared to a conventional HB rotor combined with a conventional eight main pole of the same size. Therefore, the magnetic flux generated from the permanent magnet may be halved, so if the magnet area is the same, the magnetic flux density of the magnet may be halved. (3/2) is the iron core because the magnetic path length of the permanent magnet is halved. The permeance at the portion is simply about twice, but the permeance is approximated to about 3/2 times in total in consideration of the decrease in the air gap and the magnetic flux density of the magnetic path. (4/8) means (4 main poles / 8 main poles), and the torque is due to being inversely proportional to the number of main poles based on the relationship between the above-mentioned formulas (10) and (11).
A torque equivalent to that of an 8-main pole motor using a Ne value magnet having a Br value of 1.3 [T] (Tesla) with a magnet having a value of Br in the equation (14) can be obtained. The result of the equation (14) almost coincides with the magnetic field analysis result in the computer.
The value of Br corresponds to a ferrite magnet. The ferrite magnet has a Br of 0.5 [T] and a holding force Hcj of about 275 KA / m, and its demagnetization curve becomes a straight line in the second quadrant of the coordinates where the magnetic flux density is perpendicular and the holding force is taken horizontally, The operating point is the intersection of the straight line passing through the origin with the permeance coefficient of the assembled permanent magnet as the gradient and the demagnetizing curve. The operating point magnetic flux density is approximately proportional to Br of the permanent magnet ( 14) is established. Ferrite magnets are extremely cheaper than rare earth magnets, and even if two are used, they are cheaper than neodymium magnets. That is, sufficient practical torque can be obtained with a magnet of 0.5 [T] or less. If it is a magnet of 0.5 [T] or less, it is not limited to a dry or wet sintered ferrite magnet, but may be a bond (plastic) magnet using a resin as a binder. In sintered ferrite magnets, for example, an outer diameter of 25 mm and a thickness of about 2 mm are the limit for mass production, and if it is thinner than that, crack defects frequently occur. If this is used as a bond magnet, the crack defect is solved.
By adopting a low-grade permanent magnet of 0.5 [T] or less while suppressing unbalanced electromagnetic force with the two-phase four-winding pole stator and the above-described two-line rotor, a conventional expensive neodymium sintered magnet Torque can be increased or reduced by the same size as the same size motors using rare earth magnets such as samarium cobalt magnets.

これまでの本発明の説明は2組のHB型回転子の構成で説明してきた。これに対し例えば図1で固定子はそのままで回転子のN極S極を交互に円周方向に磁化した円筒磁石の図8に示した回転子と入れ替えても良い。
即ち図1の場合ではNSの対数が25であればよい。この場合不平衡電磁力は図2で21,24が円筒磁石のN極、22,23が円筒磁石のS極に相当するので同様にキャンセルされる。Nr個の極対数円筒磁石であればNr=4n±1も同様に成立する。nは1以上の整数。
The description of the present invention so far has been made with the configuration of two sets of HB type rotors. On the other hand, for example, the rotor shown in FIG. 1 may be replaced with the rotor shown in FIG. 8 which is a cylindrical magnet in which the north and south poles of the rotor are alternately magnetized in the circumferential direction without changing the stator.
That is, in the case of FIG. 1, the logarithm of NS may be 25. In this case, the unbalanced electromagnetic force is canceled in the same manner because 21 and 24 correspond to the N pole of the cylindrical magnet and 22 and 23 correspond to the S pole of the cylindrical magnet in FIG. In the case of Nr pole pair number cylindrical magnets, Nr = 4n ± 1 is similarly established. n is an integer of 1 or more.

本発明による回転電機は安価な構造と安価な磁石で従来の2相8巻き線式と同等のトルクが出せるのでOA機器である複写機やプリンターの用途に対し安価で高トルクなモータの提供が可能であり、エアギャップも大きく出来るので低振動のアクチュエータとなり、工業的に大きな寄与が期待される。その他、医療機器、FA機器、ロボット、遊戯機械、住宅設備機器への応用も大いに期待される。   Since the rotating electrical machine according to the present invention can produce a torque equivalent to that of the conventional two-phase 8-winding type with an inexpensive structure and an inexpensive magnet, it is possible to provide an inexpensive and high-torque motor for use in a copying machine or printer as an OA device. This is possible, and since the air gap can be increased, it becomes an actuator with low vibration and is expected to make a significant industrial contribution. In addition, application to medical equipment, FA equipment, robots, amusement machines, and housing equipment is also highly expected.

本発明の回転電機の図Diagram of the rotating electrical machine of the present invention 図1の側面断面図Side sectional view of FIG. 本発明の歯位置の図Figure of tooth position of the present invention 本発明のラジアル吸引力の図Diagram of radial suction force of the present invention 従来の回転電機の図Figure of conventional rotating electrical machine 別の従来の回転電機の図Illustration of another conventional rotating electrical machine 図6の側面断面図Side sectional view of FIG. 本発明の固定子と組み合わせる別の回転子Another rotor combined with the stator of the present invention

符号の説明Explanation of symbols

1、30 :固定子
2,21,22,23,24,31,32:回転子
3、 :巻き線、
4、 :出力軸
51、33 :永久磁石、
6、15 :前ブラケット、
7、16 :後ブラケット
8 :軸受け
1, 30: Stator 2, 21, 22, 23, 24, 31, 32: Rotor 3 ,: Winding,
4,: Output shaft 51, 33: Permanent magnet,
6, 15: Front bracket,
7, 16: Rear bracket 8: Bearing

Claims (6)

四辺形を含めた多角形や略環状の磁性体より突き出て設けた、2相式で2つの巻き線極と2つの補助極で構成された固定子主極の各先端に複数個の誘導子を有し、1相分の主極は1個の巻き線極と1個の補助極が機械角で略180°隔てた位置として各々の複数の小歯位置はお互いに電気角で180°隔てた位置とし、エアギャップを介して回転自在に設けられた複数N個の歯を有した回転子を2個で軸方向に磁化した永久磁石をお互いに歯ピッチの1/2ピッチ分ずらして挟持した単位回転子を2組、共通回転軸上に設けて、2組の単位回転子の近接あるいは隣接する回転子同士は歯位置が同一であり且つ同一極性に磁化されて、回転自在にエアギャップを確保して組立されることを特徴とする永久磁石式回転電機。 Plural inductors at each end of the stator main pole, which consists of two winding poles and two auxiliary poles in a two-phase system, protruding from a polygon including a quadrilateral or a substantially annular magnetic body. The main pole for one phase is a position where one wound pole and one auxiliary pole are separated by approximately 180 ° in mechanical angle, and each of the plurality of small tooth positions is separated by 180 ° in electrical angle from each other. The permanent magnets magnetized in the axial direction with two rotors having a plurality of Nr teeth provided rotatably through an air gap are shifted from each other by ½ pitch of the tooth pitch. Two sets of sandwiched unit rotors are provided on a common rotating shaft, and the adjacent or adjacent rotors of the two sets of unit rotors have the same tooth position and are magnetized to the same polarity so that they can rotate freely. A permanent magnet type rotating electrical machine that is assembled with a gap secured. 請求項1で回転子歯数はNr=4n±1であることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to claim 1, wherein the number of rotor teeth is Nr = 4n ± 1. 請求項1で回転子は回転子周方向にN極とS極が交互に配置された円筒型永久磁石を含む回転子であることを特徴とする永久磁石式回転電機。   The permanent magnet type rotating electric machine according to claim 1, wherein the rotor is a rotor including a cylindrical permanent magnet in which N poles and S poles are alternately arranged in a circumferential direction of the rotor. 請求項3において回転子の極対数が4n±1であることを特徴とする永久磁石式回転電機。   4. The permanent magnet type rotating electric machine according to claim 3, wherein the number of pole pairs of the rotor is 4n ± 1. 請求項1から4においてモータ出力軸位置が該環状形の固定子のセンターと異なる位置であることを特徴とする永久磁石式回転電機。   5. The permanent magnet type rotating electrical machine according to claim 1, wherein the motor output shaft position is different from the center of the annular stator. 請求項1及び2において永久磁石をフェライト磁石としたことを特徴とする永久磁石式回転電機。   3. A permanent magnet type rotating electric machine according to claim 1, wherein the permanent magnet is a ferrite magnet.
JP2007020429A 2007-01-31 2007-01-31 Permanent magnet type two-phase rotating electric machine Expired - Fee Related JP5015621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020429A JP5015621B2 (en) 2007-01-31 2007-01-31 Permanent magnet type two-phase rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020429A JP5015621B2 (en) 2007-01-31 2007-01-31 Permanent magnet type two-phase rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008187846A true JP2008187846A (en) 2008-08-14
JP5015621B2 JP5015621B2 (en) 2012-08-29

Family

ID=39730496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020429A Expired - Fee Related JP5015621B2 (en) 2007-01-31 2007-01-31 Permanent magnet type two-phase rotating electric machine

Country Status (1)

Country Link
JP (1) JP5015621B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327150A (en) * 2000-05-10 2001-11-22 Yazaki Corp Stepping motor
JP2003070223A (en) * 2001-08-23 2003-03-07 Nidec Copal Corp Stepping motor
JP2006014597A (en) * 2005-08-15 2006-01-12 Japan Servo Co Ltd Permanent magnet type rotary electric machine
JP3762981B2 (en) * 2001-10-16 2006-04-05 日本サーボ株式会社 Permanent magnet rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327150A (en) * 2000-05-10 2001-11-22 Yazaki Corp Stepping motor
JP2003070223A (en) * 2001-08-23 2003-03-07 Nidec Copal Corp Stepping motor
JP3762981B2 (en) * 2001-10-16 2006-04-05 日本サーボ株式会社 Permanent magnet rotating electric machine
JP2006014597A (en) * 2005-08-15 2006-01-12 Japan Servo Co Ltd Permanent magnet type rotary electric machine

Also Published As

Publication number Publication date
JP5015621B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4692090B2 (en) Axial air gap type electric motor
US7595575B2 (en) Motor/generator to reduce cogging torque
JP2007236073A (en) Hybrid rotary electric machine
JP5985342B2 (en) Motor and rotor for motor
US10367385B2 (en) Motor
WO2017110688A1 (en) Motor
US7779532B2 (en) Manufacturing method of hybrid permanent magnet type electric rotating machine
JP2007089304A (en) Permanent-magnet type rotating electric machine
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
JP4823425B2 (en) DC motor
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP4169357B2 (en) Permanent magnet rotating electric machine
JP5015621B2 (en) Permanent magnet type two-phase rotating electric machine
JP2019041530A (en) motor
JP5077369B2 (en) Brushless motor
JP4599860B2 (en) Brushless motor
JP5413919B2 (en) Power generator
JP5324025B2 (en) Rotating electric machine
JP4392417B2 (en) Permanent magnet type rotating electric machine with coil on rotor side
JP3679294B2 (en) Ring coil type rotating electrical machine
JP2008252976A (en) Axial-gap type rotating machine
JP4533904B2 (en) Permanent magnet rotating electric machine
JP2006254584A (en) Rotating electric machine having coil arranged at rotor side
JP3045935B2 (en) Permanent magnet type stepping motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees