JP6414170B2 - Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus - Google Patents

Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus Download PDF

Info

Publication number
JP6414170B2
JP6414170B2 JP2016190941A JP2016190941A JP6414170B2 JP 6414170 B2 JP6414170 B2 JP 6414170B2 JP 2016190941 A JP2016190941 A JP 2016190941A JP 2016190941 A JP2016190941 A JP 2016190941A JP 6414170 B2 JP6414170 B2 JP 6414170B2
Authority
JP
Japan
Prior art keywords
steel sheet
induction heating
measuring
austenite
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016190941A
Other languages
Japanese (ja)
Other versions
JP2017067781A (en
Inventor
大地 市川
大地 市川
善正 姫井
善正 姫井
長谷川 寛
寛 長谷川
和敏 廣山
和敏 廣山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017067781A publication Critical patent/JP2017067781A/en
Application granted granted Critical
Publication of JP6414170B2 publication Critical patent/JP6414170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、誘導加熱プロセスによる鋼板の加熱において活用できるものであり、特に、鋼板に含まれるオーステナイトの割合をオンラインで測定する方法および装置に関するものである。ならびに、オンラインで測定したオーステナイトの割合に基づいて、鋼板の合金化に必要な温度を決定し、その合金化必要温度に基づいて合金化炉誘導加熱装置への投入電力を制御する合金化炉誘導加熱装置制御方法に関するものである。   The present invention can be utilized in heating of a steel sheet by an induction heating process, and particularly relates to a method and an apparatus for measuring the ratio of austenite contained in a steel sheet online. In addition, based on the austenite ratio measured online, the temperature required for alloying of the steel sheet is determined, and the alloying furnace induction that controls the input power to the alloying furnace induction heating device based on the required temperature for alloying The present invention relates to a heating device control method.

近年、自動車車体の軽量化に伴い、軽量かつ高張力の鋼板に対する需要が増加している。特に、現在では鋼板の引張強度が増加するに伴い、オーステナイトを含む鋼板が増加しており、鋼板に含まれるオーステナイトの割合(以下、γ分率とも称する)をオンラインで測定する技術が求められている。   In recent years, with the reduction in weight of automobile bodies, demand for lightweight and high-tensile steel sheets has increased. In particular, as the tensile strength of steel sheets increases, the number of steel sheets containing austenite is increasing at present, and there is a need for a technique for measuring the austenite ratio (hereinafter also referred to as γ fraction) contained in the steel sheet online. Yes.

このγ分率のオンライン測定に関する技術としては、例えば特許文献1では、専用の渦電流方式の測定装置を設置し、予め取得しておいた関係式から求める方法が開示されている。   As a technique relating to the online measurement of the γ fraction, for example, Patent Document 1 discloses a method of obtaining a dedicated eddy current measurement device and obtaining it from a relational expression acquired in advance.

特開2012−122993号公報JP 2012-122993 A

特許文献1に開示の技術では、製造ライン内に、専用の渦電流方式の測定装置を設置し、鋼板に含まれるγ分率をオンライン測定する必要がある。そして、オンラインで測定したγ分率に基づいて、鋼板の合金化に必要な温度を決定し、その合金化必要温度から合金化炉誘導加熱装置への投入電力を制御する合金化炉誘導加熱装置の制御方法についても求められるところである。   In the technique disclosed in Patent Document 1, it is necessary to install a dedicated eddy current type measuring device in the production line and measure the γ fraction contained in the steel sheet online. Then, based on the γ fraction measured online, the temperature required for alloying of the steel sheet is determined, and the alloying furnace induction heating device that controls the input power to the alloying furnace induction heating device from the temperature required for alloying There is also a need for a control method.

本発明は、このような従来の問題に鑑みてなされたものであり、専用の測定用装置を設置することなく、製造工程内において、安価に鋼板に含まれるオーステナイトの割合をオンラインで測定することができる、鋼板に含まれるオーステナイトの割合の測定方法および装置を提供することを目的とする。さらに、オンラインで測定したオーステナイトの割合に基づいて、鋼板の合金化に必要な温度を決定し、決定した合金化必要温度に基づいて合金化炉誘導加熱装置への投入電力を制御する合金化炉誘導加熱装置制御方法を提供することを目的とする。   The present invention has been made in view of such conventional problems, and can measure the proportion of austenite contained in a steel sheet at low cost in a manufacturing process without installing a dedicated measuring device. It is an object to provide a method and an apparatus for measuring the proportion of austenite contained in a steel sheet. Furthermore, an alloying furnace that determines the temperature required for alloying of the steel sheet based on the proportion of austenite measured online, and controls the electric power supplied to the alloying furnace induction heating device based on the determined alloying required temperature. It aims at providing the induction heating apparatus control method.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 誘導加熱装置による誘導加熱時の鋼板に含まれるオーステナイトの割合をオンラインで測定する、鋼板に含まれるオーステナイトの割合の測定方法であって、
誘導加熱装置のコイル端電圧から演算される鋼板有効発熱量と、誘導加熱による鋼板の温度上昇実績値から演算される鋼板有効発熱量とに基づいて鋼板比透磁率を演算し、該鋼板比透磁率の逆数として前記オーステナイトの割合を演算することを特徴とする鋼板に含まれるオーステナイトの割合の測定方法。
[1] A method for measuring the proportion of austenite contained in a steel sheet, measuring on-line the proportion of austenite contained in the steel plate during induction heating by an induction heating device,
The steel sheet relative permeability is calculated based on the steel sheet effective heat value calculated from the coil end voltage of the induction heating device and the steel sheet effective heat value calculated from the actual temperature rise of the steel sheet due to induction heating. A method for measuring a ratio of austenite contained in a steel sheet, wherein a ratio of the austenite is calculated as a reciprocal of magnetic susceptibility.

