KR20020041078A - Apparatus for equalizing the temperature along the width of ga strip - Google Patents
Apparatus for equalizing the temperature along the width of ga strip Download PDFInfo
- Publication number
- KR20020041078A KR20020041078A KR1020000070826A KR20000070826A KR20020041078A KR 20020041078 A KR20020041078 A KR 20020041078A KR 1020000070826 A KR1020000070826 A KR 1020000070826A KR 20000070826 A KR20000070826 A KR 20000070826A KR 20020041078 A KR20020041078 A KR 20020041078A
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- heater
- strip
- alloying
- casing
- Prior art date
Links
- 238000005275 alloying Methods 0.000 claims abstract description 33
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 82
- 239000010959 steel Substances 0.000 claims description 82
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 15
- 239000008397 galvanized steel Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000012212 insulator Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 9
- 230000006698 induction Effects 0.000 abstract description 7
- 238000002791 soaking Methods 0.000 abstract 3
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000007747 plating Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/007—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/285—Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
본 발명은 합금화 용융아연도강판을 제조하는 공정에서 강판의 합금화 불균일을 개선하기 위한 장치에 관한 것으로, 보다 상세히는 합금화 유도로 후단의 합금화 균열로내에서 강판의 양측 모서리부의 온도 강하를 보상하여 줌으로써 강판의 중앙과 양측 모서리의 온도편차를 방지하여 강판의 합금화 불균일성을 개선하도록 된 용융아연도금강판의 균일 합금화를 위한 제어장치에 관한 것이다.The present invention relates to a device for improving the alloying non-uniformity of the steel sheet in the process of manufacturing an alloyed molten zinc steel sheet, and more particularly by compensating the temperature drop of the two corners of the steel sheet in the alloy cracking furnace of the rear end of the alloying induction furnace The present invention relates to a control apparatus for uniform alloying of a hot-dip galvanized steel sheet which prevents temperature deviation between the center and both edges of the steel sheet to improve alloying nonuniformity of the steel sheet.
일반적으로, 합금화 용융아연도 강판의 제조에 있어서 가장 중요한 요소가도금층을 균일하게 합금화시키는 것이다. 그 이유는 이 강판은 자동차용 소재로 사용되는데, 강판자체의 용도가 프레스(Press)에 의한 가공으로 일정 모양을 형성하게 되며, 이때 강판의 합금화가 불균일할 경우 가공시, 이연 파우더(Zn Powder) 라는 도금층이 깨지는 현상이 일어나게 된다.In general, the most important factor in the production of alloyed molten zinc steel sheet is to uniformly alloy the plating layer. The reason is that this steel sheet is used as a material for automobiles, and the use of the steel sheet itself forms a certain shape by processing by press. At this time, when the alloying of the steel sheet is non-uniform, when processing, Zn Powder The cracking of the plating layer occurs.
종래의 기술에 따라서 합금화 용융 아연도강판을 제조 공정은 가열로(미도시) 이후, 도금조 상부의 장치에 의해 제조된다.According to the prior art, a process for producing an alloyed hot dip galvanized steel sheet is produced by a device on top of a plating bath after a heating furnace (not shown).
도1은 용융도금설비에 있어서 가열로(미도시)를 통과한 강판이 아연도금조(100)를 통과하여 그 상부에 설치된 에어나이프(110)에 의해 도금량이 조절된 다음, 그 상부에 설치된 냉각장치(130)에 의해 1차 냉각되고, 다음 편향롤(135)를 경유하여 도금량을 검출한 후, 아래에 설치된 냉각장치(140)에 의해 2차 냉각을 한 후 강판 형상 교정장치(150)를 경유하여 차공정으로 진행한다.1 is a steel plate passed through a heating furnace (not shown) in the hot-dip galvanizing equipment is passed through the galvanizing bath 100, the plating amount is controlled by the air knife 110 installed on the top, and then the cooling installed on the top After the primary cooling by the device 130, the plating amount is detected via the next deflection roll 135, the secondary cooling is performed by the cooling device 140 installed below, and then the steel plate shape correcting device 150 is removed. Proceed to next step via.
이는 일반적인 용융아연도 강판을 제조하는 공정이다. 그러나 합금화 용융아연도 강판의 제조시에는 유도가열로(115)와 합금화 균열로(120)라는 특수설비가 추가로 사용되어진다. 도 1의 유도가열로(115)의 기능은 아연도금조(100)를 통과한 강판을 500℃로 가열하여 강판의 철분을 도금층으로 확산시켜 주는 역할을 한다This is a process for manufacturing a general molten zinc steel sheet. However, in the manufacture of alloyed molten zinc steel sheet, special equipment such as induction heating furnace 115 and alloy cracking furnace 120 is additionally used. The function of the induction heating furnace 115 of Figure 1 serves to diffuse the iron of the steel sheet to the plating layer by heating the steel sheet passed through the galvanizing tank 100 to 500 ℃.
또한, 합금화 균열로(120)는 가열된 강판(S)의 표면온도를 유지시켜서 확산을 위한 시간을 부여한다. 이와 관련되어 도 2에는 종래의 기술에 따른 합금화 균열로(120)의 구성이 도시되어 있다.In addition, the alloying crack furnace 120 maintains the surface temperature of the heated steel sheet (S) to give a time for diffusion. In this regard, FIG. 2 illustrates a configuration of the alloy cracking furnace 120 according to the related art.
이러한 종래의 합금화 균열로(120)는 유도가열로(115)에서 나온 강판온도를 일정하게 유지하는 장치를 말한다. 이는, 박스형태의 케이싱(122)내에 라디에이션 튜브히터(125)가 설치되어 전원(Power)이 인가되면, 강판의 폭방향으로 균일한 열이 전해지도록 되어 있다. 이 장치들은 강판(S)을 폭방향으로 균일하게 가열하기 위하여 설치되어 있으므로, 강판 에지부에서의 온도 강하에 대한 기술적인 대응수단이 없었다.This conventional alloy cracked furnace 120 refers to a device for maintaining a constant steel sheet temperature from the induction furnace 115. In this case, when the radiation tube heater 125 is installed in the box-shaped casing 122 and power is applied, uniform heat is transmitted in the width direction of the steel sheet. Since these apparatuses are provided for uniformly heating the steel sheet S in the width direction, there is no technical countermeasure for the temperature drop at the steel sheet edge portion.
그리고, 종래의 합금화 균열로(120)로부터 인출되는 강판은 도 2에서 온도분포곡선으로 도시된 바와 같이, 그 양측 모서리부는 온도가 낮고 중앙부의 온도가 높게 나타나는 온도분포를 갖는 것이었다. 이는, 통상적으로 강판의 온도가 과도하게 상승하게 될 경우에는 도금층에 Γ(Capital Gamma)층이 과도하게 분포하게 되고, 이 층의 특징은 소지철에서 확산된 Fe성분이 많이 함유되므로 도금층이 약하게(Brittle)되어 가공시 과도한 아연 파우더(Zn Powder)를 유발하게 된다.And, as shown in the temperature distribution curve in Figure 2, the steel sheet drawn from the conventional alloy cracking furnace 120, both edges had a temperature distribution in which the temperature is low and the temperature in the center portion is high. In general, when the temperature of the steel sheet is excessively increased, the Γ (Capital Gamma) layer is excessively distributed in the plating layer, and the characteristic of this layer is that the plating layer is weak because it contains a large amount of Fe component diffused from the base iron. Brittle) causes excessive zinc powder (Zn Powder) during processing.
이와 반대로 ζ(Zeta)층이 과도한 경우, 소지철에서 Fe성분의 확산이 적어서 가공시, 미끄럼성이 부족 할 뿐만 아니라, 용접성에도 나쁜 경향을 나타낸다.On the contrary, when the zeta (Zeta) layer is excessive, the Fe component is less diffused in the base iron, so it is not only slippery but also poor in weldability.
따라서, 강판의 중앙부에는 정상적인 합금화가 완료되었음에도 불구하고 양 모서리부에는 합금화가 되지 않을 경우와 양 모서리부는 적정 합금화가 이루어졌으나, 중앙부에 과 합금화에 기인한 파우더링에 의해 도금층이 깨지는 현상이 일어나게 된다.Therefore, although normal alloying is completed at the center of the steel sheet, alloying is not performed at both corners and proper alloying is performed at both corners. However, the plating layer is broken by powdering due to overalloying at the center. .
따라서, 본 발명자들은 이 문제점을 이론적으로 고찰하여 모서리 합금화 불량의 원인규명을 하였고, 이 이론에 의하면 강판은 가열 불균일에서 일어나는 현상이 아니고, 강판이 에어 나이프 상부를 통과시, 모서리부의 온도강하현상과, 도금량의 모서리 과도금 등에 의해 복합적으로 일어나는 현상임을 알게 되었다.Therefore, the present inventors have theoretically considered this problem to identify the cause of the corner alloying failure, according to this theory, the steel sheet is not a phenomenon that occurs in the heating unevenness, when the steel sheet passes through the air knife top, It has been found that the phenomenon occurs by complex overplating of the amount of plating.
따라서, 이를 개선하기 위한 종래의 방법으로는 에어 나이프(Air Knife)(110)의 상부에 보조 버너(미도시)를 설치하고, 모서리부를 가열하여 합금화 용융아연도강판를 제조하는 기술이 제시되었으나, 이는 합금화 불량을 최소화하기는 하였으나 사람에 의해 버너의 출력을 인위적으로 조정하거나, 폭 변경시 수동으로 운전함으로서 오히려 강판 에지부가 과합금화되는 상태에서 운전되는 경우도 있었다.Therefore, as a conventional method for improving this, a technique of manufacturing an alloyed molten zinc steel sheet by installing an auxiliary burner (not shown) on an upper portion of the air knife 110 and heating the corner portion has been proposed. Although the alloying failure was minimized, there was a case in which the steel sheet edge part was overalloyed by artificially adjusting the output of the burner by man, or by manually operating when the width was changed.
그리고, 이러한 방식은 모서리 보조 버너의 경우 매 강판의 크기에 따라, 버너 위치조정 및 버너의 출력을 수동으로 조정 할 수밖에 없었다.In the case of the corner auxiliary burner, the burner positioning and the output of the burner have to be manually adjusted according to the size of each steel sheet.
따라서, 이러한 종래의 기술도 강판의 품질을 보장하지는 못하는 것이었다.Therefore, this conventional technique does not guarantee the quality of the steel sheet.
본 발명은 상기와 같은 종래의 문제점을 해소하고자 한 것으로서, 그 목적은 합금화 유도로 후단의 합금화 균열로내에서 강판의 양측 모서리부의 온도 강하를 보상하여 줌으로써 강판의 중앙과 양측 모서리의 온도편차를 방지하여 강판의 합금화 불균일성을 개선하도록 된 용융아연도금강판의 균일 합금화를 위한 제어장치를 제공함에 있는 것이다.The present invention has been made to solve the conventional problems as described above, the purpose of which is to compensate for the temperature drop in the corners of both sides of the steel sheet in the alloy cracking furnace of the alloy induction furnace trailing edge to prevent the temperature deviation of the center and both sides of the steel sheet It is to provide a control device for uniform alloying of the hot-dip galvanized steel sheet to improve the alloying nonuniformity of the steel sheet.
도 1은 일반적인 용융아연도금강판제조설비를 도시한 설명도;1 is an explanatory view showing a typical hot dip galvanized steel sheet manufacturing equipment;
도 2는 종래의 기술에 따른 합금화 균열로를 도시한 구성도;2 is a schematic view showing an alloying crack furnace according to the prior art;
도 3은 본 발명에 따른 용융아연도금강판의 균일 합금화를 위한 제어장치에 갖춰진 균열로의 구성도;3 is a configuration diagram of a crack furnace provided in the control device for uniform alloying of the hot-dip galvanized steel sheet according to the present invention;
도 4는 본 발명에 따른 용융아연도금강판의 균일 합금화를 위한 제어장치에 갖춰진 균열히터의 정면도 ;4 is a front view of a crack heater provided in a control device for uniform alloying of a hot-dip galvanized steel sheet according to the present invention;
도 5는 도 4의 A-A 선을 따른 단면도;5 is a cross-sectional view taken along the line A-A of FIG. 4;
도 6은 본 발명에 따른 용융아연도금강판의 균일 합금화를 위한 제어장치에서 동작이 단계적으로 이루어지는 것을 도시한 플로우 챠트;Figure 6 is a flow chart showing that the operation is performed step by step in the control device for uniform alloying of the hot-dip galvanized steel sheet according to the present invention;
도 7은 본 발명에 따른 강판의 폭방향 온도분포 모식도;7 is a schematic view of the width direction temperature distribution of the steel sheet according to the present invention;
도 8은 본 발명에 따른 용융아연도금강판의 균일 합금화를 위한 제어장치에 갖춰진 설비제어 컴퓨터내에 사전에 설정된 강판 두께, 폭, 라인속도, 모서리부 온도 강하량, 동력(power)들이 기재된 도표;8 is a table describing steel sheet thickness, width, line speed, edge temperature drop, and powers preset in a facility control computer equipped with a control device for uniform alloying of hot-dip galvanized steel sheet according to the present invention;
