JP2008180550A - 磁気センサ装置 - Google Patents

磁気センサ装置 Download PDF

Info

Publication number
JP2008180550A
JP2008180550A JP2007012993A JP2007012993A JP2008180550A JP 2008180550 A JP2008180550 A JP 2008180550A JP 2007012993 A JP2007012993 A JP 2007012993A JP 2007012993 A JP2007012993 A JP 2007012993A JP 2008180550 A JP2008180550 A JP 2008180550A
Authority
JP
Japan
Prior art keywords
coil
sensor device
magnetoresistive element
magnetic field
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007012993A
Other languages
English (en)
Inventor
Kenji Chikuan
憲治 竹菴
Seiichiro Ishio
誠一郎 石王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007012993A priority Critical patent/JP2008180550A/ja
Publication of JP2008180550A publication Critical patent/JP2008180550A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】必要最低磁力の不足なく、センサ特性の調整幅を広くすることのできる磁気センサ装置を提供する。
【解決手段】磁気抵抗素子が形成されたセンサチップと、磁気抵抗素子に対してバイアス磁界を付与するバイアス磁界生成部と、を備える磁気センサ装置であって、バイアス磁界生成部として、通電状態で磁界を発生するコイルを磁気抵抗素子の近傍に配置した。
【選択図】図1

Description

本発明は、磁気抵抗素子を備えた磁気センサ装置に関する。
従来、車両の変速機(トランスミッション)を構成するシャフトに噛み合わされたギアといった回転体の、回転数(回転状態)を検出するものとして、磁気抵抗素子の形成されたセンサチップと、磁気抵抗素子にバイアス磁界を付与する磁石とを有する磁気センサ装置が知られている(たとえば特許文献1参照)。
特許文献1に示される磁気センサ装置は、ICチップ(センサチップ)がリードフレームに搭載された状態で第一のモールド樹脂によって被覆されてモールドICとされ、このモールドICと磁石とが第二のモールド樹脂によって被覆されてなる、所謂2次モールド構造の磁気センサ装置である。
特開2001−116815号公報
特許文献1に示されるような磁気センサ装置においては、磁石から生じるバイアス磁界の変化(磁気ベクトルの振れ角の変化)を磁気抵抗素子の抵抗値変化として検出することで、回転体の回転状態を検出することができる。したがって、センサ特性(角度精度)は、磁気抵抗素子における初期状態(回転体が回転する前)の磁気ベクトルによって変化する。すなわち、上述したモールド時において生じる磁石とICチップとの位置ずれなどの組み付け時のばらつき、回転体と磁気抵抗素子(実質的には磁気センサ装置の端部)との距離(所謂エアギャップ)、ICチップや磁石のばらつき(寸法精度やICチップにおける磁気抵抗素子の位置精度など)、回転体の形状などに依存する。
そこで、従来は、たとえばモールド後に、磁石の着磁において磁力の開き角度(初期状態における磁気ベクトルの開き角度)を調整することで、センサ特性(磁気ベクトル)を調整している。ところが、開き角度によって磁力(磁束密度)が変化するため、開き角度の調整は、磁気抵抗素子の必要最低磁力(磁気抵抗素子によって磁界の変化を抵抗値変化として精度よく検出できる磁力の最低値)の制限を受ける。また、磁力は、磁石を構成する材料に依存しており、着磁での調整幅が限られる。
本発明は上記問題点に鑑み、必要最低磁力の不足なく、センサ特性の調整幅を広くすることのできる磁気センサ装置を提供することを目的とする。
上記目的を達成する為に請求項1に発明は、磁気抵抗素子が形成されたセンサチップと、磁気抵抗素子に対してバイアス磁界を付与するバイアス磁界生成部と、を備える磁気センサ装置であって、バイアス磁界生成部として、磁気抵抗素子の近傍に配置され、通電状態でバイアス磁界を発生するコイルを含むことを特徴とする。
本発明によれば、バイアス磁界生成部としてコイルを含むので、コイルに流れる電流、コイルの巻き数、コイルの形状(径)、及び磁気抵抗素子とコイルとの位置関係の少なくとも1つを調整することにより、磁気抵抗素子における初期状態(回転体が回転する前)の磁気ベクトルを調整することができる。すなわち、磁石に比べて磁気ベクトルの調整要素が多い。また、コイルに流れる電流やコイルの巻き数によって磁界を変化させることができるので、磁石に比べて磁力の構成材料依存度が低い。したがって、必要最低磁力の不足なく、センサ特性の調整幅を広くすることができる。
なお、磁気抵抗素子の近傍であれば、コイルの配置は特に限定されるものではない。たとえば請求項2に記載のように、磁気抵抗素子がコイル内に配置された構成としても良い。請求項3に記載のように、磁気抵抗素子の少なくとも一部が、コイルの外に配置された構成としても良い。請求項2に記載の発明によれば、請求項3に記載の発明に対し、コイルの実装スペースを低減することも可能である。
また、請求項3に記載の発明においては、請求項4に記載のように、磁気抵抗素子へのバイアス磁界を変化させる回転体に対して、磁気抵抗素子がコイルよりも近い位置に配置された構成とすると良い。このような構成とすると、同電流を流す場合に、エアギャップをより広くとることが可能となる。すなわち、より遠い距離の回転体を検出することが可能となる。
なお、コイルに流れる電流は、製品完成後であっても調整が可能である。したがって、請求項1〜4いずれか1項に記載の発明においては、請求項5に記載のように、磁気抵抗素子の抵抗値変化に応じた信号に基づいて、コイルに流れる電流を制御する電流制御部をさらに備えた構成とすることもできる。
このようにフィードバック制御可能な構成とすると、センサ形成時だけでなく、たとえば磁気センサ装置を車両に搭載した状態で、センサ特性を調整することが可能となる。これにより耐久変動(経時変化)も調整することも可能であるので、この場合には車両のロバスト性を向上することができる。
また、請求項1〜5いずれか1項に記載の発明においては、請求項6に記載のように、センサチップの磁気抵抗素子がリードと電気的に接続され、リードとして、磁気抵抗素子用の電源端子とコイル用の電源端子をそれぞれ含む構成とすると良い。これによれば、コイルに流れる電流を、磁気抵抗素子とは独立して可変させることが可能となる。すなわち、センサ特性の調整幅をより広げることができる。なお、請求項1〜4いずれか1項に記載の発明においては、請求項7に記載のように、リードとして、電源端子とGND端子とが、磁気抵抗素子とコイルとで共用された構成としても良い。これによれば、請求項6に記載の発明よりも調整幅が狭くなるものの、リード数を少なくし、コストを低減することができる。
請求項6又は請求項7に記載の発明においては、請求項8に記載のように、センサチップ及びリードの一部が封止樹脂によって被覆され、モールドICとされた構成を採用することができる。この場合、たとえば請求項9に記載のように、コイルがセンサチップに巻回された構成としても良い。また、センサチップが支持部材上に固定された状態で封止樹脂によって被覆されている場合には、請求項10に記載のように、コイルがセンサチップ及び支持部材のうち、少なくとも支持部材に巻回された構成としても良い。いずれの配置としても、必要最低磁力の不足なく、センサ特性の調整幅を広くすることができる。なお、請求項10に記載の発明においては、コイルは支持部材のみに巻回された構成としても良いし、支持部材にセンサチップが固定されたもの(一体物)に対してコイルが巻回された構成としても良い。
請求項9又は請求項10に記載の発明によれば、コイルも封止樹脂によって被覆されることとなる。したがって、好ましくは、請求項11に記載のように、コイルがモールドICの封止樹脂に巻回された構成とすると良い。これによれば、コイルの接続信頼性を向上することができる。また、製造工程を簡素化することができる。
請求項1〜11いずれか1項に記載の発明においては、請求項12に記載のように、バイアス磁界生成部として磁石をさらに備える構成としても良い。これによれば、コイルが生じるバイアス磁界で磁石が生じるバイアス磁界を補正する形となり、コイルのバイアス磁界と磁石のバイアス磁界の合成バイアス磁界が磁気抵抗素子に付与される。したがって、バイアス磁界生成部として、磁石のみを有する構成に比べて、必要最低磁力の不足なく、センサ特性の調整幅を広くすることができる。また、磁石の有無によって、センサ特性の調整幅をより広くすることができる。
以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。図2は、図1を回転体から見た平面図である。図3は、センサチップにおける磁気抵抗素子形成領域周辺の模式的な拡大平面図である。図1においては、便宜上、封止樹脂に被覆されたセンサチップ、支持部材、及びリードの一部を破線で示している。図2においては、便宜上、封止樹脂に被覆されたセンサチップ及び支持部材を破線で示している。
なお、本実施形態に係る磁気センサ装置は、たとえば車両の変速機(トランスミッション)を構成するシャフトに噛み合わされたギアといった回転体の、回転数(回転状態)を検出する回転検出装置として好適である。
図1及び図2に示すように、磁気センサ装置100は、主要部として、センサチップ110とコイル120を含んでいる。また、要部として、上述した構成要素以外にも、支持部材130と、リード140と、封止樹脂150を含んでいる。
センサチップ110は、基板のMRE形成領域111上に、たとえばNi−Co、Ni−Fe等の材料からなり、バイアス磁界の変化(磁気ベクトルの変化)に応じて抵抗値が変化するMREを形成してなるものである。本実施形態において、MREは、パターニングによってハの字状に形成されており、図示されない信号処理回路も集積化されている。
具体的には、図3に示すように、シリコン基板のMRE形成領域111上に、図示されない絶縁膜を介して、バイアス磁界の変化に応じて出力が変化するハーフブリッジ構成の2つのMREブリッジ112,113が形成されている。MREブリッジ112は、2個のMRE114,115を直列接続して構成され、MREブリッジ113は、2個のMRE116,117を直列接続して構成されている。各MREブリッジ112,113を構成する4つのMRE114〜117のうち、MREブリッジ112を構成する電源側のMRE114と、MREブリッジ113を構成する接地側のMRE117とが、バイアス磁界の磁気的中心(図示略)に対して所定角度(たとえば略45度)をなすように配置されている。また、MREブリッジ112を構成する接地側のMRE115と、MREブリッジ113を構成する電源側のMRE116とが、バイアス磁界の磁気的中心に対して所定角度(たとえば略−45度)をなすように配置されている。そして、各MREブリッジ112,113の出力(中点電位)の差分が、センサチップ110の出力として、後述するリード140の一部を介して外部に出力されるように構成されている。このようなセンサチップ110の構成詳細及び動作については、本出願人による特開平11−237256号公報などに開示されているので、詳細な説明は割愛する。
コイル120は、導線を筒状に巻いてなるものであり、通電状態(電流が流れた状態)で、センサチップ110に形成されたMRE114〜117に対してバイアス磁界を付与する。すなわち、特許請求の範囲に記載のバイアス磁界生成部に相当する。コイル120の構成材料は、導電材料であれば特に限定されるものではない。たとえば銅などの金属やより磁力が高いものとしてKS鋼、MT鋼などの合金を採用することができる。コイル120の構成材料に限らず、線径、コイル120の径(筒径)、筒形状は、特に限定されるものではない。また、コイル120の位置は、MRE114〜117に対してバイアス磁界を付与するために、MRE114〜117の近傍であれば良い。
本実施形態においては、図1及び図2に示すように、センサチップ110のMRE形成面全面を覆うように、コイル120が略矩形状の封止樹脂150の外周面に沿って一定の径で巻回され、この巻回された状態でコイル120は封止樹脂150に接着固定されている。すなわち、コイル120の筒形状も略矩形状とされている。また、コイル120の一端はリード140の電源端子141に接続され、他端はリード140のGND端子142に接続されており、図1に破線矢印で示す方向に電流Iが流れるように構成されている。なお、電流Iが流れた状態で、それによって生じるバイアス磁界の方向(磁気ベクトルの向き)は、図1中に矢印で示す方向となる。また、コイル120の中心軸がバイアス磁界の磁気的中心をなしている。
ところで、コイルに電流を流すことによって生じる磁界は、コイルの巻き数やコイルに流れる電流によって変化する(たとえば巻き数や電流に比例して、磁界の強さが大きくなる)ことが知られている。したがって、本実施形態においては、コイル120の巻き数やコイル120の流れる電流Iを調整することで、バイアス磁界を調整することができる。すなわち、MRE114〜117における初期状態(回転体が回転する前)の磁気ベクトルを調整する(オフセット調整する)ことができる。また、コイル120とMRE114〜117との位置関係や、コイル120の形状(径)によっても、MRE114〜117における初期状態の磁気ベクトルを調整することができる。
支持部材130は、センサチップ110を搭載するものである。本実施形態においては、封止樹脂150によってセンサチップ110を被覆する際に、センサチップ110の位置ずれを防ぐ機能も果たすように、リード140とともにリードフレームの一部(所謂アイランド)として構成されている。詳しくは、封止樹脂150によるモールド後に、封止樹脂150から露出するリードフレームの外周部位が除去されて、図1に示すように、支持部材130とリード140とが分離されている。このような支持部材130を用いると、簡素な構成でありながら、モールド時のセンサチップ110の位置ずれを抑制することができる。
リード140は、先に述べたように、コイル120の一端が接続された電源端子141とコイル120の他端が接続されたGND端子142以外にも、センサチップ110の出力端子143を含んでいる。本実施形態においては、電源端子141とGND端子142が、センサチップ110(MRE114〜117)とコイル120とで共用されている。すなわち、センサチップ110も、図示されないワイヤ接続やフリップチップ接続によって、電源端子141又はGND端子142と電気的に接続されている。したがって、コイル120には直流電流が流れることとなる。このように、センサチップ110とコイル120とで、電源端子141とGND端子142を共用すると、リード140の本数を減らし、コストを低減することができる。
封止樹脂150は、センサチップ110と、センサチップ110との接続部を含む各リード140の一部を被覆するものである。すなわち、センサチップ110は封止樹脂150によって被覆され、モールドICとされている。封止樹脂150の構成材料としては、少なくとも電気絶縁性を示す材料であれば良く、好ましくは使用環境に応じて、耐熱性や、耐薬品性、耐湿性などを兼ね備えた材料を適宜選択して採用することができる。本実施形態においては、図1に示すように、センサチップ110のMRE形成面全面を被覆するようにコイル120が配置されるため、リード140の配置側とは反対側(回転体側)における封止樹脂150の肉厚がコイル120の接触代としてやや厚くされ、封止樹脂150の回転体側の端部とMRE形成領域111との距離が、図1に示すように距離L1とされている。
このように構成される磁気センサ装置100は、たとえば以下に示す製造方法によって形成することができる。
まず、MRE114〜117が形成されたセンサチップ110と、支持部材130とリード140とが一体とされたリードフレームをそれぞれ準備する。そして、リードフレームにおける支持部材130に対して、センサチップ110をマウント(たとえば接着固定)した後、たとえばワイヤボンディングすることにより、センサチップ110とリード140とを電気的に接続する。
次に、型内に封止樹脂150を注入してモールドICを形成し、形成されたモールドICの封止樹脂150から露出するリードフレームの外周部位を除去する。そして、封止樹脂150に対して導線を巻回してコイル120を形成するとともに、コイル120の端部をリード140の電源端子141とGND端子142にそれぞれ接続する。
このとき、コイル120に流れる電流I、コイル120の巻き数、コイル120の形状(径)、及びMRE114〜117とコイル120との位置関係の少なくとも1つを調整して、MRE114〜117における初期状態の磁気ベクトルを調整(オフセット調整)する。以上により、図1に示される構成の磁気センサ装置100を形成することができる。なお、必要に応じて、磁気センサ装置100のリード140とターミナルとを接続(たとえば熱かしめ)し、磁気センサ装置100を被覆するように二次モールドしても良い。コイル120は封止樹脂150に固定されているので、二次モールド時の位置ずれを抑制することができる。
このように本実施形態に係る磁気センサ装置100によれば、バイアス磁界生成部としてコイル120を含むので、コイル120に流れる電流I、コイル120の巻き数、コイル120の形状(径)、及びMRE114〜117とコイル120との位置関係の少なくとも1つを調整することにより、MRE114〜117における初期状態の磁気ベクトルを調整することができる。すなわち、磁石に比べて磁気ベクトルの調整要素が多い。また、コイル120に流れる電流Iやコイルの巻き数によって磁界を変化させることができるので、磁石に比べて磁力の構成材料依存度が低い。したがって、必要最低磁力の不足なく、センサ特性の調整幅を広くすることができる。
また、コイル120の筒内にセンサチップ110(MRE114〜117)が配置されているので、磁気センサ装置100におけるコイル120の実装スペースを低減することも可能である。
なお、本実施形態においては、コイル120がモールドICの封止樹脂150に巻回されて固定された例を示した。しかしながら、コイル120の巻回される対象は上記例に限定されるものではない。例えば、図4に示すように、コイル120がセンサチップ110に巻回された状態で、センサチップ110が支持部材130にマウントされ、封止樹脂150によって被覆された構成としても良い。また、図5に示すように、コイル120が支持部材130に巻回された状態で、センサチップ110が支持部材130にマウントされ、封止樹脂150によって被覆された構成としても良い。さらには、図6に示すように、センサチップ110が支持部材130にマウントされた状態で、センサチップ110及び支持部材130にコイル120が巻回され、封止樹脂150によって被覆された構成としても良い。このように、コイル120も封止樹脂によって被覆される構成としても良い。図4〜図6は、変形例を示す平面図であり、図2に対応している。しかしながら、封止樹脂150によるモールド成形時に、コイル120とリード140との接続部が剥離するなどの不具合が生じる恐れもある。したがって、好ましくは、本実施形態に示した構成(コイル120がモールドICの封止樹脂150に巻回された構成)を採用することが好ましい。また、封止樹脂150に対してコイル120が巻回された構成は簡素であるので、製造工程も簡素化することができる。
(第2実施形態)
次に、本発明の第2実施形態を、図7に基づいて説明する。図7は、第2実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。図7は、第1実施形態で示した図1に対応している。
第2実施形態に係る磁気センサ装置は、第1実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
第1実施形態においては、一例として、MRE114〜117(センサチップ110のMRE形成領域111)がコイル120の筒内に配置された例を示した。これに対し、本実施形態においては、MRE114〜117の少なくとも一部が、コイル120の筒外であって、バイアス磁界を変化させる回転体に対してコイル120よりも近い位置に配置されている点を特徴とする。その一例を図7に示す。
図7に示される磁気センサ装置100は、封止樹脂150に対するコイル120の巻回位置と、封止樹脂150の回転体10側の端部とMRE形成領域111との距離L2が異なる以外は、第1実施形態(図1参照)と同じ構成とされている。より詳しくは、コイル120は、封止樹脂150におけるセンサチップ110とリード140との間の部位に巻回されて固定されている。そして、封止樹脂150の回転体10側の端部とMRE形成領域111との距離L2は、コイル120の接触代が不要な分、第1実施形態に示した距離L1よりも短くなっている。なお、図7に示す符号L3は、回転体10の端部と磁気センサ装置100の端部との対向距離を示している。この距離L3がセンサとしての実質的なエアギャップであり、距離L2が真のエアギャップである。
このように本実施形態に係る磁気センサ装置100によれば、封止樹脂150の回転体10側の端部とMRE形成領域111との距離を、より短くすることができる。したがって、同電流を流す場合に、実質的なエアギャップ(距離L3)をより広くとることができる。換言すれば、より遠い距離の回転体10を検出することが可能である。
なお、本実施形態においては、封止樹脂150に対してコイル120が巻回された例を示したが、第1実施形態に示した変形態様(図4〜図6参照)に対して適用することもできる。
(第3実施形態)
次に、本発明の第3実施形態を、図8に基づいて説明する。図8は、第3実施形態に係る磁気センサ装置の概略構成を示す図であり、(a)は回転体側から見た平面図、(b)はMRE形成面側から見た平面図である。図8(b)においては、便宜上、磁石を図8(a)のA−A線に沿う断面で示している。なお、図8(a)は第1実施形態に示した図2に対応し、図8(b)は図1に対応している。
第3実施形態に係る磁気センサ装置は、第1実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
第1実施形態においては、MRE114〜117にバイアス磁界を付与するバイアス磁界生成部として、コイル120のみを有する例を示した。これに対し、本実施形態においては、バイアス磁界生成部として、コイル120とともに磁石を有する点を特徴とする。その一例を図8(a),(b)に示す。
図8(a),(b)に示される磁気センサ装置100は、バイアス磁界生成部として磁石160を有し、この磁石160に対してコイル120が巻回されて固定されている以外は、第1実施形態(図1参照)と同じ構成とされている。本実施形態において、磁石160は、図示されない回転体に向けてバイアス磁界を生じるように構成されている。また、センサチップ110を含むモールドICに装着されるように、モールドICの外周形状に対応した壁面161を有する中空状(円筒)に設けられている。具体的には、磁石160の端面の一方(回転側)がN極、他方(回転体に対して遠い側)がS極になるように着磁され、磁石160の中心軸が、バイアス磁界の磁気的中心をなしており、磁気的中心上に回転体の回転軸が位置するように配置されている。また、このように構成される磁石160の筒内にモールドICが挿入されて固定され、磁石160の円筒外周に沿って、コイル120が、センサチップ110のMRE形成面全面を覆うように巻回されて固定されている。
このように本実施形態に係る磁気センサ装置100によれば、コイル120が生じるバイアス磁界で磁石160が生じるバイアス磁界を補正することができる。すなわち、コイル120のバイアス磁界と磁石160のバイアス磁界の合成バイアス磁界がMRE114〜117に付与される。したがって、バイアス磁界生成部として、磁石のみを有する構成に比べて、必要最低磁力の不足なく、センサ特性の調整幅を広くすることができる。
また、状況に応じて磁石160の有無を選択する(第1実施形態と本実施形態の構成を選択する)ようにすれば、センサ特性の調整幅をより広くすることができる
なお、本実施形態においては、磁石160にコイル120が巻回された例を示した。しかしながら、第1実施形態に示したように、コイル120の巻回される対象は上記例限定されるものではない。第1実施形態に示したように、封止樹脂150や、センサチップ110、及び支持部材130のいずれに固定することもできる。また、コイル120の巻回される位置も本実施形態に示した例に限定されるものではない。例えば第2実施形態に示した位置としても良い。
(第4実施形態)
次に、本発明の第4実施形態を、図9に基づいて説明する。図9は、第4実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。図9は、第1実施形態に示した図1に対応している。
第4実施形態に係る磁気センサ装置は、第1実施形態〜第3実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
上述した各実施形態(変形例含む)においては、リード140が電源端子141、GND端子142、及び出力端子143を有し、電源端子141とGND端子142が、センサチップ110(MRE114〜117)とコイル120とで共用された例を示した。しかしながら、センサチップ110とコイル120とで電源端子141が共用されていると、MRE114〜117が磁界の変化を抵抗値変化として精度よく検出するために、オフセット調整時の電流の可変幅が限定される。また、磁気センサ装置100が形成された状態(例えば車両に搭載された状態)では、電流値を変更することはできない。
これに対し、本実施形態の磁気センサ装置100は、図9に示すように、リード140として、GND端子142及び出力端子143以外に、コイル用電源端子144とセンサチップ用電源端子145の2つの電源端子を有している。したがって、コイル120に流れる電流を、MRE114〜117とは独立して可変させることができるので、センサ特性の調整幅をより広げることができる。
なお、図9においては、第1実施形態に示す構成(図1参照)に対して、リード140を本実施形態に示す構成に置き換えた例を示した。しかしながら、本実施形態に示すリード140の適用は上記例に限定されず、第1実施形態の変形例、第2実施形態、及び第3実施形態に対して適用することができる。
(第5実施形態)
次に、本発明の第5実施形態を、図10に基づいて説明する。図10は、第5実施形態に係る磁気センサ装置の概略構成を示す模式的なブロック図である。
第5実施形態に係る磁気センサ装置は、第1実施形態〜第4実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。なお、第1実施形態に示した要素と同一の要素には、同一の符号を付与するものとする。
本実施形態においては、センサチップ110のセンサ信号(MRE114〜117の抵抗値変化に応じた信号)に基づいて、コイル120に流れる電流を制御する電流制御部をさらに備える点を特徴とする。その一例を図10に示す。図10に示す磁気センサ装置200は、第4実施形態に示した磁気センサ装置100と、コイル120の電流を流すためのコイル電源170と、センサチップ110からのセンサ信号に基づいてコイル120の流れる電流値を調整するための電流値調整信号をコイル電源170に与える制御部180とを備えている。
このように本実施形態に係る磁気センサ装置200は、コイル120に流れる電流をフィードバック制御することができる。したがって、磁気センサ装置200を車両に搭載した状態で、センサ特性を調整することが可能となる。具体的には、回転体が回転していない状態のセンサ信号を制御部180が定期的に基準値と比較し、その比較結果に基づいて電流値調整信号をコイル電源170に与えるようにすれば、耐久変動(経時変化)を調整することもできる。この場合、車両のロバスト性を向上することができる。
また、回転体の回転時(例えば車両の走行時)において、コイル120に流れる電流をフィードバック制御することも可能である。
なお、本実施形態においては、センサチップ110とは別に制御部180が構成された例を示した。しかしながら、センサチップ110に集積化された構成としても良い。また、センサチップ110とは別の回路チップに構成し、センサチップ110とともにモールドICとされた構成としても良い。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。本発明は、磁気抵抗素子が形成されたセンサチップと、磁気抵抗素子にバイアス磁界を付与するバイアス磁界生成部としてのコイルとを、少なくとも含む構成であれば良い。
本実施形態においては、MRE114〜117の少なくとも一部が、コイル120の筒外であって、バイアス磁界を変化させる回転体に対してコイル120よりも近い位置に配置された例を示した。しかしながら、MRE114〜117の少なくとも一部が、コイル120の筒外であって、バイアス磁界を変化させる回転体に対してコイル120よりも離れた位置に配置された構成としても良い。
第1実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。 図1を回転体側から見た平面図である。 センサチップにおける磁気抵抗素子形成領域周辺の模式的な拡大平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 変形例を示す平面図である。 第2実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。 第3実施形態に係る磁気センサ装置の概略構成を示す図であり、(a)は回転体側から見た平面図、(b)はMRE形成面側から見た平面図である。 第4実施形態に係る磁気センサ装置の概略構成を示すMRE形成面側から見た平面図である。 第5実施形態に係る磁気センサ装置の概略構成を示す模式的なブロック図である。
符号の説明
100,200・・・磁気センサ装置
110・・・センサチップ
111・・・磁気抵抗素子形成領域
120・・・コイル
130・・・支持部材
140・・・リード
141・・・電源端子
142・・・GND端子
143・・・出力端子
150・・・封止樹脂

Claims (12)

  1. 磁気抵抗素子が形成されたセンサチップと、
    前記磁気抵抗素子に対してバイアス磁界を付与するバイアス磁界生成部と、を備える磁気センサ装置であって、
    前記バイアス磁界生成部として、前記磁気抵抗素子の近傍に配置され、通電状態で前記バイアス磁界を発生するコイルを含むことを特徴とする磁気センサ装置。
  2. 前記磁気抵抗素子は、前記コイル内に配置されていることを特徴とする請求項1に記載の磁気センサ装置。
  3. 前記磁気抵抗素子は、少なくとも一部が、前記コイルの外に配置されていることを特徴とする請求項1に記載の磁気センサ装置。
  4. 前記磁気抵抗素子へのバイアス磁界を変化させる回転体に対して、前記磁気抵抗素子は、前記コイルよりも近い位置に配置されていることを特徴とする請求項3に記載の磁気センサ装置。
  5. 前記磁気抵抗素子の抵抗値変化に応じた信号に基づいて、前記コイルに流れる電流を制御する電流制御部をさらに備えることを特徴とする請求項1〜4いずれか1項に記載の磁気センサ装置。
  6. 前記センサチップの磁気抵抗素子は、リードと電気的に接続されており、
    前記リードとして、磁気抵抗素子用の電源端子とコイル用の電源端子をそれぞれ含むことを特徴とする請求項1〜5いずれか1項に記載の磁気センサ装置。
  7. 前記センサチップの磁気抵抗素子は、リードと電気的に接続されており、
    前記リードとして、電源端子とGND端子とが、前記磁気抵抗素子と前記コイルとで共用されていることを特徴とする請求項1〜4いずれか1項に記載の磁気センサ装置。
  8. 前記センサチップ及び前記リードの一部が封止樹脂によって被覆され、モールドICとされていることを特徴とする請求項6又は請求項7に記載の磁気センサ装置。
  9. 前記コイルは、前記センサチップに巻回されていることを特徴とする請求項8に記載の磁気センサ装置。
  10. 前記センサチップは支持部材上に固定された状態で、前記封止樹脂によって被覆されており、
    前記コイルは、前記センサチップ及び前記支持部材のうち、少なくとも前記支持部材に巻回されていることを特徴とする請求項8又は請求項9に記載の磁気センサ装置。
  11. 前記コイルは、前記モールドICの封止樹脂に巻回されていることを特徴とする請求項8に記載の磁気センサ装置。
  12. 前記バイアス磁界生成部として磁石をさらに備えることを特徴とする請求項1〜11いずれか1項に記載の磁気センサ装置。
JP2007012993A 2007-01-23 2007-01-23 磁気センサ装置 Pending JP2008180550A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012993A JP2008180550A (ja) 2007-01-23 2007-01-23 磁気センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012993A JP2008180550A (ja) 2007-01-23 2007-01-23 磁気センサ装置

Publications (1)

Publication Number Publication Date
JP2008180550A true JP2008180550A (ja) 2008-08-07

Family

ID=39724565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012993A Pending JP2008180550A (ja) 2007-01-23 2007-01-23 磁気センサ装置

Country Status (1)

Country Link
JP (1) JP2008180550A (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015871A (ja) * 2009-07-10 2011-01-27 Sanyo Product Co Ltd 遊技機
JP2013047610A (ja) * 2011-08-28 2013-03-07 Denso Corp 磁気平衡式電流センサ
JP2015517657A (ja) * 2012-05-10 2015-06-22 アレグロ・マイクロシステムズ・エルエルシー 集積されたコイルを有する磁場センサのための方法及び装置
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
CN112858964A (zh) * 2019-11-27 2021-05-28 Tdk株式会社 磁传感器
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
DE102015108622B4 (de) 2014-06-06 2023-08-10 Infineon Technologies Ag Magnetsensor-Bauelement mit ringförmigem Magnet

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015871A (ja) * 2009-07-10 2011-01-27 Sanyo Product Co Ltd 遊技機
JP2013047610A (ja) * 2011-08-28 2013-03-07 Denso Corp 磁気平衡式電流センサ
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
JP2015517657A (ja) * 2012-05-10 2015-06-22 アレグロ・マイクロシステムズ・エルエルシー 集積されたコイルを有する磁場センサのための方法及び装置
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
DE102015108622B4 (de) 2014-06-06 2023-08-10 Infineon Technologies Ag Magnetsensor-Bauelement mit ringförmigem Magnet
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
JP7028234B2 (ja) 2019-11-27 2022-03-02 Tdk株式会社 磁気センサ
US11467234B2 (en) 2019-11-27 2022-10-11 Tdk Corporation Magnetic sensor
JP2021085738A (ja) * 2019-11-27 2021-06-03 Tdk株式会社 磁気センサ
CN112858964A (zh) * 2019-11-27 2021-05-28 Tdk株式会社 磁传感器
US11940506B2 (en) 2019-11-27 2024-03-26 Tdk Corporation Magnetic sensor
CN112858964B (zh) * 2019-11-27 2024-04-02 Tdk株式会社 磁传感器
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Similar Documents

Publication Publication Date Title
JP2008180550A (ja) 磁気センサ装置
JP5320154B2 (ja) 回転検出器付モータ構造
US7584672B2 (en) Magnetostrictive torque sensor
US8450893B2 (en) Motor structure with planar coil type rotation detector
US7642773B2 (en) Magnetic sensor, production method thereof, rotation detection device, and position detection device
KR101521952B1 (ko) 유도 위치 센서
JP3457085B2 (ja) 回転位置センサ
JP6107942B2 (ja) 磁気電流センサおよび電流測定方法
JP2011506951A (ja) 誘導位置センサ
JPH07280509A (ja) スロットル付き内燃機関用スロットル型回転位置センサ
JP4292967B2 (ja) 磁歪式トルクセンサ
JP2009222524A (ja) 回転検出装置
JP2004264205A (ja) 磁気センサ及びその製造方法
JPH07260413A (ja) 位置センサ
JP2007151314A (ja) モータ
WO2005040729A1 (ja) 磁気式エンコーダ装置およびアクチュエータ
JP2018072086A (ja) 回転角検出装置
JP6132085B2 (ja) 磁気検出装置
JP2019090789A (ja) 回転検出装置
JP5284024B2 (ja) 磁気センサ
JPH10132506A (ja) 回転角センサ
JP2019170038A (ja) モータ
JP3886434B2 (ja) トルクセンサの組立方法
JP3367094B2 (ja) 回転検出装置
JP2005300246A (ja) 移動体検出装置