JP2008179097A - ラインヘッドの調整方法および調整装置 - Google Patents

ラインヘッドの調整方法および調整装置 Download PDF

Info

Publication number
JP2008179097A
JP2008179097A JP2007015754A JP2007015754A JP2008179097A JP 2008179097 A JP2008179097 A JP 2008179097A JP 2007015754 A JP2007015754 A JP 2007015754A JP 2007015754 A JP2007015754 A JP 2007015754A JP 2008179097 A JP2008179097 A JP 2008179097A
Authority
JP
Japan
Prior art keywords
optical axis
light emitting
microlens
emitting element
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007015754A
Other languages
English (en)
Inventor
Nozomi Inoue
望 井上
Kiyoshi Tsujino
浄士 辻野
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007015754A priority Critical patent/JP2008179097A/ja
Publication of JP2008179097A publication Critical patent/JP2008179097A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

【課題】非正立等倍のマイクロレンズにより発光素子からの光ビームを結像するラインヘッドに対して、発光素子とマイクロレンズとの相対的位置関係を高精度に調整する技術を提供する。
【解決手段】位置情報取得工程は、複数の光軸上素子のうちの1つ以上の対象素子の位置を取得し、光軸調整処理は、マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、位置情報が与える対象素子の位置を仮想垂直面に投影した位置と、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置を仮想垂直面に投影した位置との面内距離が所定条件を満たすように、素子基板とマイクロレンズアレイとの相対的位置関係を調整する。
【選択図】図13

Description

この発明は、発光素子から射出された光ビームをマイクロレンズにより被結像面に結像するラインヘッドに関し、特に発光素子とマイクロレンズとの位置関係を調整する技術に関するものである。
特許文献1および特許文献2には、マイクロレンズと発光素子との位置関係を合わせることを目的とした、次の技術が記載されている。これら特許文献記載の従来技術では、発光素子から射出される光ビームの光量が、マイクロレンズを介して測定される。そして、測定結果が所定の光量分布を示すように、マイクロレンズと発光素子との位置関係が決定される。なお、特許文献1及び特許文献2に示されているマイクロレンズは屈折率分布型ロッドレンズを俵状に配列したロッドレンズアレイである。
特開平09−52385号公報 特開平10−16295号公報
かかる従来技術のように、光量測定により位置関係を決定する方法は、マイクロレンズの光学特性が正立等倍である場合には有効である。しかしながら、マイクロレンズの光学特性が倒立あるいは正立非等倍のように正立等倍以外である場合には、精度において次のような課題があった。
正立等倍の光学特性を示すマイクロレンズを用いた方法では、レンズの光学特性ゆえに原理的には、発光素子とマイクロレンズとの位置関係が変動しても、発光素子から射出される光ビームの結像位置は変動しない。つまり、結像位置は、発光素子とマイクロレンズとの位置関係に依存しない。一方、非正立等倍の光学特性を示すマイクロレンズを用いた方法では、発光素子とマイクロレンズとの位置関係が変動すると、発光素子から射出される光ビームの結像位置も変動する。ここで、本明細書において、非正立等倍の光学特性とは、正立等倍以外(つまり、倒立あるいは正立非等倍)の光学特性を指す。
端的に言うと、非正立等倍の光学系において、結像位置は発光素子とマイクロレンズとの位置関係に依存する。また、結像位置が変化するのみならず、発光素子とマイクロレンズとの位置が横方向(長手方向)にずれると、本来の結像性能が得られないという問題も発生する。したがって、正立等倍以外の光学特性を示すマイクロレンズを用いる場合は、マイクロレンズと発光素子との位置関係をより高精度に決定する必要がある。よって、非正立等倍の光学特性を示すマイクロレンズと発光素子との位置関係を決定するにあたっては、従来技術で用いられる光量測定による方法は、精度において不十分である。
この発明は上記課題に鑑みなされたものであり、非正立等倍のマイクロレンズにより発光素子からの光ビームを結像するラインヘッドに対して、発光素子とマイクロレンズとの相対的位置関係を高精度に調整する技術の提供を目的とする。
この発明にかかるラインヘッドの調整方法は、上記目的を達成するために、1つ以上の発光素子から成る発光素子グループをその面に複数有する、素子基板を配置する基板配置工程と、発光素子の位置に関する位置情報を取得する位置情報取得工程と、それぞれが非正立等倍の光学特性を有する複数のマイクロレンズを複数の発光素子グループに一対一で対応して設けた、マイクロレンズアレイを複数のマイクロレンズのそれぞれが対応する発光素子グループに対向するように配置するアレイ配置工程と、素子基板とマイクロレンズアレイとの相対的位置関係を調整する位置調整工程とを備え、複数の発光素子グループのそれぞれは、該発光素子グループに対応するマイクロレンズの位置が理想位置である場合には、該発光素子グループに属する1つの発光素子が光軸上素子として該発光素子グループに対応するマイクロレンズの光軸上に存在するように構成されており、位置情報取得工程では、複数の光軸上素子のうちの1つ以上の対象素子の位置情報を取得し、位置調整工程では、位置情報取得工程で位置情報が取得された対象素子に対して下記の光軸調整処理を実行することを特徴としている。ここで、光軸調整処理は、マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、位置情報が与える対象素子の位置を仮想垂直面に投影した位置と、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置を仮想垂直面に投影した位置との面内距離が所定条件を満たすように、素子基板とマイクロレンズアレイとの相対的位置関係を調整する処理である。
この発明にかかるラインヘッドの調整装置は、上記目的を達成するために、1つ以上の発光素子から成る発光素子グループをその面に複数有する、素子基板を保持する基板保持手段と、発光素子の位置に関する情報を取得する位置情報取得手段と、それぞれが非正立等倍の光学特性を有する複数のマイクロレンズを複数の発光素子グループに一対一で対応して設けた、マイクロレンズアレイを複数のマイクロレンズのそれぞれが対応する発光素子グループに対向する位置に保持するアレイ保持手段と、素子基板および/またはマイクロレンズアレイを動かして、素子基板とマイクロレンズアレイとの相対的位置関係を調整する位置調整手段とを備え、複数の発光素子グループのそれぞれは、該発光素子グループに対応するマイクロレンズの位置が理想位置である場合には、該発光素子グループが属する発光素子が光軸上素子として該発光素子グループに対応するマイクロレンズの光軸上に存在するように構成されており、位置情報取得手段は、複数の光軸上素子のうちの1つ以上の対象素子の位置情報を取得し、位置調整手段は、位置情報取得手段で位置情報が取得された対象素子に対して下記の光軸調整処理を実行することを特徴としている。ここで、光軸調整処理は、マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、位置情報が与える対象素子の位置を仮想垂直面に投影した位置と、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置を仮想垂直面に投影した位置との面内距離が所定条件を満たすように、素子基板とマイクロレンズアレイとの相対的位置関係を調整する処理である。
このように構成された発明では、非正立等倍のマイクロレンズを用いて、発光素子から射出された光ビームを結像する。したがって、発光素子とマイクロレンズとの位置関係が変動すると、発光素子から射出される光ビームの結像位置も変動する。また、発光素子とマイクロレンズの位置が横方向(長手方向)にずれると、本来の結像性能が得られない。よって、発光素子とマイクロレンズとの位置関係をより高精度に調整する必要がある。
これに対して上記発明では、まず、マイクロレンズアレイが装着されていない状態において、素子基板の面に設けられた複数の発光素子のうち、対象素子の位置情報を取得する。次に、素子基板に対向するようにマイクロレンズアレイを配置して(つまり、マイクロレンズアレイを仮装着して)、光軸調整処理を実行する。かかる光軸調整処理では、マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、先に取得された位置情報が与える対象素子の位置を仮想垂直面に投影した位置と、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置を仮想垂直面に投影した位置との面内距離が所定条件を満たすように、素子基板とマイクロレンズアレイとの相対的位置関係を調整する。つまり、素子基板とマイクロレンズアレイとの相対的位置関係の調整を、マイクロレンズアレイを装着しない状態における対象素子の位置と、マイクロレンズアレイを仮装着した状態における対象素子からの光ビームのマイクロレンズによる像との比較に基づいて実行している。よって、上記発明は、マイクロレンズアレイを仮装着した状態の光量分布にのみに基づいて素子基板とマイクロレンズアレイとの相対的位置関係を調整する技術と比較して、より高精度な調整が可能となっている。
また、上記発明では、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置に基づいて、光軸調整処理を実行する。したがって、マイクロレンズアレイを仮装着した状態において、素子基板に対する照明が不十分で、対象素子の形状が読み取りずらい(つまり、対象素子のマイクロレンズによる像が良好に観察できず、結果として対象素子のマイクロレンズによる像の位置を特定できない)場合であっても、対象素子から射出される光ビームのマイクロレンズによる像を観察することで、実質的に対象素子のマイクロレンズによる像の位置を特定することが可能であり、好適である。
このとき、光軸調整処理において、面内距離がゼロとなるように素子基板とマイクロレンズアレイとの相対的位置関係を調整してもよい。つまり、このとき、対象素子の位置を仮想垂直面に投影した位置と、対象素子を発光させて射出される光ビームのマイクロレンズによる像の位置を仮想垂直面に投影した位置とが一致する。換言すれば、対象素子と対象素子の像とが光軸の上に並ぶこととなり、光軸上素子である対象素子がマイクロレンズの光軸上に位置する。よって、対象素子を含む発光素子グループに対応するマイクロレンズの位置を理想位置とすることが可能となり好適である。
ところで、ラインヘッドに求められる位置精度(発光素子とマイクロレンズとの相対的位置関係の精度)は、ラインヘッドの使用目的等によって異なる。そこで、光軸調整処理において、面内距離が所定距離未満となるように、素子基板とマイクロレンズアレイとの相対的位置関係を調整してもよい。この場合、面内距離が所定距離未満になったことをもって光軸調整処理を完了することが可能である。つまり、面内距離がゼロとなるまで光軸調整処理を実行する必要がない。よって、光軸調整処理の簡素化が図られており好適である。また、所定距離を適宜設定することで所望の位置精度に対応した光軸調整処理の実行が可能であり、簡便に所望の位置精度を実現できるという点においても好適である。
また、位置情報取得工程において、マイクロレンズアレイの長手方向の両端にある2つのマイクロレンズのそれぞれに対応する光軸上素子を対象素子として位置情報を取得するように構成してもよい。つまり、このとき、位置調整工程において、マイクロレンズアレイの長手方向の両端に位置する2つの対象素子について光軸調整処理が実行され、マイクロレンズアレイと素子基板の相対的位置関係がより高精度に調整することが可能となる。
また、マイクロレンズアレイが、マイクロレンズアレイの長手方向にマイクロレンズが配列されて成るレンズ行を、マイクロレンズアレイの幅方向に複数行配列した構造を有する場合は、次のように構成してもよい。つまり、位置情報取得工程において、複数のレンズ行のうちの一に属するマイクロレンズのうちの長手方向の両端にある2つのマイクロレンズのそれぞれに対応する光軸上素子を対象素子として位置情報を取得してもよい。つまり、このとき、位置調整工程において、一のレンズ行に属するマイクロレンズのうち長手方向の両端に位置する2つの対象素子について光軸調整処理が実行され、マイクロレンズアレイと素子基板との相対的位置関係がより高精度に調整することが可能となる。
また、位置情報取得工程において、さらに、複数のレンズ行のうちの一に属するマイクロレンズのうちの長手方向の両端にある2つのマイクロレンズのそれぞれに対応する光軸上素子以外の光軸上素子も、対象素子として位置情報を取得するように構成してもよい。このとき、対象素子としては、一のレンズ行に属するマイクロレンズのうち、長手方向の両端に位置する2つの対象素子と当該2つの対象素子以外の対象素子とがある。つまり、3つの対象素子が存在する。そして、位置調整工程において、これら3つの対象素子について光軸調整処理が実行される。よって、例えば、素子基板やマイクロレンズアレイに湾曲があるような場合であっても、かかる湾曲も考慮してマイクロレンズアレイと素子基板との相対的位置関係を調整することが可能となり、好適である。
また、複数のマイクロレンズのそれぞれを、倒立像を結像する光学特性を有するように構成してもよい。このようにマイクロレンズが倒立像を結像する構成では、対象素子がマイクロレンズの光軸からずれている場合、対象素子の位置と対象素子から射出された光ビームの像の位置とは、マイクロレンズの光軸に対して互いに逆となる。一方、マイクロレンズが正立像を結像する構成では、これら2つの位置は、マイクロレンズの光軸に対して同じとなる。つまり、倒立像を結像するマイクロレンズと、正立像を結像するマイクロレンズとを比較した場合、倒立像を結像するマイクロレンズの方が、面内距離が長くなる傾向にある。換言すれば、倒立像を結像するマイクロレンズを用いた場合、光軸からの対象素子のずれを、より高精度に検出することが可能となる。そして、このように高精度に検出された面内距離に基づいて光軸調整処理を実行することで、マイクロレンズアレイと素子基板との相対的位置関係がより高精度に調整することが可能となり、好適である。
本発明の実施形態について説明するに先立って、本発明の適用対象であるラインヘッドを用いた画像形成装置と、同ラインヘッドの構成及び潜像形成動作とを説明する。これらの説明の後に、本発明の実施形態について説明する。
画像形成装置の構成
図1は本発明の適用対象であるラインヘッドを用いた画像形成装置の構成を示す図である。また、図2は図1の画像形成装置の電気的構成を示す図である。この装置は、ブラック(K)、シアン(C)、マゼンダ(M)、イエロー(Y)の4色のトナーを重ね合わせてカラー画像を形成するカラーモードと、ブラック(K)のトナーのみを用いてモノクロ画像を形成するモノクロモードとを選択的に実行可能な画像形成装置である。なお図1は、カラーモード実行時に対応する図面である。この画像形成装置では、ホストコンピューターなどの外部装置から画像形成指令がCPUやメモリなどを有するメインコントローラMCに与えられると、このメインコントローラMCはエンジンコントローラECに制御信号などを与えるとともに画像形成指令に対応するビデオデータVDをヘッドコントローラHCに与える。また、このヘッドコントローラHCは、メインコントローラMCからのビデオデータVDとエンジンコントローラECからの垂直同期信号Vsyncおよびパラメータ値とに基づき各色のラインヘッド29を制御する。これによって、エンジン部EGが所定の画像形成動作を実行し、複写紙、転写紙、用紙およびOHP用透明シートなどのシートに画像形成指令に対応する画像を形成する。
画像形成装置が有するハウジング本体3内には、電源回路基板、メインコントローラMC、エンジンコントローラECおよびヘッドコントローラHCを内蔵する電装品ボックス5が設けられている。また、画像形成ユニット7、転写ベルトユニット8および給紙ユニット11もハウジング本体3内に配設されている。また、図1においてハウジング本体3内右側には、2次転写ユニット12、定着ユニット13、シート案内部材15が配設されている。なお、給紙ユニット11は、装置本体1に対して着脱自在に構成されている。そして、該給紙ユニット11および転写ベルトユニット8については、それぞれ取り外して修理または交換を行うことが可能な構成になっている。
画像形成ユニット7は、複数の異なる色の画像を形成する4個の画像形成ステーションY(イエロー用)、M(マゼンダ用)、C(シアン用)、K(ブラック用)を備えている。また、各画像形成ステーションY,M,C,Kには、それぞれの色のトナー像がその表面に形成される感光体ドラム21が設けられている。各感光体ドラム21はそれぞれ専用の駆動モータに接続され図中矢印D21の方向に所定速度で回転駆動される。これにより感光体ドラム21の表面が副走査方向に搬送されることとなる。また、感光体ドラム21の周囲には、回転方向に沿って帯電部23、ラインヘッド29、現像部25および感光体クリーナ27が配設されている。そして、これらの機能部によって帯電動作、潜像形成動作及びトナー現像動作が実行される。したがって、カラーモード実行時は、全ての画像形成ステーションY,M,C,Kで形成されたトナー像を転写ベルトユニット8が有する転写ベルト81に重ね合わせてカラー画像を形成するとともに、モノクロモード実行時は、画像形成ステーションKで形成されたトナー像のみを用いてモノクロ画像を形成する。なお、図1において、画像形成ユニット7の各画像形成ステーションは構成が互いに同一のため、図示の便宜上一部の画像形成ステーションのみに符号をつけて、他の画像形成ステーションについては符号を省略する。
帯電部23は、その表面が弾性ゴムで構成された帯電ローラを備えている。この帯電ローラは帯電位置で感光体ドラム21の表面と当接して従動回転するように構成されており、感光体ドラム21の回転動作に伴って感光体ドラム21に対して従動方向に周速で従動回転する。また、この帯電ローラは帯電バイアス発生部(図示省略)に接続されており、帯電バイアス発生部からの帯電バイアスの給電を受けて帯電部23と感光体ドラム21が当接する帯電位置で感光体ドラム21の表面を帯電させる。
ラインヘッド29は、感光体ドラム21の軸方向(図1の紙面に対して垂直な方向)に配列された複数の発光素子を備えるとともに、感光体ドラム21から離間配置されている。そして、これらの発光素子から、帯電部23により帯電された感光体ドラム21の表面に対して光を照射して該表面に潜像を形成する。なお、この画像形成装置では、各色のラインヘッド29を制御するためにヘッドコントローラHCが設けられ、メインコントローラMCからのビデオデータVDと、エンジンコントローラECからの信号とに基づき各ラインヘッド29を制御している。すなわち、画像形成指令に含まれる画像データがメインコントローラMCの画像処理部51に入力される。そして、該画像データに対して種々の画像処理が施されて各色のビデオデータVDが作成されるとともに、該ビデオデータVDがメイン側通信モジュール52を介してヘッドコントローラHCに与えられる。また、ヘッドコントローラHCでは、ビデオデータVDはヘッド側通信モジュール53を介してヘッド制御モジュール54に与えられる。このヘッド制御モジュール54には、上記したように潜像形成に関連するパラメータ値を示す信号と垂直同期信号VsyncがエンジンコントローラECから与えられている。そして、これらの信号およびビデオデータVDなどに基づきヘッドコントローラHCは各色のラインヘッド29に対して素子駆動を制御するための信号を作成し、各ラインヘッド29に出力する。こうすることで、各ラインヘッド29において発光素子の作動が適切に制御されて画像形成指令に対応する潜像が形成される。
そして、この画像形成装置においては、各画像形成ステーションY,M,C,Kの感光体ドラム21、帯電部23、現像部25および感光体クリーナ27を感光体カートリッジとしてユニット化している。また、各感光体カートリッジには、該感光体カートリッジに関する情報を記憶するための不揮発性メモリがそれぞれ設けられている。そして、エンジンコントローラECと各感光体カートリッジとの間で無線通信が行われる。こうすることで、各感光体カートリッジに関する情報がエンジンコントローラECに伝達されるとともに、各メモリ内の情報が更新記憶される。
現像部25は、その表面にトナーが担持する現像ローラ251を有する。そして、現像ローラ251と電気的に接続された現像バイアス発生部(図示省略)から現像ローラ251に印加される現像バイアスによって、現像ローラ251と感光体ドラム21とが当接する現像位置において、帯電トナーが現像ローラ251から感光体ドラム21に移動してラインヘッド29により形成された静電潜像が顕在化される。
このように上記現像位置において顕在化されたトナー像は、感光体ドラム21の回転方向D21に搬送された後、後に詳述する転写ベルト81と各感光体ドラム21が当接する1次転写位置TR1において転写ベルト81に1次転写される。
また、この画像形成装置では、感光体ドラム21の回転方向D21の1次転写位置TR1の下流側で且つ帯電部23の上流側に、感光体ドラム21の表面に当接して感光体クリーナ27が設けられている。この感光体クリーナ27は、感光体ドラムの表面に当接することで1次転写後に感光体ドラム21の表面に残留するトナーをクリーニング除去する。
転写ベルトユニット8は、駆動ローラ82と、図1において駆動ローラ82の左側に配設される従動ローラ83(ブレード対向ローラ)と、これらのローラに張架され図示矢印D81の方向(搬送方向)へ循環駆動される転写ベルト81とを備えている。また、転写ベルトユニット8は、転写ベルト81の内側に、感光体カートリッジ装着時において各画像形成ステーションY,M,C,Kが有する感光体ドラム21各々に対して一対一で対向配置される、4個の1次転写ローラ85Y,85M,85C,85Kを備えている。これらの1次転写ローラ85は、それぞれ1次転写バイアス発生部(図示省略)と電気的に接続される。そして、後に詳述するように、カラーモード実行時は、図1に示すように全ての1次転写ローラ85Y,85M,85C,85Kを画像形成ステーションY,M,C,K側に位置決めすることで、転写ベルト81を画像形成ステーションY,M,C,Kそれぞれが有する感光体ドラム21に押し遣り当接させて、各感光体ドラム21と転写ベルト81との間に1次転写位置TR1を形成する。そして、適当なタイミングで上記1次転写バイアス発生部から1次転写ローラ85に1次転写バイアスを印加することで、各感光体ドラム21の表面上に形成されたトナー像を、それぞれに対応する1次転写位置TR1において転写ベルト81表面に転写してカラー画像を形成する。
一方、モノクロモード実行時は、4個の1次転写ローラ85のうち、カラー1次転写ローラ85Y,85M,85Cをそれぞれが対向する画像形成ステーションY,M,Cから離間させるとともにモノクロ1次転写ローラ85Kのみを画像形成ステーションKに当接させることで、モノクロ画像形成ステーションKのみを転写ベルト81に当接させる。その結果、モノクロ1次転写ローラ85Kと画像形成ステーションKとの間にのみ1次転写位置TR1が形成される。そして、適当なタイミングで前記1次転写バイアス発生部からモノクロ1次転写ローラ85Kに1次転写バイアスを印加することで、各感光体ドラム21の表面上に形成されたトナー像を、1次転写位置TR1において転写ベルト81表面に転写してモノクロ画像を形成する。
さらに、転写ベルトユニット8は、モノクロ1次転写ローラ85Kの下流側で且つ駆動ローラ82の上流側に配設された下流ガイドローラ86を備える。また、この下流ガイドローラ86は、モノクロ1次転写ローラ85Kが画像形成ステーションKの感光体ドラム21に当接して形成する1次転写位置TR1での1次転写ローラ85Kと感光体ドラム21との共通内接線上において、転写ベルト81に当接するように構成されている。
駆動ローラ82は、転写ベルト81を図示矢印D81の方向に循環駆動するとともに、2次転写ローラ121のバックアップローラを兼ねている。駆動ローラ82の周面には、厚さ3mm程度、体積抵抗率が1000kΩ・cm以下のゴム層が形成されており、金属製の軸を介して接地することにより、図示を省略する2次転写バイアス発生部から2次転写ローラ121を介して供給される2次転写バイアスの導電経路としている。このように駆動ローラ82に高摩擦かつ衝撃吸収性を有するゴム層を設けることにより、駆動ローラ82と2次転写ローラ121との当接部分(2次転写位置TR2)へのシートが進入する際の衝撃が転写ベルト81に伝達しにくく、画質の劣化を防止することができる。
給紙ユニット11は、シートを積層保持可能である給紙カセット77と、給紙カセット77からシートを一枚ずつ給紙するピックアップローラ79とを有する給紙部を備えている。ピックアップローラ79により給紙部から給紙されたシートは、レジストローラ対80において給紙タイミングが調整された後、シート案内部材15に沿って2次転写位置TR2に給紙される。
2次転写ローラ121は、転写ベルト81に対して離当接自在に設けられ、2次転写ローラ駆動機構(図示省略)により離当接駆動される。定着ユニット13は、ハロゲンヒータ等の発熱体を内蔵して回転自在な加熱ローラ131と、この加熱ローラ131を押圧付勢する加圧部132とを有している。そして、その表面に画像が2次転写されたシートは、シート案内部材15により、加熱ローラ131と加圧部132の加圧ベルト1323とで形成するニップ部に案内され、該ニップ部において所定の温度で画像が熱定着される。加圧部132は、2つのローラ1321,1322と、これらに張架される加圧ベルト1323とで構成されている。そして、加圧ベルト1323の表面のうち、2つのローラ1321,1322により張られたベルト張面を加熱ローラ131の周面に押し付けることで、加熱ローラ131と加圧ベルト1323とで形成するニップ部が広くとれるように構成されている。また、こうして定着処理を受けたシートはハウジング本体3の上面部に設けられた排紙トレイ4に搬送される。
また、この装置では、ブレード対向ローラ83に対向してクリーナ部71が配設されている。クリーナ部71は、クリーナブレード711と廃トナーボックス713とを有する。クリーナブレード711は、その先端部を転写ベルト81を介してブレード対向ローラ83に当接することで、2次転写後に転写ベルトに残留するトナーや紙粉等の異物を除去する。そして、このように除去された異物は、廃トナーボックス713に回収される。また、クリーナブレード711及び廃トナーボックス713は、ブレード対向ローラ83と一体的に構成されている。したがって、次に説明するようにブレード対向ローラ83が移動する場合は、ブレード対向ローラ83と一緒にクリーナブレード711及び廃トナーボックス713も移動することとなる。
ラインヘッドの構成
図3は、本発明の適用対象であるラインヘッドの一構成の概略を示す斜視図である。また、図4は、ラインヘッドの一構成の幅方向断面図である。図5は、ラインヘッドの分解斜視図である。なお、図5では、ケース等の一部の部材については、記載を省略している。ラインヘッド29は、主走査方向MDを長手方向LDとするとともに、副走査方向SDを幅方向WDとする。また、ラインヘッド29は、ケース291を備え、かかるケース291の両端には位置決めピン2911とねじ挿入孔2912が設けられている。そして、かかる位置決めピン2911を、感光体ドラム21を覆うとともに感光体ドラム21に対して位置決めされた感光体カバー(図示省略)に穿設された位置決め孔(図示省略)に嵌め込むことで、ラインヘッド29が感光体ドラム21に対して位置決めされる。そして更に、ねじ挿入孔2912を介して固定ねじを感光体カバーのねじ孔(図示省略)にねじ込んで固定することで、ラインヘッド29が感光体ドラム21に対して位置決め固定される。
ケース291は、感光体ドラム21の表面に対向する位置にマイクロレンズアレイ299を保持するとともに、その内部に、該マイクロレンズアレイ299に近い順番で、スペーサ297及び素子基板293を備えている。スペーサ297は、マイクロレンズアレイ299と素子基板293との間隔を規定する機能を果たすとともに、その内部に中空部2971が穿設されている。また、素子基板は293は透明のガラス基板であるとともに、その裏面(素子基板293が有する2つの面のうちマイクロレンズアレイ299と逆側の面)には、複数の発光素子グループ295が設けられている。即ち、複数の発光素子グループ295は、素子基板293の裏面に、長手方向LD及び幅方向WDに互いに所定間隔だけ離れて2次元的に配置されている。ここで、複数の発光素子グループ295の各々は、複数の発光素子を配列して構成されるが、これについては後に説明する。また、このラインヘッド29では、発光素子として有機EL(Electro-Luminescence)を用いる。つまり、素子基板293の裏面に有機ELを発光素子として配置している。そして、複数の発光素子それぞれから感光体ドラム21の方向に射出される光ビームは、スペーサ297の中空部2971を通過して、マイクロレンズアレイ299へと向かう。
図4に示すように、固定器具2914によって、裏蓋2913が素子基板293を介してケース291に押圧されている。つまり、固定器具2914は、裏蓋2913をケース291側に押圧する弾性力を有するとともに、かかる弾性力により裏蓋を押圧することで、ケース291の内部を光密に(つまり、ケース291内部から光が漏れないように、及び、ケース291の外部から光が侵入しないように)密閉している。なお、固定器具2914は、長手方向LDに複数箇所設けられている。また、発光素子グループ295は、封止部材294により覆われている。
図6は、マイクロレンズアレイの長手方向の断面図である。マイクロレンズアレイ299は、ガラス基板2991を有するとともに、該ガラス基板2991を挟むように一対一で配置された2枚のレンズ2993A,2993Bにより構成されるレンズ対を複数有している。なお、これらレンズ2993A,2993Bは樹脂により形成することができる。
つまり、ガラス基板2991の表面2991Aには複数のレンズ2993Aが配置されるとともに、複数のレンズ2993Aに一対一で対応するように、複数のレンズ2993Bがガラス基板2991の裏面2991Bに配置されている。また、レンズ対を構成する2枚のレンズ2993A,2993Bは、相互に光軸OAを共通にする。また、これら複数のレンズ対は、複数の発光素子グループ295に一対一で配置されている。なお、この明細書では、一対一の対を成すレンズ対2993A,2993Bと、かかるレンズ対によって挟まれたガラス基板2991とから成る光学系を「マイクロレンズML」と称することとする。そして、これら複数のレンズ対(マイクロレンズML)は、発光素子グループ295の配置に対応して、長手方向LD及び幅方向WDに互いに所定間隔だけ離れて2次元的に配置されている。また、複数のマイクロレンズMLそれぞれの光軸OAは、互いに略平行である。
図7は、マイクロレンズアレイおよび発光素子グループの構成を示す図である。マイクロレンズアレイ299は、長手方向LDに複数のマイクロレンズMLを並べて成るレンズ行MLRを幅方向WDに3行配列した構造を有する。これらレンズ行MLRは、幅方向WDに等間隔で配置されている。また、長手方向LDにおいて、複数のマイクロレンズMLそれぞれの位置は互いに異なる。さらに、長手方向LDにおいて、複数のマイクロレンズMLは等間隔で配置されている。そして、複数のマイクロレンズMLに一対一で対応して、複数の発光素子グループ295が設けられている。
このラインヘッドでは、長手方向LDに5つの発光素子2951を配列して、1つの発光素子グループ295を構成している。発光素子グループ295を構成する5つの発光素子2951のうちの光軸上素子2951Aは、対応するマイクロレンズMLの光軸OAの上に存在する。さらに、各発光素子グループ295において、発光素子2951は、光軸上素子2951Aに対して対称に配置されている。そして、発光素子2951から射出された光ビームは、該発光素子2951が対向するマイクロレンズMLにより、感光体ドラム21の表面に結像される。このとき、マイクロレンズMLは、倒立等倍で光ビームを結像する。
図8は、倒立等倍の光学特性の説明図である。同説明図では、発光素子グループを構成する5つの発光素子OJに対向して、倒立等倍の光学特性を有する結像光学系OPSが配置されている。そして、発光素子OJから射出された光ビームは、結像光学系OPSにより結像面SIMに結像される。このとき、結像光学系OPSの光軸OAの上にある発光素子OJ1から射出された光ビームは、光軸OAの上の結像位置IM1に結像される。また、発光素子OJ2から射出された光ビームは、光軸OAに対して、発光素子OJ2の反対側の結像位置IM2に結像される。なお、発光素子OJ2から光軸OAまでの距離と、結像位置IM2から光軸OAまでの距離は等しい。また、発光素子OJ3から射出された光ビームは、光軸OAに対して、発光素子OJ3の反対側の結像位置IM3に結像される。なお、発光素子OJ3から光軸OAまでの距離と、結像位置IM3から光軸OAまでの距離は等しい。つまり、倒立等倍の光学特性を有する結像光学系は、倒立像を結像するとともに、その結像倍率は1倍である。
ラインヘッドの潜像形成動作
図9は、ラインヘッドによる潜像形成動作を示す図である。以下に、図2、図7、図9を用いてラインヘッドによる潜像形成動作を説明する。また、発明の理解を容易にするため、主走査方向MDに伸びる直線上に複数のスポットを並べてライン潜像を形成する場合について説明する。概略としては、かかる潜像形成動作では、感光体ドラム21の表面を副走査方向SD(幅方向WD)に搬送しながら、ヘッド制御モジュール54により複数の発光素子を所定のタイミングで発光させることで、主走査方向MD(長手方向LD)に伸びる直線上に複数のスポットを並べて形成する。以下に、詳細について説明する。
ラインヘッド29では、幅方向位置WD1〜WD3の各位置において、発光素子2951が長手方向LDに配列されている(図7)。そこで、同一の幅方向位置にある発光素子2951は、略同一のタイミングで発光させるとともに、異なる幅方向位置にある発光素子2951は、互いに異なるタイミングで発光させる。より具体的には、幅方向位置WD1〜WD3の順番で、発光素子2951を発光させる。つまり、感光体ドラム21の表面を副走査方向SD(幅方向WD)に搬送しながら、上述の順番で発光素子行2951Rを発光させることで、該表面の主走査方向MD(長手方向LD)に伸びる直線上に複数のスポットを並べて形成する。
かかる動作を、図7,9を用いて説明する。最初に、幅方向WDに最上流の発光素子グループ295A1,295A2,295A3,…に属する幅方向位置WD1の複数の発光素子2951を発光させる。そして、かかる発光動作により射出される複数の光ビームのそれぞれは、上述の倒立等倍特性を有するマイクロレンズMLにより、感光体ドラム21の表面に結像される。つまり、図9の「1回目」のハッチングパターンの位置にスポットが形成される。なお、同図において、白抜きの丸印は、未だ形成されておらず今後形成される予定のスポットを表す。また、同図において、符号295C1,295B1,295A1,295C2でラベルされたスポットは、それぞれ発光素子グループ295C1,295B1,295A1,295C2により形成されるスポットであることを示す。
次に、幅方向上流側から2番目の発光素子グループ295B1,295B2,295B3,…に属する幅方向位置WD2の複数の発光素子2951を発光させる。そして、かかる発光動作により射出される複数の光ビームのそれぞれは、上述の倒立等倍特性を有するマイクロレンズMLにより、感光体ドラム21の表面に結像される。つまり、図9の「2回目」のハッチングパターンの位置にスポットが形成される。
最後に、幅方向最下流の発光素子グループ295C1,295C2,295C3,…に属する幅方向位置WD3の複数の発光素子2951を発光させる。そして、かかる発光動作により射出される複数の光ビームのそれぞれは、上述の倒立等倍特性を有するマイクロレンズMLにより、感光体ドラム21の表面に結像される。つまり、図9の「3回目」のハッチングパターンの位置にスポットが形成される。このように、1〜3回目までの発光動作を実行することで、主走査方向MD(長手方向LD)に伸びる直線上に複数のスポットを並べて形成する。
このように、上述のラインヘッド29では、倒立等倍の光学特性、つまり非正立等倍の光学特性を有するマイクロレンズMLにより、発光素子2951から射出された光ビームを結像する。したがって、理想的には、全ての光軸上素子2951Aのそれぞれが、対応するマイクロレンズMLの光軸OAの上に在ることが望ましい。換言すれば、全てのマイクロレンズMLのそれぞれが、理想位置にあることが望ましい。なんとなれば、マイクロレンズMLが理想位置からずれると、光ビームの結像位置もずれることとなるからである。なお、本明細書では、マイクロレンズMLが、その光軸OAが対応する光軸上素子2951Aを通るように配置されているとき、「マイクロレンズMLが理想位置にある」と表現する。よって、上述のような非正立等倍のマイクロレンズMLを用いるラインヘッドを組み立てるに際しては、マイクロレンズアレイ299と素子基板293との相対的位置関係を高精度に調整することが重要となる。以下に、かかる高精度の調整を実現する技術について説明する。
第1実施形態
図10は、本発明の第1実施形態にかかるラインヘッドの調整装置が備えるアレイ移動機構と観察光学系とを示す斜視図である。また、図11は、ラインヘッドの調整装置を長手方向から見た図である。ラインヘッドの調整装置9は、素子基板293を保持可能である基板保持手段91と、3つのアレイ移動機構93,95,97と、観察光学系99とを備えている。
基板保持手段91は、裏面に発光素子グループ295を有する素子基板293を保持可能に構成されている。つまり、基板保持手段91は、2つの載置台911,912を有するとともに、2つの載置台911,912の間には退避空間913が設けられている。2つの載置台911,912のそれぞれには、L字状の切欠部9111,9121が設けられている。また、これら切欠部9111,9121は、互いに対向するように設けられている。そして、素子基板293を基板保持手段91により保持するに際しては、素子基板293の幅方向WDにおける一方端を切欠部9111に載置するとともに、素子基板293の幅方向WDにおける他方端を切欠部9121に載置する。切欠部9111,9121の間の距離は、幅方向WDにおける素子基板293の移動を規制するように設定されている。つまり、基板保持手段91に載置された素子基板293は、切欠部9111,9121により、幅方向WDへの移動が規制される。なお、幅方向WDに対して略直交する長手方向LDについても、載置された素子基板293の移動を規制する同様の機構が、基板保持手段91に設けられている。このように、基板保持手段91は、載置された素子基板293の幅方向WDおよび長手方向LDへの素子基板293の移動を規制して、素子基板293を保持している。
また、素子基板293が基板保持手段91に載置された状態において、素子基板293の裏面にある発光素子グループ295および封止部材294は、素子基板293に対して重力方向下側に突出する格好となる。しかしながら、上述のとおり基板保持手段91には退避空間913が設けられている。つまり、第1実施形態では、素子基板293が基板保持手段91に載置された状態において、発光素子グループ295および封止部材294を、退避空間913に位置させて他の部材と接触しないように構成されている。
図11を用いてアレイ移動機構93について説明する。アレイ移動機構93は、マイクロメータヘッド931と付勢ロッド932とを有する。マイクロメータヘッド931は、基板保持手段91に対して固定された支持部材933により支持されている。また、マイクロメータヘッド931のストロークである移動ロッド9311は、つまみ9312の回転に伴って、ストローク方向SD93に進退する。付勢ロッド932は、移動ロッド9311に対向して配置されている。同図が示すように、付勢ロッド932は、支持部材934に穿設された孔に嵌合するとともに、当該孔をストローク方向SD93に進退可能である。なお、支持部材934は、基板保持手段91に対して固定されている。また、基板保持手段91に対して固定された支持部材935と付勢ロッド932とは、付勢手段936により連接されている。その結果、付勢ロッド932は、ストローク方向SD93に付勢されている。
そして、アレイ移動機構93は、次のようにしてマイクロレンズアレイ299を動かす。基板保持手段91に載置された素子基板293の上にスペーサ297を置き、さらにスペーサ297の上にマイクロレンズアレイ299を置いたとき、マイクロレンズアレイ299は、移動ロッド9311と付勢ロッド932との間に位置する。また、このとき、複数のマイクロレンズMLそれぞれの光軸OAは素子基板293の表面と略直交する。この状態において、つまみ9312を回して移動ロッド9311の進退を調整すると、移動ロッド9311と付勢ロッド932により、マイクロレンズアレイ299が挟まれる。そして、マイクロレンズアレイ299が2つのロッド9311,932に挟まれた状態において移動ロッドを進退させることで、マイクロレンズアレイ299をストローク方向SD93に動かすことができる。なお、このとき、付勢ロッド932は、ストローク方向SD93において移動ロッド9311に向けて付勢されている。よって、マイクロレンズアレイ299は、移動ロッド9311と付勢ロッド932とにより、かかる付勢力でもって挟持されつつ、動かされることとなる。
図10が示すように、アレイ移動機構95は、マイクロメータヘッド951と付勢ロッド952とを有する。そして、つまみ9512を回してマイクロメータヘッド951のストロークである移動ロッド9511を進退させることで、マイクロレンズアレイ299をストローク方向SD95に動かすことが可能である。なお、アレイ移動機構95の構成・動作の詳細は、アレイ移動機構93と同様であるので説明を省略する。
また、アレイ移動機構97は、マイクロメータヘッド971と付勢ロッド972とを有する。アレイ移動機構97のマイクロメータヘッド971と付勢ロッド972は、長手方向LDからマイクロレンズアレイ299を挟む点で、上述したアレイ移動機構93,95と異なる。そして、つまみ9712を回してマイクロメータヘッド971のストロークである移動ロッド9711を進退させることで、マイクロレンズアレイ299をストローク方向SD97に動かすことが可能である。なお、アレイ移動機構97の構成・動作の詳細は、アレイ移動機構93と同様であるので説明を省略する。
図10が示すように、ストローク方向SD93,SD95は幅方向WDと略平行であるとともに、ストローク方向SD97は長手方向LDと略平行である。つまり、アレイ移動機構93,95はマイクロレンズアレイ299を幅方向WDに移動させる機能を果たすとともに、アレイ移動機構97はマイクロレンズアレイ299を長手方向LDに移動させる機能を果たす。そして、以下の説明において、アレイ移動機構93,95,97が、本発明の「アレイ保持手段」および「位置調整手段」として機能する。
観察光学系99は、マイクロレンズアレイ299がスペーサ297の上に載置された状態において、マイクロレンズアレイ299の長手方向LDにおける一方端部を重力方向上側から臨むように、配置されている。このとき、観察光学系99はマイクロレンズMLの光軸方向からマイクロレンズアレイ299を観ることとなる。つまり、観察光学系99は、マイクロレンズMLの光軸OAに対して垂直な平面に投影された映像を観る。そして、観察光学系99は、発光素子2951および該発光素子2951から射出された光ビームの像を観察することが可能である。また、観察光学系99は、十字カーソルを有し、該十字カーソルを用いて発光素子2951の位置に関する位置情報を取得する。かかる十字カーソルは、観察光学系99が観察する映像の任意の点に対して、移動および固定可能に構成されている。なお、十字カーソルの詳細および十字カーソルを用いた位置情報の取得動作は、以下の説明において明らかにする。また、以下の説明において、観察光学系99が、本発明の「位置情報取得手段」として機能する。次に、上述した調整装置9を用いて実行されるラインヘッドの調整方法について説明する。
図12は、ラインヘッドの調整方法を示すフローチャートである。図13は、図12のフローチャートに対応する動作説明斜視図である。なお、図13では、理解の容易のため、発光素子グループは対象素子を含む発光素子グループのみを、また、マイクロレンズは対象素子に対向するマイクロレンズのみを示している。図14は、図12のフローチャートに対応する動作説明正面図である。つまり、図14は、観察光学系が観る調整動作を示している。
ステップS101において、素子基板293を基板保持手段91に配置する(基板配置工程)。ステップS102において、観察光学系99を用いて、対象素子OEを含む発光素子2951の像を観察する。なお、第1実施形態では、幅方向WDに並ぶ3行のレンズ行MLRのうち真中のレンズ行MLR(つまり、図7において幅方向位置WD2に配置されるレンズ行MLR)に属する複数のマイクロレンズMLのうち、図7において最も左側に位置するマイクロレンズMLに対向する光軸上素子2951Aを、対象素子OEとする。
ステップS103において、対象素子OEの位置に十字カーソルCCの照準点を合わせて、該照準点の位置を対象素子OEの位置に関する位置情報として取得する(位置情報取得工程)。ここで、十字カーソルCCの照準点とは、十字を構成する2本の直線の交点である。また、本明細書において、「対象素子OEの位置に十字カーソルCCの照準点を合わせる」とは、対象素子OEから光軸OA方向に伸びる直線OELの上に、十字カーソルCCの照準点を合わせることを言う。
ステップS104において、マイクロレンズアレイ299を仮装着する。なお、「仮装着」とは、マイクロレンズアレイ299を、素子基板293に対して可動である状態を保ちつつ該素子基板293に対向する位置に配置する動作を表す。つまり、ステップS104では、図11を用いて説明したように、素子基板293の上にスペーサ297を載置し、さらにスペーサ297の上にマイクロレンズアレイ299を配置する。このとき、複数のマイクロレンズMLのそれぞれが対応する発光素子グループ295に対向するように、マイクロレンズアレイ299を配置する(アレイ配置工程)。
そして、次に対象素子OEに対して、光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OEを発光させる。このとき、対象素子OEには、対応するマイクロレンズMLが対向している。したがって、対象素子OEから射出された光ビームは、マイクロレンズMLにより像IEとして結像される。なお、光軸OAの方向において、対象素子OEの位置と像IEの位置とはマイクロレンズMLの共役長だけ離れているので、観察光学系99により像IEを観察するためには、観察光学系99を光軸OAの方向に素子基板293から離す必要がある。
ところで、対象素子OEは光軸上素子2951であるので、本来的には、マイクロレンズMLの光軸OAの上に像IEは結像される。したがって、本来的には、対象素子OEと当該対象素子OEから射出された光ビームの像IEとの面内距離d1(図13,14参照)は、ゼロとなるはずである。しかしながら、図13,14の「S104」の欄に示すように、面内距離d1はゼロではない。ここで、本明細書における「面内距離」について説明する。
図15は、面内距離の説明図である。本明細書において、対象素子OEと当該対象素子OEから射出された光ビームの像IEとの面内距離dは、マイクロレンズMLの光軸OAに垂直な仮想平面である仮想垂直面HPLの面内にある2点の間の距離として定義される。つまり、仮想垂直面HPLに対して、対象素子OEと像IEとを投影した点をそれぞれ点PJ(OE)、点PJ(IE)としたとき、面内距離dは点PJ(OE)と点PJ(IE)との距離である。ここで、仮想垂直面HPLに対する投影とは、光軸方向からの投影を指す。このとき、仮想垂直面HPLの光軸方向OAにおける位置に依らず、面内距離dが一義的に決まることは明らかである。よって、仮想平面HPLは、光軸OAに対して垂直であればよく、光軸方向における位置に対しては任意に設定できる。
また、対象素子OEの位置を仮想垂直面HPLに投影した位置PJ(OE)は、十字カーソルCCの照準点の位置(位置情報)により与えられる。つまり、上述の通り十字カーソルCCの照準点は対象素子OEから光軸OA方向に伸びる直線OELの上に在る。よって、十字カーソルCCの照準点を仮想垂直面HPLに投影した位置は、即ち、対象素子OEの位置を仮想垂直面HPLに投影した位置PJ(OE)となる。このように、上述してきた実施形態において、面内距離dは、観察光学系99が観る像IEの位置と十字カーソルCCの照準点との間の距離となる。なお、以下の説明において「対象素子OEの面内距離」と称した場合は、「対象素子OEの位置と当該対象素子OEから射出された光ビームの像IEとの面内距離」を意味するものとする。
面内距離d1が発生する原因は、光軸上素子である対象素子OEが光軸OAの上に無い、つまり、発光素子2951とマイクロレンズMLとの相対的位置関係が理想的でない(マイクロレンズMLが理想位置に無い)ことにある。そこで、光軸調整処理では、ステップS105に進んで、アレイ移動機構93,95,97を用いて、面内距離d1が所定条件を満たすようにマイクロレンズアレイの位置を調整する(位置調整工程)。具体的には、第1実施形態では、面内距離d1がゼロとなるように(つまり、観察光学系99から観て像IEと十字カーソルCCの照準点とが重なるように)マイクロレンズアレイ299の位置を調整する。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第1実施形態では、まず、マイクロレンズアレイ299が装着されていない状態において、素子基板293の面に設けられた複数の発光素子2951のうち、対象素子OEに十字カーソルCCの照準点を合わせて、該対象素子OEの位置情報を取得する。次に、素子基板293に対向するようにマイクロレンズアレイ299を配置して(つまり、マイクロレンズアレイ299を仮装着して)、光軸調整処理を実行する。かかる光軸調整処理では、マイクロレンズMLの光軸OAに垂直な仮想平面を仮想垂直面HPLとしたとき、先に取得された位置情報(十字カーソルCCの照準点の位置)が与える対象素子OEの位置を仮想垂直面HPLに投影した位置OJ(OE)と、対象素子OEを発光させて射出される光ビームのマイクロレンズMLによる像IEの位置を仮想垂直面HPLに投影した位置PJ(IE)との面内距離d1がゼロとなるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整する。つまり、素子基板293とマイクロレンズアレイ299との相対的位置関係の調整を、マイクロレンズアレイ299を装着しない状態における対象素子OEの位置と、マイクロレンズアレイ299を仮装着した状態における対象素子OEからの光ビームのマイクロレンズMLによる像との比較に基づいて実行している。よって、上記発明は、マイクロレンズアレイを仮装着した状態の光量分布にのみに基づいて素子基板とマイクロレンズアレイとの相対的位置関係を調整する従来技術と比較して、より高精度な調整が可能となっている。
また、上記実施形態では、対象素子OEを発光させて射出される光ビームのマイクロレンズMLによる像IEの位置に基づいて、光軸調整処理を実行する。したがって、マイクロレンズアレイ299を仮装着した状態において、素子基板293に対する照明が不十分で、対象素子OEの形状が読み取りずらい(つまり、対象素子OEのマイクロレンズMLによる像が良好に観察できず、結果として対象素子OEのマイクロレンズによる像の位置を特定できない)場合であっても、対象素子OEから射出される光ビームのマイクロレンズMLによる像IEを観察することで、実質的に対象素子OEのマイクロレンズMLによる像の位置を特定することが可能であり、好適である。
特に、第1実施形態では、光軸調整処理において、面内距離d1がゼロとなるように素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。このとき、対象素子OEの位置を仮想垂直面HPLに投影した位置PJ(OE)と、対象素子OEを発光させて射出される光ビームのマイクロレンズMLによる像IEの位置を仮想垂直面HPLに投影した位置PJ(IE)とが一致する。換言すれば、対象素子OEと対象素子OEの像IEとが光軸OAの上に並ぶこととなり、光軸上素子である対象素子OEがマイクロレンズMLの光軸上に位置する。よって、対象素子OEを含む発光素子グループ295に対応するマイクロレンズMLの位置を理想位置とすることが可能となり好適である。
第2実施形態
第1実施形態では、1つの対象素子OEに対してのみ光軸調整処理を行った。しかしながら、2つの対象素子に対して光軸調整処理を行ってもよい。そこで、第2実施形態では、2つの対象素子OE1,OE2に対して光軸調整処理を実行する。
図16は、第2実施形態におけるラインヘッドの調整装置を示す図である。同図が示すように、第2実施形態における調整装置は、2つの観察光学系991,992を長手方向LDにおいて素子基板293の両端に配置している。つまり、後述の説明で明らかとなるように、2つの対象素子OE1,OE2に対応して2つの観察光学系991,992を設けている。そして、これら観察光学系991,992が、本発明の「位置情報取得手段」として機能する。それ以外の調整装置の構成は、第1実施形態と同様である。図17は、第2実施形態における調整動作を示す正面図である。つまり、図17は、観察光学系が観る調整動作を示している。なお、第2実施形態で実行する調整動作のフローは基本的に第1実施形態と同様であるので、フローについては図12のフローチャートを参照しつつ説明する。
ステップS101において、素子基板293を基板保持手段91に置く(基板配置工程)。ステップS102において、観察光学系991を用いて対象素子OE1を含む素子基板293の像を観察するとともに、観察光学系992を用いて対象素子OE2を含む素子基板293の像を観察する。なお、第2実施形態では、幅方向WDに並ぶ3行のレンズ行MLRのうち真中のレンズ行MLR(つまり、図7において幅方向位置WD2に配置されるレンズ行MLR)に属する複数のマイクロレンズMLのうち、両端に位置する2つのマイクロレンズMLそれぞれに対向する光軸上素子2951Aを対象素子OE1,OE2としている。ちなみに、左端側の対象素子に対しては符号OE1を付し、右端側の対象素子に対しては符号OE2を付した。そして、ステップS103において、対象素子OE1,OE2それぞれの位置に十字カーソルCCの照準点を合わせて、これら2つの十字カーソルCCそれぞれの照準点の位置を、対象素子OE1,OE2の位置に関する位置情報として取得する(位置情報取得工程)。
ステップS104において、マイクロレンズアレイ299を仮装着する。つまり、ステップS104では、図11を用いて説明したように、素子基板293の上にスペーサ297を載置し、さらにスペーサ297の上にマイクロレンズアレイ299を配置する。このとき、複数のマイクロレンズMLのそれぞれが対応する発光素子グループ2951に対向するように、マイクロレンズアレイ299を配置する(アレイ配置工程)。
そして、次にそれぞれの対象素子OE1,OE2に対して光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OE1,OE2を発光させる。このとき、対象素子OE1,OE2には、対応するマイクロレンズMLが対向している。したがって、対象素子OE1,OE2から射出された光ビームは、マイクロレンズMLにより像IE1,IE2として結像される。そして、ステップS105に進んで、対象素子OE1,OE2それぞれの面内距離d21,d22が所定条件を満たすようにマイクロレンズアレイ299の位置を調整する(位置調整工程)。具体的には、第2実施形態では、面内距離d21,d22がゼロとなるように、マイクロレンズアレイ299の位置を調整する。これにより、図17の「S104」の欄においては、それぞれ有限の長さを有する面内距離d21,d22が、同図「S105」の欄に示すようにゼロとなる。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第2実施形態では、マイクロレンズMLを装着しない場合の対象素子OE1,OE2の位置とマイクロレンズMLを仮装着した場合の該マイクロレンズMLによる像IE1,IE2の位置とを比較して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。つまり、2つの面内距離d21,d22がゼロとなるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。よって、発光素子2951とマイクロレンズMLとの相対的位置関係を高精度に調整することが可能となっている。その結果、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。さらに、第2実施形態では、2つの対象素子OE1,OE2に対して光軸調整処理を実行して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整しており、第1実施形態と比較してより高精度な調整が実現されている。
第3実施形態
上記第1・第2実施形態は、いずれも、マイクロレンズアレイ299におけるマイクロレンズMLの配列間隔と、素子基板293における発光素子グループ295の配列間隔とが、完全に同一かつ一様であるとの前提で説明を行った。つまり、例えば、第2実施形態では、2つの対象素子OE1,OE2それぞれの面内距離d21,d22をゼロにすると説明した。しかしながら、実際の製造工程において形成されるこれらの部材(マイクロレンズアレイ299、素子基板293)は、長手方向LDにおいて素子基板293とマイクロレンズアレイ299との長さが異なっていたり、マイクロレンズアレイ299におけるマイクロレンズMLの配列間隔が一様でなかったり、素子基板293における発光素子グループ295の配列間隔が一様でなかったり、或いは、マイクロレンズMLの配列間隔と発光素子グループ295の配列間隔とが異なっていたりと、さまざまなバラツキが存在する可能性がある。したがって、必ずしも面内距離d21,d22の両方をゼロにすることが可能であるとは限らない。つまり、面内距離d21をゼロにすると、面内距離d22をゼロにすることが不可能である場合も考えられる。
そこで、次に、上述のバラツキが存在する場合であっても、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することを可能とする技術について説明する。なお、以下に説明する第3実施形態では、バラツキの一例として、長手方向LDにおいて、マイクロレンズアレイ299が素子基板293よりも短いことを仮定している。
図18は、第3実施形態における調整動作を示す正面図である。つまり、図18は、観察光学系が観る調整動作を示している。第3実施形態でのラインヘッドの調整装置は、第2実施形態のそれと同様である。また、第3実施形態で実行する調整動作のフローは基本的に第1実施形態と同様であるので、フローについては図12のフローチャートを参照しつつ説明する。
ステップS101〜ステップS103の動作については、第2実施形態と同様であるので、説明を省略する。ステップS104において、マイクロレンズアレイ299を仮装着する。つまり、ステップS104では、図11を用いて説明したように、素子基板293の上にスペーサ297を載置し、さらにスペーサ297の上にマイクロレンズアレイ299を配置する。このとき、複数のマイクロレンズMLのそれぞれが対応する発光素子グループ2951に対向するように、マイクロレンズアレイ299を配置する(アレイ配置工程)。
そして、次にそれぞれの対象素子OE1,OE2に対して光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OE1,OE2を発光させる。このとき、対象素子OE1,OE2には、対応するマイクロレンズMLが対向している。したがって、対象素子OE1,OE2から射出された光ビームは、マイクロレンズMLにより像IE1,IE2として結像される。そして、ステップS105に進んで、面内距離が所定条件を満たすように、マイクロレンズアレイ299の位置を調整する(位置調整工程)。具体的には、第3実施形態では、対象素子OE1,OE2それぞれの面内距離d21,d22が案分されるように、つまり
d21=d22
となるように、マイクロレンズアレイ299の位置を調整する。これにより、図18の「S104」の欄においては互いに異なる長さを有する面内距離d21,d22が、同図「S105」の欄に示すよう面内距離d21,d22の長さが互いに等しくなる。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第3実施形態では、マイクロレンズMLを装着しない場合の対象素子OE1,OE2の位置とマイクロレンズMLを仮装着した場合の該マイクロレンズMLによる像IE1,IE2の位置とを比較して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。つまり、対象素子OE1,OE2それぞれの面内距離d21,d22が互いに等しくなるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。よって、発光素子2951とマイクロレンズMLとの相対的位置関係を高精度に調整することが可能となっている。その結果、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。
さらに、第3実施形態における光軸調整処理では、2つの面内距離d21,d22をゼロにするのではなく、面内距離d21,d22の長さが互いに等しくなるように調整している。このような調整処理は、製造工程において形成された素子基板293・マイクロレンズアレイ299にバラツキがある場合に特に好適である。つまり、このようなバラツキがあると、光軸調整処理において、面内距離d21,d22の両方をゼロにすることが不可能である場合が考えられる。その結果、光軸調整処理を終了できないという場合が考えられる。これに対して第3実施形態における光軸調整処理では、面内距離d21,d22の長さが互いに等しくなるように調整しているため、光軸調整処理を終了できないという問題を回避することが可能となっており、好適である。
第4実施形態
第3実施形態では、素子基板293、マイクロレンズアレイ299にバラツキがある場合に好適である調整方法について説明した。しかしながら、これらの部材の製造工程に起因して発生する問題としては、上述のようなバラツキのみではなく、素子基板293・マイクロレンズアレイ299が湾曲するという問題が発生する場合がある。そこで、以下に説明する第4実施形態では、このような湾曲が存在した場合においても、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能である技術について説明する。
図19は、素子基板の湾曲の様子を示す図である。なお、以下の説明では、素子基板293のみが図19に示すように湾曲しているものとし、マイクロレンズアレイ299は湾曲していないものとする。図20は、第4実施形態における調整動作を示す正面図である。つまり、図20は、観察光学系が観る調整動作を示している。なお、第4実施形態では、観察光学系は、3つの対象素子に一対一で対応して3つ設けられる。また、第4実施形態で実行する調整動作のフローは基本的に第1実施形態と同様であるので、フローについては図12のフローチャートを参照しつつ説明する。
図19,20が示すように、第4実施形態において素子基板293は湾曲している。つまり、素子基板293の中央に対して、素子基板293の右端または左端は、素子基板293の幅方向に距離f1だけずれている。そこで、第4実施形態では、光軸調整処理を、「左端」「右端」「中央」の3箇所の対象素子OE1,OE2,OE3について実行する。つまり、幅方向WDに並ぶ3行のレンズ行MLRのうち真中のレンズ行MLR(つまり、図7において幅方向位置WD2に配置されるレンズ行MLR)に属する複数のマイクロレンズMLのうち、「左端」に位置するマイクロレンズMLに対応する光軸上素子である対象素子OE1と、「右端」に位置するマイクロレンズMLに対応する光軸上素子である対象素子OE2と、「中央」に位置するマイクロレンズMLに対応する光軸上素子である対象素子OE3に対して光軸調整処理を実行する。なお、「中央」に位置するマイクロレンズMLとは、レンズ行MLRが(2N+1)個のマイクロレンズMLで構成される場合は左或いは右から(N+1)番目のマイクロレンズMLを指し、レンズ行MLRが2N個のマイクロレンズMLで構成される場合は左或いは右からN番目のマイクロレンズMLを指す。ここでNは整数である。そして、ステップS103において、対象素子OE1,OE2,OE3それぞれの位置に十字カーソルCCの照準点を合わせて、これら3つの十字カーソルCCそれぞれの照準点の位置を、対象素子OE1,OE2,OE3の位置に関する位置情報として取得する(位置情報取得工程)。ちなみに、第4実施形態においては、対象素子OE1,OE2,OE3それぞれに対して観察光学系が設けられているものとする。すなわち、第4実施形態では、「左端」「右端」「中央」の3ヵ所に観察光学系が設けられている。
ステップS104において、マイクロレンズアレイ299を仮装着する。つまり、ステップS104では、図11を用いて説明したように、素子基板293の上にスペーサ297を載置し、さらにスペーサ297の上にマイクロレンズアレイ299を配置する。このとき、複数のマイクロレンズMLのそれぞれが対応する発光素子グループ2951に対向するように、マイクロレンズアレイ299を配置する(アレイ配置工程)。
次に、それぞれの対象素子OE1,OE2,OE3に対して光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OE1,OE2,OE3を発光させる。このとき、対象素子OE1,OE2,OE3には、対応するマイクロレンズMLが対向している。したがって、対象素子OE1,OE2,OE3から射出された光ビームは、マイクロレンズMLにより像IE1,IE2,IE3として結像される。そして、ステップS105に進んで、面内距離が所定条件を満たすように、マイクロレンズアレイ299の位置を調整する(位置調整工程)。具体的には、第4実施形態では、対象素子OE1,OE2,OE3それぞれの面内距離d31,d32,d33の平均値、すなわち
av=(d31+d32+d33)/3
が最小となるように、マイクロレンズアレイ299の位置を調整する。これにより、図20の「S104」の欄と「S105」の欄との比較からも判るように、対象素子OE1,OE2,OE3それぞれの面内距離d31,d32,d33を減少させることが可能となる。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第4実施形態では、マイクロレンズMLを装着しない場合の対象素子OE1,OE2,OE3の位置とマイクロレンズMLを仮装着した場合の該マイクロレンズMLによる像IE1,IE2,IE3の位置とを比較して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。つまり、対象素子OE1,OE2,OE3それぞれの面内距離d31,d32,d33の平均値が最小となるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。よって、発光素子2951とマイクロレンズMLとの相対的位置関係を高精度に調整することが可能となっている。その結果、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。
さらに、第4実施形態においては、「左端」と「右端」以外の位置(同実施形態では「中央」)にも対象素子を設け、これら3つの対象素子に対して光軸調整処理を実行している。よって、素子基板293の湾曲をも考慮して、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。
第5実施形態
上述の第1〜第4実施形態では、ラインヘッド29に求められる位置精度については、特に考慮してこなかった。しかしながら、ラインヘッド29に求められる位置精度は、ラインヘッド29の使用目的等によって異なる。つまり、例えば、ラインヘッド29を画像形成装置に用いるような場合、画像形成装置が実現しようとする解像度によって、ラインヘッド29に求められる位置精度は変わる。そこで、第5実施形態では、所望の位置精度を簡便に実現する技術について説明する。
図21は、第5実施形態で用いる十字カーソルの説明図である。第1〜第4実施形態で用いた十字カーソルCCは、図21の上段に示す十字カーソルCCである。十字カーソルCCは、照準点APにおいて互いに交差する2つの直線により構成される。一方、第5実施形態で用いる十字カーソルは、図21の下段に示す円付十字カーソルCCCである。円付十字カーソルCCCは、2本の直線が交わる照準点APを中心とする半径rの円CRを有する。よって、円CRの内側に存在する点は、照準点APからの距離が距離r未満となる。また、図22は、第5実施形態における調整動作を示す正面図である。つまり、図22は、観察光学系が観る調整動作を示している。第5実施形態でのラインヘッドの調整装置は、第3実施形態のそれと同様である。また、第5実施形態で実行する調整動作のフローは基本的に第1実施形態と同様であるので、フローについては図12のフローチャートを参照しつつ説明する。
ステップS101〜ステップS103の動作については、第3実施形態と同様であるので、説明を省略する。つまり、第5実施形態では、第3実施形態と同様に「左端」「右端」に対象素子OE1,OE2を設定している。但し、ステップS103において、対象素子OE1,OE2の位置を取得する際に用いる十字カーソルが、円CRを設けた円付十字カーソルCCCである点においては異なる。
ステップS104において、マイクロレンズアレイ299を仮装着する。つまり、ステップS104では、図11を用いて説明したように、素子基板293の上にスペーサ297を載置し、さらにスペーサ297の上にマイクロレンズアレイ299を配置する。このとき、複数のマイクロレンズMLのそれぞれが対応する発光素子グループ2951に対向するように、マイクロレンズアレイ299を配置する(アレイ配置工程)。
そして、次にそれぞれの対象素子OE1,OE2に対して光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OE1,OE2を発光させる。このとき、対象素子OE1,OE2には、対応するマイクロレンズMLが対向している。したがって、対象素子OE1,OE2から射出された光ビームは、マイクロレンズMLにより像IE1,IE2として結像される。そして、ステップS105に進んで、面内距離が所定条件を満たすように、マイクロレンズアレイ299の位置を調整する(位置調整工程)。具体的には、第5実施形態では、観察光学系991,992から観て、像IE1,IE2のそれぞれが、対応する円付十字カーソルCCCの円CRの内側にくるように、マイクロレンズアレイ299の位置を調整する。これにより、対象素子OE1,OE2の面内距離d21,d22は、距離r未満となる。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第5実施形態では、マイクロレンズMLを装着しない場合の対象素子OE1,OE2の位置とマイクロレンズMLを仮装着した場合の該マイクロレンズMLによる像IE1,IE2の位置とを比較して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。つまり、2つの面内距離d21,d22のいずれもが距離r未満となるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。よって、発光素子2951とマイクロレンズMLとの相対的位置関係を高精度に調整することが可能となっている。その結果、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。
さらに、第5実施形態では、面内距離d21,d22が距離r未満になったことをもって光軸調整処理を完了することが可能である。特に円付十字カーソルCCCを用いる方法においては、観察光学系991,992から観て、像IE1,IE2が対応する円付十字カーソルCCCの円CRの内側に入ったことをもって、光軸調整処理を完了できる。よって、例えば、面内距離d21,d22がゼロとなるまで光軸調整処理を実行する等の必要がない。よって、光軸調整処理の簡素化が図られており好適である。また、距離rを適宜設定することで所望のラインヘッドの位置精度に対応した光軸調整処理の実行が可能であり、簡便に所望の位置精度を実現できるという点においても好適である。
第6実施形態
第5実施形態のように、円付十字カーソルCCCを用いる方法は、例えば、第4実施形態で説明したような、3つの対象素子を設ける構成においても適用可能である。そこで、以下に説明する第6実施形態では、第4実施形態で説明した調整方法において、円付十字カーソルCCCを用いた調整方法について説明する。
図23は、第6実施形態における調整動作を示す正面図である。つまり、図23は、観察光学系が観る調整動作を示している。第6実施形態でのラインヘッドの調整装置は、第4実施形態のそれと同様である。また、第6実施形態で実行する調整動作のフローは基本的に第1実施形態と同様であるので、フローについては図12のフローチャートを参照しつつ説明する。
ステップS101〜ステップS103の動作については、第4実施形態と同様であるので、説明を省略する。つまり、第6実施形態では、第4実施形態と同様に「左端」「右端」「中央」に対象素子OE1,OE2,OE3を設定している。但し、ステップS103において、対象素子OE1,OE2,OE3の位置を取得する際に用いる十字カーソルが、円CRを設けた円付十字カーソルCCCである点においては異なる。
そして、次にそれぞれの対象素子OE1,OE2,OE3に対して光軸調整処理を実行する。この光軸調整処理では、まず、対象素子OE1,OE2,OE3を発光させる。このとき、対象素子OE1,OE2,OE3には、対応するマイクロレンズMLが対向している。したがって、対象素子OE1,OE2,OE3から射出された光ビームは、マイクロレンズMLにより像IE1,IE2,IE3として結像される。そして、ステップS105に進んで、面内距離が所定条件を満たすように、マイクロレンズアレイ299の位置を調整する(位置調整工程)。具体的には、第6実施形態では、観察光学系から観て、像IE1,IE2,IE3のそれぞれが、対応する円付十字カーソルCCCの円CRの内側にくるように、マイクロレンズアレイ299の位置を調整する。これにより、対象素子OE1,OE2,OE3の面内距離d31,d32,d33は、いずれも距離r未満となる。こうして光軸調整処理を実行することにより位置調整工程が完了すると、ステップS106において、マイクロレンズアレイ299、スペーサ297を素子基板293に対して固定する。
上述のとおり、第6実施形態では、マイクロレンズMLを装着しない場合の対象素子OE1,OE2,OE3の位置とマイクロレンズMLを仮装着した場合の該マイクロレンズMLによる像IE1,IE2,IE3の位置とを比較して、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。つまり、対象素子OE1,OE2,OE3の面内距離d31,d32,d33のいずれもが距離r未満となるように、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。よって、発光素子2951とマイクロレンズMLとの相対的位置関係を高精度に調整することが可能となっている。その結果、素子基板293とマイクロレンズアレイ299との相対的位置関係を高精度に調整することが可能となっている。
さらに、第6実施形態では、面内距離d31,d32,d33が距離r未満になったことをもって光軸調整処理を完了することが可能である。特に円付十字カーソルCCCを用いる方法においては、像IE1,IE2,IE3が対応する円付十字カーソルCCCの円CRの内側に入ったことをもって、光軸調整処理を完了できる。よって、例えば、面内距離d31,d32,d33がゼロとなるまで光軸調整処理を実行する等の必要がない。よって、光軸調整処理の簡素化が図られており好適である。また、距離rを適宜設定することで所望の位置精度に対応した光軸調整処理の実行が可能であり、簡便に所望の位置精度を実現できるという点においても好適である。
その他
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上述の第2〜6実施形態では、対象素子に対向するマイクロレンズMLはいずれも同一のレンズ行MLRに属する。つまり、同一のレンズ行MLRに対応する光軸上素子から対象素子を選んでいる。しかしながら、対象素子の設定の態様はこれに限られるものではなく、複数のレンズ行MLRに対応する光軸上素子から対象素子を選んでもよい。
図24、25は、対象素子の設定態様のバリエーションを示す図である。図24では、長手方向の両端にある2つのマイクロレンズのそれぞれに対応する光軸上素子を対象素子OE1,OE2としている。このとき、位置調整工程において、マイクロレンズアレイの長手方向の両端に位置する2つの対象素子について光軸調整処理が実行され、マイクロレンズアレイと素子基板の相対的位置関係がより高精度に調整することが可能となり好適である。また、図25では、素子基板293の四隅にある光軸上素子を、対象素子OE1〜OE4としている。この場合、マイクロレンズアレイ299と素子基板293との四隅の位置関係が調整されることとなり、マイクロレンズアレイ299と素子基板293との相対的位置関係がより高精度に調整されるため好適である。
また、上記実施形態では、本発明における光軸調整処理において面内距離が満たすべき「所定条件」の例として、第1・2実施形態では「面内距離がゼロであること」を挙げ、第3実施形態では、「複数の対象素子それぞれの面内距離が互いに等しいこと」を挙げ、第4実施形態では、「複数の対象素子それぞれの面内距離の平均値が最小となること」を挙げ、第5・6実施形態では、「面内距離が所定距離r未満であること」を挙げた。しかしながら、光軸調整処理において面内距離が満たすべき「所定条件」は、これに限られるものではなく、例えば、「複数の対象素子それぞれの面内距離の偏差が最小となること」としてもよい。つまり、第4実施形態で、面内距離の平均値が最小となることを求める代わりに、面内距離d31〜d33の偏差
s=[{(d31−av)2+(d32−av)2+(d33−av)2)}/3]1/2
が最小となることを求めてもよい。また、面内距離d31〜d33のうちの最小の面内距離が極小となることを求めてもよい。
また、上記実施形態では、観察光学系を用いて対象素子の位置情報を取得するにあたり、十字カーソルCCまたは円付十字カーソルCCCを用いている。しかしながら、対象素子の位置情報を取得するにあたり、これらの十字カーソルを用いることは必須の要件ではない。つまり、観察光学系から観て対象素子と同程度の大きさの点である点カーソルを、上述してきた十字カーソルの照準点と同様に機能させて、対象素子の位置情報を取得してもよい。また、観察光学系に対して固定された十字スケールを用いてもよい。但し、この場合、対象素子の位置を取得するために観察光学系そのものを移動させる必要があり、そのための移動機構を観察光学系に設ける必要がある。よって、装置構成の簡便化という観点からは、観察光学系に対して可動なカーソルが好適である。
また、上記実施形態では、位置情報取得工程で十字カーソルCC,CCCの照準点を対象素子OEに合わした後は、かかる十字カーソルCCを素子基板293に対して固定している。しかしながら、位置情報取得工程で十字カーソルCC,CCCの照準点を対象素子OEに合わした後に、十字カーソルCC,CCCを対象素子OEから外すように構成することも可能である。つまり、位置情報取得工程では、マイクロレンズアレイ299を装着しない状態における対象素子OEの位置情報を取得することを目的とする。したがって、例えば、位置情報取得工程で十字カーソルCC,CCCの照準点を対象素子OEに合わした際に、該照準点の座標を位置情報として記憶して、以後の工程を実行しても良い。つまり、第1〜第6実施形態では十字カーソルCC,CCCの照準点を対象素子OEの位置情報としていた代わりに、当該座標を位置情報として以後の工程を実行しても良い。
また、上記実施形態における位置調整工程では、マイクロレンズアレイ299を動かして、素子基板293とマイクロレンズアレイ299との相対的位置関係を調整している。しかしながら、これらの相対的位置関係の調整態様はこれに限られず、例えば、素子基板293を動かして調整してもよいし、素子基板293およびマイクロレンズアレイ299の両方を動かしてもよい。そして、これに対応して、位置調整手段を、素子基板293を動かすように構成してもよいし、素子基板293およびマイクロレンズアレイ299の両方を動かすように構成してもよい。但し、十字カーソルCC,CCCの照準点の位置を対象素子OEの位置情報とする構成においては、位置調整工程で素子基板293を動かす場合、該素子基板293の移動に伴って十字カーソルCC,CCCも動かす必要がある。なんとなれば、かかる構成の場合、十字カーソルCC,CCCの照準点が対象素子OEの位置情報として機能するため、位置調整工程の間、十字カーソルCC,CCCの照準点は対象素子OEに合っている必要があるからである。よって、構成の簡素化という観点からは、マイクロレンズアレイ299のみを動かして調整する構成が好適である。
また、上記実施形態では、発光素子2951として有機ELを用いたが、発光素子2951の具体的構成はこれに限られるものではなく、例えばLED(Light Emitting Diode)を発光素子2951として用いても良い。ただし、発光素子2951としてLEDを用いるためには、素子基板293にLEDチップを配列することとなる。その結果、発光素子2951の配置の自由度が下がる。よって、比較的自由に発光素子2951を素子基板293に配列可能であるという観点から、有機ELを発光素子2951として用いるのが好適である。
また、上述の通り発光素子2951としては有機ELが好適ではあるが、FL(Fluorescent Lamp)管等の蛍光管や無機EL等の自発光素子を光源とするシャッターアレイ(ライトバルブ)を用いることも可能である。つまり、光の通過を制御する各シャッターを通過した光ビームをマイクロレンズMLにより結像するように構成することで、シャッターアレイの各シャッターを、発光素子2951の如く機能させることが可能である。
また、上述の実施形態では、発光素子グループ295を、長手方向LDに一次元的に配列された5つの発光素子2951により構成している。しかしながら、発光素子グループ295の構成態様はこれに限られるものではなく、例えば、7つの発光素子2951を一次元的に配列して構成してもよいし、あるいは、複数の発光素子2951を二次元的に配列してもよい。要は、対応するマイクロレンズMLの光軸OAの上に発光素子2951が存在する構成であれば、本発明を適用可能である。
また、上述の実施形態では、レンズ行MLRを3行並べて、マイクロレンズアレイ299を構成しているが、マイクロレンズアレイ299の構成態様はこれに限られるものではない。つまり、例えば、1行のレンズ行MLRのみでマイクロレンズアレイ299を構成してもよいし、2行のレンズ行MLRでマイクロレンズアレイ299を構成してもよい。
また、上記実施形態では、倒立等倍の光学特性を有するマイクロレンズMLを用いた。しかしながら、本発明に用いることができるマイクロレンズMLはこれに限られず、要は、非正立等倍の光学特性を有するマイクロレンズMLであれば、本発明に用いることができる。より具体的に言うと、本発明を実施するにあたっては、倒立等倍以外に、倒立拡大、倒立縮小、正立拡大、正立縮小のいずれかの光学特性を有するマイクロレンズMLを用いることができる。
ところで、光軸調整処理において高精度の位置調整を実現するという観点からは、光軸上素子2951Aの光軸OAからのズレを高精度に検知することが望ましい。そして、上記実施形態では、かかるズレを面内距離として検知している。したがって、高精度の位置調整という観点からは、小さなズレを大きな面内距離として表すのが好適である。よって、かかる観点からは、マイクロレンズMLは、倒立拡大系あるいは正立拡大系(つまり、拡大光学系)であることが好適である。
図26は、倒立拡大の光学特性の説明図である。同説明図では、発光素子グループを構成する5つの発光素子OJに対向して、倒立拡大の光学特性を有する結像光学系OPSが配置されている。そして、発光素子OJから射出された光ビームは、結像光学系OPSにより結像面SIMに結像される。このとき、結像光学系OPSの光軸OAの上にある発光素子OJ1から射出された光ビームは、光軸OAの上の結像位置IM1に結像される。また、発光素子OJ2から射出された光ビームは、光軸OAに対して、発光素子OJ2の反対側の結像位置IM2に結像される。なお、結像位置IM2から光軸OAまでの距離は、発光素子OJ2から光軸OAまでの距離よりも大きい。また、発光素子OJ3から射出された光ビームは、光軸OAに対して、発光素子OJ3の反対側の結像位置IM3に結像される。なお、結像位置IM3から光軸OAまでの距離は、発光素子OJ3から光軸OAまでの距離よりも大きい。
正立拡大の光学特性を以下に説明する。発光素子グループを構成する発光素子OJに対向して、倒立拡大の光学特性を有する結像光学系が配置されている。発光素子OJから射出された光ビームは、結像光学系により結像面に結像される。このとき、結像光学系の光軸OAの上にある発光素子OJ1から射出された光ビームは、光軸OAの上の結像位置IM1に結像される。また、発光素子OJ2から射出された光ビームは、光軸OAに対して、発光素子OJ2と同じ側の結像位置IM2に結像される。なお、結像位置IM2から光軸OAまでの距離は、発光素子OJ2から光軸OAまでの距離よりも大きい。また、発光素子OJ3から射出された光ビームは、光軸OAに対して、発光素子OJ3と同じ側の結像位置IM3に結像される。なお、結像位置IM3から光軸OAまでの距離は、発光素子OJ3から光軸OAまでの距離よりも大きい。
上述のとおり、高精度の位置調整という観点からは、小さなズレを大きな面内距離として表すのが好適である。そして、面内距離を大きくするという観点からは、上述の倒立光学系と正立光学系のうち、特に倒立光学系が好適である。この理由は次のとおりである。
上述したとおり、正立光学系では、発光素子OJと当該発光素子OJからの光ビームの結像位置IMは、光軸OAに対して同じ側にある。よって、発光素子OJと光軸OAとの距離をD(OJ)と、結像位置IMと光軸OAとの距離をD(IM)とすると、正立光学系における面内距離は、
D(IM)−D(OJ)
と、2つの距離の差で与えられる。一方、倒立光学系では、発光素子OJと当該発光素子OJからの光ビームの結像位置IMは、光軸OAに対して反対側にある。よって、倒立光学系における面内距離は、
D(IM)+D(OJ)
と、2つの距離の和で与えられる。この結果、倍率が同じであっても、倒立光学系の方が正立光学系よりも面内距離が大きくなる傾向にある。よって、倒立光学系の方が、より高精度の位置調整が可能となり好適である。
また、観察光学系99,991,992としては、光学顕微鏡やCCD(Charge Coupled Devices)カメラ等を用いることができる。特に光軸調整処理の自動化という観点からは、CCDカメラが好適である。なんとなれば、CCDカメラが取得した映像をコンピュータに取り込むことで、画像認識技術を用いて、光軸調整処理を自動化することが可能となるからである。このとき、ストロークの進退を電気的に制御可能であるマイクロメータヘッドによりアレイ移動機構を構成すると良い。つまり、コンピュータにより、CCDカメラが取得した映像に基づいてアレイ移動機構を制御することで、光軸調整処理を自動的に実行することが可能となる。
また、このように、CCDカメラが取得した映像をコンピュータに取り込んで画像認識技術を用いた構成の場合、位置情報取得工程において十字カーソルCC,CCC等を用いないように構成することも可能である。つまり、コンピュータに取り込んだ映像から対象素子OEの座標を求め、当該座標を対象素子OEの位置情報として以後の工程を実行するように構成しても良い。
また、CCDカメラを用いて自動的に光軸調整処理を実行する場合、CCDカメラが取得した映像をモニタに映し出すように構成しても良い。なんとなれば、自動的に実行される光軸調整処理を、製造工程の管理者が確認することが可能となるからである。また、この際、2つの観察光学系991,992を用いて光軸調整処理を行う構成においては、2つの観察光学系991,992が取得した映像を、モニタに並べて映し出すことが好適である。
また、一般にラインヘッドの各発光素子から射出される光ビームの結像状態は、発光素子毎に僅かに異なる。そして、ラインヘッドを用いて画像を形成する場合、かかる差異が画質に影響する場合がある。そこで、ラインヘッドの出荷時には、全ての発光素子の結像状態の検査する出荷検査が必要となる場合が多い。しかしながら、上述のCCDカメラを備えた構成の場合、かかるCCDカメラを出荷検査に用いればよく、構成の簡素化が可能となり好適である。
本発明にかかるラインヘッドを用いた画像形成装置の構成を示す図。 図1の画像形成装置の電気的構成を示す図。 本発明にかかるラインヘッドの一構成の概略を示す斜視図。 ラインヘッドの一構成の幅方向断面図。 ラインヘッドの分解斜視図。 マイクロレンズアレイの長手方向の断面図。 マイクロレンズアレイおよび発光素子グループの構成を示す図。 倒立等倍の光学特性の説明図。 ラインヘッドによる潜像形成動作を示す図。 第1実施形態におけるアレイ移動機構を示す斜視図。 ラインヘッドの調整装置を長手方向から見た図。 ラインヘッドの調整方法を示すフローチャート。 図12のフローチャートに対応する動作説明斜視図。 図12のフローチャートに対応する動作説明正面図。 面内距離の説明図。 第2実施形態におけるラインヘッドの調整装置を示す図。 第2実施形態における調整動作を示す正面図。 第3実施形態における調整動作を示す正面図。 素子基板の湾曲の様子を示す図。 第4実施形態における調整動作を示す正面図。 第5実施形態で用いる十字カーソルの説明図。 第5実施形態における調整動作を示す正面図。 第6実施形態における調整動作を示す正面図。 対象素子の設定態様のバリエーションを示す図。 対象素子の設定態様のバリエーションを示す図。 倒立拡大の光学特性の説明図。
符号の説明
29…ラインヘッド、 293…素子基板、 295…発光素子グループ、 2951…発光素子、 2951A…光軸上素子、 297…スペーサ、 299…マイクロレンズアレイ、 9…ラインヘッドの調整装置、 91…基板保持手段、 93,95,97…アレイ移動機構(アレイ保持手段、位置調整手段)、 99,991,992…観察光学系(位置情報取得手段)、 OE,OE1,OE2,OE3,OE4…対象素子、 IE,IE1,IE2,IE3…像、 HPL…仮想垂直面、 d1,d21,d22,d31,d32,d33…面内距離、 r…所定距離、 CC…十字カーソル、 CCC…円付十字カーソル、 ML…マイクロレンズ、 LD…長手方向、 WD…幅方向、 MLR…レンズ行

Claims (8)

  1. 1つ以上の発光素子から成る発光素子グループをその面に複数有する、素子基板を配置する基板配置工程と、
    前記発光素子の位置に関する位置情報を取得する位置情報取得工程と、
    それぞれが非正立等倍の光学特性を有する複数のマイクロレンズを前記複数の発光素子グループに一対一で対応して設けた、マイクロレンズアレイを前記複数のマイクロレンズのそれぞれが対応する前記発光素子グループに対向するように配置するアレイ配置工程と、
    前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する位置調整工程と
    を備え、
    前記複数の発光素子グループのそれぞれは、該発光素子グループに対応する前記マイクロレンズの位置が理想位置である場合には、該発光素子グループに属する1つの前記発光素子が光軸上素子として該発光素子グループに対応する前記マイクロレンズの光軸上に存在するように構成されており、
    前記位置情報取得工程では、複数の前記光軸上素子のうちの1つ以上の対象素子の前記位置情報を取得し、
    前記位置調整工程では、前記位置情報取得工程で前記位置情報が取得された前記対象素子に対して下記の光軸調整処理を実行することを特徴とするラインヘッドの調整方法。
    前記光軸調整処理は、前記マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、前記位置情報が与える前記対象素子の位置を前記仮想垂直面に投影した位置と、前記対象素子を発光させて射出される光ビームの前記マイクロレンズによる像の位置を前記仮想垂直面に投影した位置との面内距離が所定条件を満たすように、前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する処理である。
  2. 前記光軸調整処理は、前記面内距離がゼロとなるように、前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する処理である請求項1記載のラインヘッドの調整方法。
  3. 前記光軸調整処理は、前記面内距離が所定距離未満となるように、前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する処理である請求項1記載のラインヘッドの調整方法。
  4. 前記位置情報取得工程では、前記マイクロレンズアレイの長手方向の両端にある2つの前記マイクロレンズのそれぞれに対応する前記光軸上素子を前記対象素子として前記位置情報を取得する請求項1乃至3のいずれかに記載のラインヘッドの調整方法。
  5. 前記マイクロレンズアレイは、前記マイクロレンズアレイの長手方向に前記マイクロレンズが配列されて成るレンズ行を、前記マイクロレンズアレイの幅方向に複数行配列した構造を有し、
    前記位置情報取得工程では、複数の前記レンズ行のうちの一に属する前記マイクロレンズのうちの前記長手方向の両端にある2つの前記マイクロレンズのそれぞれに対応する前記光軸上素子を前記対象素子として前記位置情報を取得する請求項1乃至3のいずれかに記載のラインヘッドの調整方法。
  6. 前記位置情報取得工程では、さらに、複数の前記レンズ行のうちの一に属する前記マイクロレンズのうちの前記長手方向の両端にある2つの前記マイクロレンズのそれぞれに対応する前記光軸上素子以外の前記光軸上素子も、前記対象素子として前記位置情報を取得する請求項5記載のラインヘッドの調整方法。
  7. 前記複数のマイクロレンズのそれぞれは、倒立像を結像する光学特性を有する請求項1乃至6のいずれかに記載のラインヘッドの調整方法。
  8. 1つ以上の発光素子から成る発光素子グループをその面に複数有する、素子基板を保持する基板保持手段と、
    前記発光素子の位置に関する情報を取得する位置情報取得手段と、
    それぞれが非正立等倍の光学特性を有する複数のマイクロレンズを前記複数の発光素子グループに一対一で対応して設けた、マイクロレンズアレイを前記複数のマイクロレンズのそれぞれが対応する前記発光素子グループに対向する位置に保持するアレイ保持手段と、
    前記素子基板および/または前記マイクロレンズアレイを動かして、前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する位置調整手段と
    を備え、
    前記複数の発光素子グループのそれぞれは、該発光素子グループに対応する前記マイクロレンズの位置が理想位置である場合には、該発光素子グループが属する前記発光素子が光軸上素子として該発光素子グループに対応する前記マイクロレンズの光軸上に存在するように構成されており、
    前記位置情報取得手段は、複数の前記光軸上素子のうちの1つ以上の対象素子の前記位置情報を取得し、
    前記位置調整手段は、前記位置情報取得手段で前記位置情報が取得された前記対象素子に対して下記の光軸調整処理を実行することを特徴とするラインヘッドの調整装置。
    前記光軸調整処理は、前記マイクロレンズの光軸に垂直な仮想平面を仮想垂直面としたとき、前記位置情報が与える前記対象素子の位置を前記仮想垂直面に投影した位置と、前記対象素子を発光させて射出される光ビームの前記マイクロレンズによる像の位置を前記仮想垂直面に投影した位置との面内距離が所定条件を満たすように、前記素子基板と前記マイクロレンズアレイとの相対的位置関係を調整する処理である。
JP2007015754A 2007-01-26 2007-01-26 ラインヘッドの調整方法および調整装置 Withdrawn JP2008179097A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015754A JP2008179097A (ja) 2007-01-26 2007-01-26 ラインヘッドの調整方法および調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015754A JP2008179097A (ja) 2007-01-26 2007-01-26 ラインヘッドの調整方法および調整装置

Publications (1)

Publication Number Publication Date
JP2008179097A true JP2008179097A (ja) 2008-08-07

Family

ID=39723363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015754A Withdrawn JP2008179097A (ja) 2007-01-26 2007-01-26 ラインヘッドの調整方法および調整装置

Country Status (1)

Country Link
JP (1) JP2008179097A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120296A (ja) * 2011-12-07 2013-06-17 V Technology Co Ltd マイクロレンズアレイの貼り合わせ装置
JP2015231715A (ja) * 2014-06-10 2015-12-24 コニカミノルタ株式会社 光書込装置、および位置補正方法
JP2019093615A (ja) * 2017-11-22 2019-06-20 コニカミノルタ株式会社 光書き込み装置及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120296A (ja) * 2011-12-07 2013-06-17 V Technology Co Ltd マイクロレンズアレイの貼り合わせ装置
JP2015231715A (ja) * 2014-06-10 2015-12-24 コニカミノルタ株式会社 光書込装置、および位置補正方法
JP2019093615A (ja) * 2017-11-22 2019-06-20 コニカミノルタ株式会社 光書き込み装置及び画像形成装置

Similar Documents

Publication Publication Date Title
US8089695B2 (en) Line head and image forming apparatus using the same
JP2009051194A (ja) ラインヘッド及びそれを用いた画像形成装置
US8022975B2 (en) Line head and image forming apparatus using the same
JP2008179097A (ja) ラインヘッドの調整方法および調整装置
EP2028014B1 (en) Line head and image forming apparatus using the same
US20080225108A1 (en) Line Head and an Image Forming Apparatus Using the Line Head
JP5098623B2 (ja) ラインヘッド、該ラインヘッドを用いた露光方法、画像形成装置、画像形成方法、および該ラインヘッドの調整方法
US7907162B2 (en) Exposure head, image forming device, and image forming method
JP2010240858A (ja) 露光ヘッド、露光ヘッドの制御方法、画像形成装置
JP2009196345A (ja) ラインヘッドおよび画像形成装置
US7791631B2 (en) Line head, an exposure method using the line head, an image forming apparatus, an image forming method and a line head adjustment method
JP2008188834A (ja) ラインヘッドおよび該ラインヘッドを用いた画像形成装置
JP2009173005A (ja) 露光ヘッド、画像形成装置
JP2009202579A (ja) ラインヘッド用レンズアレイ、ラインヘッドおよび画像形成装置
JP2010076390A (ja) 露光ヘッドおよび画像形成装置
JP2008105298A (ja) ラインヘッド及びそれを用いた画像形成装置
JP2010058420A (ja) ラインヘッド、および画像形成装置
JP2009034944A (ja) ラインヘッドおよび該ラインヘッドを用いた画像形成装置
JP2009023261A (ja) ラインヘッド、該ラインヘッドの制御方法および該ラインヘッドを用いた画像形成装置
JP5407245B2 (ja) 保持機構、光走査装置及び画像形成装置
JP2010274431A (ja) 露光装置および画像形成装置
US9188900B2 (en) Light beam emitting apparatus, light scanning apparatus, and image forming apparatus
JP6299271B2 (ja) プリントヘッドおよび画像形成装置
JP5070839B2 (ja) ラインヘッド及び該ラインヘッドを用いた画像形成装置
JP2011000863A (ja) 露光ヘッド、画像形成装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406