도 9는 본 발명에 따른 강판의 폭방향 온도분포상태를 도시한 사진으로서,9 is a photograph showing a width direction temperature distribution state of the steel sheet according to the present invention,
a)도는 강판의 온도 분포사진,a) is the temperature distribution picture of the steel plate,
b)도는 강판의 폭방향 제어가 완료된 상태의 온도 프로파일을 도시한 사진이다.b) is a photograph which shows the temperature profile of the state to which the width direction control of the steel plate was completed.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
10..... 균열히터 12a..... 제 1히터10 ..... Crack Heater 12a ..... First Heater
12b.... 제 2히터 20..... 내화물12b .... 2nd heater 20 ..... refractory
25..... 전기 저항체 27..... 애자25 ..... electrical resistor 27 ..... insulator
30..... 케이블 40..... 센서30 ..... Cable 40 ..... Sensor
78..... 연산기 100.... 아연도금조78 ..... calculator 100 .... galvanizing bath
110.... 에어 나이프 115.... 유도 가열기110 .... Air Knife 115 .... Induction Burner
120.... 합금화 균열로 130.... 냉각장치120 .... 130 .... Chiller with alloying crack
135.... 방향 전환롤 S..... 강판(strip)135 .... turning roll S ..... strip
상기와 같은 목적을 달성하기 위하여 본 발명은, 합금화 용융아연도강판을 제조하는 공정에서 강판의 합금화 불균일을 개선하기 위한 장치에 있어서, 강판이 중앙을 관통하여 상향 이동되는 케이싱의 내측에 강판의 폭방향으로 균일한 열원을 제공하는 라디에이션 히터가 내측면 양측에 배치되고, 상기 케이싱의 내부 양측으로는 상기 라디에이션 히터와 중첩하여 강판의 양측에 추가적인 열원을 제공하기 위한 균열히터가 마련되며, 상기 케이싱의 외측으로는 강판의 폭방향 온도분포를 검출하는 센서를 구비하여 상기 센서에 의해서 검출된 강판의 폭방향 온도분포가 균일하게 되도록 상기 라디에이션 히터와 균열히터의 열원을 제어하도록 구성됨을 특징으로 하는 용융아연도금강판의 균일 합금화를 위한 제어장치를 마련함에 의한다.In order to achieve the above object, the present invention, in the apparatus for improving the alloying non-uniformity of the steel sheet in the process of manufacturing an alloyed molten zinc steel sheet, the width of the steel sheet inside the casing in which the steel sheet is moved upward through the center Radiation heaters for providing a uniform heat source in the direction is disposed on both sides of the inner surface, cracking heaters are provided on both sides of the casing to provide additional heat sources on both sides of the steel sheet overlapping with the radiating heater, The outer side of the casing is provided with a sensor for detecting the width direction temperature distribution of the steel sheet is configured to control the heat source of the radiator heater and the crack heater so that the width direction temperature distribution of the steel sheet detected by the sensor is uniform. By providing a control device for uniform alloying of hot-dip galvanized steel sheet.
이하, 본 발명을 도면에 따라서 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
본 발명에 따른 용융아연도금강판의 균일 합금화를 위한 제어장치(1)는 합금화 용융아연도강판을 제조하는 공정에서 강판의 합금화 불균일을 개선하기 위한 장치로서, 이를 위하여 본 발명은, 강판(S)이 중앙을 관통하여 상향 이동되는 케이싱(122)의 내측에 강판(S)의 폭방향으로 균일한 열원을 제공하는 라디에이션 히터(125)가 내측면 양측에 배치되고, 상기 케이싱(122)의 내부 양측으로는 상기 라디에이션 히터(125)와 중첩하여 강판(S)의 양측에 추가적인 열원을 제공하기 위한 균열히터(10)를 구비한다.The control device (1) for the uniform alloying of the hot-dip galvanized steel sheet according to the present invention is an apparatus for improving the alloying non-uniformity of the steel sheet in the process of producing an alloyed hot-dip galvanized steel sheet, the present invention, the steel sheet (S) Radiation heaters 125 that provide a uniform heat source in the width direction of the steel sheet S inside the casing 122 that is moved upward through the center are disposed on both sides of the inner side, and inside the casing 122. Both sides are provided with a crack heater 10 for providing an additional heat source on both sides of the steel sheet (S) overlapping with the radiator heater (125).
즉, 본 발명은 합금화 균열로내에 라디에이션 튜브히터(125)와는 별도로 도 3내지 5에 도시된 바와 같이, 균열히터(10)를 구비하고 있다. 이는 박스형태의 균열로 케이싱(122)내의 양측 모서리부에 강판(S) 폭 변화에 대응하기 위하여 강판(S)의 폭이 협폭(4피트 이하)시 강판(S)의 모서리를 가열하기 위한 제 1히터(12a)가 갖춰지고, 이보다 양측으로, 광폭(4피트 이상)의 강판(S) 양측 모서리를 가열하기 위하여 제 2히터(12b)가 갖춰져 있다.That is, the present invention includes a crack heater 10 as shown in FIGS. 3 to 5 separately from the radiation tube heater 125 in the alloy cracking furnace. This is because a box-shaped crack is formed to heat the edge of the steel sheet S when the width of the steel sheet S is narrow (4 feet or less) to correspond to the width change of the steel sheet S at both corners of the casing 122. One heater 12a is provided, and the second heater 12b is provided on both sides to heat the edges of both sides of the wide steel plate S having a width (4 feet or more).
이들 제 1 및 제 2히터(12a)(12b)들을 갖는 균열히터(10)는 상기 라디에이션 튜브히터(125)와 케이싱(122)의 내화벽(20)사이에 배치되며, 전기 저항체(25)를 갖추어 전원이 공급되면, 발열되고, 그 열원으로서 상기 강판(S)의 양측 모서리를 가열하도록 된 것이다.The crack heater 10 having these first and second heaters 12a and 12b is disposed between the radiating tube heater 125 and the fireproof wall 20 of the casing 122 and is composed of an electric resistor 25. Equipped with a power supply, it generates heat, it is to heat both edges of the steel sheet (S) as the heat source.
즉, 도 4에 도시된 바와 같이, Ni-Cr 와이어밴드가 전기 저항체(25)이며, 이를 고정하는 애자(27), 전기 저항체(25)의 열이 케이싱(122) 외측으로 빠져나가는 것을 차단하는 내화물(20), 전기 저항체(25)와 전원 케이블(30)의 연결을 위한 동판(32)등으로 한 개의 유니트가 구성되며, 이 유니트의 복합적인 구성이 도3과 같이 케이싱(122)의 내측에 다수개 장착되는 것이다.That is, as shown in FIG. 4, the Ni—Cr wire band is the electric resistor 25, and the insulator 27 fixing the same, and the heat of the electric resistor 25 to prevent the heat from flowing out of the casing 122. One unit is composed of a refractory 20, a copper plate 32 for connecting the electric resistor 25 and the power cable 30, etc. The complex structure of this unit is the inside of the casing 122 as shown in FIG. It is installed in a plurality.
그리고, 상기 케이싱(122)의 외측으로는 강판(S)의 폭방향 온도분포를 검출하는 센서(40)를 구비하여, 상기 센서(40)에 의해서 검출된 강판(S)의 폭방향 온도분포가 균일하게 되도록 상기 라디에이션 히터(122)와 균열히터(10)의 열원을 제어하게 되며, 상기 센서(40)는 설비제어 컴퓨터(미도시)에 전기적으로 연결되어, 상기 라디에이션 히터(122)와 균열히터(10)의 열원을 전기적으로 제어하게 된다.In addition, the outer side of the casing 122 is provided with a sensor 40 for detecting the widthwise temperature distribution of the steel plate (S), the widthwise temperature distribution of the steel plate (S) detected by the sensor 40 is The radiator heater 122 and the heat source of the crack heater 10 are controlled to be uniform, and the sensor 40 is electrically connected to a facility control computer (not shown), and the radiator heater 122 The heat source of the crack heater 10 is electrically controlled.
도6은 본 발명에 따른 제어장치(1)의 동작상태를 단계적으로 도식화한 것으로, 이를 참조하여 본 발명의 작동상태를 보다 상세히 설명하기로 한다.6 is a step-by-step diagram of the operating state of the control device 1 according to the present invention, with reference to this will be described in more detail the operating state of the present invention.
먼저, 단계에서는 용융화 합금도금강판 제조설비의 상위컴퓨터(미도시)에 의해 강판(S) 온도치와 판폭 및 두께를 설비제어 컴퓨터(PLC)에 설정 해주면 설비제어 컴퓨터(PLC)는 이 데이터(Data)를 이용하고 라인속도를 감안하여 용접점 트랙킹(Tracking)실시하게 된다(단계 70 ).First, in the step, the steel plate S temperature value, the plate width and the thickness are set in the facility control computer PLC by the host computer (not shown) of the molten alloy plated steel sheet manufacturing facility. Data) and the welding point tracking is performed in consideration of the line speed (step 70).
그리고, 설비제어 컴퓨터(PLC)는 내장된 연산기(78)에 의해서 예측제어를 위한 기본 데이타를 제공하게 된다. 연산기(78)의 기능은 도 8에 도시된 바와 같은,제어 논리 테이블(Logic Table)에서 보는 바와 같이, 두께, 폭, 라인속도를 알게 되면 모서리부 온도 강하량을 예측 할 수 있도록 사전에 입력되어 있고, 온도 강하량에 따라 요구되는 동력(power)이 연산기(78)에 의해 자동 계산되게 된다.In addition, the facility control computer PLC provides the basic data for predictive control by the built-in calculator 78. As shown in the control logic table (Logic Table), as shown in FIG. 8, the function of the calculator 78 is previously inputted to predict the temperature drop amount of the corners when the thickness, width, and line speed are known. In accordance with the temperature drop, the required power is automatically calculated by the calculator 78.
즉, 예측제어가 가능토록 각 강판(S)의 크기 및 강판(S)의 이동속도에 따른 에지부 온도 강하 예측량을 모델링하여 설비제어 컴퓨터(PLC)내에 내장함으로서 강판(S)의 폭크기 변경시, 자동으로 동력이 설정될 수 있도록 구성된 것이다.That is, when the width size of the steel sheet S is changed by modeling the prediction of the temperature drop of the edge part according to the size of each steel sheet S and the moving speed of the steel sheet S so that the predictive control is possible, it is embedded in the facility control computer PLC. In other words, the power is automatically configured.
또한, 설비제어 컴퓨터(PLC)는 강판(S)의 크기 추적(Tracking)에 의해 강판(S) 폭 변화를 예측하여, 균열히터(10)중 제 1히터(12a) 또는 제 2히터(12b)가 선택적으로 작동 될 수 있도록 구성된 것이다.In addition, the facility control computer PLC predicts the width change of the steel sheet S by tracking the size of the steel sheet S, and thus, the first heater 12a or the second heater 12b of the crack heater 10. It is configured to work selectively.
만일, 상위 컴퓨터가 도 8에 도시된 바와 같은 입력 조건을 설정하고, 그 중 어느 하나를 선택하면, 설비제어 컴퓨터(PLC)는 이에 해당하는 동력을 라디에이션 튜브히터(125)에 인가하여 강판(S)을 가열한다. 또한, 설비제어 컴퓨터(PLC)는 모서리 온도 강하값을 예측하여 적절한 동력을 균열 히터(12a)(12b)에 제공하도록 하여 강판(S)의 양측 모서리를 가열시킨다.If the host computer sets an input condition as shown in FIG. 8 and selects any one of them, the facility control computer PLC applies the corresponding power to the radiation tube heater 125 so that the steel sheet ( S) is heated. In addition, the facility control computer PLC predicts the edge temperature drop value to provide the appropriate power to the crack heaters 12a and 12b to heat both edges of the steel sheet S.
이상과 같은 설명은 강판(S)의 예측제어에 대한 설명이다.The above description is a description of the predictive control of the steel sheet (S).
그리고, T1= 강판 중앙부 실적온도, T2= 강판 가장자리의 온도라고 하면, 균열로(120)의 출측의 센서(40)로 부터의 측정값이 T1=T2로 되도록 상기 라디에이션 튜브히터(125)와 균열 히터(10)를 제어한다.And, if T1 = temperature at the center of the steel sheet, and T2 = temperature at the edge of the steel sheet, the radiation tube heater 125 and the radiator tube heater 125 have the measured value from the sensor 40 on the exit side of the crack furnace 120 to be T1 = T2. The crack heater 10 is controlled.
또한, 제어정도를 향상시키기 위하여 본 발명은 강판(S)의 폭 방향 온도를 측정하여 그 측정치에 대한 피드 백(Feed back) 제어를 하게 되는데, 이는연산기(78)에서 라디에이션 튜브히터(125)에 대한 동력을 설정하여 라디에이션 튜브히터(125)에 지시된 값에 의해 동력이 인가되었을 경우, 이때 강판(S)의 온도는 변화하게 되고 변화된 값은 합금화 균열로(120) 후방측의 온도감지 센서(40)에 의해 측정되며, 이 데이터는 설비제어 컴퓨터의 비교기에서 T1과 T2의 일치 여부가 판별되며, 그 비교결과는 연산기(78)로 이동하여 라디에이션 히터와 균열히터(10)에 피드백 된다(단계 76).In addition, the present invention is to measure the width direction temperature of the steel sheet (S) in order to improve the control degree is to control the feedback (Feed back) for the measured value, which is the radiator tube heater 125 in the calculator 78 When the power is applied by setting the power for the radiating tube heater 125, the temperature of the steel sheet (S) is changed at this time, the changed value is the temperature detection on the rear side of the alloy crack (120) Measured by the sensor 40, this data is determined in the comparator of the facility control computer whether T1 and T2 match or not, and the result of the comparison is moved to the calculator 78 to feed back the radiator heater and the crack heater 10. (Step 76).
즉, 상기 비교기에서 T1-T2의 차이를 연산기(78)에 지시하게 되고, 연산기(78)는 이 차이에 해당하는 동력값을 라디에이션 히터 또는 균열히터(10)에 제공하여 온도조절을 하는 것이다(단계 78).That is, in the comparator, the difference between T1-T2 is instructed to the calculator 78, and the calculator 78 provides a power value corresponding to the difference to the radiator heater or the crack heater 10 to adjust the temperature. (Step 78).
이와 같은 단계들을 반복하여 목표하는 온도를 제어하게 된다.These steps are repeated to control the target temperature.
만일, 지시된 강판(S)온도가 360℃ 일 경우, 강판(S)의 모서리 부분에서의 예측제어에 의한 온도결과가 350℃ 측정되었다면, 이는 비교기에서 10℃ 편차에 대한 제어를 연산기(78)로 지시하게 되고, 연산기(78)는 균열 히터를 T1 = T2가 될 때까지 제어하게 된다.If the temperature of the steel sheet S indicated is 360 ° C., if the temperature result by the predictive control at the corner of the steel sheet S is measured at 350 ° C., this means that the control for the deviation of 10 ° C. is calculated in the comparator 78. The calculator 78 controls the crack heater until T1 = T2.
이상에서 설명한 바와 같이, 본 발명에 의하면 작업할 소재의 정보를 수신하여 동일 폭일 경우에는 일정한 패턴으로 강판(S)이 바뀔 때마다 양 모서리부의 온도 강하값을 예측하여 모서리 온도강하를 보상시키고, 예측된 동력의 편차만큼 피드백 제어를 실시함으로서 합금화 불량이 발생되지 않는 것이다. 도 7 및 도 9는 본 발명에 따른 GA재 작업시, 온도 프로파일(Profile)을 강판(S)의 폭방향으로 측정한데이터를 나타내는 그림이다. 따라서, 본 발명은 균열히터(10)를 이용하여 자동으로 모서리 온도강하를 예측하고, 피드백 제어할 수 있게 되어 균일한 GA제품의 생산이 가능한 것이다As described above, according to the present invention, when the information of the material to be worked on is the same width, each time the steel sheet S is changed in a predetermined pattern, the temperature drop value of both corners is predicted to compensate for the corner temperature drop, and the prediction is made. By performing feedback control by the deviation of the power which has been made, no alloying defect is generated. 7 and 9 are diagrams showing the data measured in the width direction of the steel sheet (S) temperature profile (Profile) during the work of the GA material according to the present invention. Therefore, the present invention is able to automatically predict the edge temperature drop by using the crack heater 10, the feedback can be controlled to produce a uniform GA product
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000070826A KR20020041078A (en) | 2000-11-27 | 2000-11-27 | Apparatus for equalizing the temperature along the width of ga strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000070826A KR20020041078A (en) | 2000-11-27 | 2000-11-27 | Apparatus for equalizing the temperature along the width of ga strip |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020041078A true KR20020041078A (en) | 2002-06-01 |
Family
ID=19701591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000070826A KR20020041078A (en) | 2000-11-27 | 2000-11-27 | Apparatus for equalizing the temperature along the width of ga strip |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020041078A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100590832B1 (en) * | 2004-09-02 | 2006-06-19 | 재단법인 포항산업과학연구원 | An Apparatus and A Method for Uniforming the Temperature at Edge of Plating Strip in Cold Mill line |
KR20120060389A (en) * | 2010-12-02 | 2012-06-12 | 주식회사 포스코 | Device for controlling the width-direction temperature of strip at the cooling step in continuous annealing line |
CN116005092A (en) * | 2022-12-14 | 2023-04-25 | 河北燕赵蓝天板业集团有限责任公司 | Gradient type heat supplementing device and method for reducing zinc slag on surface of hot dip galvanized steel sheet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931858A (en) * | 1982-08-11 | 1984-02-21 | Sumitomo Metal Ind Ltd | Production of alloyed galvanized steel plate |
JPS62218564A (en) * | 1986-03-19 | 1987-09-25 | Nisshin Steel Co Ltd | Method for controlling position of edge heater |
JPH0525604A (en) * | 1991-07-15 | 1993-02-02 | Nkk Corp | Alloying controller for hot dip coating equipment |
JPH06116728A (en) * | 1992-10-02 | 1994-04-26 | Kobe Steel Ltd | Vacuum deposition plating method and vacuum deposition plating equipment |
