KR20040055978A - Control method for combination reflow brightening of tin plating process - Google Patents
Control method for combination reflow brightening of tin plating process Download PDFInfo
- Publication number
- KR20040055978A KR20040055978A KR1020020082477A KR20020082477A KR20040055978A KR 20040055978 A KR20040055978 A KR 20040055978A KR 1020020082477 A KR1020020082477 A KR 1020020082477A KR 20020082477 A KR20020082477 A KR 20020082477A KR 20040055978 A KR20040055978 A KR 20040055978A
- Authority
- KR
- South Korea
- Prior art keywords
- heater
- induction heater
- input
- temperature
- roller
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
- C25D5/505—After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- General Induction Heating (AREA)
Abstract
Description
본 발명은 제철소의 도금공정중 주석도금공정에서 통전가열과 유도가열을 혼합한 콤비네이션 리플로우의 제어방법에 관한 것이다.The present invention relates to a method for controlling a combination reflow in which energization and induction heating are mixed in a tin plating process of a steel mill.
통상, 전기주석도금 공정을 거친 소재는 합금층을 형성하고, 용접성과 내식성 및 광택성등을 높이기 위해 리플로우 멜팅(reflow melting) 과정을 거치게 되는데 이러한 과정은 통전롤러간의 스트립에 전류를 흘리는 통전가열의 형태나 혹은 통전롤러간에 유도가열기를 추가하여 주석의 용융점이상으로 가열시킨 후 급속냉각시키는 것과 같은 형태로 이루어지고 있다.In general, the material that has undergone the electro tin plating process undergoes a reflow melting process to form an alloy layer and improve weldability, corrosion resistance, and glossiness. Or induction heaters are added between the energizing rollers and heated to the melting point of tin, followed by rapid cooling.
특히, 연연속공정 형태의 도금라인은 코일형태의 소재를 처리하게 되고, 다양한 소재규격의 코일을 용접하여 제공함으로써 도금공정에서 연속처리가 가능하게 되었으며, 콤비네이션 리플로우 공정에서는 두 개의 통전롤러간 스트립을 이송하고 승온에 필요한 열량을 통전가열기와 유도가열기간에 부하배분에 따라 통전롤러에 전류를 투입하고 유도가열기엔 해당량의 전력을 투입하여 가열시키는데 이때 통전가열기에 투입되는 전류의 양은 처리대상인 소재의 크기, 즉 단면적과 이송속도에 따라 결정되게 된다.In particular, the continuous line-type plating line processes the coil-type material, and by welding and providing coils of various material standards, continuous processing is possible in the plating process, and the strip between two energizing rollers in the combination reflow process The amount of current required for the heating is input to the current roller according to the load distribution in the current heating and induction heating periods, and the corresponding amount of power is applied to the induction heater for heating. It depends on the size of the material, ie the cross-sectional area and the feed rate.
그런데, 이러한 통전롤러간에는 수십미터의 스트립이 놓이게 되며, 코일 단면적이 바뀔 때 즉, 선행소재와 후행소재간 크기가 달라질 때에 두 개의 통전롤러간에 선후행 소재의 용접점이 놓이게 되는 경우 통전가열에 소요되는 전류의 제어에 난점이 생기게 된다.By the way, a strip of several tens of meters is placed between the energizing rollers, and when the coil cross-sectional area is changed, that is, when the welding point of the leading and trailing material is placed between the two energizing rollers when the size of the preceding material and the following material is changed, the current is required for heating. Difficulties arise in the control of current.
종래에는 통전 리플로우의 제어에 의한 코일간 전류제어방식중 일예를 보인 도 1에서와 같이, 입측 통전롤러(1DCR)과 출측 통전롤러(2CDR) 사이에서 목표온도(To)까지 도달하기 위하여 필요한 선행코일의 소요열량(Qbefore)과 후행코일의 소요열량(Qafter)이 차이나는 경우 제어 변경시점은 1CDR 또는 2CDR에서 이산적으로 발생하게 되며, 이때 통전롤러간에 코일용접점이 통과하는 동안은 목표온도에 도달하지 못하는 현상이 발생하게 되는데 이는 표면 품질불량 또는 합금량 미달 등의 문제를 초래하는 원인이 된다.Conventionally, as shown in FIG. 1, which shows an example of the coil-to-coil current control method by controlling the energization reflow, the preceding necessary to reach the target temperature To between the entry current supply roller 1DCR and the exit current supply roller 2CDR. When the required heat quantity (Q before ) of the coil and the required heat quantity (Q after ) of the trailing coil are different, the control change point occurs discretely at 1CDR or 2CDR, and the target temperature during the passing of the coil welding point between energizing rollers. The phenomenon that does not reach is generated, which causes problems such as poor surface quality or insufficient alloying amount.
본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 연속도금공정중 리플로우 과정에서 선행코일과 후행코일이 동시에 공존하는 천이구간에서의 소재변동에 따른 임피던스가 변동하더라도 적절한 전력량 배분하여 투입함으로써 목표온도의 변동을 억제하여 고품위의 표면 품질을 갖는 제품을 양산할 수 있도록 한 주석도금공정의 콤비네이션 플로우 제어방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-described problems of the prior art, and has been created to solve this problem. In the reflowing process during the continuous plating process, the impedance according to the material variation in the transition section in which the preceding coil and the following coil coexist simultaneously It is an object of the present invention to provide a combination flow control method of the tin plating process that can produce a product having a high quality surface quality by suppressing a change in target temperature by distributing and inputting an appropriate amount of electric power even if fluctuating.
도 1은 종래 통전 리플로우의 제어에 의한 코일간 전류제어 방식을 보인 타이밍도,1 is a timing diagram showing a coil-to-coil current control method by conventional energizing reflow control;
도 2는 본 발명을 설명하기 위한 콤비네이션 리플로우설비의 개략적인 구성도,2 is a schematic configuration diagram of a combination reflow facility for explaining the present invention;
도 3은 본 발명에 따른 스트립의 입측통전롤로부터 거리별 승온패턴을 보인 그래프,Figure 3 is a graph showing the temperature rising pattern for each distance from the induction rolling roll of the strip according to the present invention,
도 4는 본 발명에 따라 후물재-박물재 순서로 코일이 천이되는 경우 코일간 리플로우 전력의 분배제어방식을 설명하는 타이밍도,FIG. 4 is a timing diagram illustrating a distribution control method of reflow power between coils when a coil is transitioned in a thick-mold order according to the present invention.
도 5는 본 발명에 따라 박물재-후물재 순서로 코일이 천이되는 경우 코일간 리플로우 전력의 분배제어방식을 설명하는 타이밍도.FIG. 5 is a timing diagram illustrating a distribution control method of reflow power between coils when a coil is transitioned in the order of a material material to a material material according to the present invention. FIG.
* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
1....입측통전롤러 2....출측통전롤러1 .... exit energizing roller 2 .... exit energizing roller
3....머플퍼니스 4....스트립3 .... Muffle Furnace 4 .... Strip
5....유도가열기 6....급냉탱크5 .... induction heater 6 .... quench tank
7....쵸크코어코일Choke Core Coil
본 발명은 선행코일과 후행코일이 임의의 속도로 이송되고 있을 때 용접점을 트래킹하여 각 코일의 승온에 필요한 열량을 계산하고, 통전롤러간 천이구간에서 통전가열기의 전류계산오차에 의한 목표온도 변동을 억제할 수 있도록 유도가열기에서는 전력보상량을 산정하며, 이를 바탕으로 선후행코일의 자유로운 편성시에도 리플로우의 목표온도 변동을 억제하도록 전력량 배분량을 변화시키는 제어방법을 그 구성상의 특징으로 한다.The present invention tracks the welding point when the preceding coil and the following coil are being transferred at an arbitrary speed, calculates the amount of heat required to raise the temperature of each coil, and changes the target temperature due to the current calculation error of the energizing heater in the transition section between the energizing rollers. The induction heater calculates the power compensation amount to suppress the power consumption, and based on this, the control method of changing the amount of power distribution so as to suppress the target temperature fluctuation of the reflow even when freely arranging the preceding and following coils is characterized by its configuration. do.
이하에서는, 첨부도면에 의거하여 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 콤비네이션 리플로우설비의 개략적인 구성도이며, 도 3은 본 발명 설비에 의한 스트립의 입측통전로에서부터 거리별 승온패턴을 보인 그래프이다.Figure 2 is a schematic configuration diagram of a combination reflow facility according to the present invention, Figure 3 is a graph showing the temperature rising pattern for each distance from the entrance conduction path of the strip by the present invention.
본 발명의 대상 공정인 전기주석도금의 리플로우 설비구성은 도 3에 나타낸 형태가 통상적이다.The reflow facility configuration of the electro-tin plating, which is the target process of the present invention, is conventionally shown in FIG.
즉, 입측통전롤러(1)와 출측통전롤러(2) 사이에 머플퍼니스(muffle furnace)(3)가 있어서 스트립(4)의 온도를 보존하는 역할을 하며 입수 직전에 급승온되어 목표온도에 이르도록 하는 통전가열기가 있고 이후 급냉탱크(6)가 있어서 도금된 주석의 용융된 상태에서 급냉될 수 있도록 구성된다.That is, there is a muffle furnace (3) between the entry energizing roller (1) and the exit energizing roller (2) to preserve the temperature of the strip (4), and the temperature is rapidly increased just before the acquisition to reach the target temperature. There is an energizing heater, and then there is a quench tank (6) is configured to be quenched in the molten state of the plated tin.
그리고, 교류전원을 투입하는 입출측통전롤러(1,2)의 경우 이들 사이에 전류가 집중될 수 있도록 통전롤러(1,2)들의 외부에는 쵸크코어코일(choke core coil)(7,8)을 구비하게 된다.In addition, in the case of the entry and exit side energizing rollers 1 and 2 for supplying AC power, choke core coils 7 and 8 are provided outside the energizing rollers 1 and 2 so as to concentrate current therebetween. It will be provided.
대표적인 콤비네이션 리플로우 방식의 입측통전롤러(1)에서 급냉탱크(6)까지의 온도 승온패턴은 도 3의 그래프와 같다.The temperature rising pattern of the typical combination reflow type side entry roller 1 to the quench tank 6 is shown in the graph of FIG. 3.
인입된 스트립(4)은 입측통전롤러(1)에서부터 가열되기 시작하여급냉탱크(6)로 입수되기 직전에 목표온도(To)까지 도달하도록 소재 정보와 스트립 (4)의 이송속도에 맞추어 적정한 전력이 투입되도록 하는데 투입량 산정은 다음 소요열량(Q) 식으로부터 구할 수 있다.The drawn strip 4 is heated according to the material information and the feed rate of the strip 4 so as to start heating from the entry energizing roller 1 to reach the target temperature To just before entering the quench tank 6. The calculation of the input amount can be obtained from the following required calorific value (Q) equation.
(소요열량식)(Required calorie type)
여기에서, v:라인스피드(mpm), TAVG:입측롤러전온도와 목표온도간 평균온도, ΔT:승온 온도, C1,C2:계수, A:스트립 단면적이다.Here, v: line feed (mpm), T AVG : average temperature between the starting roller and the target temperature, ΔT: elevated temperature, C1, C2: coefficient, A: strip cross-sectional area.
산정된 소요전력량(Q)은 통전가열기와 유도가열기로 부하배분되며 다음식과 같이 산정된다.The calculated power consumption (Q) is divided into load by the energizing heater and the induction heater, and is calculated as follows.
통전가열기 투입전력(QCH)=f·QInput heater power (Q CH ) = fQ
유도가열기 투입전력(QIN)=(1-f)·Q·ηInduction heater input power (Q IN ) = (1-f)
여기서, f(0~1):통전가열과 유도가열기간 부하배분율, η:유도가열기의 효율이다.Where f (0 ~ 1): load ratio of energized heating and induction heating, and η: efficiency of induction heater.
동일 소재에 대해서는 스트립(4)의 이송속도만이 소요열량 및 투입전력을 변동시키는 요소가 되는데, 만일 소재의 사이즈가 변동하는 경우에는 소요열량을 변동적으로 연산해야 한다.For the same material, only the feed rate of the strip 4 is a factor that changes the required heat quantity and input power. If the size of the material varies, the required heat quantity must be calculated variably.
도 4와 도 5의 타이밍도는 이에 대한 상세한 제어방법을 나타낸다.에서 이의 상세 제어방식을 나타낸다.4 and 5 show a detailed control method thereof. The detailed control method is shown in FIG.
선행코일과 후행코일의 사이즈가 다를 경우, 코일간 연결부인 용접점이 통전롤러(1,2)를 통과할 때 스트립(4)에 의한 전기저항은 일정하지 않게 되고 선형적으로 변동하게 된다.When the size of the preceding coil and the following coil is different, the electrical resistance by the strip 4 becomes non-uniform and varies linearly when the welding point, which is the connection between the coils, passes through the energizing rollers 1 and 2.
통전가열기의 투입전류는 소재의 전기저항을 연산하여 승온에 필요한 열량에 상응하는 전류를 통전시킴으로써 가능한데 소재가 다른 즉, 전기저항이 다른 두 소재의 용접점이 통전롤러(1,2) 사이에 위치할 때 통전가열기의 투입전류를 변동하게 되면 후물재의 경우 목표온도에 미달하게 되고 박물소재의 경우는 과승온되어 용접점 전후의 일부소재 구간에서 리플로우의 불량이 발생하게 된다.The input current of the energizing heater can be obtained by calculating the electrical resistance of the material and conducting a current corresponding to the amount of heat required for the temperature increase.The welding point of two materials having different materials, that is, having different electrical resistance, may be located between the energizing rollers (1, 2). At this time, if the input current of the energizing heater is changed, the thickness of the material falls short of the target temperature. In the case of the material, the temperature rises and the reflow failure occurs in some material sections before and after the welding point.
그러므로, 통전가열기의 전력량 변경은 통전롤러(1,2) 사이에 용접점이 위치하게 될 때 항상 전기저항이 큰 박물재를 위주로 행하도록 한다.Therefore, the change in the amount of power of the energizing heater is always made mainly of the material having a large electrical resistance when the welding point is located between the energizing rollers 1 and 2.
이것은 통전가열기의 전류에 의해 소재변경구간에서 과승온되는 것을 방지하기 위함이다.This is to prevent overheating in the material change section by the current of the energizing heater.
도 4에 도시한 바와 같이, 선행코일이 후물재이고 후행코일이 박물재인 경우 용접점이 상기 입측통전롤러(1)를 통과하는 순간 변경시키고 도 5에 도시한 바와 같이, 선행코일이 박물재이고 후행코일이 후물재인 경우 선행코일이 출측통전롤러(2)를 완전히 통과한 이후에 투입전력량을 Qbefore_CH에서부터 Qafter_CH로 변경하게 된다.As shown in FIG. 4, when the preceding coil is a thick material and the trailing coil is a thin material, the welding point is changed at the moment of passing through the entrance energizing roller 1, and as shown in FIG. 5, the preceding coil is a thin material and the trailing material. If the coil is humul recognition is changed to the preceding coil energization outlet roller (2) the input power after completely through to the Q from Q after_CH before_CH.
통전가열기와 달리 유도가열기(5)의 소재변경에 의한 투입전력량 변화는 용접점이 유도가열기(5)에 진입하기 시작할 때 즉각 Qbefore_IH에서부터 Qafter_IH로 변경한다.When input power changes due to material change of the opening 5, inducing unlike tongjeonga heat welding point induction is started to enter the opening (5) immediately changes from Q to Q before_IH after_IH.
이때, 통전롤러(1,2) 사이의 용접점이 통과하는 천이구간에서 후물재에 대해서는 승온에 필요한 전력이 부족하게 되는데 유도가열기(5)에서 이 구간동안은 용접점 이송정보에 따라 유도가열기(5)에서 보상하게 되며 보상량은 다음식과 같다.At this time, in the transition section through which the welding point between the current passing rollers 1 and 2 passes, the power required for the temperature rise is insufficient for the thick material. In the induction heater 5, during this section, the induction heater according to the welding point transfer information. Compensation is made in (5) and the compensation amount is as follows.
보상량(Qcompen)=|Qafter_CH- Qbefore_CH|Compensation amount (Q compen ) = | Q after_CH -Q before_CH |
용접점이 통전롤러(1,2) 사이를 완전히 빠져나갈때 까지의 리플로우에 투입하는 변동 전기저항에 무관하게 용접점 트래킹에 의한 천이구간내에 위치한 소재구간에 있어서 보상량을 연산하여 전기저항과 무관하게 작동되는 유도가열기(5)에 의해 열량을 보상함으로써 급냉탱크(6)로 입수하기 직전의 목표온도(To)가 소재 규격이 다른 인접 코일이 천이구간을 지날때에도 일정하게 유지될 수 있게 된다.Regardless of the electrical resistance, the compensation amount is calculated by calculating the compensation amount in the material section located in the transition section by tracking the welding point irrespective of the variable electrical resistance input to the reflow until the welding point completely passes between the energizing rollers (1, 2). By compensating for the amount of heat by the induction heater 5 that is operated, the target temperature To immediately before being obtained into the quench tank 6 can be kept constant even when adjacent coils having different material specifications pass the transition section.
이상에서 살펴 본 바와 같이, 본 발명에 의한 단면적이 다른 인접 코일간 용접부가 통전롤러 사이를 통과할 때 용접점 트래킹에 의한 스트립 저항과 소요열량이 변동될 때 통전가열기의 전력량은 저항이 일정한 구간에서 변경시키고 유도가열기의 전력량 변경은 통전롤러 사이에서 이루어지게 하며 통전롤러 투입전력의 부족분은 일정구간에 대해서 유도가열기에서 연산하여 보상함으로써 목표온도의 변동을 억제하고 이 구간내에서의 발생가능한 합금량의 과부족 및 표면 품질결함을 방지할 수 있게 된다.As described above, when the welding part between adjacent coils having different cross sections according to the present invention passes between the energizing rollers, the power amount of the energizing heater when the strip resistance and the required heat quantity by the welding point tracking is changed, the resistance is changed in a constant section. The change of power amount of the induction heater is made between the energizing rollers, and the shortage of the energizing roller input power is compensated by calculating the compensation in the induction heater for a certain period to suppress the fluctuation of the target temperature and the amount of alloys that can be generated within this period. It is possible to prevent excessive shortage and surface quality defects.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082477A KR100928979B1 (en) | 2002-12-23 | 2002-12-23 | Combination Reflow Control Method of Tin Plating Process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082477A KR100928979B1 (en) | 2002-12-23 | 2002-12-23 | Combination Reflow Control Method of Tin Plating Process |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040055978A true KR20040055978A (en) | 2004-06-30 |
KR100928979B1 KR100928979B1 (en) | 2009-11-26 |
Family
ID=37348407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020082477A KR100928979B1 (en) | 2002-12-23 | 2002-12-23 | Combination Reflow Control Method of Tin Plating Process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100928979B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170004350U (en) | 2016-06-15 | 2017-12-26 | 이순재 | Wall attaching type artificial marble panel package and wall attaching structure for artificial marble panel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3339404B2 (en) | 1998-03-24 | 2002-10-28 | 日本鋼管株式会社 | Method and apparatus for controlling reflow treatment of tin plated steel sheet |
KR100949723B1 (en) * | 2002-08-29 | 2010-03-25 | 재단법인 포항산업과학연구원 | Method for controling the current of conduction reflow in the plating process |
-
2002
- 2002-12-23 KR KR1020020082477A patent/KR100928979B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170004350U (en) | 2016-06-15 | 2017-12-26 | 이순재 | Wall attaching type artificial marble panel package and wall attaching structure for artificial marble panel |
Also Published As
Publication number | Publication date |
---|---|
KR100928979B1 (en) | 2009-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2709494C1 (en) | Compact homogenization line by continuous annealing | |
US6180933B1 (en) | Furnace with multiple electric induction heating sections particularly for use in galvanizing line | |
EP2761626B1 (en) | Method and apparatus for manufacturing lead wire for solar cell | |
JP2017508864A (en) | A continuous processing line for processing a non-magnetic metal strip with a galvanic ring section, and a method for inductively heating the strip in the galvanic ring section | |
US20170274465A1 (en) | Method of creating a bonded structure and apparatuses for same | |
JP4912699B2 (en) | Hot dipping equipment | |
KR100928979B1 (en) | Combination Reflow Control Method of Tin Plating Process | |
KR100949723B1 (en) | Method for controling the current of conduction reflow in the plating process | |
JPS6056406B2 (en) | Continuous annealing furnace with induction heating section | |
KR101070268B1 (en) | Control method for combination reflow brightening of tin plating process | |
CN108777892A (en) | A kind of Medium Frequency Induction Heating Furnace and method of heating binding bar | |
KR101051325B1 (en) | Reflow equipment and method for tin plating process treatment of metal plate | |
JP5506468B2 (en) | Temperature control method for quench tank of electroplated steel sheet equipment | |
CN116828651B (en) | Reflow process based on electrotinning and reflow induction control method thereof | |
KR101086317B1 (en) | Deivce for compensating the strip temperature of the conduction reflow brightening of tin plating process | |
JP2005248208A (en) | Method for controlling sheet temperature of galvannealed steel sheet during induction heating it | |
JP4630130B2 (en) | Electrical heating method for steel strip | |
JP3464866B2 (en) | Continuous hot-dip galvanizing equipment for steel strip | |
JP2004197210A (en) | Method and apparatus for manufacturing tin-electroplated sheet | |
Waggott et al. | Transverse flux induction heating of aluminiumalloy strip | |
JP4630134B2 (en) | Electrical heating method for steel strip | |
CN108660297B (en) | Conductive heating method for electrical steel annealing line and heating circulation system thereof | |
CN213652679U (en) | Process layout of full-induction reflow heating device | |
KR20020041078A (en) | Apparatus for equalizing the temperature along the width of ga strip | |
JPH04235268A (en) | Production of alloying galvannealed steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121121 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131120 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20141119 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20151120 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20161121 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20171110 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20181106 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20191107 Year of fee payment: 11 |