[2] 上記[1]に記載の鋼板に含まれるオーステナイトの割合の測定方法において、
前記鋼板比透磁率を演算するにあたっては、以下の(5)式を用いることを特徴とする鋼板に含まれるオーステナイトの割合の測定方法。
[2] In the method for measuring the ratio of austenite contained in the steel sheet according to [1] above,
In calculating the steel sheet relative permeability, the following formula (5) is used: A method for measuring the ratio of austenite contained in a steel sheet.

ここで、
mr[−]:鋼板比透磁率、d[kg/m 3 ]:鋼板密度、c:板幅[m]、b[J/kg・K]:鋼板比熱、T[K]:温度上昇値、Ls[mpm]:ライン速度、ω[Hz]:インバータ周波数、m0[H/m]:真空の透磁率、ρ[−]:鋼板抵抗率、n[回]:加熱コイルの巻数、S[m2]:コイル断面積、V0[V]:コイル端電圧、Aw[m2]:コイル断面積、B:磁束係数、lc[m]:コイル高さ
[3] 誘導加熱装置による誘導加熱時の鋼板に含まれるオーステナイトの割合をオンラインで測定する、鋼板に含まれるオーステナイトの割合の測定装置であって、
放射温度計によって前記誘導加熱時の鋼板の温度上昇実績と、
誘導加熱装置のコイル印加電圧およびインバータ角周波数と、
鋼板の板幅およびライン速度とに基づいて、
鋼板比透磁率を演算し、該鋼板比透磁率の逆数として前記オーステナイトの割合を演算する演算部を具備することを特徴とする鋼板に含まれるオーステナイトの割合の測定装置。
here,
m r [−]: Steel sheet relative permeability, d [kg / m 3 ]: Steel sheet density, c: Sheet width [m], b [J / kg · K]: Steel sheet specific heat, T [K]: Temperature rise value , Ls [mpm]: Line speed, ω [Hz]: Inverter frequency, m 0 [H / m]: Vacuum permeability, ρ [−]: Steel sheet resistivity, n [times]: Number of turns of heating coil, S [m 2 ]: Coil cross-sectional area, V 0 [V]: Coil end voltage, A w [m 2 ]: Coil cross-sectional area, B: Magnetic flux coefficient, lc [m]: Coil height [3] By induction heating device An apparatus for measuring the proportion of austenite contained in a steel sheet, measuring the proportion of austenite contained in the steel plate during induction heating online,
With a radiation thermometer, the temperature rise of the steel sheet during the induction heating,
Coil applied voltage and inverter angular frequency of induction heating device,
Based on the steel plate width and line speed,
An apparatus for measuring a ratio of austenite contained in a steel sheet, comprising: an arithmetic unit that calculates a steel sheet relative permeability and calculates the austenite ratio as a reciprocal of the steel sheet relative permeability.

[4] 上記[1]または[2]に記載の鋼板に含まれるオーステナイトの割合の測定方法を用いて、鋼板の合金化に必要な温度を決定し、決定した合金化必要温度に基づいて合金化炉誘導加熱装置への投入電力を制御することを特徴とする合金化炉誘導加熱装置制御方法。   [4] Using the method for measuring the ratio of austenite contained in the steel sheet according to [1] or [2], a temperature necessary for alloying of the steel sheet is determined, and an alloy based on the determined alloying required temperature is determined. An alloying furnace induction heating apparatus control method, comprising: controlling an input power to a furnace induction heating apparatus.

本発明によれば、誘導加熱装置の実績データを用いて、オンラインでγ分率を測定できるようにしたので、専用の測定用装置を設置することなく、製造工程内において、安価に鋼板に含まれるγ分率を測定することができる。   According to the present invention, since the γ fraction can be measured online using the result data of the induction heating device, it is included in the steel sheet at a low cost in the manufacturing process without installing a dedicated measuring device. Can be measured.

また、鋼板の全長に渡ってγ分率を測定することができるため、品質保証の面で効果がある。そして、オンラインでγ分率が測定可能なため、フィードバック制御による鋼板に含まれるγ分率制御が可能になるという効果もある。   Further, since the γ fraction can be measured over the entire length of the steel plate, it is effective in terms of quality assurance. Further, since the γ fraction can be measured online, there is also an effect that the γ fraction contained in the steel plate by feedback control can be controlled.

さらに、鋼板のγ分率に基づいて、合金化に必要な温度を決定し、合金化炉誘導加熱装置への投入電力を制御することで、目標とする合金化外れの減少が可能になるという効果もある。   Furthermore, based on the γ fraction of the steel sheet, the temperature required for alloying is determined, and by controlling the input power to the alloying furnace induction heating device, it is possible to reduce the target alloying failure. There is also an effect.

本発明を適用する誘導加熱装置を用いた鋼板加熱の様子を示す図である。It is a figure which shows the mode of the steel plate heating using the induction heating apparatus to which this invention is applied. 誘導加熱装置での加熱原理を説明するシステム構成図である。It is a system block diagram explaining the heating principle in an induction heating apparatus. 誘導加熱時における鋼板の断面を示す図である。It is a figure which shows the cross section of the steel plate at the time of induction heating. 本発明に係る装置構成例を示す図である。It is a figure which shows the apparatus structural example which concerns on this invention. 本発明を適用する合金化溶融亜鉛めっき鋼板製造ラインの装置例を示す図である。It is a figure which shows the apparatus example of the galvannealed steel plate manufacturing line to which this invention is applied. 合金化炉誘導加熱装置の制御ブロック例を示す図である。It is a figure which shows the example of a control block of an alloying furnace induction heating apparatus. γ分率のオフライン値とオンライン値の比較結果を示す図である。It is a figure which shows the comparison result of the offline value and online value of (gamma) fraction.

本発明者らは、誘導加熱の原理を利用した、γ分率導出モデルを考案して以下に説明する本発明に想到した。以下、図および式を参照しながら、本発明を具体的に説明する。   The present inventors devised a γ fraction derivation model using the principle of induction heating and arrived at the present invention described below. Hereinafter, the present invention will be specifically described with reference to the drawings and formulas.

図1は、本発明を適用する誘導加熱装置を用いた鋼板加熱の様子を示す図である。図中、1は鋼板、2は誘導加熱装置を、それぞれ表す。進行方向に移動する鋼板1の途中に設置した誘導加熱装置2によって、鋼板1の温度上昇を行なっている。   FIG. 1 is a diagram showing a state of steel plate heating using an induction heating apparatus to which the present invention is applied. In the figure, 1 represents a steel plate and 2 represents an induction heating device. The temperature of the steel plate 1 is increased by an induction heating device 2 installed in the middle of the steel plate 1 moving in the traveling direction.

図2は、誘導加熱装置での加熱原理を説明するシステム構成図である。図中、1は鋼板、3はトランス、4はコンバータ、5はインバータ、6はコイルを、それぞれ表す。   FIG. 2 is a system configuration diagram for explaining the heating principle in the induction heating apparatus. In the figure, 1 is a steel plate, 3 is a transformer, 4 is a converter, 5 is an inverter, and 6 is a coil.

トランス3から供給された電流I[A]は、コンバータ4を通して直流電流IDC[A]に変換され、平滑リアクトルによって平滑化された後、インバータ5によって、必要周波数を持った交流電流I1[A]に変換される。この交流電流が誘導加熱装置のコイル6に供給されることで、コイル両端に電圧差(以下、コイル端電圧、コイルに投入した電圧とも称する)V0[V]が生じ、以下の(1)式で表される励磁電流I0[A]を発生させる。 The current I [A] supplied from the transformer 3 is converted into a direct current I DC [A] through the converter 4, smoothed by a smoothing reactor, and then converted by the inverter 5 into an alternating current I 1 [ A]. By supplying this alternating current to the coil 6 of the induction heating device, a voltage difference (hereinafter also referred to as a coil end voltage, also referred to as a voltage applied to the coil) V 0 [V] occurs at both ends of the coil. The exciting current I 0 [A] expressed by the equation is generated.

この結果、この励磁電流I0[A]によって生じた磁束の変化により、鋼板内部に渦電流が発生し、鋼板が抵抗加熱されることで、鋼板有効発熱量P[W]を発生する。このとき、鋼板有効発熱量P[W]は、誘導加熱装置に供給された電力に関するデータ、誘導加熱装置の寸法、鋼板寸法および物性値といった、各パラメータを使用して以下の(2)式のように表すことができる。 As a result, an eddy current is generated inside the steel sheet due to a change in magnetic flux generated by the exciting current I 0 [A], and the steel sheet is resistance-heated to generate a steel sheet effective heat generation amount P [W]. At this time, the effective heating value P [W] of the steel plate is expressed by the following equation (2) using each parameter such as data on the electric power supplied to the induction heating device, dimensions of the induction heating device, steel plate dimensions, and physical property values. Can be expressed as:

なお、各パラメータは下記の通りである。
V0[V]:コイル端電圧、S[m2]:コイル断面積、ω[Hz]:インバータ周波数、m0[H/m]:真空の透磁率、mr[−]:鋼板比透磁率、n[回]:加熱コイルの巻数、I0[A]:コイルに流れる励磁電流、Aw[m2]:コイル断面積、lc[m]:コイル高さ、B:磁束係数、P[W]:鋼板有効発熱量
以上、誘導加熱装置のコイルに投入した電圧V0[V]より励磁電流I0[A]を求めて、この励磁電流I0[A]から鋼板有効発熱量P[W]を求めている。なお、鋼板有効発熱量とは、鋼板全体で発生する発熱量に対して、実際に温度上昇に使用される有効エネルギー分のことを言う。
Each parameter is as follows.
V 0 [V]: Coil end voltage, S [m 2 ]: Coil cross section, ω [Hz]: Inverter frequency, m 0 [H / m]: Vacuum permeability, mr [−]: Steel sheet relative permeability Magnetic susceptibility, n [times]: Number of turns of heating coil, I 0 [A]: Excitation current flowing in the coil, A w [m 2 ]: Coil cross-sectional area, lc [m]: Coil height, B: Magnetic flux coefficient, P [W]: Effective heating value of steel plate As described above, the exciting current I 0 [A] is obtained from the voltage V 0 [V] applied to the coil of the induction heating device, and the effective heating value P of the steel plate is obtained from this exciting current I 0 [A]. Seeking [W]. Note that the effective heat generation amount of the steel sheet refers to the amount of effective energy actually used for temperature rise with respect to the heat generation amount generated in the entire steel sheet.