JPH09263964A (en) * | 1996-03-26 | 1997-10-07 | Nkk Corp | Manufacture of hot-dip galvannealed steel sheet excellent in surface property |
-
2000
- 2000-11-27 KR KR1020000070826A patent/KR20020041078A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5931858A (en) * | 1982-08-11 | 1984-02-21 | Sumitomo Metal Ind Ltd | Production of alloyed galvanized steel plate |
JPS62218564A (en) * | 1986-03-19 | 1987-09-25 | Nisshin Steel Co Ltd | Method for controlling position of edge heater |
JPH0525604A (en) * | 1991-07-15 | 1993-02-02 | Nkk Corp | Alloying controller for hot dip coating equipment |
JPH06116728A (en) * | 1992-10-02 | 1994-04-26 | Kobe Steel Ltd | Vacuum deposition plating method and vacuum deposition plating equipment |
JPH09263964A (en) * | 1996-03-26 | 1997-10-07 | Nkk Corp | Manufacture of hot-dip galvannealed steel sheet excellent in surface property |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100590832B1 (en) * | 2004-09-02 | 2006-06-19 | 재단법인 포항산업과학연구원 | An Apparatus and A Method for Uniforming the Temperature at Edge of Plating Strip in Cold Mill line |
KR20120060389A (en) * | 2010-12-02 | 2012-06-12 | 주식회사 포스코 | Device for controlling the width-direction temperature of strip at the cooling step in continuous annealing line |
CN116005092A (en) * | 2022-12-14 | 2023-04-25 | 河北燕赵蓝天板业集团有限责任公司 | Gradient type heat supplementing device and method for reducing zinc slag on surface of hot dip galvanized steel sheet |
CN116005092B (en) * | 2022-12-14 | 2023-09-12 | 河北燕赵蓝天板业集团有限责任公司 | Gradient type heat supplementing device and method for reducing zinc slag on surface of hot dip galvanized steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20020041078A (en) | Apparatus for equalizing the temperature along the width of ga strip | |
Abe et al. | Development of a welding condition optimization program for narrow gap SAW | |
CN105154806B (en) | Temperature of steel strips homogenization precision control method and device before hot-dip | |
JPH0525604A (en) | Alloying controller for hot dip coating equipment | |
JPH02254146A (en) | Induction heating device, induction heating-type alloying furnace, and alloying method | |
KR200227127Y1 (en) | Preheating apparatus for manufacturing alloyed hot dip galvanized steel sheet | |
JP4306471B2 (en) | Method for controlling temperature of metal strip entering plate to hot dipping bath | |
JP2009228073A (en) | Method for manufacturing hot dip coated steel sheet | |
JPH04329856A (en) | Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip | |
JPH0578804A (en) | Method for controlling temperature of hot dip coating bath | |
JP2005248208A (en) | Method for controlling sheet temperature of galvannealed steel sheet during induction heating it | |
KR102255908B1 (en) | Apparatus and method for manufacturing ga/gi steel plate | |
JP3787320B2 (en) | Method and apparatus for controlling alloying in hot dip galvanizing line | |
JPH08176779A (en) | Method for controlling alloying of galvannealed steel sheet | |
KR100511513B1 (en) | A method for equalizing iron content of GA steel plate | |
KR100590832B1 (en) | An Apparatus and A Method for Uniforming the Temperature at Edge of Plating Strip in Cold Mill line | |
JP2644513B2 (en) | Method for controlling the degree of alloying of galvannealed steel sheet | |
JPH06207296A (en) | Method and equipment for plating strip material with zinc | |
KR100928979B1 (en) | Combination Reflow Control Method of Tin Plating Process | |
KR101070268B1 (en) | Control method for combination reflow brightening of tin plating process | |
JP3227326B2 (en) | Method for controlling alloying of galvannealed steel strip | |
JPH08199324A (en) | Control of steel sheet temperature in alloying furnace | |
EP3901323A1 (en) | Apparatus and method for controlling coating layer in pvd plating processs | |
KR20070068217A (en) | Method for curing water coated on strip using furnace | |
JP2795569B2 (en) | Operating method of hot dip galvanizing alloying furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |