JP2008184658A - Method of operating resistance heating apparatus in reflow treatment equipment - Google Patents

Method of operating resistance heating apparatus in reflow treatment equipment Download PDF

Info

Publication number
JP2008184658A
JP2008184658A JP2007019672A JP2007019672A JP2008184658A JP 2008184658 A JP2008184658 A JP 2008184658A JP 2007019672 A JP2007019672 A JP 2007019672A JP 2007019672 A JP2007019672 A JP 2007019672A JP 2008184658 A JP2008184658 A JP 2008184658A
Authority
JP
Japan
Prior art keywords
resistance heating
plated steel
steel sheet
tin
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007019672A
Other languages
Japanese (ja)
Inventor
Hideyuki Masaki
秀幸 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2007019672A priority Critical patent/JP2008184658A/en
Publication of JP2008184658A publication Critical patent/JP2008184658A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a resistance heating apparatus in reflow treatment equipment in which an induction heating apparatus is installed more in the existing equipment having a resistance heating apparatus and is used with the resistance heating apparatus in combination. <P>SOLUTION: The induction heating apparatus 17 for heating an electrolytic tin plated steel sheet 11 with the resistance heating apparatus 14 used in combination therewith is installed more between paired energizing rolls 12, 13 of the resistance heating apparatus 14 and just upstream from a quenching tank 15 in the existing equipment for carrying out reflow treatment by directly resistance-heating the electrolytic tin plated steel sheet 11 by the resistance heating apparatus 14 to melt tin and quenching the electrolytic tin plated steel sheet 11. The voltage V' applied to the resistance heating apparatus 14 after the installation of the induction heating apparatus 17 in the reflow treatment equipment 10 is set to a value in a control voltage range calculated by multiplying applied voltage V in the operation of the resistance heating apparatus in the existing equipment by ≥0.9 and ≤1.1 coefficient α and coefficient K including the induction heating condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、抵抗加熱装置で電気錫めっき鋼板を加熱してリフロー処理する既設設備に、抵抗加熱装置と併用する誘導加熱装置を新たに増設するリフロー処理設備の抵抗加熱装置の運転方法に関する。 The present invention relates to a method for operating a resistance heating device of a reflow treatment facility in which an induction heating device that is used in combination with a resistance heating device is newly added to an existing facility that heats and reflows an electrotin-plated steel sheet with a resistance heating device.

電気錫めっき工程で得られる電気錫めっき鋼板の錫層は、そのままでは粗面で光沢のない多孔質であり、鋼板に対する錫層の密着強度は弱く、耐蝕性および半田性(半田と錫層との濡れ性や密着性)にも劣る。そこで、電気錫めっき鋼板の錫層を溶融して表面を滑らかにし金属光沢を与えるとともに、錫層と鋼板との界面部に錫−鉄系の合金相層を形成させて鋼板に対する錫の密着強度を増大させるリフロー処理が施されている。また、リフロー処理における鋼板の加熱方法には、鋼板に電圧を印加して電流を流し鋼板を加熱する抵抗加熱法と、誘導電流を用いて鋼板を加熱する誘導加熱法の2種類の方法がある。
誘導加熱法は、抵抗加熱法に比べて急速加熱が可能であるとともに加熱制御性がよいという特性を有するため、形成する合金層量の制御性向上や木目模様対策を目的として、抵抗加熱法を採用したリフロー処理の設備に対しても、電気錫めっき鋼板の温度が錫の融点に到達する位置の付近に誘導加熱装置を配置し、抵抗加熱法と誘導加熱法を併用して電気錫めっき鋼板を加熱することが行なわれている(例えば、特許文献1、2参照)。
The tin layer of the electrotin-plated steel sheet obtained by the electrotin plating process is rough and glossy porous as it is, and the adhesion strength of the tin layer to the steel sheet is weak, corrosion resistance and solderability (solder and tin layer and Inferior wettability and adhesion). Therefore, the tin layer of the electrotin-plated steel sheet is melted to give a smooth surface and give a metallic luster, and a tin-iron alloy phase layer is formed at the interface between the tin layer and the steel sheet so that tin adheres to the steel sheet. The reflow process which increases is performed. In addition, there are two types of heating methods for the steel sheet in the reflow process: a resistance heating method in which a voltage is applied to the steel plate to pass a current to heat the steel plate, and an induction heating method in which the steel plate is heated using an induction current. .
The induction heating method has characteristics that rapid heating is possible and good heat controllability compared to the resistance heating method. Therefore, the resistance heating method is used for the purpose of improving controllability of the amount of alloy layers to be formed and countermeasures for wood grain patterns. For the reflow treatment equipment adopted, an induction heating device is placed near the position where the temperature of the electrotin-plated steel sheet reaches the melting point of tin, and the electrotin-plated steel sheet is combined with the resistance heating method and the induction heating method. Is heated (see, for example, Patent Documents 1 and 2).

特開2005−256145号公報JP 2005-256145 A 特開平6−228790号公報JP-A-6-228790

ここで、抵抗加熱法と誘導加熱法を併用した場合、誘導加熱による加熱分だけ抵抗加熱による加熱分を削減しなければならず、更に、誘導加熱を開始する位置により、電気錫めっき鋼板の温度が錫の融点に到達してからクエンチされるまでの時間も変化する。このため、抵抗加熱と誘導加熱の併用を前提としたリフロー処理設備では、例えば、誘導加熱を開始する位置と誘導加熱条件(誘導加熱による電気錫めっき鋼板の温度上昇量、昇温速度等)を設定して、抵抗加熱条件を新たに設定し直すことが一般に行なわれている。 Here, when the resistance heating method and the induction heating method are used in combination, the amount of heating by resistance heating must be reduced by the amount of heating by induction heating, and the temperature of the electrotin-plated steel sheet depends on the position at which induction heating starts. The time from when the melting point of tin reaches the quenching time also varies. For this reason, in the reflow processing equipment premised on the combined use of resistance heating and induction heating, for example, the position where induction heating is started and the induction heating conditions (temperature rise amount of electrotinned steel sheet due to induction heating, rate of temperature rise, etc.) It is generally performed to set and newly set the resistance heating condition.

しかしながら、抵抗加熱条件を新たに求めるには、処理中の電気錫めっき鋼板からの放熱量、電気錫めっき鋼板の搬送経路を構成している支持ロールに電気錫めっき鋼板が接触することによる抜熱量等の不確定条件を試運転調整および操業を通じて定量的に決定して、理論的に求まる抵抗加熱条件を修正しなければならず、多くの時間を要するという問題がある。また、不確定条件はリフロー処理ライン毎に異なるので、不確定条件は適用しようとするリフロー処理ライン毎に決定せねばならないという問題もある。更に、抵抗加熱と誘導加熱を併用する場合の抵抗加熱条件でリフロー処理ラインを運用していると、抵抗加熱法と誘導加熱法を併用することで問題が発生したり、操業条件により従来の抵抗加熱のみを使用したリフロー処理を行なう場合、直ちに対応できないという問題が生じる。 However, in order to newly determine the resistance heating condition, the amount of heat released from the electrotin-plated steel sheet being processed, the amount of heat removed by the contact of the electrotin-plated steel sheet with the support roll that constitutes the transport path of the electrotin-plated steel sheet Such uncertain conditions must be determined quantitatively through trial run adjustment and operation to correct the theoretically determined resistance heating conditions, and there is a problem that much time is required. In addition, since the uncertain condition differs for each reflow processing line, there is a problem that the uncertain condition must be determined for each reflow processing line to be applied. Furthermore, if the reflow treatment line is operated under resistance heating conditions when resistance heating and induction heating are used together, problems may occur due to the combined use of resistance heating and induction heating methods, or conventional resistance may be affected by operating conditions. When the reflow process using only heating is performed, there is a problem that it cannot be immediately handled.

本発明はかかる事情に鑑みてなされたもので、抵抗加熱装置を有する既設設備に誘導加熱装置を増設し、抵抗加熱装置と誘導加熱装置を併用するリフロー処理設備の抵抗加熱装置の運転方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an operation method for a resistance heating device of a reflow processing facility in which an induction heating device is added to an existing facility having a resistance heating device and the resistance heating device and the induction heating device are used together. The purpose is to do.

前記目的に沿う本発明に係るリフロー処理設備の抵抗加熱装置の運転方法は、電気錫めっき鋼板を抵抗加熱装置で直接抵抗加熱して錫を溶融させた後、該電気錫めっき鋼板をクエンチしてリフロー処理する既設設備に、前記抵抗加熱装置と併用して前記電気錫めっき鋼板を加熱する誘導加熱装置をクエンチ槽の直上流側に新たに増設したリフロー処理設備の抵抗加熱装置の運転方法において、
前記誘導加熱装置増設後の前記抵抗加熱装置の印加電圧V’を、前記既設設備で該抵抗加熱装置を運転する際の印加電圧Vに、0.9以上で1.1以下の係数αと下記式で求めた係数Kを掛けて算出される制御電圧範囲の値に設定する。
K={(T232−TIN−ΔT)/(TVOUT−TIN)}1/2(L/L1/2
ここで、T232は錫の融点、TINは既設設備で抵抗加熱装置の入側通電ロールを通過する際の電気錫めっき鋼板の温度、ΔTは電気錫めっき鋼板が誘導加熱装置で加熱を開始されてから錫の融点に達するまでに上昇した温度、TVOUTは既設設備で電気錫めっき鋼板がクエンチ槽に浸漬される直前の温度、Lは抵抗加熱装置の入側通電ロールを通過する位置とクエンチ槽の浸漬直前の位置との間の電気錫めっき鋼板の長さ、Lは誘導加熱装置内で電気錫めっき鋼板が錫の融点温度に達する位置と抵抗加熱装置の入側通電ロールを通過する位置との間の電気錫めっき鋼板の長さである。
The operation method of the resistance heating device of the reflow processing equipment according to the present invention in accordance with the above object is that after the tin is melted by directly resistance heating the electrotin plating steel plate with the resistance heating device, the electrotin plating steel plate is quenched. In the operation method of the resistance heating device of the reflow processing equipment newly added to the existing equipment to be reflowed, the induction heating device which is used in combination with the resistance heating device to heat the electrotin-plated steel sheet immediately upstream of the quench tank,
The applied voltage V ′ of the resistance heating device after the addition of the induction heating device is equal to the applied voltage V when operating the resistance heating device with the existing equipment, the coefficient α of 0.9 or more and 1.1 or less, and the following: The value is set to the value of the control voltage range calculated by multiplying the coefficient K obtained by the equation.
K = {(T 232 −T IN −ΔT I ) / (T VOUT −T IN )} 1/2 (L / L I ) 1/2
Here, T 232 is the melting point of tin, T IN is the temperature of the electrotin-plated steel sheet when passing through the entrance side energizing roll of the resistance heating apparatus in existing equipment, and ΔT I is the electric tin-plated steel sheet heated by the induction heating apparatus. The temperature that has risen from the start until the melting point of tin is reached, T VOUT is the temperature just before the electrotin-plated steel sheet is immersed in the quench tank in the existing equipment, and L is the position that passes through the energizing roll on the resistance heating device the length of the electrical tin-plated steel sheet between the position of the immersion immediately before the quench tank, the inlet side conductive rolls of L I resistive heating device and a position where electrical tin-plated steel sheet in the induction heating apparatus reaches the melting point of tin It is the length of the electrotin plating steel plate between the passing positions.

請求項1記載のリフロー処理設備の抵抗加熱装置の運転方法においては、係数αは数値定数、係数Kは定数(T232)、既設設備の操業条件(TIN、TVOUT、L)、および誘導加熱装置で決める誘導加熱条件(ΔT、L)で構成されるので、誘導加熱装置増設後の抵抗加熱装置の印加電圧Vを制御電圧範囲の値に設定することで、誘導加熱装置増設後の抵抗加熱装置を、既設設備の抵抗加熱装置を運転する際の条件に基づいて運転することができる。このため、αおよびKをそれぞれ1に設定することで、既設設備の抵抗加熱装置の運転を再現することができ、抵抗加熱法と誘導加熱法を併用することで問題が発生したり、操業条件により従来の抵抗加熱のみを使用したリフロー処理が必要になった際、容易に対応することができる。
また、既設設備の操業から判明している印加電圧Vに基づいて、増設後の印加電圧V’の制御電圧範囲を設定することで、電気錫めっき鋼板からの放熱、電気錫めっき鋼板と支持ロールの接触による抜熱等のリフロー処理ライン毎に固有の不確定条件を折り込むことができ、誘導加熱装置の増設による熱流出の変動分は係数αで吸収することができ、誘導加熱装置増設後の抵抗加熱装置の運転条件を容易に決められる。
In the operation method of the resistance heating device of the reflow processing equipment according to claim 1, the coefficient α is a numerical constant, the coefficient K is a constant (T 232 ), the operating conditions of the existing equipment (T IN , T VOUT , L), and induction Since it is composed of induction heating conditions (ΔT I , L I ) determined by the heating device, set the applied voltage V of the resistance heating device after the addition of the induction heating device to a value in the control voltage range, and then after the induction heating device is added This resistance heating device can be operated based on the conditions for operating the resistance heating device of the existing equipment. For this reason, by setting α and K to 1 respectively, the operation of the resistance heating apparatus of the existing equipment can be reproduced, and problems may occur by using the resistance heating method and the induction heating method together. Therefore, when a reflow process using only conventional resistance heating is required, it can be easily handled.
Moreover, by setting the control voltage range of the applied voltage V ′ after the expansion based on the applied voltage V that has been found from the operation of the existing equipment, heat dissipation from the electrotin-plated steel sheet, electrotin-plated steel sheet and support roll Uncertain conditions unique to each reflow processing line, such as heat removal due to contact, can be folded, and fluctuations in heat outflow due to the addition of the induction heating device can be absorbed by a coefficient α. The operating conditions of the resistance heating device can be easily determined.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るリフロー処理設備の抵抗加熱装置の運転方法を適用するリフロー処理設備の説明図、図2は抵抗加熱装置と誘導加熱装置を併用して電気錫めっき鋼板を加熱する際の温度変化を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a reflow treatment facility to which the operation method of the resistance heating device of the reflow treatment facility according to one embodiment of the present invention is applied, and FIG. It is explanatory drawing which shows the temperature change at the time of heating a tin plating steel plate.

図1に示すように、本発明の一実施の形態に係るリフロー処理設備の抵抗加熱装置の運転方法を適用するリフロー処理設備10は、入側に設けられ搬送された電気錫めっき鋼板11を受け入れる入側通電ロール12、出側に設けられ入側通電ロール12と対となる出側通電ロール13、および図示しない制御部を備えた抵抗加熱装置14を有している。更に、リフロー処理設備10は、出側通電ロール13の上流側に設けられたクエンチ槽の一例である水槽15と、水槽15の直上流側に設けられた誘導加熱部16および図示しない制御部を備えた誘導加熱装置17とを有している。 As shown in FIG. 1, a reflow processing facility 10 to which a resistance heating apparatus operating method for a reflow processing facility according to an embodiment of the present invention is applied receives an electrotin-plated steel sheet 11 provided on the entrance side and conveyed. It has the entrance side energizing roll 12, the exit side energizing roll 13 which is provided in the exit side and becomes a pair with the entrance side energizing roll 12, and the resistance heating apparatus 14 provided with the control part which is not illustrated. Furthermore, the reflow treatment facility 10 includes a water tank 15 that is an example of a quench tank provided on the upstream side of the outlet-side energizing roll 13, an induction heating unit 16 provided on the immediately upstream side of the water tank 15, and a control unit (not shown). And an induction heating device 17 provided.

ここで、入側通電ロール12と誘導加熱部16の間には、電気錫めっき鋼板11を支持して移動方向を変える第1、第2の支持ロール18、19が設けられ、水槽15内には貯留された水20の中に進入した電気錫めっき鋼板11の移動方向を変えて水槽15から排出させるシンクロール21が設けられている。更に、出側通電ロール13の下流側には、抵抗加熱装置14を通過した処理済の電気錫めっき鋼板11を支持して進行方向を変える第3の支持ロール22が設けられている。 Here, between the entrance side energizing roll 12 and the induction heating unit 16, there are provided first and second support rolls 18 and 19 that support the electrotin-plated steel sheet 11 and change the moving direction. Is provided with a sink roll 21 that changes the moving direction of the electrotin-plated steel sheet 11 that has entered the stored water 20 and discharges it from the water tank 15. Further, a third support roll 22 that supports the treated electrotin-plated steel sheet 11 that has passed through the resistance heating device 14 and changes the traveling direction is provided on the downstream side of the outlet-side energizing roll 13.

このような構成とすることにより、入側通電ロール12と出側通電ロール13間に電圧をかけた状態で電気錫めっき鋼板11を通過させると、通過中の電気錫めっき鋼板11において入側通電ロール12と出側通電ロール13で支持される領域に電流を流すことができ、入側通電ロール12を通過する位置から水槽15の水20に浸漬する直前位置まで移動する間に電気錫めっき鋼板11を直接抵抗加熱して電気錫めっき鋼板11の温度を徐々に上げることができる。そして、誘導加熱装置17を稼動させることで、電気錫めっき鋼板11が誘導加熱部16を通過する間に誘導加熱により電気錫めっき鋼板11を更に加熱して錫の融点(232℃)以上の温度に短時間で到達させることができる。 By setting it as such a structure, when the electrotin-plated steel plate 11 is allowed to pass through in a state where a voltage is applied between the entrance-side energizing roll 12 and the exit-side energizing roll 13, the entrance-side energization is performed in the passing electrotin-plated steel plate 11. An electric tin-plated steel sheet can flow an electric current to the area | region supported by the roll 12 and the exit side electricity supply roll 13, and moves from the position which passes the entrance side electricity supply roll 12 to the position just before being immersed in the water 20 of the water tank 15. 11 can be directly resistance-heated to gradually raise the temperature of the electrotin-plated steel sheet 11. And by operating the induction heating device 17, the electrotin-plated steel sheet 11 is further heated by induction heating while the electrotin-plated steel sheet 11 passes through the induction heating unit 16, and the temperature is equal to or higher than the melting point of tin (232 ° C.). Can be reached in a short time.

誘導加熱装置17を併用することで、電気錫めっき鋼板11の温度を短時間で錫の融点以上の温度にできるので、リフロー処理後の電気錫めっき鋼板11の表面に木目模様が発生するのが防止できる。また、電気錫めっき鋼板11の温度が錫の融点に到達する誘導加熱部16内での位置が推定できるので、電気錫めっき鋼板11の温度が錫の融点に到達してから水槽15中の水20の中に進入する(クエンチされる)までの時間を調整でき、形成される合金層量を制御することができる。 By using the induction heating device 17 in combination, the temperature of the electrotin-plated steel sheet 11 can be increased to a temperature equal to or higher than the melting point of tin in a short time, and therefore a grain pattern is generated on the surface of the electrotin-plated steel sheet 11 after the reflow treatment. Can be prevented. Moreover, since the position in the induction heating part 16 where the temperature of the electrotin-plated steel plate 11 reaches the melting point of tin can be estimated, the water in the water tank 15 is reached after the temperature of the electrotin-plated steel plate 11 reaches the melting point of tin. The time required to enter (quenched) 20 can be adjusted, and the amount of the alloy layer formed can be controlled.

続いて、本発明の一実施の形態に係るリフロー処理設備の抵抗加熱装置の運転方法について説明する。
電気錫めっき鋼板11が入側通電ロール12を通過する位置から水槽15の浸漬直前位置まで移動する間に電気錫めっき鋼板11に与えられる熱量Qは、電気錫めっき鋼板11に流れる電流をI、入側通電ロール12通過位置から水槽15浸漬直前位置間の電気錫めっき鋼板11の電気抵抗をR、電気錫めっき鋼板11が入側通電ロール12通過位置から水槽15浸漬直前位置まで移動するのに要する時間をtとすると、(1)式として求まる。
=0.24I Rt ・・・・・(1)
Then, the operating method of the resistance heating apparatus of the reflow processing equipment concerning one embodiment of the present invention is explained.
Heat Q 1 electrical tin-plated steel sheet 11 is applied to the electrical tin-plated steel sheet 11 while moving from the position passing through the entry side conductive rolls 12 to the immersion position immediately before the water tank 15, the current flowing through the electrical tin-plated steel sheet 11 I 0 , the electric resistance of the electroplated steel sheet 11 between the position where the inlet-side energizing roll 12 passes and the position immediately before immersion in the water tank 15 is R, and the electric tin-plated steel sheet 11 moves from the position where the electric tin-plated steel sheet 11 passes through the position immediately before immersion in the water tank 15. If the time required for this is t, it is obtained as equation (1).
Q 1 = 0.24I 0 2 Rt (1)

ここで、入側通電ロール12と出側通電ロール13間に加える印加電圧をV、電気錫めっき鋼板11の搬送速度をs、入側通電ロール12通過位置から水槽15浸漬直前位置までの間の電気錫めっき鋼板11の長さをL、入側通電ロール12と出側通電ロール13間の電気錫めっき鋼板の長さをLとすると、入側通電ロール12から水槽15浸漬直前位置の間の電圧は、VL/Lとなるので、L/Lをβと置くと、I=βV/R、t=L/s、の関係が成立するので、(1)式は(2)式に変形される。
=0.24β L/(Rs) ・・・・・(2)
そして、電気錫めっき鋼板11の搬送速度sは一定となるので、0.24/sを定数Nで表し、βV /Rは入側通電ロール12と出側通電ロール13間に投入した投入電力量Pと等価なので、(2)式は(3)式として表される。
=βPLN ・・・・・(3)
Here, the applied voltage applied between the entry-side energizing roll 12 and the exit-side energizing roll 13 is V 0 , the transport speed of the electrotin-plated steel sheet 11 is s, and from the position where the entry-side energizing roll 12 passes to the position immediately before immersion in the water tank 15. the length of the electrical tin-plated steel sheet 11 L, and the length of the electrical tin-plated steel sheet between the entering-side conductive rolls 12 and the exit-side conductive rolls 13 and L T, from the entry side conductive rolls 12 water tank 15 of the immersion position just before voltage between, since the V 0 L / L T, placing the L / L T and β, I 0 = βV 0 / R, t = L / s, the relationship of is satisfied, (1) Is transformed into equation (2).
Q 1 = 0.24β 2 V 0 2 L / (Rs) (2)
And since the conveyance speed s of the electrotin-plated steel sheet 11 is constant, 0.24 / s is represented by a constant N, and βV 0 2 / R is input between the input-side conductive roll 12 and the output-side conductive roll 13. Since it is equivalent to the electric energy P 0 , the expression (2) is expressed as the expression (3).
Q 1 = βP 0 LN (3)

一方、電気錫めっき鋼板11が吸収する熱量Qは、入側通電ロール12から水槽15の入口位置(水槽15浸漬直前位置)の間の電気錫めっき鋼板11の質量をm、電気錫めっき鋼板11の比熱をc、電気錫めっき鋼板11の昇温量をΔUとすると、(4)式で表される。
=mcΔU ・・・・・(4)
そして、入側通電ロール12通過位置から水槽15浸漬直前位置の間に抵抗加熱で与えられる熱量Qで電気錫めっき鋼板11がΔUだけ温度上昇したとすると、Q=Qの関係が成立するので、(3)式および(4)式から(5)式が得られる。
βPLN=mcΔU ・・・・・(5)
従って、N/mcを定数Aとすると、昇温量ΔUは(6)式として求まる。
ΔU=βAPL ・・・・・(6)
On the other hand, the amount of heat Q 2 to which electrical tin-plated steel sheet 11 is absorbed, the mass of the electric tin-plated steel sheet 11 m, electric tin-plated steel sheet between the entrance point of the water tank 15 from the entry side conductive rolls 12 (water tank 15 immersed immediately preceding position) When the specific heat of 11 is c and the temperature rise amount of the electrotin-plated steel sheet 11 is ΔU, it is expressed by equation (4).
Q 2 = mcΔU (4)
When an electrical tin-plated steel sheet 11 with heat Q 1 given by resistance heating to between entry side conductive rolls 12 passes the position of the water tank 15 immersed immediately preceding position is only the temperature rise .DELTA.U, Q 1 = relation Q 2 'is satisfied Therefore, the equation (5) is obtained from the equations (3) and (4).
βP 0 LN = mcΔU (5)
Therefore, when N / mc is a constant A, the temperature increase amount ΔU can be obtained from the equation (6).
ΔU = βAP 0 L (6)

既設設備、すなわち、電気錫めっき鋼板11を抵抗加熱装置14だけで加熱して錫を溶融させた後、水槽15中の水20の中に電気錫めっき鋼板11を進入させてクエンチするリフロー処理の設備においては、図2に示すように、入側通電ロール12を通過する際の電気錫めっき鋼板11の温度をTIN、電気錫めっき鋼板11が水槽15に浸漬する直前位置の温度をTVOUTとした場合、電気錫めっき鋼板11の温度が錫の融点T232に到達するまでに投入される投入電力量Pは、(6)式からT232−TIN=βAPL(T232−TIN)/(TVOUT−TIN)の関係が成立するので、(7)式として求まる。
P=(TVOUT−TIN)/(βAL) ・・・・(7)
The existing equipment, that is, the electrotin-plated steel sheet 11 is heated only by the resistance heating device 14 to melt the tin, and then the electrotin-plated steel sheet 11 enters the water 20 in the water tank 15 to quench it. In the facility, as shown in FIG. 2, the temperature of the electrotin-plated steel sheet 11 when passing through the entrance-side energizing roll 12 is T IN , and the temperature immediately before the electrotin-plated steel sheet 11 is immersed in the water tank 15 is T VOUT In this case, the input electric power P input until the temperature of the electrotin-plated steel sheet 11 reaches the melting point T 232 of tin is T 232 −T IN = βAPL (T 232 −T IN ) from the equation (6). Since the relationship of / (T VOUT −T IN ) is established, it is obtained as equation (7).
P = (T VOUT −T IN ) / (βAL) (7)

ここで、投入電力量Pには、処理中の電気錫めっき鋼板11からの放熱量、電気錫めっき鋼板11の搬送経路を構成している各支持ロール18、19に電気錫めっき鋼板11が接触することによる抜熱量等の不確定条件が考慮されている。また、電気錫めっき鋼板11が入側通電ロール12を通過してから水槽15に浸漬する直前までの電気錫めっき鋼板11の温度上昇量は、電気錫めっき鋼板11の入側通電ロール12通過位置からの移動距離に比例すると仮定している。 Here, the input power amount P is the amount of heat dissipated from the electrotin-plated steel plate 11 being processed, and the electrotin-plated steel plate 11 is in contact with the support rolls 18 and 19 constituting the transport path of the electrotin-plated steel plate 11. Uncertain conditions such as the amount of heat removed due to the operation are taken into consideration. Moreover, the temperature rise amount of the electrotin-plated steel sheet 11 after the electrotin-plated steel sheet 11 passes through the entrance side energizing roll 12 and immediately before being immersed in the water tank 15 is the passage position of the electrotin-plated steel sheet 11 through the entrance side energizing roll 12. Is assumed to be proportional to the distance traveled from

一方、増設した誘導加熱装置17の誘導加熱部16の加熱により錫の融点に達するまでに上昇した温度をΔT、誘導加熱装置17の誘導加熱部16内で誘導加熱部16の出口から距離Iだけ入口側の位置で、電気錫めっき鋼板11の温度を錫の融点に到達させるために抵抗加熱装置14から投入する電力量(すなわち、誘導加熱装置17を増設した後の抵抗加熱装置14から投入される電力量)をP’、誘導加熱部16内で電気錫めっき鋼板11が錫の融点温度に達する位置と入側通電ロール12の通過位置との間の電気錫めっき鋼板11の長さをLとすると、(6)式からT232−TIN−ΔT=βAP’Lの関係が成立し、これから投入電力量P’は(8)式として求まる。
P’=(T232−TIN−ΔT)/(βAL)・・・・・(8)
On the other hand, the temperature that has risen until the melting point of tin is reached by heating of the induction heating unit 16 of the additional induction heating device 17 is ΔT I , and the distance I from the outlet of the induction heating unit 16 within the induction heating unit 16 of the induction heating device 17. Only at the position on the inlet side, the amount of electric power input from the resistance heating device 14 in order to make the temperature of the electrotin-plated steel sheet 11 reach the melting point of tin (that is, input from the resistance heating device 14 after adding the induction heating device 17) P ′, and the length of the electrotin-plated steel sheet 11 between the position where the electrotin-plated steel sheet 11 reaches the melting point temperature of tin and the passing position of the incoming energizing roll 12 in the induction heating unit 16 When L I, (6) the relationship T 232 -T iN -ΔT I = βAP'L I is established from the equation, from which the input power amount P 'is obtained as equation (8).
P ′ = (T 232 −T IN −ΔT I ) / (βAL I ) (8)

従って、(7)式、(8)式から既設設備時の抵抗加熱装置14からの投入電力量Pと、誘導加熱装置17増設後の抵抗加熱装置14からの投入電力量P’とは(9)式に示す関係を有する。
P’/P=(L/L)・(T232−TIN−ΔT)/(TVOUT−TIN)・・・(9)
そして、既設設備時の抵抗加熱装置14から投入電力量Pが得られるように入側通電ロール12と出側通電ロール13間に加える印加電圧をV、誘導加熱装置17増設後の抵抗加熱装置14から投入電力量P’が得られるように入側通電ロール12と出側通電ロール13間に加える印加電圧をWとすると、P=βV/R、P’=βW/Rの関係を用いて、(9)式は
/V=(L/L)・(T232−TIN−ΔT)/(TVOUT−TIN)・・(10)
となる。(10)式から印加電圧Wを、既設設備時の抵抗加熱装置14の入側通電ロール12と出側通電ロール13間に加える印加電圧Vを用いて求めると(11)式が得られる。
W=(L/L1/2・{(T232−TIN−ΔT)/(TVOUT−TIN)}1/2
・・・・・(11)
Therefore, from formulas (7) and (8), the input power amount P from the resistance heating device 14 at the time of existing equipment and the input power amount P ′ from the resistance heating device 14 after the induction heating device 17 is added are (9 ).
P '/ P = (L / L I) · (T 232 -T IN -ΔT I) / (T VOUT -T IN) ··· (9)
And the applied voltage applied between the entrance-side energizing roll 12 and the exit-side energizing roll 13 is V, and the resistance heating apparatus 14 after the induction heating apparatus 17 is expanded so that the input power amount P can be obtained from the resistance heating apparatus 14 in the existing equipment If the applied voltage applied between the input side energizing roll 12 and the output side energizing roll 13 is W so that the input power amount P ′ can be obtained from W, the relationship of P = βV 2 / R, P ′ = βW 2 / R is used. Te, (9) is W 2 / V 2 = (L / L I) · (T 232 -T iN -ΔT I) / (T VOUT -T iN) ·· (10)
It becomes. When the applied voltage W is obtained from the expression (10) using the applied voltage V applied between the entrance side energizing roll 12 and the exit side energizing roll 13 of the resistance heating device 14 in the existing equipment, the expression (11) is obtained.
W = (L / L I ) 1/2 · {(T 232 −T IN −ΔT I ) / (T VOUT −T IN )} 1/2 V
(11)

ここで、(11)式中で、T232は定数、TIN、TVOUT、およびLは既設設備の操業条件で決まる定数、ΔTおよびLは誘導加熱条件として設定する値なので、(L/L1/2・{(T232−TIN−ΔT)/(TVOUT−TIN)}1/2は、抵抗加熱装置14と誘導加熱装置17を併用するリフロー処理設備10の操業状態を示す係数となる。このため、この操業状態を表す係数をKとすると、Kは(12)式となり、(11)式はW=KVとなる。
K=(L/L1/2・{(T232−TIN−ΔT)/(TVOUT−TIN)}1/2
・ ・・・・(12)
Here, in Equation (11), T 232 is a constant, T IN , T VOUT , and L are constants determined by the operating conditions of the existing equipment, and ΔT I and L I are values set as induction heating conditions, so (L / L I ) 1/2 · {(T 232 −T IN −ΔT I ) / (T VOUT −T IN )} 1/2 is the reflow processing equipment 10 using both the resistance heating device 14 and the induction heating device 17. This is a coefficient indicating the operating state. For this reason, when the coefficient representing the operating state is K, K is expressed by Equation (12), and Equation (11) is W = KV.
K = (L / L I ) 1/2 · {(T 232 −T IN −ΔT I ) / (T VOUT −T IN )} 1/2
(12)

一方、誘導加熱装置17の増設による電気錫めっき鋼板11の加熱状況の変化から電気錫めっき鋼板11に新たに熱流出が生じると、この熱流出の変動分を反映させて誘導加熱装置17増設後の抵抗加熱装置14に加える印加電圧を設定する必要がある。ここで、誘導加熱部16で加熱する電気錫めっき鋼板11の領域は、抵抗加熱装置14で加熱する電気錫めっき鋼板11の領域と比べて狭いので、誘導加熱装置17の増設による熱流出の変動分(電力換算した値)は、抵抗加熱装置14で与えられる投入電力量P’と比較して小さい、例えば±10%以内の変動と考えられる。このため、誘導加熱装置17の増設による熱流出の変動分を反映して誘導加熱装置17から発生させる実際の電力量は、誘導加熱装置17増設後の抵抗加熱装置14からの投入電力量P’に0.9以上で1.1以下の係数αを掛け表すことができる。 On the other hand, if a new heat outflow occurs in the electrotin-plated steel sheet 11 due to a change in the heating state of the electrotin-plated steel sheet 11 due to the addition of the induction heating device 17, the fluctuation of the heat outflow is reflected to reflect the fluctuation of the heat outflow. The applied voltage to be applied to the resistance heating device 14 must be set. Here, since the region of the electrotin-plated steel plate 11 heated by the induction heating unit 16 is narrower than the region of the electrotin-plated steel plate 11 heated by the resistance heating device 14, fluctuations in heat outflow due to the addition of the induction heating device 17. The minute (value converted to electric power) is considered to be a small fluctuation, for example, within ± 10%, compared with the input electric power amount P ′ given by the resistance heating device 14. For this reason, the actual amount of electric power generated from the induction heating device 17 reflecting the fluctuation of the heat outflow due to the addition of the induction heating device 17 is the input power amount P ′ from the resistance heating device 14 after the addition of the induction heating device 17. Can be multiplied by a coefficient α of 0.9 or more and 1.1 or less.

従って、誘導加熱装置17増設後の抵抗加熱装置14の印加電圧V’は、既設設備で抵抗加熱装置14を運転する際の印加電圧Vに、係数αと係数Kを掛けて算出される制御電圧範囲の値に設定すればよいことになる。 Therefore, the applied voltage V ′ of the resistance heating device 14 after the expansion of the induction heating device 17 is a control voltage calculated by multiplying the applied voltage V when the resistance heating device 14 is operated with existing equipment by the coefficient α and the coefficient K. It will suffice if it is set to a range value.

誘導加熱装置17増設後の抵抗加熱装置14の印加電圧V’をαKVで求めることで、抵抗加熱中の電気錫めっき鋼板11からの放熱、各支持ロール18、19に電気錫めっき鋼板11が接触することによる抜熱等のリフロー処理設備10に固有の不確定条件はVを介して折り込むことができ、誘導加熱条件はKを介して反映させることができる。そして、誘導加熱装置17の増設による熱流出の変動分を反映させる係数αは、既設設備時の抵抗加熱装置14の入側通電ロール12と出側通電ロール13間に加える印加電圧Vを基準にして、この印加電圧Vを、例えば、手動により調整することで設定される。 By determining the applied voltage V ′ of the resistance heating device 14 after the addition of the induction heating device 17 by αKV, heat dissipation from the electrotin-plated steel plate 11 during resistance heating, and the electrotin-plated steel plate 11 contacts the support rolls 18 and 19. Uncertain conditions unique to the reflow processing equipment 10 such as heat removal by performing can be folded through V, and induction heating conditions can be reflected through K. The coefficient α reflecting the fluctuation of the heat outflow due to the addition of the induction heating device 17 is based on the applied voltage V applied between the entrance side energizing roll 12 and the exit side energizing roll 13 of the resistance heating device 14 in the existing equipment. Thus, the applied voltage V is set by, for example, manual adjustment.

図2に示すように、抵抗加熱装置の抵抗加熱装置の入側通電ロールを通過する位置とクエンチ槽の浸漬直前の位置との間の電気錫めっき鋼板の長さLが18.6m、電気錫めっき鋼板が入側通電ロールを通過した際の電気錫めっき鋼板の温度TINが60℃、電気錫めっき鋼板が水槽に浸漬する直前の電気錫めっき鋼板の温度TVOUTが252℃と設定されてリフロー処理を行なう既設設備に、誘導加熱装置を増設した。ここで、誘導加熱装置の誘導加熱部の長さLc(電気錫めっき鋼板を加熱する領域の長さ)は0.65mであり、誘導加熱部の出口から上流側に図った距離Iが0.2mとなる位置で電気錫めっき鋼板の温度が錫の融点232℃に到達するようにした。また、誘導加熱部の出口は、クエンチ槽から上流側にX逆上った位置に配置した。なお、Xは、2mを基準距離とし誘導加熱部の移動調整代をxとして、X=x+2である。これによって、水槽に蓄えられた水に進入する直前の電気錫めっき鋼板の温度を調整できる。 As shown in FIG. 2, the length L of the electrotin-plated steel sheet between the position where the resistance heating device of the resistance heating device passes through the inlet energizing roll and the position immediately before the immersion of the quench bath is 18.6 m, The temperature T IN of the electrotin-plated steel sheet when the plated steel sheet passes through the entry-side energizing roll is set to 60 ° C, and the temperature T VOUT of the electrotin-plated steel sheet immediately before the electrotin-plated steel sheet is immersed in the water tank is set to 252 ° C. An induction heating device was added to the existing equipment that performs reflow processing. Here, the length Lc of the induction heating unit of the induction heating device (the length of the region for heating the electrotin-plated steel sheet) is 0.65 m, and the distance I upstream from the outlet of the induction heating unit is 0.1. The temperature of the electrotin-plated steel sheet reached a melting point of 232 ° C. of tin at a position of 2 m. Moreover, the exit of the induction heating part was arrange | positioned in the position which X went up upstream from the quench tank upstream. X is X = x + 2, where 2 m is the reference distance and x is the movement adjustment allowance of the induction heating unit. Thereby, the temperature of the electrotin-plated steel plate immediately before entering the water stored in the water tank can be adjusted.

(12)式からKを求めると、K={18.6/(18.6−0.2−2−x)}1/2・{(232−60−ΔT)/(252−60)}1/2となる。
ここで、ΔTは誘導加熱装置による電気錫めっき鋼板の温度上昇量ΔTと、ΔT=ΔT(Lc−I)/Lcの関係があるので、ΔT=(9/13)ΔTとなる。従って、Kを求める上式を整理すると、{(248.4−ΔT)/277}1/2{18.6/(16.4−x)}1/2が得られる。
従って、誘導加熱装置増設後の抵抗加熱装置の印加電圧V’は、
V’=α(248.4−ΔT)/277}1/2{18.6/(16.4−x)}1/2
と求まる。
When K is calculated from the equation (12), K = {18.6 / (18.6-0.2-2-x)} 1/2 · {(232-60−ΔT I ) / (252-60) } 1/2 .
Here, ΔT I has a relationship of ΔT I = ΔT (Lc−I) / Lc and ΔT I = (9/13) ΔT because ΔT I has a relationship of ΔT I = ΔT (Lc−I) / Lc with the induction heating apparatus. Therefore, rearranging the above equation for obtaining K yields {(248.4-ΔT) / 277} 1/2 {18.6 / (16.4-x)} 1/2 .
Therefore, the applied voltage V ′ of the resistance heating device after the addition of the induction heating device is
V ′ = α (248.4−ΔT) / 277} 1/2 {18.6 / (16.4−x)} 1/2 V
It is obtained.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、係数αを手動調整するようにしたが、誘導加熱部を通過した電気錫めっき鋼板の温度を測定し、この測定温度に基づいてαを自動的に調整するようにしてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, although the coefficient α is manually adjusted, the temperature of the electrotin-plated steel sheet that has passed through the induction heating unit may be measured, and α may be automatically adjusted based on the measured temperature.

リフロー処理設備の説明図である。It is explanatory drawing of a reflow processing equipment. 抵抗加熱装置と誘導加熱装置を併用して電気錫めっき鋼板を加熱する際の温度変化を示す説明図である。It is explanatory drawing which shows the temperature change at the time of heating an electrotin-plated steel plate using a resistance heating apparatus and an induction heating apparatus together.

符号の説明Explanation of symbols

10:リフロー処理設備、11:電気錫めっき鋼板、12:入側通電ロール、13:出側通電ロール、14:抵抗加熱装置、15:水槽、16:誘導加熱部、17:誘導加熱装置、18:第1の支持ロール、19:第2の支持ロール、20:水、21:シンクロール、22:第3の支持ロール 10: Reflow treatment equipment, 11: Electrotin-plated steel sheet, 12: Incoming energizing roll, 13: Outlet energizing roll, 14: Resistance heating device, 15: Water tank, 16: Induction heating unit, 17: Induction heating device, 18 : First support roll, 19: Second support roll, 20: Water, 21: Sink roll, 22: Third support roll

Claims (1)

電気錫めっき鋼板を抵抗加熱装置で直接抵抗加熱して錫を溶融させた後、該電気錫めっき鋼板をクエンチしてリフロー処理する既設設備に、前記抵抗加熱装置と併用して前記電気錫めっき鋼板を加熱する誘導加熱装置をクエンチ槽の直上流側に新たに増設したリフロー処理設備の抵抗加熱装置の運転方法において、
前記誘導加熱装置増設後の前記抵抗加熱装置の印加電圧V’を、前記既設設備で該抵抗加熱装置を運転する際の印加電圧Vに、0.9以上で1.1以下の係数αと下記式で求めた係数Kを掛けて算出される制御電圧範囲の値に設定することを特徴とするリフロー処理設備の抵抗加熱装置の運転方法。
K={(T232−TIN−ΔT)/(TVOUT−TIN)}1/2(L/L1/2
ここで、T232は錫の融点、TINは既設設備で抵抗加熱装置の入側通電ロールを通過する際の電気錫めっき鋼板の温度、ΔTは電気錫めっき鋼板が誘導加熱装置で加熱を開始されてから錫の融点に達するまでに上昇した温度、TVOUTは既設設備で電気錫めっき鋼板がクエンチ槽に浸漬される直前の温度、Lは抵抗加熱装置の入側通電ロールを通過する位置とクエンチ槽の浸漬直前の位置との間の電気錫めっき鋼板の長さ、Lは誘導加熱装置内で電気錫めっき鋼板が錫の融点温度に達する位置と抵抗加熱装置の入側通電ロールを通過する位置との間の電気錫めっき鋼板の長さである。
The electric tin-plated steel sheet is used in combination with the resistance heating apparatus in the existing equipment for melting the tin by directly resistance heating the electric tin-plated steel sheet with a resistance heating apparatus and quenching the electric tin-plated steel sheet. In the operation method of the resistance heating device of the reflow processing equipment newly added to the induction tank directly upstream of the quenching tank,
The applied voltage V ′ of the resistance heating device after the addition of the induction heating device is equal to the applied voltage V when operating the resistance heating device with the existing equipment, the coefficient α of 0.9 or more and 1.1 or less, and the following: A method of operating a resistance heating device of a reflow processing facility, wherein the value is set to a value of a control voltage range calculated by multiplying by a coefficient K obtained by an equation.
K = {(T 232 −T IN −ΔT I ) / (T VOUT −T IN )} 1/2 (L / L I ) 1/2
Here, T 232 is the melting point of tin, T IN is the temperature of the electrotin-plated steel sheet when passing through the entrance side energizing roll of the resistance heating apparatus in existing equipment, and ΔT I is the electric tin-plated steel sheet heated by the induction heating apparatus. The temperature that has risen from the start until the melting point of tin is reached, T VOUT is the temperature immediately before the tin-plated steel sheet is immersed in the quench tank in the existing equipment, and L is the position that passes through the entrance side energizing roll of the resistance heating device the length of the electrical tin-plated steel sheet between the position of the immersion immediately before the quench tank, the inlet side conductive rolls of L I resistive heating device and a position where electrical tin-plated steel sheet in the induction heating apparatus reaches the melting point of tin It is the length of the electrotin plating steel plate between the passing positions.
JP2007019672A 2007-01-30 2007-01-30 Method of operating resistance heating apparatus in reflow treatment equipment Withdrawn JP2008184658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019672A JP2008184658A (en) 2007-01-30 2007-01-30 Method of operating resistance heating apparatus in reflow treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019672A JP2008184658A (en) 2007-01-30 2007-01-30 Method of operating resistance heating apparatus in reflow treatment equipment

Publications (1)

Publication Number Publication Date
JP2008184658A true JP2008184658A (en) 2008-08-14

Family

ID=39727897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019672A Withdrawn JP2008184658A (en) 2007-01-30 2007-01-30 Method of operating resistance heating apparatus in reflow treatment equipment

Country Status (1)

Country Link
JP (1) JP2008184658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159451A (en) * 2009-01-07 2010-07-22 Nippon Steel Engineering Co Ltd Reflow heating power control method of continuous tin plating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159451A (en) * 2009-01-07 2010-07-22 Nippon Steel Engineering Co Ltd Reflow heating power control method of continuous tin plating apparatus

Similar Documents

Publication Publication Date Title
CN108672504A (en) A kind of cold-strip steel sensing heating coil of strip transition temperature control method
JP2008184658A (en) Method of operating resistance heating apparatus in reflow treatment equipment
SK11852002A3 (en) Method and device for pickling rolled metal, in particular steel strip
JP4339949B2 (en) Float type glass sheet manufacturing method and apparatus for manufacturing the same
JP2643048B2 (en) Hot-dip plating apparatus and method of operating hot-dip plating apparatus
EP4306665A1 (en) Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP7134591B2 (en) Continuous hot-dip galvanizing method and continuous hot-dip galvanizing equipment
JP5506468B2 (en) Temperature control method for quench tank of electroplated steel sheet equipment
JP5067428B2 (en) Method for producing electrotinned steel sheet
JP6256325B2 (en) Continuous hot dip galvanizing method and continuous hot dip galvanizing equipment
JP3339404B2 (en) Method and apparatus for controlling reflow treatment of tin plated steel sheet
JP4472388B2 (en) Reflow treatment method for electrotinned steel sheet
JP2005248208A (en) Method for controlling sheet temperature of galvannealed steel sheet during induction heating it
KR102283929B1 (en) Dynamic adjustment method for the production of thermally treated steel sheet
JP6414170B2 (en) Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus
JP2007217754A (en) Method and device for controlling temperature of molten zinc pot
KR101070268B1 (en) Control method for combination reflow brightening of tin plating process
KR100949723B1 (en) Method for controling the current of conduction reflow in the plating process
CN111974816B (en) Method for calculating induction heating power set value of cold-rolled strip steel
JP3464866B2 (en) Continuous hot-dip galvanizing equipment for steel strip
JP2016037636A (en) Cooling device and cooling method in reflow treatment device of electric tin plated sheet steel
JP2004197210A (en) Method and apparatus for manufacturing tin-electroplated sheet
KR101086317B1 (en) Deivce for compensating the strip temperature of the conduction reflow brightening of tin plating process
KR20040055978A (en) Control method for combination reflow brightening of tin plating process
JP5268658B2 (en) Reflow heating power control method for continuous tin plating equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406