JP4392417B2 - Permanent magnet type rotating electric machine with coil on rotor side - Google Patents

Permanent magnet type rotating electric machine with coil on rotor side Download PDF

Info

Publication number
JP4392417B2
JP4392417B2 JP2006137191A JP2006137191A JP4392417B2 JP 4392417 B2 JP4392417 B2 JP 4392417B2 JP 2006137191 A JP2006137191 A JP 2006137191A JP 2006137191 A JP2006137191 A JP 2006137191A JP 4392417 B2 JP4392417 B2 JP 4392417B2
Authority
JP
Japan
Prior art keywords
rotor
stator
magnetic
axial direction
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006137191A
Other languages
Japanese (ja)
Other versions
JP2007312468A (en
Inventor
正文 坂本
亨 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Servo Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP2006137191A priority Critical patent/JP4392417B2/en
Publication of JP2007312468A publication Critical patent/JP2007312468A/en
Application granted granted Critical
Publication of JP4392417B2 publication Critical patent/JP4392417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は回転子側面にコイルを有した永久磁石型回転電機でありハイブリッド型永久磁石式回転子を組み合わせたステッピングモータ等の回転電機に関する。   The present invention relates to a rotary electric machine such as a stepping motor, which is a permanent magnet type rotary electric machine having a coil on a rotor side surface and is combined with a hybrid type permanent magnet type rotor.

小型で高トルク、低振動がOA機器等に使用されるステッピングモータ等の回転電機に要求されている。この問題を解決するものとして本願発明者はすでに次の特許出願をしている。本願はこれらの先行特許の小形高分解能回転電機に適した構造の提供に関する。   There is a demand for a rotating electrical machine such as a stepping motor that is small and has high torque and low vibration used in OA equipment. In order to solve this problem, the present inventor has already applied for the following patent. The present application relates to the provision of a structure suitable for the small high-resolution rotary electric machine of these prior patents.

特願2001−317708Japanese Patent Application 2001-317708 米国特許USP6781260B2US Patent USP67881260B2

1)OA機器やロボットの指を駆動する回転電機で特に位置決めが容易なステッピングモータにおいては小形でステップ角度を小さく保つには固定子相数を2相から5相等に増加したり、回転子の歯数を増加する必要があった。しかし回転子の歯数を増加するには現状のプレス打ち抜き技術では限界があり、歯幅は珪素鋼鈑の板厚程度以下にするのは困難で、従来の回転子外周部に巻き線した固定子構造では小形で高分解能な設計は困難であった。
2)アウターロータ型は回転子径が大きく出来るので、高分解能には適しているがコイルがロータ内部に配置されるため温度上昇が高くなり、また軸支持が一般に片持ち式となり、一般的な用途には適してないものであった。アウターロータの長所を有したインナーロータ型が求められていた。
1) In order to keep the step angle small and small in stepping motors that are easy to position, especially with rotating electrical machines that drive OA equipment and robot fingers, the number of stator phases can be increased from two to five, etc. It was necessary to increase the number of teeth. However, increasing the number of teeth of the rotor is limited by the current stamping technology, and it is difficult to reduce the tooth width below the thickness of the silicon steel plate. Small and high-resolution design is difficult for the child structure.
2) The outer rotor type is suitable for high resolution because the rotor diameter can be increased, but the temperature rises because the coil is placed inside the rotor, and the shaft support is generally cantilevered. It was not suitable for use. There has been a need for an inner rotor type having the advantages of an outer rotor.

本発明を実現するには以下の手段による。
「手段1」
外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、この両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた位置で挟持された軸方向に磁化した永久磁石とを回転子軸に固定してハイブリッド型回転子を構成し、回転子の外周にエアギャップを介して対向し各々内周に磁歯を有すると共に軸方向に伸び円周方向に均等に配置された2Ns個の固定子アームと、2Ns個の固定子アームをそれぞれの両端あるいは所定の個所で連結すると共に前記各固定子アームの中間位置である2Ns個所に磁気抵抗を大きくするための穴あるいは細首部を略均等に有した磁性体中空円板と、回転子の軸方向の一方側及び他方側に配置されそれぞれコイルが巻かれたヨークとを有し、各固定子アームの内1個おきのNs個の固定子アームを一方側のヨークと磁気的に結合すると共に、残りのNs個の固定子アームを他方側のヨークと磁気的に結合して固定子を構成したことを手段とした永久磁石式回転電機。
「手段2」
手段1において、固定子のコイルの軸心方向が回転子軸方向と直交することを手段とする永久磁石式回転電機。
「手段3」
手段1において、固定子のコイルの軸心方向が回転子軸方向と平行であることを手段とする永久磁石式回転電機。
「手段4」
外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、この両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた位置で挟持された軸方向に磁化した永久磁石とを回転子軸に固定してハイブリッド型回転子を構成し、回転子の外周にエアギャップを介して対向し各々内周に磁歯を有すると共に軸方向に伸び円周方向に均等に配置された2Ns個の固定子アームと、2Ns個の固定子アームをそれぞれの両端あるいは所定の個所で連結すると共に前記各固定子アームの中間位置である2Ns個所に磁気抵抗を大きくするための穴あるいは細首部を周方向略均等に有した磁性体中空円板と、回転子の軸方向の一方側及び他方側に配置されそれぞれ回転子軸と同心にコイル軸心が位置するようにコイルが巻かれたヨークとを有し、各固定子アームの内1個おきのNs個の固定子アームを一方側のヨークと磁気的に結合すると共に、残りのNs個の固定子アームを他方側のヨークと磁気的に結合して固定子を構成したことを手段とした永久磁石式回転電機。
「手段5」
手段1または4において、ハイブリッド型回転子は、外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、この両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた状態で挟持された軸方向に磁化した永久磁石とを用いて単位回転子とし、この単位回転子を2個回転子軸に同軸連結しそれぞれの隣接する回転子要素が同一磁化特性であり互いの磁歯が周方向同一位置になるようにして構成したことを手段とする永久磁石式回転電機。
「手段6」
手段1から5のいずれかにおいて、固定子の一方側及び他方側のヨークは、回転子軸を支持する軸受けの外周部を保持し、回転子軸が両ヨークの少なくとも一方を貫通していることを手段とする永久磁石式回転電機。
The present invention is realized by the following means.
"Means 1"
Two rotor elements made of a magnetic material having Nr magnetic teeth uniformly on the outer periphery, and an axial direction sandwiched between the two rotor elements at a position where the tooth pitch of each magnetic tooth is shifted by 1/2 A permanent rotor magnetized on the rotor shaft is fixed to form a hybrid rotor. The rotor is opposed to the outer periphery of the rotor via an air gap, has magnetic teeth on the inner periphery, and extends in the axial direction in the circumferential direction. The 2Ns stator arms arranged evenly and 2Ns stator arms are connected to each other at both ends or at predetermined positions, and the magnetic resistance is increased at 2Ns positions that are intermediate positions of the stator arms. For each stator arm, and a magnetic hollow disc having holes or narrow necks for equality, and yokes arranged on one side and the other side in the axial direction of the rotor and wound with coils respectively. Every other Ns stators A permanent magnet type rotating electrical machine having a means in which the arm is magnetically coupled to one yoke and the remaining Ns stator arms are magnetically coupled to the other yoke to form a stator .
"Means 2"
A permanent magnet type rotating electrical machine according to means 1, wherein the axial direction of the stator coil is orthogonal to the rotor axial direction .
"Means 3"
The permanent magnet type rotating electrical machine according to means 1, wherein the axial direction of the stator coil is parallel to the rotor axial direction .
"Means 4"
Two rotor elements made of a magnetic material having Nr magnetic teeth uniformly on the outer periphery, and an axial direction sandwiched between the two rotor elements at a position where the tooth pitch of each magnetic tooth is shifted by 1/2 A permanent rotor magnetized on the rotor shaft is fixed to form a hybrid rotor. The rotor is opposed to the outer periphery of the rotor via an air gap, has magnetic teeth on the inner periphery, and extends in the axial direction in the circumferential direction. The 2Ns stator arms arranged evenly and 2Ns stator arms are connected to each other at both ends or at predetermined positions, and the magnetic resistance is increased at 2Ns positions that are intermediate positions of the stator arms. And a magnetic hollow disk having substantially uniform holes or narrow necks in the circumferential direction, and arranged on one side and the other side in the axial direction of the rotor so that the coil axis is positioned concentrically with the rotor shaft. With the coiled yoke And every other Ns stator arms of each stator arm are magnetically coupled to one yoke and the remaining Ns stator arms are magnetically coupled to the other yoke A permanent magnet type rotating electrical machine that uses the stator as a means.
"Means 5"
In the means 1 or 4, the hybrid rotor has two rotor elements made of a magnetic material having Nr magnetic teeth evenly on the outer periphery, and the tooth pitch of each magnetic tooth is determined by the both rotor elements. A unit rotor is formed by using an axially magnetized permanent magnet sandwiched in a state of being shifted by a half, and the two unit rotors are coaxially connected to the rotor shaft so that each adjacent rotor element has the same magnetization. A permanent magnet type rotating electrical machine characterized in that the magnetic teeth of each other are configured in the same position in the circumferential direction .
"Means 6"
In any one of means 1 to 5, the yokes on one side and the other side of the stator hold the outer peripheral portion of the bearing that supports the rotor shaft, and the rotor shaft passes through at least one of both yokes. Permanent magnet type rotating electrical machine using as a means.

1)限られた外径で高分解能を実現させるにはコイル配置を回転子の外周に置くよりモータ長はその分長くなるが回転子の軸方向両側部に配置したインナーロータとする方が回転子径を大きく出来、高分解能になる。小形ステッピングモータとした場合、小ステップ角度の高分解能となり、位置決め精度が向上し、回転むらのないモータとなる。所定の分解能に設計して回転子位置を検出して励磁電流を流すタイミングを決めて駆動するブラシレスモータとしてもよい。
2)低速大トルクの特性となるのでメカニカルな減速体を使用しないダイレクトドライブに適した回転電機となる。
3)コイルを外部に露出可能な構造なので銅損に起因する温度上昇を押さえる効果が大きいモータとなる。
4)スロット内にコイルを入れる従来式と比べ、ヨークに集中巻きしてコイル占積率を大きく出来るのでコイル量を増して、回転子径大効果に加えて大トルク化が可能となる
5)コイルヨークに圧粉鉄心を使用すれば本構造の長所を更に向上できる。
1) To achieve high resolution with a limited outer diameter, the motor length is longer than the coil arrangement on the outer circumference of the rotor, but the inner rotor arranged on both axial sides of the rotor rotates. The diameter can be increased, resulting in high resolution. When a small stepping motor is used, a high resolution with a small step angle is obtained, positioning accuracy is improved, and the motor has no rotation unevenness . A brushless motor that is designed to have a predetermined resolution, detects the rotor position, determines the timing for supplying the excitation current, and drives the brushless motor.
2) Because of the low speed and large torque characteristics, the rotating electric machine is suitable for direct drive without using a mechanical speed reducer.
3) Since the coil can be exposed to the outside, the motor has a large effect of suppressing the temperature rise caused by copper loss.
4) compared with the conventional placing coils in the slot, since it increases the coil space factor in wound concentrate on the yoke by increasing the coil volume, it is possible to large torque reduction, in addition to the rotor large diameter effect.
5) If a dust core is used for the coil yoke, the advantages of this structure can be further improved.

以下図面によって説明する。 This will be described below with reference to the drawings.