また、一方で、鋼板有効発熱量P[W]は、誘導加熱による鋼板の温度上昇実績値からも求めることができる。図3は、誘導加熱時における鋼板の断面を示す図である。   On the other hand, the effective heat generation amount P [W] of the steel sheet can also be obtained from the actual temperature rise value of the steel sheet by induction heating. FIG. 3 is a view showing a cross section of the steel sheet during induction heating.

鋼板に誘起された渦電流Iw[A]は、表皮効果を受けて、鋼板の深さ方向に対して指数関数的に減少していく。鋼板内部に流れる渦電流Iw[A]の総和は、鋼板表面に流れる渦電流が、電流浸透深さδ[m]まで均一に流れていると考えたときと同等であり、誘導加熱による鋼板の温度上昇値をT[K]とすれば、鋼板の温度上昇に使用されたエネルギーは(鋼板質量×比熱×温度上昇実績)であり、以下の(3)式のように表すことができる。 The eddy current I w [A] induced in the steel sheet decreases exponentially with respect to the depth direction of the steel sheet due to the skin effect. The total sum of the eddy currents I w [A] flowing inside the steel plate is equivalent to the case where the eddy current flowing on the steel plate surface is thought to flow uniformly to the current penetration depth δ [m]. If the temperature rise value of T is K [K], the energy used for the temperature rise of the steel sheet is (steel plate mass × specific heat × temperature rise record), which can be expressed as the following equation (3).

なお、各パラメータは下記の通りである。
d[kg/m 3 ]:鋼板密度、lc[m]:コイル高さ、c[m]:板幅、δ[m]:鋼板浸透深さ、b[J/kg・K]:鋼板比熱、T[K]:温度上昇値、Ls[mpm]:ライン速度
渦電流による鋼板浸透深さδ[m]は、次の(4)式で表すことができる。
Each parameter is as follows.
d [kg / m 3 ]: Steel plate density, lc [m]: Coil height, c [m]: Plate width, δ [m]: Steel plate penetration depth, b [J / kg · K]: Steel plate specific heat, T [K]: Temperature rise value, Ls [mpm]: Line speed The steel plate penetration depth δ [m] due to eddy current can be expressed by the following equation (4).

ここで、δ[m]:鋼板浸透深さ、ρ[−]:鋼板抵抗率、ω[Hz]:インバータ周波数、m0[H/m]:真空の透磁率、mr:鋼板比透磁率
鋼板有効発熱量Pにより、鋼板の温度が上昇する事から、(2)式と(3)式はエネルギー的に等価であるため、鋼板比透磁率mrを未知数として連立方程式を解くと、次の(5)式が得られる。
Here, δ [m]: Steel sheet penetration depth, ρ [−]: Steel sheet resistivity, ω [Hz]: Inverter frequency, m 0 [H / m]: Vacuum permeability, mr : Steel sheet relative permeability the steel plate effective heating value P, the fact that the temperature of the steel sheet rises, (2) and (3) expression is energetically equivalent and solving the simultaneous equations as unknowns steel relative permeability m r, the following Equation (5) is obtained.

ここで、
mr[−]:鋼板比透磁率、d[kg/m 3 ]:鋼板密度、c:板幅[m]、b[J/kg・K]:鋼板比熱、T[K]:温度上昇値、Ls[mpm]:ライン速度、ω[Hz]:インバータ周波数、m0[H/m]:真空の透磁率、ρ[−]:鋼板抵抗率、n[回]:加熱コイルの巻数、S[m2]:コイル断面積、V0[V]:コイル端電圧、Aw[m2]:コイル断面積、B:磁束係数、lc[m]:コイル高さ
(5)式において、c:板幅[m]、T[K]:温度上昇値、Ls[mpm]:ライン速度、ω[Hz]:インバータ周波数、V0[V]:コイル端電圧などが変数すなわち測定値である。
here,
m r [−]: Steel sheet relative permeability, d [kg / m 3 ]: Steel sheet density, c: Sheet width [m], b [J / kg · K]: Steel sheet specific heat, T [K]: Temperature rise value , Ls [mpm]: Line speed, ω [Hz]: Inverter frequency, m 0 [H / m]: Vacuum permeability, ρ [−]: Steel sheet resistivity, n [times]: Number of turns of heating coil, S [m 2 ]: Coil cross section, V 0 [V]: Coil end voltage, A w [m 2 ]: Coil cross section, B: Magnetic flux coefficient, lc [m]: Coil height In equation (5), c : Plate width [m], T [K]: Temperature rise value, Ls [mpm]: Line speed, ω [Hz]: Inverter frequency, V 0 [V]: Coil end voltage, etc. are variables, that is, measured values.

そして、鋼板比透磁率とγ分率には逆数の関係があるため、(6)式に示すように、(5)式で得られた鋼板比透磁率からγ分率をオンラインで求めることができる。   Since the steel sheet relative permeability and the γ fraction have a reciprocal relationship, the γ fraction can be obtained online from the steel sheet relative permeability obtained by the expression (5) as shown in the expression (6). it can.

図4は、本発明に係る装置構成例を示す図である。図中、1は鋼板、2は誘導加熱装置、4はコンバータ、5はインバータ、7は放射温度計、8は演算部、および9はネットワークをそれぞれ表す。   FIG. 4 is a view showing an apparatus configuration example according to the present invention. In the figure, 1 represents a steel plate, 2 represents an induction heating device, 4 represents a converter, 5 represents an inverter, 7 represents a radiation thermometer, 8 represents a calculation unit, and 9 represents a network.

ネットワーク9を介してデータの収集およびこれに基づいて、γ分率の演算を行なう。先ず、誘導加熱による鋼板1のT温度上昇実績が、放射温度計7そして放射温度計変換器盤・I/O盤を経てネットワーク9に送られる。また、誘導加熱装置(IH)2からは、ωインバータ角周波数およびV0コイル印加電圧が、インバータ5、コンバータ4、IH I/F 制御盤、PLC(Programmable Logic Controller)を経てネットワーク9に送られる。このPLCには、c板幅がビジネスコンピュータ(B/C)、プロセスコンピュータ(P/C)を経て送られ、同様にネットワーク9に送られる。さらに、Lsライン速度についても、他のPLCからネットワーク9に送られる。 Data is collected via the network 9 and the γ fraction is calculated based on the data. First, the T temperature rise record of the steel sheet 1 by induction heating is sent to the network 9 via the radiation thermometer 7 and the radiation thermometer converter board / I / O board. Further, from the induction heating device (IH) 2, the ω inverter angular frequency and the V 0 coil applied voltage are sent to the network 9 via the inverter 5, the converter 4, the IH I / F control panel, and the PLC (Programmable Logic Controller). . The c board width is sent to this PLC via a business computer (B / C) and a process computer (P / C), and sent to the network 9 in the same manner. Further, the Ls line speed is also sent to the network 9 from another PLC.

そして、ネットワーク9に送られデータに基づいて、演算部(例えば、PLCにて構成)8にて、上述の(5)および(6)式にてγ分率の演算が行なれる。演算されたγ分率は必要に応じてデータロガーにてロギングされデータ取り出しされる。   Then, based on the data sent to the network 9, the calculation unit (for example, configured by PLC) 8 calculates the γ fraction by the above-described equations (5) and (6). The calculated γ fraction is logged by a data logger as necessary and data is taken out.

以上、本発明は、誘導加熱装置の実績データを用いて、オンラインでγ分率を測定できるようにしたので、専用の測定用装置を設置することなく、製造工程内において、安価に鋼板に含まれるγ分率を測定することができる。   As described above, since the present invention enables the γ fraction to be measured online using the result data of the induction heating device, it is included in the steel sheet at a low cost within the manufacturing process without installing a dedicated measuring device. Can be measured.

また、鋼板の全長に渡ってγ分率を測定することができるため、品質保証の面で効果があるとともに、オンラインでγ分率が測定可能なため、フィードバック制御による鋼板に含まれるγ分率制御が可能になるという効果もある。   In addition, since the γ fraction can be measured over the entire length of the steel sheet, it is effective in terms of quality assurance, and since the γ fraction can be measured online, the γ fraction contained in the steel sheet by feedback control. There is also an effect that control becomes possible.

図5は、本発明を適用する合金化溶融亜鉛めっき鋼板製造ラインの装置例を示す図である。図5(a)中、11は鋼板、12は雰囲気ガス帯、13は冷却帯、14は合金化炉帯、15は溶融亜鉛浴、16は誘導加熱装置(前部)、17は誘導加熱装置(後部)、18は合金化炉誘導加熱装置、19は放射温度計を、それぞれ表す。また、図5(b)は、鋼板の通板途中での温度変化を模式的に表した図である。   FIG. 5 is a diagram showing an apparatus example of an alloyed hot-dip galvanized steel sheet production line to which the present invention is applied. In FIG. 5A, 11 is a steel plate, 12 is an atmospheric gas zone, 13 is a cooling zone, 14 is an alloying furnace zone, 15 is a molten zinc bath, 16 is an induction heating device (front part), and 17 is an induction heating device. (Rear part), 18 represents an alloying furnace induction heating device, and 19 represents a radiation thermometer. Moreover, FIG.5 (b) is the figure which represented typically the temperature change in the middle of the passage of a steel plate.

直火炉(図示せず)を経た鋼板11は、雰囲気ガス帯12、冷却帯13、溶融亜鉛浴15、合金化炉帯14の順に通板されて、合金化溶融亜鉛めっき鋼板となる。   The steel plate 11 that has passed through the direct furnace (not shown) is passed through the atmosphere gas zone 12, the cooling zone 13, the hot dip zinc bath 15, and the alloying furnace zone 14 in this order to become an alloyed hot dip galvanized steel plate.

鋼板11は、直火炉で直接加熱されることにより、圧延油が除去されるとともに、その表面が酸化されて、表層に酸化鉄層が形成される。そして、鋼板11は、水素と窒素といった混合ガスからなる雰囲気ガス帯12に保持され、鋼板11の表層に形成された酸化鉄層が還元され、鋼板11の表層に還元鉄層が形成される。   When the steel plate 11 is directly heated in a direct furnace, the rolling oil is removed and the surface is oxidized to form an iron oxide layer on the surface layer. And the steel plate 11 is hold | maintained at the atmospheric gas zone 12 which consists of mixed gas, such as hydrogen and nitrogen, the iron oxide layer formed in the surface layer of the steel plate 11 is reduced, and a reduced iron layer is formed in the surface layer of the steel plate 11.

そして、還元鉄層が形成された鋼板11は、冷却帯13を通板されて、溶融亜鉛浴15への浸漬に適した板温に調整される。なお、図5に示す冷却帯13では、誘導加熱装置(前部)16、および誘導加熱装置(後部)17の2つの誘導加熱装置が設置されており、誘導加熱装置(前部)16では材質作りこみための板温調整、誘導加熱装置(後部)17では浸漬に適した板温調整がそれぞれ行われる。適切な板温調整を行うために、誘導加熱装置の入口および出口には放射温度計19をそれぞれ設置している。   The steel plate 11 on which the reduced iron layer is formed is passed through the cooling zone 13 and adjusted to a plate temperature suitable for immersion in the molten zinc bath 15. In the cooling zone 13 shown in FIG. 5, two induction heating devices, that is, an induction heating device (front part) 16 and an induction heating device (rear part) 17 are installed. In the plate temperature adjustment for making up and the induction heating device (rear part) 17, plate temperature adjustment suitable for immersion is performed. In order to adjust the plate temperature appropriately, radiation thermometers 19 are respectively installed at the inlet and the outlet of the induction heating apparatus.

冷却帯13を通板された鋼板11は、溶融亜鉛浴15に浸漬された後に引き上げられ、ガスワイピング装置(図示せず)によって亜鉛付着量が調整される。このようにして、鋼板11には、めっき皮膜が形成される。   The steel plate 11 passed through the cooling zone 13 is pulled up after being immersed in the molten zinc bath 15, and the amount of zinc attached is adjusted by a gas wiping device (not shown). In this way, a plating film is formed on the steel plate 11.

めっき皮膜が形成された鋼板11は、合金化炉帯14で加熱され、めっき皮膜が合金化される。合金化炉帯14での加熱にあたっては、合金化炉誘導加熱装置18を制御して、合金化に必要な合金化温度に調整する。   The steel plate 11 on which the plating film is formed is heated in the alloying furnace zone 14, and the plating film is alloyed. In heating in the alloying furnace zone 14, the alloying furnace induction heating device 18 is controlled to adjust to the alloying temperature necessary for alloying.

図6は、合金化炉誘導加熱装置の制御ブロック例を示す図である。図中、21は演算器(γ分率計算)、22は制御器(投入電力)、18は合金化炉誘導加熱装置を、それぞれ表す。   FIG. 6 is a diagram illustrating a control block example of the alloying furnace induction heating apparatus. In the figure, 21 represents a calculator (γ fraction calculation), 22 represents a controller (input power), and 18 represents an alloying furnace induction heating device.

演算器21では、鋼板データ、誘導加熱装置(前部)16および誘導加熱装置(後部)17におけるデータ(先の(1)、(2)式中でのパラメ−タなど)、および誘導加熱装置入側・出側温度を入力として、前述した(5)式よりγ分率を計算する。   In the computing unit 21, the steel plate data, the data in the induction heating device (front part) 16 and the data in the induction heating device (rear part) 17 (parameters in the previous equations (1) and (2), etc.), and the induction heating device The γ fraction is calculated from the above-described equation (5) with the input and output temperatures as inputs.

そして、制御器22では、計算したγ分率より、鋼板の合金化に必要な温度を決定する。合金化必要温度は、γ分率の関数とするか、従来の操業からγ分率vs合金化温度としてテーブルの形でもつようにすると良い。さらに、合金化必要温度が決定されたら、この合金化必要温度に基づいて合金化炉誘導加熱装置への投入電力を演算して、演算した投入電力にて合金化炉誘導加熱装置を制御する。   The controller 22 determines the temperature required for alloying the steel sheet from the calculated γ fraction. The alloying required temperature may be a function of the γ fraction, or may be provided in the form of a table as the γ fraction vs. alloying temperature from the conventional operation. Further, when the required alloying temperature is determined, the input power to the alloying furnace induction heating device is calculated based on the required alloying temperature, and the alloying furnace induction heating device is controlled with the calculated input power.

鋼板の合金化温度は、合金化炉誘導加熱装置への投入電力、板厚、板幅、ライン速度などの関数として与えられるから、この関係式を逆変換して、合金化必要温度から合金化炉誘導加熱装置への投入電力を求めるようにすればよい。   The alloying temperature of the steel sheet is given as a function of the input power to the alloying furnace induction heating device, the sheet thickness, the sheet width, the line speed, etc .. What is necessary is just to obtain | require the input electric power to a furnace induction heating apparatus.

鋼板のγ分率に基づいて、合金化に必要な温度を決定し、合金化炉誘導加熱装置への投入電力を制御することで、目標とする合金化外れの減少が可能になる。   By determining the temperature required for alloying based on the γ fraction of the steel sheet and controlling the input power to the alloying furnace induction heating device, it is possible to reduce the target alloying failure.

本発明を適用し図4の装置構成でオンラインで求めたγ分率の精度を評価するために、目標γ分率の異なる3水準の鋼種(計8サンプル)を対象に、オフラインで実測(SEM(Scanning Electron Microscopy)像観察)した値との比較を実施した。   In order to evaluate the accuracy of the γ fraction obtained on-line with the apparatus configuration of FIG. 4 by applying the present invention, offline measurement (SEM) was performed for three levels of steel grades (total 8 samples) with different target γ fractions. (Scanning Electron Microscopy) Image observation) Comparison with the values obtained was performed.

図7は、γ分率のオフライン値とオンライン値の比較結果を示す図である。図から、本発明を適用しオンラインで求めたγ分率とオフラインで実測したγ分率に良い相関が確認でき、本発明が有用であることが確認できた。   FIG. 7 is a diagram showing a comparison result between the offline value and the online value of the γ fraction. From the figure, a good correlation was confirmed between the γ fraction obtained online by applying the present invention and the γ fraction measured offline, and the present invention was confirmed to be useful.

これにより、測定装置の新設を必要とせずに、安価にγ分率をオンラインで測定することが可能となった。   This makes it possible to measure the γ fraction online at low cost without the need for a new measuring device.

また、鋼板の全長に渡ってγ分率を測定することができるため、品質保証の面で効果がある。さらに、オンラインでγ分率が測定可能なため、フィードバック制御による鋼板に含まれるγ分率制御が可能になるという効果もある。   Further, since the γ fraction can be measured over the entire length of the steel plate, it is effective in terms of quality assurance. Furthermore, since the γ fraction can be measured online, there is also an effect that the γ fraction contained in the steel plate by feedback control can be controlled.

1 鋼板
2 誘導加熱装置
3 トランス
4 コンバータ
5 インバータ
6 コイル
7 放射温度計
8 演算部
9 ネットワーク
11 鋼板
12 雰囲気ガス帯
13 冷却帯
14 合金化炉帯
15 溶融亜鉛浴
16 誘導加熱装置(前部)
17 誘導加熱装置(後部)
18 合金化炉誘導加熱装置
19 放射温度計
21 演算器(γ分率計算)
22 制御器(投入電力)
DESCRIPTION OF SYMBOLS 1 Steel plate 2 Induction heating apparatus 3 Transformer 4 Converter 5 Inverter 6 Coil 7 Radiation thermometer 8 Arithmetic unit 9 Network 11 Steel plate 12 Atmosphere gas zone 13 Cooling zone 14 Alloying furnace zone 15 Molten zinc bath 16 Induction heating device (front part)
17 Induction heating device (rear part)
18 Alloying furnace induction heating device 19 Radiation thermometer 21 Calculator (γ fraction calculation)
22 Controller (input power)

Claims (4)

誘導加熱装置による誘導加熱時の鋼板に含まれるオーステナイトの割合をオンラインで測定する、鋼板に含まれるオーステナイトの割合の測定方法であって、
誘導加熱装置のコイル端電圧から演算される鋼板有効発熱量と、誘導加熱による鋼板の温度上昇実績値から演算される鋼板有効発熱量とに基づいて鋼板比透磁率を演算し、該鋼板比透磁率の逆数として前記オーステナイトの割合を演算することを特徴とする鋼板に含まれるオーステナイトの割合の測定方法。
It is a method for measuring the proportion of austenite contained in a steel sheet by measuring online the proportion of austenite contained in the steel plate during induction heating by an induction heating device,
The steel sheet relative permeability is calculated based on the steel sheet effective heat value calculated from the coil end voltage of the induction heating device and the steel sheet effective heat value calculated from the actual temperature rise of the steel sheet due to induction heating. A method for measuring a ratio of austenite contained in a steel sheet, wherein a ratio of the austenite is calculated as a reciprocal of magnetic susceptibility.
請求項1に記載の鋼板に含まれるオーステナイトの割合の測定方法において、
前記鋼板比透磁率を演算するにあたっては、以下の(5)式を用いることを特徴とする鋼板に含まれるオーステナイトの割合の測定方法。
ここで、
mr[−]:鋼板比透磁率、d[kg/m 3 ]:鋼板密度、c:板幅[m]、b[J/kg・K]:鋼板比熱、T[K]:温度上昇値、Ls[mpm]:ライン速度、ω[Hz]:インバータ周波数、m0[H/m]:真空の透磁率、ρ[−]:鋼板抵抗率、n[回]:加熱コイルの巻数、S[m2]:コイル断面積、V0[V]:コイル端電圧、Aw[m2]:コイル断面積、B:磁束係数、lc[m]:コイル高さ
In the measuring method of the ratio of the austenite contained in the steel plate according to claim 1,
In calculating the steel sheet relative permeability, the following formula (5) is used: A method for measuring the ratio of austenite contained in a steel sheet.
here,
m r [−]: Steel sheet relative permeability, d [kg / m 3 ]: Steel sheet density, c: Sheet width [m], b [J / kg · K]: Steel sheet specific heat, T [K]: Temperature rise value , Ls [mpm]: Line speed, ω [Hz]: Inverter frequency, m 0 [H / m]: Vacuum permeability, ρ [−]: Steel sheet resistivity, n [times]: Number of turns of heating coil, S [m 2 ]: Coil cross section, V 0 [V]: Coil end voltage, A w [m 2 ]: Coil cross section, B: Magnetic flux coefficient, lc [m]: Coil height
誘導加熱装置による誘導加熱時の鋼板に含まれるオーステナイトの割合をオンラインで測定する、鋼板に含まれるオーステナイトの割合の測定装置であって、
放射温度計によって前記誘導加熱時の鋼板の温度上昇実績と、
誘導加熱装置のコイル印加電圧およびインバータ角周波数と、
鋼板の板幅およびライン速度とに基づいて、
鋼板比透磁率を演算し、該鋼板比透磁率の逆数として前記オーステナイトの割合を演算する演算部を具備することを特徴とする鋼板に含まれるオーステナイトの割合の測定装置。
An apparatus for measuring the proportion of austenite contained in a steel plate, measuring the proportion of austenite contained in the steel plate during induction heating by an induction heating device online,
With a radiation thermometer, the temperature rise of the steel sheet during the induction heating,
Coil applied voltage and inverter angular frequency of induction heating device,
Based on the steel plate width and line speed,
An apparatus for measuring a ratio of austenite contained in a steel sheet, comprising: an arithmetic unit that calculates a steel sheet relative permeability and calculates the austenite ratio as a reciprocal of the steel sheet relative permeability.
請求項1または2に記載の鋼板に含まれるオーステナイトの割合の測定方法を用いて測定したオーステナイトの割合に基づいて、鋼板の合金化に必要な温度を決定し、決定した合金化必要温度に基づいて合金化炉誘導加熱装置への投入電力を制御することを特徴とする合金化炉誘導加熱装置制御方法。 Based on the ratio of austenite measured using the method for measuring the ratio of austenite contained in the steel sheet according to claim 1 or 2, the temperature required for alloying of the steel sheet is determined, and based on the determined alloying required temperature And controlling the electric power input to the alloying furnace induction heating apparatus.
JP2016190941A 2015-09-30 2016-09-29 Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus Active JP6414170B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192951 2015-09-30
JP2015192951 2015-09-30

Publications (2)

Publication Number Publication Date
JP2017067781A JP2017067781A (en) 2017-04-06
JP6414170B2 true JP6414170B2 (en) 2018-10-31

Family

ID=58492207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190941A Active JP6414170B2 (en) 2015-09-30 2016-09-29 Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus

Country Status (1)

Country Link
JP (1) JP6414170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432645B1 (en) * 2017-06-28 2018-12-05 Jfeスチール株式会社 Magnetic transformation rate measuring method and apparatus for measuring magnetic transformation rate of steel sheet in annealing furnace, continuous annealing process, continuous hot dip galvanizing process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684320B1 (en) * 1994-04-26 2000-06-21 LTV STEEL COMPANY, Inc. Process of making electrical steels
JP4325326B2 (en) * 2003-09-12 2009-09-02 Jfeスチール株式会社 Manufacturing method of high-tensile steel sheet
JP4283263B2 (en) * 2005-10-20 2009-06-24 本田技研工業株式会社 Manufacturing method of magnetostrictive torque sensor
JP5286623B2 (en) * 2009-03-25 2013-09-11 高周波熱錬株式会社 Induction hardening simulation equipment
JP5857649B2 (en) * 2010-11-16 2016-02-10 日本精工株式会社 Method for measuring the amount of retained austenite

Also Published As

Publication number Publication date
JP2017067781A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5015356B2 (en) Hot stamping method for galvanized steel sheet
KR100847974B1 (en) Method of controlling material quality on rolling, forging or straightening line, and apparatus therefor
US20230321706A1 (en) Steel strip and method of producing same
KR20160098281A (en) Continuous processing line for processing a non-magnetic metal strip including a galvannealing section and method for induction heating of said strip in said galvannealing section
JP6414170B2 (en) Method and apparatus for measuring ratio of austenite contained in steel sheet and control method for induction furnace induction heating apparatus
Ikram et al. Design of an induction system for induction assisted alternating current gas metal arc welding
EP0921709A2 (en) Alloying system and heating control device for high grade galvanized steel sheet
JP4507681B2 (en) Temperature control method for plating bath for hot dip galvanized steel sheet
JP5949315B2 (en) Manufacturing method of continuous cast slab
JP5678682B2 (en) Secondary cooling strength evaluation and control method in continuous casting
KR100916121B1 (en) Method for Measuring Alloy Phases Ratio of Galvannealed Steel Sheets by X-ray Diffraction and Controlling Alloy Phases Ratio using Galvanneal Prediction ModelGA Calc
KR101648310B1 (en) Control apparatus for alloying galvannealing sheet steel
JP6362429B2 (en) Prediction method and production method of Γ phase formation of alloyed hot-dip galvanized steel sheet
JP2005248208A (en) Method for controlling sheet temperature of galvannealed steel sheet during induction heating it
KR101676185B1 (en) Gas furnace control apparatus and Gas furnace control method
JP5958036B2 (en) Solidification state estimation device for slab and continuous casting method
KR102608524B1 (en) Heat treatment methods for metal products
JP5824826B2 (en) Temperature distribution estimation device in plating bath, temperature distribution estimation method, and operation method of continuous molten metal plating process
JP2007262502A (en) Method and apparatus for controlling alloying degree by alloying furnace
Olshanskaya et al. Development of methods for forecasting the microstructure of the welded joint with reference to the temperature-time modes of electron-beam welding
Pino et al. Multi-objective optimization of the magnetic wiping process in dip-coating
JP2715739B2 (en) Control method of alloying furnace in alloying hot-dip galvanized steel sheet manufacturing facility
JP2007262503A (en) Method and apparatus for controlling deposition amount of molten zinc
Ranjan et al. Artificial Intelligence-Based Descriptive, Predictive, and Prescriptive Coating Weight Control Model for Continuous Galvanizing Line
KR20230174250A (en) A method for predicting sub-plating defects in steel sheets, a method for reducing defects in steel sheets, a method for manufacturing hot-dip galvanized steel sheets, and a method for generating a prediction model for sub-plating defects in steel sheets.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6414170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250