図1は本発明の1例の回転軸を含む正面断面図である。1は固定子主極アームでありその内周部に複数の小歯を有しており、以下単に固定子アームと呼ぶが、合計2Ns個を略均等に360度にわたり同心的に配置してある。後述する図8にその回転子軸方向から見た固定子アーム1の図をNs=2の場合で示した。2は固定子アーム1をその両側面で鳥かご的円筒状に連結するエンドリング的な磁性体中空円板である。3は回転子の側面に設けた磁性体ヨークであり、絶縁体6を介してコイル4、5が巻かれ、中空円板2を介して固定子アーム1と接し、コイル4,5に電流を流したとき、コイル4,5の反回転子軸側がお互いに異極性となるようにしてある。9、10は磁性体回転子要素であり、その外周にNr個(複数個)の歯を有しており、回転子要素9,10の2個でお互いに歯ピッチの1/2ずれた位置で軸方向に磁化した永久磁石11を挟持し回転軸12に固定してハイブリッド型回転子を構成している。13はボールベアリング等の軸受けである。回転子要素9,10の外周で、エアギャップを介して対向した各々磁歯を有した2Ns個の軸方向に伸びた上述した固定子アーム1が配置され、その内1個おきのNs個の該アームは磁性体中空板2を介して一方の回転子要素9側端面側に配したコイル4、5が巻かれたヨーク3と磁気的に結合している。残りのNs個の固定子アームはもう一方の回転子10側端面側に配したコイル7,8が巻かれヨーク3と同様の構成でヨーク3とは電気角で90度の位相差を有するように配置したヨーク3´と磁気的に結合して固定子が形成される。
図2は図1の軸方向でヨーク3のほぼ中央部で切断して軸方向から見た図であり固定子構造を説明するために回転子の図示は省略してある。Ns=2の場合の2相式回転電機の図である。コイル4と5で1相分を形成し、コイル7と8で2相分を形成する。Ns=2は1相分固定子アームも2個であり、この場合は電気角と機械角が同じとなるのでヨーク3とヨーク3´は機械角でも90度の角度差を有する配置になる。もしNsが4であれば図示は省略してあるが、ヨーク3及び3´は90度ごとに4個の突出ヨーク部に4個のコイルが巻かれ、お互いに電気角で90度従って機械角で45度の角度差を有する配置の計8個の固定子アームによる2相式回転電機なる。この場合は図1に示す回転子でラジアル方向不平行電磁力の発生しないものとなる。合計2Ns個のアームは珪素硬軟の積層で形成し固定子アーム1同士を連結するのに磁性体中空円板2でそれらの両端部あるいは所定の場所で連結してもよい。両端部と中央部で合計3枚の磁性体中空円板2で連結固定してもよい。尚合計2Ns個のアーム1の1個おきのNs個のアーム1はヨーク3から一体的に形成して直角に回転子軸方向に突き出したものでもよい。そして残りのNs個のアームヨーク3´から軸方向に突き出したものでもよい。これらは焼結鉄芯や鉄粉を樹脂で絶縁して固めた圧粉鉄芯でも製作できる。
3相式とする場合は、ヨーク3及び3´を機械角で120度ごとに3個の突出ヨーク部を設けヨーク3及び3´それぞれ計3個のコイルが巻かれ、全ての突出ヨーク部を機械角で60度毎の配置とすればNs=3で合計6個の固定子アームによる3相式回転電機となる。これらは回転子の軸方向側面に配置したコイル軸心方向が回転子軸方向と直交している特徴がある。コイル軸心方向とはコイルに電流を流したときコイル心から発生する磁束の方向を意味する。
FIG. 1 is a front sectional view including a rotation shaft of an example of the present invention. Reference numeral 1 denotes a stator main pole arm, which has a plurality of small teeth on the inner peripheral portion thereof. Hereinafter, the stator arm is simply referred to as a stator arm, and a total of 2Ns are arranged concentrically over 360 degrees. . FIG. 8 described later shows a diagram of the stator arm 1 viewed from the rotor axial direction in the case of Ns = 2. An end ring-like magnetic hollow disk 2 connects the stator arm 1 in a birdcage-like cylindrical shape on both side surfaces thereof. Reference numeral 3 denotes a magnetic yoke provided on the side surface of the rotor. The coils 4 and 5 are wound through an insulator 6 and are in contact with the stator arm 1 through a hollow disk 2 so that current is supplied to the coils 4 and 5. When flowing, the opposite rotor shaft sides of the coils 4 and 5 have different polarities. 9,10 is a magnetic rotor element has a magnetic tooth Nr number (plurality) on its outer periphery, shifted by a half of the tooth pitch from each other by two rotor elements 9, 10 constitute a hybrid type rotor to secure the permanent magnet 11 magnetized axially clamping rotating stylus shaft 12 in position. Reference numeral 13 denotes a bearing such as a ball bearing. On the outer periphery of the rotor elements 9, 10, there are arranged 2Ns of the above-described stator arms 1 extending in the axial direction, each having magnetic teeth facing each other via an air gap, of which every other Ns pieces are arranged. the arm 1 is magnetically coupled with the yoke 3 of coils 4 and 5 is wound which arranged on the end face side of one of the rotor elements 9 side through the magnetic hollow disks 2. The remaining Ns stator arms 1 are wound around coils 7 and 8 disposed on the end face side of the other rotor 10 and have the same configuration as the yoke 3, and have a phase difference of 90 degrees in electrical angle with the yoke 3. A stator is formed by magnetically coupling with the yoke 3 ′ arranged to have .
Figure 2 is illustrated the rotor to explain and stator structure diagram as viewed in the axial direction by cutting with a substantially central portion of the yoke 3 in the axial direction of FIG. 1 are omit. It is a figure of the two-phase rotary electric machine in case of Ns = 2. Coils 4 and 5 form one phase, and coils 7 and 8 form two phases. Ns = 2 has two stator arms for one phase. In this case, the electrical angle and the mechanical angle are the same, so that the yoke 3 and the yoke 3 'are arranged to have a 90-degree angular difference in mechanical angle. If Ns is 4, the yokes 3 and 3 'are not shown in the figure, but four coils are wound around four protruding yoke portions every 90 degrees, and the electrical angle is 90 degrees with respect to each other. Thus, a two-phase rotating electric machine with a total of eight stator arms arranged with an angle difference of 45 degrees is obtained. In this case, the rotor shown in FIG. 1 does not generate radial non-parallel electromagnetic force. Total 2Ns number of arms may be connected at their opposite ends or a predetermined location in the magnetic hollow disk 2 for connecting the stator arm 1 together with a laminate of silicon hardness. A total of three magnetic hollow disks 2 may be connected and fixed at both ends and the center. Incidentally total 2Ns number of Ns pieces of arm 1 of every other arm 1 may be one protruding on the rotor axis at right angles are integrally formed from a yaw click 3. The remaining Ns arms 1 may protrude from the yoke 3 ′ in the axial direction. These can also be produced by using a sintered iron core or a compacted iron core obtained by insulating and hardening iron powder with a resin.
If a three-phase, the yoke 3 and each total of three coils of three projecting yoke portions every 120 degrees in mechanical angle provided in the yokes 3 and 3 '3'is wound, all projecting yoke If the part is arranged at every 60 degrees in mechanical angle, Ns = 3 and a three-phase rotating electric machine with a total of six stator arms is obtained. It is characterized for the coil axis direction disposed on the axial side of the rotor is orthogonal to the rotor axis. The coil axial direction that means the direction of the magnetic flux sincerely generating coil when current flows in the coil.

図1、2では固定子アーム1を珪素鋼鈑の積層で形成したり、あるは圧粉鉄心等でアーム数合計2Ns個をヨーク3及び3´とは別体に独立で形成する場合には、磁性体中空円板で合計2Ns個のアーム1を均等に円周方向に配置しその両端部で固着して固定子アーム1と磁性体中空円板2で鳥かご状円筒体を形成する。そしてその後に中空円板2にヨーク3及び3´と磁気的に結合すればよい。この場合は各アームに対抗する磁性体中空円板2のほぼ中間部は穴や細首部を設けて磁気的に飽和を起こさせて磁気絶縁的にあるいは磁気抵抗を高くした形状とすることが望ましい。図2の中空円板2に示した4個の穴はそのためのものである。一般的に述べれば磁性体中空円板は略均等に2Ns個所の磁気抵抗を大きくするための穴あるいは細首部を有したものが望ましい。 In FIGS. 1 and 2, when the stator arm 1 is formed of a stack of silicon steel plates, or when a total number of arms of 2Ns is formed separately from the yokes 3 and 3 ′ using a dust core or the like. the total 2Ns number of arms 1 evenly in magnetic hollow disks arranged circumferentially fixed at its ends to form a birdcage-like cylindrical body stator arm 1 and the magnetic hollow disk 2. Then, the hollow disc 2 may be magnetically coupled to the yokes 3 and 3 '. In this case, it is desirable that a substantially hollow portion of the magnetic hollow disk 2 that opposes each arm is provided with a hole or a narrow neck so that it is magnetically saturated so as to be magnetically insulating or have a high magnetic resistance. . The four holes shown in the hollow disk 2 in FIG. 2 are for that purpose. Generally Stated if magnetic hollow disc that is not to desired having a hole or narrow neck portion for increasing substantially uniformly reluctance of 2Ns point.

図3は別の本発明の説明図であり、図1図2の場合と回転子及び固定子アーム1、磁性体中空円板2は同じものであるが回転子側面に配置した絶縁体16に巻かれたコイル15、17、18,19のコイル軸芯方向が回転子軸方向と平行になるように配置したものである。従って固定子アーム1に磁気的に連結する回転子の軸方向両側面に配置したヨーク14と14´は同じものであるが、Ns=2の場合は、ヨーク14と14´はお互いに90度回転した位置関係に配置されている。図4は図3で回転子及び軸受けをを除いて回転軸方向から見た図であり主にヨーク14と14´の位置関係を示す図である。図3で軸、回転子、軸受けは図1図2と同じ番号が付されている。ヨーク14と14´は圧粉鉄芯で形成することが出来る。またコイル15等を直接巻くのでなく挿入する場合はヨーク14、14´は適宜分割すればよい。ヨーク14と14´は図3に示すように固定子アーム1、磁性体中空円板2の内径に嵌合してもよく、こうすれば回転子とのエアギャップの確保が容易になる。 FIG. 3 is another explanatory view of the present invention. The rotor and stator arm 1 and the magnetic hollow disk 2 are the same as those in FIG. 1 and FIG. The wound coils 15, 17, 18, 19 are arranged so that the coil axis direction is parallel to the rotor axis direction. Accordingly, the yokes 14 and 14 'disposed on both axial sides of the rotor magnetically coupled to the stator arm 1 are the same, but when Ns = 2, the yokes 14 and 14' are 90 degrees from each other. Arranged in a rotated positional relationship. Figure 4 is a diagram showing the Fig and is mainly positional relation of the yoke 14 and 14 'viewed rotor and the bearing from the rotating child axis except in FIG. In FIG. 3, the shafts, rotors and bearings are given the same numbers as in FIG. The yokes 14 and 14 'can be formed of a dust core. In addition, when the coil 15 or the like is inserted instead of being wound directly, the yokes 14 and 14 'may be appropriately divided. Yoke 14 and 14 'stator arm 1 as shown in FIG. 3, may be fitted to the inner diameter of the magnetic hollow disk 2, it is readily ing ensure the air gap between the rotor This way.

図5は更に別の本発明の説明図である。回転子や軸受け及び固定子アーム1、磁性体環状板2は図1から図4に示したものと同じものであるので同じ部品番号としてある。図5の特徴は回転子両側面に配置したコイル23,24は完全環状コイルであり、各々1個であり、コイル軸心は回転子軸方向と同心に配置され、2相方式に限定されるものである。コイル23,24のヨーク21と22は同じものであるがNs=2の場合は、図5に示すようにお互いに90度回転させた位置に配置している。図6は環状コイル23,24及び回転子の図示は省略して固定子とヨーク21と22の位置関係を示したものである。本方式はコイル数が前述の本発明に比べて2個と少ないことと、この方式もコイルが一部露出させることが出来るので温度上昇を低く出来る。また図1から6で、コイルヨークは軸受け外周部を保持しながら回転子軸が少なくとも一方が貫通している特徴がある。 FIG. 5 is still another explanatory view of the present invention. The rotor, the bearing, the stator arm 1 and the magnetic body annular plate 2 are the same as those shown in FIGS. The feature of FIG. 5 is that the coils 23 and 24 arranged on both sides of the rotor are complete annular coils, one each, and the coil axis is arranged concentrically with the rotor axis direction and is limited to the two-phase system. Is. The yokes 21 and 22 of the coils 23 and 24 are the same, but when Ns = 2, they are arranged at positions rotated 90 degrees relative to each other as shown in FIG. FIG. 6 shows the positional relationship between the stator and the yokes 21 and 22 with the illustration of the annular coils 23 and 24 and the rotor omitted. This method and that the number of coils 2 and smaller than the present invention described above, this method also coil Ru can lower the temperature rise can be exposed partially. In figures 1-6, Koiruyo click features there Ru rotor axis while retaining the bearing outer peripheral portion is at least one of the through.

図7は本発明の特に2相式でNs=2の場合等に望ましい回転子構造を示した図である。本回転子は外周に均等にNr個の磁歯を有した磁性体よりなる回転子要素25,26の2個でお互いに歯ピッチの1/2ずれた位置で軸方向に磁化した永久磁石29を挟持して回転軸12に固定したハイブリッド型回転子であるがこれを単位回転子として、同じ単位回転子を回転子要素27,28及び永久磁石30で構成して、これら2組の単位回転子を同軸で連結し、隣接する回転子要素26,27はお互いに歯位置及び磁化極性を同じくしたハイブリッド型回転子を有したものである。従って回転子要素27と28も歯位置はお互いに1/2ピッチずれており回転子要素25と28の歯位置は同じ位置となる。図7では回転子要素25、28がN極性、回転子要素26,27がS極性としてある。図8は図7で回転子要素28あるいは25の回転子と対向する小歯を有した固定子の位置関係を軸方向に見て、回転子要素26、27の歯の図示を省略した図であり、回転子歯数Nr=15、Ns=2の場合に対応したものである。2相式ステッピングモータとすればステップ角は電気角90度をNrで割ればその値が得られ、6度となる。固定子アーム1と回転子要素28の磁歯のピッチは同一かあるいはコギングトルクを減少させるためにわずかにそのピッチを異ならせる場合もある。図1等での固定子アーム1と回転子要素9の磁歯の関係も図8で示したものと同じである。
Ns=2の場合、4個の固定子アーム1が90度均等配置とした場合は後述する(9)式でn=4を代入することでNs=15が得られる。図8の固定子アーム1は珪素鋼鈑の積層でも、圧粉鉄心でもよい。
図9は磁性体中空円板の一例を示したものであり、図8に示した4個の固定子アーム1をそれらの両端面で固着固定させる役割をもつものである。このとき中空円板2に形成した4個の穴は図8の4個の固定子アーム1のほぼ中間に来るようにする。中空円板2の穴は細首としてもよく、図8の4個の固定子アーム1間での磁束の移動を極力少なくするためのものである。図8の4個の固定子アーム1の内径と中空円板2の中空内径は同じとして中空円板2の内部に固定子アーム1に対応する磁歯を持たせてもよい。図7、図8で回転子から固定子への鎖交磁束の磁路を説明すれば、N極回転子要素28から出た磁束はエアギャップを通過して図8の上部位置の歯の対向している固定子アーム1に入り回転子側面のヨークを通過してヨークに巻かれたコイルと鎖交して図8の真下で回転子要素28とは歯が対向してない固定子アーム1に到達する。この場合、図示は省略しているが回転子要素28と27はお互いに歯ピッチの1/2ずれているのでS極回転子要素27の歯と図8の真下の固定子アーム1は歯が対向している。そのためN極回転子要素28から出た磁束はS極回転子要素27に入り1相分の閉磁路を形成することになる。これは図1等でも同じである。図7では更にN極回転子要素25とS極回転子要素26でも同じ磁路を形成する。このとき、図8の真上の固定子アーム1はコイルの通電でS極に、真下の固定子アーム1はN極に磁化されて1相が励磁されている。1相コイル電流が切れて2相コイルに電流が切り替わると図8の真横の左右の固定子アーム1がお互いに異極性に磁化されて回転子28の歯ピッチの1/4ピッチのステップ角で回転する。
FIG. 7 is a view showing a preferred rotor structure of the present invention, particularly when Ns = 2 in the two-phase system. This rotor is composed of two rotor elements 25 and 26 made of a magnetic material having Nr number of magnetic teeth evenly on the outer periphery, and a permanent magnet 29 magnetized in the axial direction at a position shifted from the tooth pitch by a half. as sandwiched by hybrid rotor unit it is a rotor fixed to the rotating stylus shaft 12, the same rotor unit constituted by rotor elements 27, 28 and the permanent magnet 30, these two sets of units The rotors are connected coaxially, and adjacent rotor elements 26 and 27 have hybrid rotors having the same tooth position and magnetization polarity. Accordingly, the tooth positions of the rotor elements 27 and 28 are also shifted from each other by ½ pitch, and the tooth positions of the rotor elements 25 and 28 are the same position. In FIG. 7, the rotor elements 25 and 28 have N polarity, and the rotor elements 26 and 27 have S polarity. FIG. 8 is a view in which the teeth of the rotor elements 26 and 27 are not shown in FIG. 7 when the positional relationship of the stator having small teeth facing the rotor of the rotor element 28 or 25 is viewed in the axial direction. Yes, this corresponds to the case where the number of rotor teeth Nr = 15 and Ns = 2. In the case of a two-phase stepping motor, the step angle can be obtained by dividing the electrical angle of 90 degrees by Nr to be 6 degrees. The pitch of the magnetic teeth of the stator arm 1 and the rotor element 28 may be the same or slightly different in order to reduce the cogging torque. The relationship between the magnetic teeth of the stator arm 1 and the rotor element 9 in FIG. 1 and the like is the same as that shown in FIG.
In the case of Ns = 2, when the four stator arms 1 are equally arranged at 90 degrees, Ns = 15 is obtained by substituting n = 4 in the equation (9) described later. The stator arm 1 of FIG. 8 may be a laminated layer of silicon steel plates or a dust core.
FIG. 9 shows an example of a magnetic hollow disk , and has a role of fixing and fixing the four stator arms 1 shown in FIG. 8 at their both end faces. At this time, the four holes formed in the hollow disk 2 are arranged approximately in the middle of the four stator arms 1 shown in FIG. The hole of the hollow disk 2 may be a narrow neck, and is for minimizing the movement of magnetic flux between the four stator arms 1 of FIG. Four hollow inner diameter of the inner diameter and the hollow disk 2 of the stator arm 1 in Figure 8 but it may also be to have a magnetic teeth corresponding to the stator arm 1 inside the hollow disk 2 as the same. 7 and 8, the magnetic path of the interlinkage magnetic flux from the rotor to the stator will be described. The magnetic flux emitted from the N-pole rotor element 28 passes through the air gap and faces the teeth at the upper position in FIG. to which the stator arm 1 with teeth do not face the rotor element 28 beneath the Figure 8 interlinked coil and strands wound on the yoke through the rotor side surface of the yoke enters the stator arm 1 To reach. In this case, although not shown, since the rotor elements 28 and 27 are shifted from each other by a half of the tooth pitch, the teeth of the S pole rotor element 27 and the stator arm 1 directly below FIG. Opposite. Therefore, the magnetic flux emitted from the N-pole rotor element 28 enters the S-pole rotor element 27 and forms a closed magnetic circuit for one phase. This is the same in FIG. In FIG. 7, the same magnetic path is also formed in the N pole rotor element 25 and the S pole rotor element 26. At this time, the stator arm 1 directly above in FIG. 8 is magnetized to the S pole by energization of the coil, and the stator arm 1 directly below is magnetized to the N pole, and one phase is excited. When the current of the one-phase coil is cut and the current is switched to the two-phase coil, the right and left stator arms 1 in FIG. 8 are magnetized in different polarities, and the step angle is 1/4 pitch of the tooth pitch of the rotor 28. Rotate.

本構造の2相で2Ns=4(Ns=2)である4主極構造と後述する従来方式の8主極固定子に同一回転子を組み合わせた場合のトルクを前述した文献で説明したが再度個々で説明する。
T1=N NriΦm (1)
1相分トルクは(5)式で表される。Nrは回転子歯数、Nはコイル巻き数、iは電流、Φmは回転子からの永久磁石の磁束のコイルとの鎖交磁束である。
両者同一線径で同一トータル巻数NTとする。また回転子から出るトータル磁束量は両者の固定子の歯数が例えば48(8主極は8×6=48、4主極では4×12=48)と等しいとした場合は両者の固定子鉄心の磁気抵抗差を無視し同じ値のΦTと近似できるので8主極機、4主極機の各1主極の巻数、磁束を各々N8 、N4、Φ8、Φ4として、次式が成立する。
Φ8=ΦT/8 (2)
Φ4=ΦT/4 (3)
N8=NT/8 (4)
N2=NT/4 (5)
(1)〜(5)式より、8主極 4主極機のトルク、T8、T4は各々以下となる。
T8=2*4(NT/8)Nri(ΦT/8)=NTNriΦT/8 (6)
T2=2*2(NT/4)Nri(ΦT/4)=NTNriΦT/4 (7)
(6)、(7)より、4主極機は従来の8主極機のモータより約2倍のトルクが出せることになる。
The torque in the case of combining the same rotor with a 4-main pole structure with 2Ns = 4 (Ns = 2) in this structure and an 8-main pole stator of a conventional system described later has been described in the above-mentioned document, but again I will explain individually.
T1 = N NriΦm (1)
The torque for one phase is expressed by equation (5). Nr is the number of rotor teeth, N is the number of coil turns, i is the current, and Φm is the flux linkage with the coil of the permanent magnet flux from the rotor.
Both have the same wire diameter and the same total number of turns NT. The total amount of magnetic flux generated from the rotor is equal to, for example, 48 when the number of teeth of both stators is equal to 48 (8 × 6 = 48 for 8 main poles, 4 × 12 = 48 for 4 main poles). Neglecting the magnetic resistance difference of the iron core, it can be approximated with the same value of Φ T , so the following formula is established with the number of turns and magnetic flux of each main pole of the 8 main pole machine and 4 main pole machine as N8, N4, Φ8, Φ4 To do.
Φ8 = Φ T / 8 (2)
Φ4 = Φ T / 4 (3)
N8 = N T / 8 (4)
N2 = N T / 4 (5)
From the formulas (1) to (5), the torques of the 8 main pole 4 main pole machine, T8, T4 are as follows.
T8 = 2 * 4 (N T / 8) Nri (Φ T / 8) = N T NriΦ T / 8 (6)
T2 = 2 * 2 (N T / 4) Nri (Φ T / 4) = N T NriΦ T / 4 (7)
From (6) and (7), the 4-main pole machine can output about twice the torque of the motor of the conventional 8-main pole machine.

この4主極の場合の望ましい回転子歯数Nrは以下の式から誘導される。
90/Nr=(−/+){(360/4)−360n/Nr} (8)
但しnは1以上の整数。
(8)式の左辺、及び右辺は本構成のステップ角を表すしこれを整理すると(9)式が得られる。
Nr=4n±1 (9)
Nrは,2相4主極対称構造の望ましい形態となる。
例えばn=19でNr=75となり、あるいはn=31でNr=125となり2相機では(90/Nr)度がステップ角となるので、それぞれ1.2度、0.72度のステップ角の対称形の固定子の回転電機が得られる。またn=11でNr=45で2度ステップ角の対称形の固定子の回転電機が得られる。Nr=45で2度ステップ角の場合は回転子径を14.33mmとすれば歯幅と歯溝幅を1:1の歯幅比50%とすれば、回転子歯幅が約0.5mmとなり標準の0.5mm厚みの珪素鋼鈑が使用でき、本発明の構造では固定子外径を20mmも可能であるので、モータサイズ20mmでステップ角2度の小形高分解能品が得られる。0.35mm厚みの準標準珪素鋼鈑を使用すれば歯幅比が35%と理想比に近い値となり、更に高性能な小形高分解能品が得られる。これは業界で実用できる最も小形で高分解能な仕様となる。
またこの場合は固定子アーム1は90度均等配置となるので配置精度確保が容易で製作も容易となる。望ましい形態ではないが、Nr=50は(9)式を満足してないため固定子は非対称形状となり、ステップ角1.8度の2相ステッピングモータとなる。
The desired number of rotor teeth Nr in the case of the four main poles is derived from the following equation.
90 / Nr = (− / +) {(360/4) −360n / Nr} (8)
However, n is an integer of 1 or more.
The left side and the right side of the equation (8) represent the step angles of this configuration, and when this is arranged, the equation (9) is obtained.
Nr = 4n ± 1 (9)
Nr is a desirable form of a two-phase four-main polar symmetric structure.
For example, Nr = 75 when n = 19, or Nr = 125 when n = 31, and (90 / Nr) degrees for the two-phase machine is the step angle, so that the step angle is 1.2 degrees and 0.72 degrees symmetrical, respectively. A rotating electric machine having a stator shape is obtained. Further, a symmetric stator electric rotating machine having a step angle of 2 degrees with n = 11 and Nr = 45 is obtained. In the case of Nr = 45 and a 2 degree step angle, if the rotor diameter is 14.33 mm and the tooth width and tooth gap width are 1: 1, the tooth width ratio is 50%, and the rotor tooth width is about 0.5 mm. Therefore, a standard 0.5 mm-thick silicon steel plate can be used. In the structure of the present invention, the stator outer diameter can be 20 mm, so that a small high-resolution product with a motor size of 20 mm and a step angle of 2 degrees can be obtained. If a quasi-standard silicon steel plate having a thickness of 0.35 mm is used, the tooth width ratio is 35%, which is close to the ideal ratio, and a high-performance, compact, high-resolution product can be obtained. This is the smallest and high-resolution specification practical in the industry.
Further, in this case, the stator arm 1 is uniformly arranged by 90 degrees, so that it is easy to ensure the arrangement accuracy and manufacture is easy. Although not desirable, Nr = 50 does not satisfy Equation (9), so the stator has an asymmetric shape, and a two-phase stepping motor with a step angle of 1.8 degrees.

図10は従来の2相ハイブリッド式ステッピングモータの回転軸に垂直な断面図を示したものである。31は回転子要素であり50個の歯を有した例である。その後ろ側に永久磁石がありさらに同じ回転子要素31が歯ピッチの1/2ずらして配置されている。32は固定子鉄心で不平衡電磁力を無くすために8主極(8巻線極)構造となっている。このため前述したように4主極に対しトルクが同一回転子では約半分となる。しかし4主極構造にするとラジアル方向の不平衡電磁力が発生して振動騒音の原因となる。そこでトルクの大きな4主極構造でラジアル方向の不平衡電磁力が発生しないために前述した図7の回転子を用いることが望ましいことになる。4主極構造でラジアル方向の不平衡電磁力が発生しない理由は前述の特許文献に述べられているのでその詳細説明は省略するが、図7、図8を参照して、1相励磁状態で回転子25,28は上方固定子アーム1に吸引され、回転子26,27は下方固定子アーム1に吸引されるので回転子軸12に作用する上下方向の力もモーメント力もキャンセルされることになる。
またハイブリッド型ステッピングモータのステップ角度θは次式で与えられる。
θ=180°/PNr (10)
但しPは相数。
2相式で回転子歯数Nrが図1050の場合は(10)式で、P=2、 従ってステップ角度は1.8°となる。(10)式でステップ角度を小さくし高分解能とするにはPまたはNrを多くすればよい。しかし相数を2相から5相等にすれば駆動回路が高価となる。また回転子数を多くすればモータサイズが限られている場合は回転子要素をプレス打ち抜きするとき、歯幅が珪素鋼鈑厚みより小さくなるとプレス抜きが困難となる。図10の構造では回転子の外周に固定子歯が配置されその外にコイルが配置されるのでモータ径に対し回転子径はかなり小さくなり、従って回転子歯数を多くするにはプレス打ち抜き等で問題が出る。
そこでアウターロータ化して回転子径を大きくすればよいが、アウターロータのため構造が複雑になり高価となり温度上昇もコイルが回転子内部に来るため高いという問題が起きる。これらをインナーロータ式で解決できるのが本発明の長所であり効果である。インナーロータタイプで本構造は最も回転子径を大きくできる構成である。
また一般にモータ発生トルクは時式で与えられる。
T=kD2L (11)
ここに、Dは回転子外径、Lは回転子有効長、kは定数である。
これより本発明品はインナーロータではDが大きくまたその効果が自乗で効くので大トルク化に有利となる。
Figure 10 shows a cross-sectional view perpendicular to the axis of rotation of the conventional two-phase hybrid stearyl Tsu pin Ngumota. Reference numeral 31 denotes a rotor element, which is an example having 50 teeth. There is a permanent magnet on the rear side, and the same rotor element 31 is arranged with a half shift of the tooth pitch. Reference numeral 32 denotes a stator core having an 8-main pole (8-winding pole) structure in order to eliminate unbalanced electromagnetic force. For this reason, as described above, the torque with respect to the four main poles is about half for the same rotor. However, when the four-pole structure is used, a radial unbalanced electromagnetic force is generated, which causes vibration noise. Therefore, it is desirable to use the above-described rotor of FIG. 7 in order to prevent the occurrence of unbalanced electromagnetic force in the radial direction with a four-main pole structure having a large torque. The reason why the radial unbalanced electromagnetic force is not generated in the four-main pole structure is described in the above-mentioned patent document, and therefore the detailed description thereof is omitted. However, referring to FIGS. Since the rotors 25 and 28 are attracted to the upper stator arm 1 and the rotors 26 and 27 are attracted to the lower stator arm 1, the vertical force and moment force acting on the rotor shaft 12 are cancelled. .
The step angle θ of the hybrid stepping motor is given by the following equation.
θ = 180 ° / PNr (10)
Where P is the number of phases.
When the number of rotor teeth Nr is 50 in FIG. 10 in the two-phase method, the equation (10) is satisfied, P = 2, and therefore the step angle is 1.8 °. In order to reduce the step angle and increase the resolution in the equation (10), P or Nr may be increased. However, if the number of phases is changed from two to five, the drive circuit becomes expensive. Further, when the number of rotor teeth is increased and the motor size is limited, when the rotor element is press punched, if the tooth width becomes smaller than the thickness of the silicon steel plate, press punching becomes difficult. In the structure of FIG. 10, the stator teeth are arranged on the outer periphery of the rotor and the coils are arranged outside thereof, so that the rotor diameter is considerably smaller than the motor diameter. The problem comes out.
Therefore, the outer rotor may be used to increase the rotor diameter, but the outer rotor makes the structure complicated and expensive, and the temperature rises because the coil comes inside the rotor. It is an advantage and effect of the present invention that these can be solved by the inner rotor type. This structure is an inner rotor type and can be configured with the largest rotor diameter.
In general, the torque generated by the motor is given by time.
T = kD2L (11)
Here, D is the rotor outer diameter, L is the rotor effective length, and k is a constant.
As a result, the product according to the present invention has a large D in the inner rotor and the effect is effective by the square, which is advantageous for increasing the torque.

本発明による回転電機はインナーロータ式で高トルク、高分解能となるのでOA機器である複写機やプリンターあるいは小形モータとしてロボットの指駆動に適したものとなり、工業的に大きな寄与が期待される。その他、医療機器、FA機器、遊戯機械、住宅設備機器への応用も大いに期待される。   Since the rotating electrical machine according to the present invention is an inner rotor type and has high torque and high resolution, it is suitable for driving a finger of a robot as a copying machine, a printer, or a small motor, which is an OA device, and is expected to greatly contribute industrially. In addition, application to medical equipment, FA equipment, game machines, and housing equipment is also highly expected.

本発明による回転電機の1実施例を示す切断正面図である It is a cutting front view showing one example of the rotary electric machine by the present invention. 図1の切断側面図であるFIG. 2 is a cut side view of FIG . 1. 本発明による回転電機の別の実施例を示す切断正面図である It is a cutting | disconnection front view which shows another Example of the rotary electric machine by this invention. 図3の一部を除去した側面図である It is the side view which removed a part of FIG . 本発明による回転電機のさらに別の実施例を示す切断正面図である It is a cutting | disconnection front view which shows another Example of the rotary electric machine by this invention . 図5の一部を除去した側面図である。 It is the side view which removed a part of FIG. 本発明による回転電機の別の実施例を示す固定子と回転子との切断正面図である。FIG. 6 is a cut front view of a stator and a rotor showing another embodiment of the rotating electrical machine according to the present invention. 図7の側面図である。 FIG. 8 is a side view of FIG. 7 . 磁性体中空円板を示す側面図である。 It is a side view which shows a magnetic body hollow disc. 従来の回転電機を示す固定子と回転子との側面図である。 It is a side view of a stator and a rotor showing a conventional rotating electrical machine.

1: 固定子主極アーム
2: 磁性体中空円板
3、3´、14,14´、21,22:固定子ヨーク
4、、7、8、15,17,18,19、23,24:コイル
9、10、25、26、27、28: 回転子要素
11、29、30:永久磁石
12: 回転子軸
13: 軸受け
1: Stator main pole arm 2: Magnetic hollow disk 3, 3 ', 14, 14', 21, 22: Stator yoke 4, 5 , 7, 8 , 15, 17 , 18, 19, 23, 24 : Coil 9, 10, 25, 26, 27, 28 : Rotor element 11, 29, 30: Permanent magnet 12: Rotor shaft 13: Bearing

Claims (6)

外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、該両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた位置で挟持された軸方向に磁化した永久磁石とを回転子軸に固定してハイブリッド型回転子を構成し、
前記回転子の外周にエアギャップを介して対向し各々内周に磁歯を有すると共に軸方向に伸び円周方向に均等に配置された2Ns個の固定子アームと、2Ns個の前記固定子アームをそれぞれの両端あるいは所定の個所で連結すると共に前記各固定子アームの中間の位置である2Ns個所に磁気抵抗を大きくするための穴あるいは細首部を略均等に有した磁性体中空円板と、前記回転子の軸方向の一方側及び他方側に配置されそれぞれコイルが巻かれたヨークとを有し、前記各固定子アームの内1個おきのNs個の固定子アームを前記一方側のヨークと磁気的に結合すると共に、残りのNs個の前記固定子アームを前記他方側のヨークと磁気的に結合して固定子を構成したことを特徴とする永久磁石式回転電機。
Two rotor elements made of a magnetic material having Nr magnetic teeth evenly on the outer periphery, and an axial direction sandwiched between the two rotor elements at a position where the tooth pitch of each magnetic tooth is shifted by 1/2 A permanent rotor is fixed to the rotor shaft to form a hybrid rotor,
2Ns stator arms facing the outer periphery of the rotor via air gaps, each having magnetic teeth on the inner periphery, extending in the axial direction and evenly arranged in the circumferential direction, and 2Ns stator arms Are connected at both ends or at predetermined locations, and magnetic hollow discs having holes or narrow necks for increasing the magnetic resistance at the 2Ns locations that are intermediate positions of the stator arms, A yoke disposed on one side and the other side in the axial direction of the rotor and wound with a coil, and every other Ns stator arms of the stator arms are connected to the yoke on the one side. and with magnetically coupled, the permanent magnet type rotating electrical machine, characterized in that the remaining Ns pieces of the stator arms constituting said other side of the yoke and magnetically coupled to the stator.
前記固定子のコイルの軸心方向が前記回転子軸方向と直交することを特徴とする請求項1に記載の永久磁石式回転電機。 The permanent magnet type rotating electrical machine according to claim 1, wherein an axial direction of a coil of the stator is orthogonal to the axial direction of the rotor . 前記固定子のコイルの軸心方向が前記回転子軸方向と平行であることを特徴とする請求項1に記載の永久磁石式回転電機。 The permanent magnet type rotating electrical machine according to claim 1, wherein an axial direction of a coil of the stator is parallel to the axial direction of the rotor . 外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、該両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた位置で挟持された軸方向に磁化した永久磁石とを回転子軸に固定してハイブリッド型回転子を構成し、
前記回転子の外周にエアギャップを介して対向し各々内周に磁歯を有すると共に軸方向に伸び円周方向に均等に配置された2Ns個の固定子アームと、2Ns個の前記固定子アームをそれぞれの両端あるいは所定の個所で連結すると共に前記各固定子アームの中間位置である2Ns個所に磁気抵抗を大きくするための穴あるいは細首部を周方向略均等に有した磁性体中空円板と、前記回転子の軸方向の一方側及び他方側に配置されそれぞれ前記回転子軸と同心にコイル軸心が位置するようにコイルが巻かれたヨークとを有し、前記各固定子アームの内1個おきのNs個の固定子アームを前記一方側のヨークと磁気的に結合すると共に、残りのNs個の前記固定子アームを前記他方側のヨークと磁気的に結合して固定子を構成したことを特徴とする永久磁石式回転電機。
Two rotor elements made of a magnetic material having Nr magnetic teeth evenly on the outer periphery, and an axial direction sandwiched between the two rotor elements at a position where the tooth pitch of each magnetic tooth is shifted by 1/2 A permanent rotor is fixed to the rotor shaft to form a hybrid rotor,
2Ns stator arms facing the outer periphery of the rotor via air gaps, each having magnetic teeth on the inner periphery, extending in the axial direction and evenly arranged in the circumferential direction, and 2Ns stator arms And a magnetic hollow disk having holes or narrow necks for increasing the magnetic resistance at 2Ns positions, which are intermediate positions of the stator arms, and substantially uniformly in the circumferential direction. Each of the stator arms includes a yoke disposed on one side and the other side in the axial direction of the rotor and wound with a coil so that a coil axis is positioned concentrically with the rotor shaft. Every other Ns stator arms are magnetically coupled to the one yoke, and the remaining Ns stator arms are magnetically coupled to the other yoke to form a stator. It is characterized in that it was Permanent magnet electric motor that.
前記ハイブリッド型回転子は、外周に均等にNr個の磁歯を有した磁性体よりなる2個の回転子要素と、該両回転子要素によりそれぞれの磁歯の歯ピッチが1/2ずれた状態で挟持された軸方向に磁化した永久磁石とを用いて単位回転子とし、この単位回転子を2個回転子軸に同軸連結しそれぞれの隣接する前記回転子要素が同一磁化特性であり互いの磁歯が周方向同一位置になるようにして構成したことを特徴とする請求項1または4に記載の永久磁石式回転電機。 The hybrid rotor has two rotor elements made of a magnetic material having Nr magnetic teeth uniformly on the outer periphery, and the tooth pitch of each magnetic tooth is shifted by 1/2 due to the two rotor elements. A unit rotor is formed using a permanent magnet magnetized in the axial direction sandwiched in a state, and the two unit rotors are coaxially connected to the rotor shaft, and the adjacent rotor elements have the same magnetization characteristics and are mutually connected. 5. The permanent magnet type rotating electrical machine according to claim 1, wherein the magnetic teeth are arranged at the same position in the circumferential direction . 前記固定子の一方側及び他方側のヨークは、前記回転子軸を支持する軸受けの外周部を保持し、前記回転子軸が前記両ヨークの少なくとも一方を貫通していることを特徴とする請求項1〜5のいずれかに記載の永久磁石式回転電機。 The yokes on one side and the other side of the stator hold an outer peripheral portion of a bearing that supports the rotor shaft, and the rotor shaft passes through at least one of the two yokes. Item 6. The permanent magnet type rotating electrical machine according to any one of Items 1 to 5 .
JP2006137191A 2006-05-17 2006-05-17 Permanent magnet type rotating electric machine with coil on rotor side Expired - Fee Related JP4392417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006137191A JP4392417B2 (en) 2006-05-17 2006-05-17 Permanent magnet type rotating electric machine with coil on rotor side

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006137191A JP4392417B2 (en) 2006-05-17 2006-05-17 Permanent magnet type rotating electric machine with coil on rotor side

Publications (2)

Publication Number Publication Date
JP2007312468A JP2007312468A (en) 2007-11-29
JP4392417B2 true JP4392417B2 (en) 2010-01-06

Family

ID=38844815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006137191A Expired - Fee Related JP4392417B2 (en) 2006-05-17 2006-05-17 Permanent magnet type rotating electric machine with coil on rotor side

Country Status (1)

Country Link
JP (1) JP4392417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456653B2 (en) * 2019-03-28 2022-09-27 Ghsp, Inc. Hybrid stepper motor utilizing axial coils for adjusting the magnetic field of the rotor

Also Published As

Publication number Publication date
JP2007312468A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
WO2013047076A1 (en) Rotating electric machine
JP5205594B2 (en) Rotating electric machine
JP2007236073A (en) Hybrid rotary electric machine
JPH0270253A (en) Electric multipolar machine
WO2017195263A1 (en) Permanent magnet motor
JP2008252979A (en) Axial-gap type rotating machine
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2007089304A (en) Permanent-magnet type rotating electric machine
JP2008236835A (en) Method of magnetizing rotor
JP4392417B2 (en) Permanent magnet type rotating electric machine with coil on rotor side
JP2002112521A (en) Rotor construction for stepping motor
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP2006025486A (en) Electric electric machine
JP2017063594A (en) Brushless motor
JP5324025B2 (en) Rotating electric machine
JP3679294B2 (en) Ring coil type rotating electrical machine
JP3591660B2 (en) Three-phase claw pole type permanent magnet type rotating electric machine
JP2021010211A (en) Rotary electric machine and rotary electric machine manufacturing method
JP7459155B2 (en) Rotating electric machine and its field element manufacturing method
WO2021235376A1 (en) Rotary electric machine
JP2008252976A (en) Axial-gap type rotating machine
JPH1189199A (en) Axial air gap type synchronous motor
JP4533904B2 (en) Permanent magnet rotating electric machine
JP2006254584A (en) Rotating electric machine having coil arranged at rotor side

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees