JP2008173583A - Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it - Google Patents

Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it Download PDF

Info

Publication number
JP2008173583A
JP2008173583A JP2007010420A JP2007010420A JP2008173583A JP 2008173583 A JP2008173583 A JP 2008173583A JP 2007010420 A JP2007010420 A JP 2007010420A JP 2007010420 A JP2007010420 A JP 2007010420A JP 2008173583 A JP2008173583 A JP 2008173583A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
hydrocarbon oil
clay mineral
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010420A
Other languages
Japanese (ja)
Other versions
JP4916321B2 (en
Inventor
Tadashi Shibuya
忠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2007010420A priority Critical patent/JP4916321B2/en
Publication of JP2008173583A publication Critical patent/JP2008173583A/en
Application granted granted Critical
Publication of JP4916321B2 publication Critical patent/JP4916321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic cracking catalyst having high abrasion strength in the catalytic cracking of hydrocarbon oil. <P>SOLUTION: The catalytic cracking catalyst of hydrocarbon oil contains 10-75 mass% of a clay mineral, 20-60 mass% of crystalline aluminosilicate and 5-40 mass% of an almina binder and is characterized in that the average particle size of the clay mineral is 1 μm or below and 90 mass% of the particle size of the clay mineral is 2 μm or below. The catalytic cracking method of the hydrocarbon oil using the catalyst is also disclosed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)と、それを用いる炭化水素油の接触分解方法に関し、さらに詳しくは、磨耗強度が向上された炭化水素油の接触分解触媒と、それを用いる炭化水素油の接触分解方法に関する。   The present invention relates to a catalytic cracking catalyst for hydrocarbon oil (hereinafter sometimes referred to as “FCC catalyst”) and a method for catalytic cracking of hydrocarbon oil using the same, and more particularly, hydrocarbon oil having improved wear strength. And a catalytic cracking method of hydrocarbon oil using the catalyst.

自動車用ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することにより製造されており、特に重質な炭化水素油の接触分解から得られるFCCガソリンは、ガソリンへの配合量も多いため、FCCガソリン収率を向上させることは当業者にとって望ましい。   Automobile gasoline is manufactured by mixing a plurality of gasoline base materials obtained in the refining process of crude oil. FCC gasoline obtained from catalytic cracking of heavy hydrocarbon oils in particular has a blending amount in gasoline. As such, it is desirable for those skilled in the art to improve FCC gasoline yield.

しかし、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分である結晶性アルミノ珪酸塩の構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリンの選択性を低下させるなどの問題を有している。このような原油の重質化・低品位化に対応するためには、触媒の分解活性を高めるために結晶性アルミノ珪酸塩や、高分解性のマトリックスを増量することが好ましいが、これらを増量すると触媒の比重が低下し、磨耗強度の低下を引き起こす。   However, in the method of catalytic cracking of hydrocarbon oil, with the recent heavy and low grade of crude oil, heavy metals such as vanadium and nickel and feedstock with high residual carbon content must be put into the fluid catalytic cracking unit. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the crystalline aluminosilicate that is the active component of the FCC catalyst, causing a significant decrease in the activity of the catalyst and increasing the production of hydrogen and coke. It is known to have problems such as lowering the selectivity. Nickel is also deposited on the surface of the catalyst and has problems such as increasing the amount of hydrogen and coke generated to promote the dehydrogenation reaction and lowering the selectivity of gasoline. In order to cope with such heavy and low grade crude oil, it is preferable to increase the amount of crystalline aluminosilicate or highly decomposable matrix in order to increase the cracking activity of the catalyst. Then, the specific gravity of the catalyst is lowered, and the wear strength is lowered.

FCC触媒は、装置内を反応と再生を繰返しながら高速で流動しているため、触媒は粒子間や管壁、器壁などとの衝突によって磨耗する。磨耗強度が低い触媒は、装置内循環とともに磨耗による微粒子を増加させ、磨耗による触媒ロスが発生するだけでなく、装置エロージョンや精留塔の不具合の原因となる上に、磨耗により生じた微粒子の分離回収が困難である。このことから、FCC触媒においては、より磨耗強度に優れた触媒粒子が求められている。   Since FCC catalyst flows at high speed while repeating reaction and regeneration in the apparatus, the catalyst is worn by collision between particles, tube wall, vessel wall, and the like. A catalyst with low wear strength not only increases the fine particles due to wear along with the circulation in the equipment, resulting in catalyst loss due to wear, but also causes troubles in equipment erosion and rectification towers. Separation and recovery are difficult. For this reason, in FCC catalysts, catalyst particles having higher wear strength are required.

触媒の磨耗強度を向上させる方法としては、リン酸化合物を触媒に添加する方法が提案されている(例えば、特許文献1、2参照)。しかしながら、この方法では、リン酸化合物の添加量に比例して磨耗強度が向上するものの、リン酸化合物の付着により、活性成分であるゼオライトの表面積が低下するため、触媒活性が低下してFCCガソリンの収率が低下するといった課題を有している。   As a method for improving the wear strength of the catalyst, a method of adding a phosphoric acid compound to the catalyst has been proposed (see, for example, Patent Documents 1 and 2). However, in this method, although the wear strength is improved in proportion to the amount of the phosphate compound added, the surface area of the zeolite, which is the active ingredient, is reduced due to the adhesion of the phosphate compound. There is a problem that the yield of is reduced.

一方、触媒の活性を向上させる方法としては、カオリンクレーや、ゼオライトのアルミナ源である微粉砕された超微細カオリンから誘導したメタカオリン及びバインダーからなる微小球をアルカリ性ケイ酸ナトリウム溶液と反応させることにより、ゼオライト結晶を製造・成長させるInsitu型のFCC触媒を製造する方法が提案されているが(例えば、特許文献3参照)、この方法で製造した触媒は、分解活性が高く、ガソリン収率も高くなるものの、触媒のかさ密度が低く、磨耗強度が低下するといった課題を有している。   On the other hand, as a method for improving the activity of the catalyst, microspheres composed of kaolin clay, metakaolin derived from finely pulverized ultrafine kaolin which is an alumina source of zeolite, and a binder are reacted with an alkaline sodium silicate solution. A method for producing an in situ type FCC catalyst for producing and growing zeolite crystals has been proposed (see, for example, Patent Document 3). The catalyst produced by this method has a high cracking activity and a high gasoline yield. However, there is a problem that the bulk density of the catalyst is low and the wear strength is reduced.

特開平5−64743号公報JP-A-5-64743 特表2002−537976号公報Special Table 2002-537976 特公表2005−526587号公報Japanese Patent Publication No. 2005-526587

以上の諸状況に鑑み、本発明は、炭化水素油の接触分解において、高い磨耗強度を有する接触分解触媒を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a catalytic cracking catalyst having high wear strength in catalytic cracking of hydrocarbon oil.

本発明者らは、上記の目的を達成するために検討を重ねた結果、特定の粒子径分布を有する粘土鉱物を用いたFCC触媒、又は走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が特定の結晶構造を有し、特定の積層数を有する粘土鉱物を用いたFCC触媒であれば、炭化水素油の接触分解反応において、高い磨耗強度を有することを見出し、本発明を完成させるに至った。   As a result of repeated studies to achieve the above object, the present inventors have conducted an image measurement using an FCC catalyst using a clay mineral having a specific particle size distribution, or a scanning electron microscope (SEM). The FCC catalyst using a clay mineral having a specific crystal structure and a specific number of layers is found to have high wear strength in the catalytic cracking reaction of hydrocarbon oil, and the present invention is completed. I came to let you.

即ち、本発明は、次の炭化水素油の接触分解触媒、及びそれを用いた炭化水素油の接触分解方法を提供する。
(1)粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜60質量%、アルミナバインダーを5〜40質量%含有してなり、かつ前記粘土鉱物の平均粒子径が1μm以下で、90質量%の粒子径が2μm以下であることを特徴とする炭化水素油の接触分解触媒。
(2)前記粘土鉱物が、粒子径0.2〜0.8μmの範囲に粒子数の最大ピークを有することを特徴とする上記(1)に記載の炭化水素油の接触分解触媒。
(3)前記粘土鉱物が、カオリン鉱物であることを特徴とする上記(1)又は(2)に記載の炭化水素油の接触分解触媒。
(4)走査型電子顕微鏡を用いた画像測定において、結晶粒子が板状の結晶構造を有し、その平均積層数が1〜10である粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜50質量%、アルミナバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。
(5)前記粘土鉱物が、平均粒子径が1μm以下で、90質量%の粒子径が2μm以下であることを特徴とする上記(4)に記載の炭化水素油の接触分解触媒。
(6)前記粘土鉱物が、粒子径0.2〜0.8μmの範囲に粒子数の最大ピークを有することを特徴とする上記(4)又は(5)に記載の炭化水素油の接触分解触媒。
(7)前記粘土鉱物が、カオリン鉱物であることを特徴とする上記(4)〜(6)のいずれかに記載の炭化水素油の接触分解触媒。
(8)炭化水素油を接触分解するに当たり、上記(1)〜(7)のいずれかに記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。
That is, this invention provides the following catalytic cracking catalyst of hydrocarbon oil, and the catalytic cracking method of hydrocarbon oil using the same.
(1) 10 to 75% by mass of clay mineral, 20 to 60% by mass of crystalline aluminosilicate, 5 to 40% by mass of alumina binder, and the clay mineral has an average particle size of 1 μm or less, A catalytic cracking catalyst for hydrocarbon oil, characterized in that the 90% by mass particle size is 2 μm or less.
(2) The hydrocarbon oil catalytic cracking catalyst according to the above (1), wherein the clay mineral has a maximum peak in the number of particles in a particle diameter range of 0.2 to 0.8 μm.
(3) The hydrocarbon oil catalytic cracking catalyst according to (1) or (2) above, wherein the clay mineral is a kaolin mineral.
(4) In image measurement using a scanning electron microscope, the crystal particles have a plate-like crystal structure, and 10 to 75% by mass of a clay mineral having an average number of laminations of 1 to 10, crystalline aluminosilicate A hydrocarbon oil catalytic cracking catalyst characterized by containing 20 to 50% by mass of an alumina binder and 5 to 40% by mass of an alumina binder.
(5) The hydrocarbon oil catalytic cracking catalyst according to (4), wherein the clay mineral has an average particle size of 1 μm or less and a 90% by mass particle size of 2 μm or less.
(6) The catalytic cracking catalyst for hydrocarbon oil according to (4) or (5) above, wherein the clay mineral has a maximum peak in the number of particles in a particle diameter range of 0.2 to 0.8 μm. .
(7) The catalytic cracking catalyst of hydrocarbon oil according to any one of (4) to (6), wherein the clay mineral is a kaolin mineral.
(8) A catalytic cracking method for hydrocarbon oil, wherein the catalytic cracking catalyst according to any one of (1) to (7) is used for catalytic cracking of hydrocarbon oil.

本発明に係る接触分解触媒は、炭化水素油の接触分解において、高い磨耗強度を有するので、磨耗による触媒ロスを軽減でき、触媒使用量を低減できるだけでなく、微粒子の飛散による装置エロージョンや精留塔の不具合の発生等を軽減し、安定的に装置を運用することが可能となる。   The catalytic cracking catalyst according to the present invention has a high wear strength in the catalytic cracking of hydrocarbon oil, so that catalyst loss due to wear can be reduced and the amount of catalyst used can be reduced, as well as device erosion and rectification due to scattering of fine particles. It is possible to reduce the occurrence of tower defects and to operate the equipment stably.

以下に本発明の実施の態様を詳細に説明する。
<触媒の構成成分>
本発明に係る接触分解触媒は、結晶性アルミノ珪酸塩、粘土鉱物、及びアルミナバインダーを含有してなる。
Hereinafter, embodiments of the present invention will be described in detail.
<Components of catalyst>
The catalytic cracking catalyst according to the present invention contains a crystalline aluminosilicate, a clay mineral, and an alumina binder.

(結晶性アルミノ珪酸塩)
本発明で触媒成分に用いる結晶性アルミノ珪酸塩は、天然物であっても、人工物であってもよく、またその構造形態も多岐にわたっており、正方晶系、斜方晶系、立方晶系、六方晶系などの結晶構造を有する。この結晶性アルミノ珪酸塩としては、モルデナイト、βゼオライト、ZSM系ゼオライト、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることができ、Y型ゼオライトが好ましく、安定化Y型ゼオライトが特に好ましい。安定化Y型ゼオライトとしては、(a)化学組成分析によるバルクのSiO/Alモル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60、(c)全Alに対するゼオライト骨格内Alのモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いることができる。この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(0.02〜1.0)R/mO・Al・(5〜11)SiO・(5〜8)H
R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
(Crystalline aluminosilicate)
The crystalline aluminosilicate used for the catalyst component in the present invention may be a natural product or an artificial product, and its structural form is wide-ranging, and is tetragonal, orthorhombic, cubic. Have a hexagonal crystal structure. As this crystalline aluminosilicate, mordenite, β zeolite, ZSM type zeolite, A type zeolite, X type zeolite, Y type zeolite and the like can be used, Y type zeolite is preferable, and stabilized Y type zeolite is particularly preferable. . As the stabilized Y-type zeolite, (a) bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4 to 15, preferably 5 to 10, and (b) unit cell size is 24.35 to 24. 65 cm, preferably 24.40 to 24.60, (c) The molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Can do. This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition as an oxide.
(0.02~1.0) R 2 / mO · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: R valence

本発明で用いるゼオライトの単位格子寸法は、X線回折装置(XRD)により測定することができ、またその全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO/Al比及び単位格子寸法から下記の式(A)〜(C)を用いて算出することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。
・NA1=(a−2.425)/0.000868……(A)
:単位格子寸法/nm
Al:単位格子当たりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、aとNAlについて1次式で整理したとき(a=0.000868NAl+2.425)の傾き
・(Si/Al)計算式=(192−NAl)/NAl……(B)
192:Y型ゼオライトの単位格子寸法あたりの(Si+Al)の原子数
・ゼオライト骨格内Al/全Al=(Si/Al)化学組成分析値/(Si/Al)計算式……(C)
The unit cell size of the zeolite used in the present invention can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolite framework relative to the total Al is SiO 2 / Al 2 O 3 by chemical composition analysis. It can be calculated from the ratio and unit cell size using the following formulas (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.
N A1 = (a o -2.425) /0.000868 (A)
a o : unit cell dimension / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a o and Inclination of N Al when arranged by a linear equation (a o = 0.000868N Al +2.425) (Si / Al) calculation formula = (192−N Al ) / N Al (B)
192: Number of (Si + Al) atoms per unit cell size of Y-type zeolite-Al in zeolite framework / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula (C)

上記ゼオライトのSiO/Alモル比は、触媒の酸強度を示しており、一般にモル比が大きいほど触媒の酸強度が強くなる。そして、一般にSiO/Alモル比は、4以上であることが、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好適に進行して好ましい。また、15以下であることが、必要な酸の数が減少し、重質炭化水素油の分解活性が低下することを抑制できて好ましい。 The SiO 2 / Al 2 O 3 molar ratio of the zeolite indicates the acid strength of the catalyst. Generally, the larger the molar ratio, the stronger the acid strength of the catalyst. In general, when the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds suitably. preferable. Moreover, it is preferable that it is 15 or less because the number of required acids decreases and it can suppress that the decomposition activity of heavy hydrocarbon oil falls.

ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であることが、重質炭化水素油の分解に必要なAlの数が減少しすぎ、その結果分解が進行し難くなることを抑制できて好ましい。また、24.65Å以下であることが、ゼオライト結晶の劣化が進行しやすくなり、FCC触媒の分解活性の低下が著しくなることを抑制できて好ましい。   The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite. However, when the unit cell size is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy hydrocarbon oil is excessively reduced, and as a result It is preferable because decomposition can be prevented from being difficult to proceed. Moreover, it is preferable that it is 24.65 or less because deterioration of a zeolite crystal | crystallization progresses easily and it can suppress that the fall of the decomposition activity of a FCC catalyst becomes remarkable.

全Alに対するゼオライト骨格内Alのモル比は、0.3以上であることが、ゼオライト結晶を構成するAlの量が少なくなりすぎ、その結果ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなることを抑制できて好ましい。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more, the amount of Al constituting the zeolite crystal becomes too small, and as a result, more Al 2 O 3 particles fall off from the zeolite framework. Since the strong acid point is not expressed, it is preferable to prevent the catalytic decomposition reaction from proceeding. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to

上記のような要件を満たすゼオライトとして、特許第2544317号公報に記載されているヒートショック結晶性珪酸塩も使用することができる。このゼオライトは、SiO/Alモル比が5〜15、単位格子寸法が24.50以上24.70未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満である安定化Y型ゼオライトを600〜1200℃で5〜300分間、空気又は窒素雰囲気下で、結晶化度低下率が20%以下となるように焼成したものであり、化学組成分析によるバルクのSiO/Alモル比が5〜15、全Alに対するゼオライト骨格内Alのモル比が0.3〜0.6、単位格子寸法が24.45Å未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満、細孔分布において50Å付近及び180Å付近に特徴的なピークを示し、100Å以上の細孔容積が全細孔容積の10〜40%であり、かつY型ゼオライトの主要なX線回折パターンを有する結晶性アルミノ珪酸塩である。 As a zeolite that satisfies the above requirements, the heat shock crystalline silicate described in Japanese Patent No. 2544317 can also be used. This zeolite has a SiO 2 / Al 2 O 3 molar ratio of 5 to 15, a unit cell size of 24.50 or more and less than 24.70, and an alkali metal content of 0.02% by mass or more and less than 1% by mass in terms of oxides. The stabilized Y-type zeolite is calcined at 600 to 1200 ° C. for 5 to 300 minutes in air or nitrogen atmosphere so that the crystallinity reduction rate is 20% or less. SiO 2 / Al 2 O 3 molar ratio is 5 to 15, molar ratio of Al in zeolite framework to total Al is 0.3 to 0.6, unit cell size is less than 24.45 mm, alkali metal content is oxide equivalent 0.02% by mass or more and less than 1% by mass, showing a characteristic peak in the pore distribution around 50 and 180%, with a pore volume of 100 or more being 10 to 40% of the total pore volume, and Y Type Z It is a crystalline aluminosilicate with the main X-ray diffraction pattern of Olite.

(アルミナバインダー)
本発明で触媒成分に用いるアルミナバインダーは、結晶性アルミノケイ酸塩や粘土鉱物などの粒子間に存在し、触媒を微粒子化する時の成形性を良くし、触媒微粒子を球状にさせ、また得られる触媒微粒子の流動性及び耐磨耗性を図るために使用される。アルミナバインダーは分散性が良いため結合力が強く、触媒強度を高めることができる。また、分解性に優れ、オクタン価の高いガソリン留分を得ることができる。
(Alumina binder)
The alumina binder used as a catalyst component in the present invention is present between particles such as crystalline aluminosilicate and clay mineral, improves the moldability when the catalyst is atomized, makes the catalyst particles spherical, and is also obtained. Used for fluidity and wear resistance of catalyst fine particles. Since the alumina binder has good dispersibility, the bonding strength is strong and the catalyst strength can be increased. In addition, a gasoline fraction having excellent decomposability and a high octane number can be obtained.

上記アルミナバインダーとしては、幾つかの種類が知られており、ジブサイト、バイアライト、ベーマイト、ベントナイト、結晶性アルミナなどを酸溶液中に溶解させた溶液や、ベーマイトゲル、無定形のアルミナゲルを水溶液中に分散させた溶液、あるいはアルミナゾルを使用することができる。好ましくはアルミナゾルである。   As the above-mentioned alumina binder, several types are known. A solution obtained by dissolving dibsite, vialite, boehmite, bentonite, crystalline alumina, etc. in an acid solution, boehmite gel, amorphous alumina gel in aqueous solution A solution dispersed therein or an alumina sol can be used. Alumina sol is preferred.

本発明で用いるアルミナゾルの粒子サイズは小さければ小さい程よいが、本発明では、粒子径0.01〜5.0μmの範囲内のものを好適に使用することができる。アルミナゾルの粒子径が、0.01μmより大きいと、触媒を成形しやすく、流動性に優れた触媒粒子を得ることができるため好ましい。また、5.0μmより小さいと、強度、磨耗性に優れた触媒粒子を得ることができるため好ましい。アルミナバインダーを構成するアルミナ粒子の形状は特に制限されるものではなく、球状、繊維状、不定形等のいずれかであってもよい。また、アルミナゾルは、陽性電荷を帯びるため、一般には陰性の安定剤が使用されており、本発明で用いるアルミナゾルの安定剤としては、塩素イオン、硝酸イオン、酢酸イオン等が挙げられ、好ましくは塩素イオンである。また、本発明で得られる効果を逸脱しない限り、シリカバインダーなどを混合して使用することもできる。   The smaller the particle size of the alumina sol used in the present invention is, the better. However, in the present invention, those having a particle diameter in the range of 0.01 to 5.0 μm can be suitably used. When the particle diameter of the alumina sol is larger than 0.01 μm, it is preferable because the catalyst can be easily molded and catalyst particles having excellent fluidity can be obtained. Moreover, when it is smaller than 5.0 μm, catalyst particles having excellent strength and wear properties can be obtained, which is preferable. The shape of the alumina particles constituting the alumina binder is not particularly limited, and may be any of spherical, fibrous, amorphous, and the like. In addition, since alumina sol is positively charged, a negative stabilizer is generally used. Examples of the alumina sol stabilizer used in the present invention include chlorine ion, nitrate ion, acetate ion, and preferably chlorine chloride. Ion. Moreover, a silica binder etc. can also be mixed and used, unless it deviates from the effect acquired by this invention.

(粘土鉱物)
本発明で用いる粘土鉱物は、平均粒子径が1μm以下であり、かつ90質量%の粒子径が2μm以下であるか、又は、走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が板状の結晶構造を有し、かつその平均積層数が1〜10であるものである。勿論上記粒子径特性と結晶構造特性の両特性を有する粘土鉱物であってもよい。本発明の接触分解触媒は、かかる特性を有する粘土鉱物を含有することで、優れた耐磨耗強度を有する。
(Clay mineral)
The clay mineral used in the present invention has an average particle diameter of 1 μm or less and a 90% by mass particle diameter of 2 μm or less, or in the image measurement using a scanning electron microscope (SEM), It has a plate-like crystal structure, and the average number of layers is 1-10. Of course, it may be a clay mineral having both the above particle size characteristics and crystal structure characteristics. The catalytic cracking catalyst of the present invention has excellent wear resistance by containing a clay mineral having such properties.

本発明で用いる粒子径特性を有する粘土鉱物は、平均粒子径が1μm以下、好ましくは0.6μm以下であり、90質量%の粒子径が2μm以下、好ましくは1.5μm以下である。また、80質量%の粒子径が1μm以下であることがさらに好ましい。平均粒子径が1μmを超えて大きい場合や、90質量%の粒子径が2μmを超えて大きい場合は、触媒のかさ密度(ABD)の低下や、触媒形状の悪化が懸念され、強度、耐磨耗性に優れた触媒粒子を造粒することが難しくなり、また得られる触媒が所期の触媒性能を有することが難しくなる。
粘土鉱物の粒子径は、例えばレーザー回折式粒度分布測定装置により測定することができる。
The clay mineral having particle size characteristics used in the present invention has an average particle size of 1 μm or less, preferably 0.6 μm or less, and a 90% by mass particle size of 2 μm or less, preferably 1.5 μm or less. More preferably, the particle size of 80% by mass is 1 μm or less. When the average particle diameter is larger than 1 μm, or when the 90% by mass particle diameter is larger than 2 μm, there is a concern that the bulk density (ABD) of the catalyst may decrease or the shape of the catalyst may deteriorate. It becomes difficult to granulate catalyst particles having excellent wear properties, and it becomes difficult for the resulting catalyst to have the desired catalyst performance.
The particle diameter of the clay mineral can be measured by, for example, a laser diffraction particle size distribution measuring device.

本発明で用いる上記結晶構造特性を有する粘土鉱物は、走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が板状の結晶構造を有し、その平均積層数が1〜10である特性を有する。板状結晶の平均積層数が1〜10であるものは、強度、耐磨耗性に優れた触媒粒子を造粒することができる。より好ましいものは、六角板状の結晶構造を有し、平均積層数が1〜5のものである。また、板状結晶の平均積層数が1に近くなると、さらに摩耗強度が向上し、触媒成分のゼオライトや粘土鉱物以外の分解性マトリックス成分を増量することができるため、より一層好ましい。   The clay mineral having the above-described crystal structure characteristics used in the present invention has a plate-like crystal structure in the image measurement using a scanning electron microscope (SEM), and the average number of layers is 1 to 10. Has characteristics. Those having an average number of laminated plates of 1 to 10 can granulate catalyst particles having excellent strength and wear resistance. More preferred are those having a hexagonal plate-like crystal structure and an average number of layers of 1 to 5. Further, when the average number of plate-like crystals is close to 1, the wear strength is further improved, and the amount of decomposable matrix components other than zeolite and clay minerals as catalyst components can be increased, which is even more preferable.

また、本発明で用いる粘土鉱物は、好ましくは粒子径0.2〜0.8μmの範囲、さらに好ましくは0.2〜0.6μmの範囲に粒子数の最大ピーク(粒子径分布の最大ピーク)を有することが望ましい。粒子数の最大ピークが上記範囲内にあれば、本発明の所期の効果をより一層高度に達成することができる。   The clay mineral used in the present invention preferably has a maximum particle number peak (maximum peak of particle size distribution) in the range of 0.2 to 0.8 μm, more preferably 0.2 to 0.6 μm. It is desirable to have If the maximum peak of the number of particles is within the above range, the desired effect of the present invention can be achieved to a higher degree.

粘土鉱物には、モンモリロナイト、カオリン、ベントナイト、アタパルガイト、ボーキサイト、クオーツ(石英)、イライト、ベーマイト等各種あるが、本発明では、粘土鉱物として、上記粒子径分布特性及び結晶構造特性のいずれか一方又は両方の特性を有するものであれば、各種粘土鉱物のいずれか1種を単独で使用することも、複数種を混合して使用することもできる。中でも、カオリンもしくはカオリンを主成分とするものが好ましく使用される。また、必要に応じて、上記粒子径分布特性や結晶構造特性を有する粘土鉱物と、これらの特性を有しない粘土鉱物とを、本発明の所期の効果が得られる限りにおいて、混合して使用することもできる。   There are various types of clay minerals such as montmorillonite, kaolin, bentonite, attapulgite, bauxite, quartz (quartz), illite, boehmite, etc. In the present invention, as the clay mineral, either one of the above particle size distribution characteristics and crystal structure characteristics or Any one of various clay minerals can be used alone or a mixture of a plurality of types can be used as long as both properties are possessed. Of these, kaolin or those containing kaolin as a main component is preferably used. Further, if necessary, the clay mineral having the above particle size distribution characteristics and crystal structure characteristics and the clay mineral not having these characteristics are mixed and used as long as the desired effect of the present invention can be obtained. You can also

カオリン鉱物としては、カオリナイト(六角板状、Kaolinite−1A)、積層に乱れのあるカオリナイト(六角板状、Kaolinite−1Md)、ハロイサイト(針状)、ナクライト(六角板状、Kaolinite−1M)、ディッカイト(板状、Kaolinite−2M)等、各種X線回折(XRD)パターンを示すものが知られている。代表的なピークはKaolinite−1Aは2θ=約12、20、25°、Kaolinite−1Mdは2θ=約12、20、25°、Kaolinite−1Mは2θ=約12、20、21°、Kaolinite−2Mは2θ=約12、22、25°付近にそれぞれ観測される。本発明に使用するカオリン鉱物の構造や形状は、特に制限されるものではなく、前記カオリン鉱物のいずれのX線回折(XRD)パターンを示すもの、即ち、六角板状、針状、板状のいずれであってもよい。なかでも六角板状の結晶構造のものは、粒子形状が整いやすく、より強度、耐磨耗性に優れた触媒粒子を造粒できるので好ましい。さらに、Kaolinite−1MdのXRDパターンを示すものは、強度、耐磨耗性に優れた触媒粒子を造粒できるとともに、これを用いた触媒は特に高い分解活性を有し、ドライガス(水素、C1〜C2)、LPG、コークの生成量を低減し、かつFCCガソリン選択性が高くて高収率でFCCガソリンを製造でき、より一層好ましい。ここで、「1A」や「1Md」といった記号は、結晶のポリタイプ(多形)を示しており、Aは三斜(Asym/Triclinic)を、Mは単斜(monoclinic)を示し、また、記号の前の数字は、単位胞中に含む単位構造層の枚数を示す。
上記カオリン鉱物は下記に示す組成式で表される。
AlSiO(OH) (層間に水分子を有する場合はAlSiO(OH)・2HO)
As kaolin minerals, kaolinite (hexagonal plate shape, Kaolinite-1A), kaolinite with disordered stacking (hexagonal plate shape, Kaolinite-1Md), halloysite (needle shape), nacrite (hexagonal plate shape, Kaolinite-1M) In addition, those showing various X-ray diffraction (XRD) patterns such as Dickite (plate-like, Kaolinite-2M) are known. Typical peaks are: Kaolinite-1A 2θ = about 12, 20, 25 °, Kaolinite-1Md 2θ = about 12, 20, 25 °, Kaolinite-1M 2θ = about 12, 20, 21 °, Kaolinite-2M Are observed around 2θ = about 12, 22, and 25 °, respectively. The structure and shape of the kaolin mineral used in the present invention are not particularly limited, and the kaolin mineral exhibits any X-ray diffraction (XRD) pattern, that is, a hexagonal plate shape, a needle shape, or a plate shape. Either may be sufficient. Among them, a hexagonal plate-like crystal structure is preferable because the particle shape is easy to arrange and catalyst particles having higher strength and wear resistance can be granulated. Furthermore, those showing the XRD pattern of Kaolinite-1Md can granulate catalyst particles excellent in strength and abrasion resistance, and the catalyst using this has particularly high decomposition activity, and dry gas (hydrogen, C1 -C2), the amount of LPG and coke produced is reduced, and the FCC gasoline selectivity is high, and FCC gasoline can be produced in a high yield, which is even more preferable. Here, the symbols “1A” and “1Md” indicate the polytype (polymorphism) of the crystal, A indicates triclinic, M indicates monoclinic, and The number before the symbol indicates the number of unit structural layers included in the unit cell.
The kaolin mineral is represented by the composition formula shown below.
Al 2 SiO 5 (OH) 4 (Al 2 SiO 5 when with water molecules between the layers (OH) 4 · 2H 2 O )

本発明では、上記特定の粒子径特性や結晶構造特性を有する粘土鉱物を含有させることにより、炭化水素油の接触分解において、高い磨耗強度を有する接触分解用触媒を提供できるという優れた効果を得ることができる。
本発明でかかる優れた効果が得られる原因の詳細は必ずしも明らかではないが、上記特定の特性を有する粘土鉱物を含有することで、接触分解触媒内に好適な細孔径が形成されたことや、接触分解触媒内に強い結合力が形成されたことによると考えられる。また、粘土鉱物の積層数を減らすことで、結合力の強い2次粒子が形成し、触媒の摩耗強度が得られることが考えられる。
In the present invention, by including the clay mineral having the specific particle size characteristics and crystal structure characteristics described above, the catalytic cracking catalyst having high wear strength can be provided in the catalytic cracking of hydrocarbon oil. be able to.
The details of the reason why such excellent effects can be obtained in the present invention are not necessarily clear, but by containing a clay mineral having the above specific characteristics, a suitable pore diameter was formed in the catalytic cracking catalyst, This is considered to be due to the formation of a strong binding force in the catalytic cracking catalyst. Further, it is considered that by reducing the number of laminated clay minerals, secondary particles having a strong binding force are formed, and the wear strength of the catalyst can be obtained.

また、本発明の接触分解触媒のうち、粒子径特性を有する粘土鉱物を含有するものは、磨耗強度の向上に加え、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上し、FCCガソリンを効率良く高収率で得ることができる。一般に、FCCプロセスにおいては、その性質上、わずかでもドライガス、LPG、コークの生成量を低減することで、FCC装置にかかるコスト及び負担を減少させることができる。特にFCC装置を高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。さらに、一般にFCCガソリンは、市場に出荷するガソリンへの配合量が多いため、ガソリンの選択性の向上により生み出される利益は非常に大きい。
かかる優れた効果が得られる原因の詳細は必ずしも明らかではないが、炭化水素油と分解活性点との接触効率が向上したため、コークの生成量が低減し、かつガソリン選択性が向上して優れた効果が得られることによると考えられる。
Further, among the catalytic cracking catalysts of the present invention, those containing clay minerals having particle size characteristics have high cracking activity in addition to improved wear strength, and reduce the amount of dry gas, LPG and coke produced. In addition, the selectivity of gasoline fraction can be improved, and FCC gasoline can be obtained efficiently and in high yield. In general, in the FCC process, the cost and burden on the FCC apparatus can be reduced by reducing the generation amount of dry gas, LPG, and coke even slightly. In particular, when operating an FCC unit at a high operating rate, reducing the dry gas, LPG, and coke can provide room for the regeneration tower temperature and gas section, thus enabling more efficient system operation. Further, since FCC gasoline generally has a large blending amount with gasoline to be shipped to the market, the profit generated by improving the selectivity of gasoline is very large.
The details of the reason why such an excellent effect is obtained are not necessarily clear, but since the contact efficiency between the hydrocarbon oil and the cracking active point has been improved, the amount of coke produced is reduced, and the gasoline selectivity is improved. This is considered to be due to the effect.

(その他の成分)
本発明の触媒には、その他の成分として、シリカ、シリカ−アルミナ、アルミナ、擬ベーマイト、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解用触媒に使用される公知の無機酸化物の酸化物微粒子を含有させることもできる。これらも上記粘土鉱物と同様に、触媒のマトリックス成分として機能する。また、アルカリ土類や、マンガン、アンチモン、スズ等のメタル不活性化機能を持つ無機酸化物を含有させることもできる。
(Other ingredients)
In the catalyst of the present invention, as other components, ordinary catalytic cracking such as silica, silica-alumina, alumina, pseudoboehmite, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina, etc. It is also possible to contain oxide fine particles of a known inorganic oxide used for a catalyst for a catalyst. These also function as a matrix component of the catalyst in the same manner as the clay mineral. In addition, an alkaline earth or an inorganic oxide having a metal inactivating function such as manganese, antimony, tin, or the like can be contained.

<触媒の調製>
以上のような各成分から構成されている本発明の接触分解触媒を調製するには、種々の方法があり、その調製方法は特に制限されないが、例えば次のような手順で調製することができる。
先ず、上記の結晶性アルミノ珪酸塩、アルミナバインダー及び粘土鉱物を混合溶液中で攪拌混合し、均一な水性スラリーを得る。このときの結晶性アルミノ珪酸塩、アルミナバインダー、及び粘土鉱物の混合割合は、触媒乾燥基準で、結晶性アルミノ珪酸塩が20〜60質量%、好ましくは30〜50質量%、アルミナバインダーが5〜40質量%、好ましくは10〜20質量%、粘土鉱物が10〜75質量%、好ましくは30〜70質量%の範囲に入るようにする。
<Preparation of catalyst>
There are various methods for preparing the catalytic cracking catalyst of the present invention composed of the above components, and the preparation method is not particularly limited. For example, it can be prepared by the following procedure. .
First, the above crystalline aluminosilicate, alumina binder and clay mineral are stirred and mixed in a mixed solution to obtain a uniform aqueous slurry. At this time, the mixing ratio of the crystalline aluminosilicate, the alumina binder, and the clay mineral is 20 to 60% by mass of the crystalline aluminosilicate, preferably 30 to 50% by mass, and 5 to 5% of the alumina binder on the basis of catalyst drying. 40 mass%, preferably 10 to 20 mass%, and clay mineral is 10 to 75 mass%, preferably 30 to 70 mass%.

結晶性アルミノ珪酸塩の量が20質量%以上であれば、所期の分解活性を得ることができ、また、60質量%以下であれば、相対的に粘土鉱物やアルミナバインダーの量が少なくなりすぎて、次のような好ましくない現象が生じることを回避できる。即ち、粘土鉱物やアルミナバインダーの量が少なすぎると、触媒強度が低下するのみならず、触媒の嵩密度が小さくなり、装置の運転において好ましくない結果を生じる。   If the amount of crystalline aluminosilicate is 20% by mass or more, the desired decomposition activity can be obtained, and if it is 60% by mass or less, the amount of clay mineral and alumina binder is relatively reduced. Therefore, the following undesirable phenomenon can be avoided. That is, if the amount of the clay mineral or the alumina binder is too small, not only the catalyst strength is lowered, but also the bulk density of the catalyst is reduced, which produces an undesirable result in the operation of the apparatus.

また、アルミナバインダーの量が5質量%以上であれば、触媒の強度が保てるため、触媒の飛散、生成油中への混入等の好ましくない現象を回避でき、また、40質量%以下であれば、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。   Further, if the amount of the alumina binder is 5% by mass or more, the strength of the catalyst can be maintained, so that undesirable phenomena such as catalyst scattering and mixing in the produced oil can be avoided, and if it is 40% by mass or less. An improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.

さらにまた、粘土鉱物の量が10質量%以上であれば、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすことを回避でき、また、75質量%以下であれば、相対的に結晶性アルミノ珪酸塩やアルミナバインダーの量が少なくなり、結晶性アルミノ珪酸塩の量の不足により所期の高い分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となることを回避できる。そして、粘土鉱物の混合割合を上記範囲とすることが、高い磨耗強度を有する接触分解用触媒を提供できるという本発明の優れた効果を得る上で肝要である。さらに、上記範囲とすることで、高い分解活性を有し、分解生成物であるドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できる。   Furthermore, if the amount of the clay mineral is 10% by mass or more, the catalyst strength and the bulk density of the catalyst are small, and it can be avoided that the operation of the apparatus is hindered, and if it is 75% by mass or less, The amount of crystalline aluminosilicate and alumina binder is relatively small, the expected amount of decomposition activity cannot be obtained due to the insufficient amount of crystalline aluminosilicate, and the catalyst preparation due to the insufficient amount of binder. The difficulty can be avoided. And, it is important to obtain the excellent effect of the present invention that a catalyst for catalytic cracking having high wear strength can be provided when the mixing ratio of clay mineral is within the above range. Furthermore, by setting the above range, FCC gasoline can be efficiently increased by having high cracking activity, reducing the amount of cracked products such as dry gas, LPG and coke, and improving gasoline selectivity. It can be produced in a yield.

上記の各成分を混合して調製される水性スラリー中の固形分の割合は、約5〜60質量%、より好ましくは10〜50質量%が適している。固形分の割合がこの範囲であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、スラリーの粘度が高くなり過ぎて、スラリーの輸送が困難になることがない。   The ratio of the solid content in the aqueous slurry prepared by mixing the above components is about 5 to 60% by mass, more preferably 10 to 50% by mass. If the ratio of the solid content is within this range, the amount of water to be evaporated will be appropriate, and there will be no trouble in the spray drying process, etc., and the viscosity of the slurry will be too high, making it difficult to transport the slurry. There is no.

次いで、調製された結晶性アルミノ珪酸塩/アルミナバインダー/粘土鉱物の混合スラリーを通常噴霧乾燥し、触媒粒子を得る。噴霧乾燥工程は、一般に、噴霧乾燥装置を用い、ガス入口温度を約200〜400℃、ガス出口温度を約100〜200℃として行う。噴霧乾燥により得られる微小球体は、一般に、約20〜150μmの粒子径で、約10〜30質量%の水分含有量であることが好ましい。   Next, the prepared mixed slurry of crystalline aluminosilicate / alumina binder / clay mineral is usually spray-dried to obtain catalyst particles. The spray drying process is generally performed using a spray drying apparatus at a gas inlet temperature of about 200 to 400 ° C and a gas outlet temperature of about 100 to 200 ° C. In general, the microspheres obtained by spray drying preferably have a particle size of about 20 to 150 μm and a water content of about 10 to 30% by mass.

上記の水性スラリーを噴霧乾燥して得られた微小球体は、必要に応じて200℃以上で焼成し、焼成物とすることもでき、また、噴霧乾燥装置で水性スラリーの噴霧乾燥を行う際、ガス出口温度を200℃以上に保つことができる設備を備えている場合には、噴霧乾燥工程に微小球体の焼成工程を含めることも可能である。   The microspheres obtained by spray-drying the above aqueous slurry can be fired at 200 ° C. or higher as necessary to form a fired product, and when spray drying of the aqueous slurry with a spray drying device, When equipped with equipment capable of maintaining the gas outlet temperature at 200 ° C. or higher, it is possible to include a microsphere firing step in the spray drying step.

<触媒の洗浄>
上記のようにして得られた触媒の微小球体又はその焼成物は、通常、結晶性アルミノ珪酸塩、アルミナバインダー、粘土鉱物の各触媒成分からの可溶性不純物、ナトリウムやカリウム等のアルカリ金属等が含まれているため、水やアンモニア水を用いて可溶性不純物を洗浄除去し、次いでアルカリ金属をイオン交換することによって洗浄除去する。得られた微小球体やその焼成物に過剰のナトリウムやカリウムが存在しない場合は、その洗浄除去を行うことなく、そのまま触媒として用いることもできる。
<Catalyst cleaning>
The catalyst microspheres obtained as described above or the calcined product thereof usually contain crystalline aluminosilicate, alumina binder, soluble impurities from each catalyst component of clay mineral, alkali metals such as sodium and potassium, etc. Therefore, soluble impurities are washed away using water or aqueous ammonia, and then the alkali metal is washed away by ion exchange. When there is no excess sodium or potassium in the obtained microspheres or the fired product thereof, they can be used as a catalyst without being washed away.

上記のナトリウムやカリウム等のアルカリ金属の洗浄除去は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液を用いてイオン交換して行うことができる。   Specifically, the washing and removal of alkali metals such as sodium and potassium are specifically ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, and phosphoric acid. Ions using aqueous solutions of ammonium salts such as ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate Can be exchanged.

上記洗浄に続いて、この微小球体又はその焼成物を約100〜500℃の温度で再度乾燥し、水分含有量を約1〜25質量%にして、本発明に係る接触分解触媒が得られる。   Subsequent to the above washing, the microspheres or the fired product thereof is dried again at a temperature of about 100 to 500 ° C. to make the water content about 1 to 25% by mass, and the catalytic cracking catalyst according to the present invention is obtained.

<接触分解方法>
本発明において、炭化水素油を接触分解するには、ガソリンの沸点範囲200℃以上で沸騰する炭化水素油(炭化水素混合物)を、上記本発明の接触分解触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素混合物とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や、常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、脱剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油、GTL(Gas to Liquids)油、植物油、廃潤滑油、廃食油をも包括するものである。
<Catalytic decomposition method>
In the present invention, in order to catalytically crack hydrocarbon oil, hydrocarbon oil (hydrocarbon mixture) boiling in a boiling range of gasoline of 200 ° C. or higher may be brought into contact with the catalytic cracking catalyst of the present invention. The hydrocarbon mixture boiling above the gasoline boiling range means light oil fraction obtained by normal pressure or vacuum distillation of crude oil, atmospheric distillation residue oil and vacuum distillation residue oil, of course coker gas oil, solvent denitrification It includes oil, dehumidified and deasphalted asphalt, tar sand oil, shale oil oil, coal liquefied oil, GTL (Gas to Liquids) oil, vegetable oil, waste lubricating oil, and waste cooking oil.

商業的規模での接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明のFCC触媒を連続的に流動循環させて行う。即ち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活したFCC触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した使用済みのFCC触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物はドライガス、LPG、ガソリン留分、中間留分、及び重質サイクル油(HCO)又はスラリー油のような1種類以上の重質留分に分離する。もちろん、これらの重質留分を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。   In the catalytic cracking on a commercial scale, the above-described FCC catalyst of the present invention is usually continuously fluidized and circulated in a catalytic cracking apparatus composed of two kinds of containers, a vertically installed cracking reactor and a catalyst regenerator. Do it. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed and guided in the upward direction in the cracking reactor. As a result, the FCC catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The spent FCC catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is recycled to the cracking reactor. On the other hand, the cracked product separates into dry gas, LPG, gasoline fraction, middle distillate, and one or more heavy fractions such as heavy cycle oil (HCO) or slurry oil. Of course, these heavy fractions can be recycled into the cracking reactor to further proceed the cracking reaction.

上記の接触分解におけるクラッキング反応器の運転条件としては、圧力が常圧〜5kg/cm、温度が約400〜600℃、好ましくは約450〜550℃、触媒/原料炭化水素油の重量比が約2〜20、好ましくは約4〜15とすることが適している。 The operating conditions of the cracking reactor in the catalytic cracking are as follows: the pressure is normal pressure to 5 kg / cm 2 , the temperature is about 400 to 600 ° C., preferably about 450 to 550 ° C., and the weight ratio of catalyst / raw hydrocarbon oil is It is suitable to be about 2-20, preferably about 4-15.

反応温度が400℃以上であれば、原料炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができて経済的である。   If reaction temperature is 400 degreeC or more, the decomposition reaction of raw material hydrocarbon oil will advance suitably, and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, the amount of light gas production | generations, such as dry gas and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object can be increased relatively, and it is economical. .

圧力が5kg/cm以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の重量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを防ぐことができる。 If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the weight ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. On the other hand, if it is 20 or less, the effect of increasing the catalyst concentration is saturated, and it is possible to prevent disadvantages without obtaining an effect commensurate with increasing the catalyst concentration.

以下、本発明を実施例、比較例により具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this is only an illustration and does not restrict | limit this invention.

〔分析機器、分析条件等〕
実施例、比較例で得た各触媒や使用粘土鉱物の分析に使用した機器、計算式等は次のとおりである。
・組成分析(ICP):Thermo Jarrell Ash社製 “IRIS Advantage”
・比表面積(SA)及び細孔容積(PV):日本ベル株式会社製“BELSORP28SA” (高精度全自動ガス吸着装置)
・粘土鉱物の粒子径:島津製作所社製 “SALD−2100”(レーザー回折式粒度分布測定装置)
[Analytical equipment, analysis conditions, etc.]
The equipment and calculation formulas used in the analysis of each catalyst and clay mineral used in Examples and Comparative Examples are as follows.
Composition analysis (ICP): “IRIS Advantage” manufactured by Thermo Jarrel Ash
Specific surface area (SA) and pore volume (PV): “BELSORP28SA” manufactured by Nippon Bell Co., Ltd. (High-precision fully automatic gas adsorption device)
-Particle size of clay mineral: “SALD-2100” (laser diffraction particle size distribution analyzer) manufactured by Shimadzu Corporation

・走査型電子顕微鏡(SEM):日本電子社製電界放射走査型電子顕微鏡“JSM−6340F”
試料調製:粘土鉱物試料を導電性の両面テープを用いて試料台に固定した後、Auを約200Åコーティングし観察用試料を調製した。
分析方法:SEM(加速電圧:5KV)による2次電子像の撮影。
積層数の算出方法:撮影倍率5000倍以上(積層数が解析できる倍率)において異なるロケーションの画像数十枚を撮影し、各画像に写る粒子合計100個分の積層数を算出し、積層数の分布及び平均積層数を求めた。
Scanning electron microscope (SEM): Field emission scanning electron microscope “JSM-6340F” manufactured by JEOL Ltd.
Sample preparation: A clay mineral sample was fixed to a sample table using a conductive double-sided tape, and then coated with about 200 mm of Au to prepare a sample for observation.
Analysis method: Taking a secondary electron image by SEM (acceleration voltage: 5 KV).
Method for calculating the number of layers: Shooting dozens of images at different locations at an imaging magnification of 5000 times or more (a magnification at which the number of layers can be analyzed), calculating the number of layers for a total of 100 particles in each image, Distribution and average number of layers were determined.

・XRD機器:理学電機株式会社製“RINT2500V”
* 前処理:粘土鉱物試料を100℃で24時間乾燥してから以下の条件で測定した。
管電圧:50kv
管電流:200mA
走査モード:連続
スキャンスピード:2°/min
スキャンステップ:0.02°
測定範囲(2θ):5〜90°
発散,散乱スリット:1°
受光スリット:0.3mm
・ XRD * Equipment: “RINT2500V” manufactured by Rigaku Corporation
* Pretreatment: Clay mineral samples were dried at 100 ° C. for 24 hours and then measured under the following conditions.
Tube voltage: 50 kv
Tube current: 200 mA
Scanning mode: Continuous Scanning speed: 2 ° / min
Scan step: 0.02 °
Measurement range (2θ): 5 to 90 °
Divergence, scattering slit: 1 °
Receiving slit: 0.3mm

〔触媒の調製〕
実施例1(触媒Aの調製)
アルミナゾル120gに蒸留水75gを加え、Al濃度15質量%のアルミナゾル水溶液を調製した。このアルミナゾル水溶液に、表2の性状を有し、図1のXRDパターンおよび図7、8の粒子径分布を示すカオリン鉱物(a)(Thiele Kaolin Company社製 “KAOFINE90”)を120g(乾燥基準)加え、5分間混合した。その後、表1の性状を有する安定化Y型ゼオライト69g(乾燥基準)に蒸留水125gを加えて調製したゼオライトスラリーを加えた後、10分間混合し、混合スラリーを得た。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。この触媒前駆体をマッフル炉で、250℃で1時間焼成した後、pH=5となるようにアンモニア水を加えていき、次いで60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、触媒Aを得た。
(Preparation of catalyst)
Example 1 (Preparation of catalyst A)
Distilled water 75 g was added to 120 g of alumina sol to prepare an alumina sol aqueous solution having an Al 2 O 3 concentration of 15% by mass. 120 g of kaolin mineral (a) (“KAOFINE90” manufactured by Thiele Kaolin Company) having the properties shown in Table 2 and having the particle size distributions shown in FIGS. Added and mixed for 5 minutes. Then, after adding a zeolite slurry prepared by adding 125 g of distilled water to 69 g of a stabilized Y-type zeolite having the properties shown in Table 1 (dry basis), the mixture was mixed for 10 minutes to obtain a mixed slurry.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. After calcining this catalyst precursor in a muffle furnace at 250 ° C. for 1 hour, ammonia water was added so that pH = 5, and then ion-exchanged twice with 3 L of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. Further, it was washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst A was obtained.

実施例2(触媒Bの調製)
表2の性状を有し、図2のXRDパターン及び図7、8の細孔分布と、走査型電子顕微鏡(SEM)を用いた画像測定において図9の結晶形状及び図13、14の積層数分布を示す粘土鉱物(b)(Thiele Kaolin Company社製 “KAOFINE”)を使用したこと以外は、実施例1と同様にして、触媒Bを得た。
Example 2 (Preparation of catalyst B)
The properties shown in Table 2, the XRD pattern in FIG. 2, the pore distribution in FIGS. 7 and 8, and the crystal shape in FIG. 9 and the number of layers in FIGS. 13 and 14 in image measurement using a scanning electron microscope (SEM). Catalyst B was obtained in the same manner as in Example 1 except that clay mineral (b) showing a distribution (“KAOFINE” manufactured by Thiele Kaolin Company) was used.

実施例3(触媒Cの調製)
表2の性状を有し、図3のXRDパターンと、走査型電子顕微鏡(SEM)を用いた画像測定において図10の結晶形状を示す粘土鉱物(c)を使用したこと以外は、実施例1と同様にして、触媒Cを得た。
Example 3 (Preparation of catalyst C)
Example 1 except that the clay mineral (c) having the properties of Table 2 and having the XRD pattern of FIG. 3 and the crystal shape of FIG. 10 was used in image measurement using a scanning electron microscope (SEM). In the same manner as above, Catalyst C was obtained.

実施例4(触媒Dの調製)
表2の性状を有し、図4のXRDパターンを示す粘土鉱物(d)(稲垣工業社製 “NZ・UF”)を使用したこと以外は、実施例1と同様にして、触媒Dを得た。
Example 4 (Preparation of catalyst D)
Catalyst D was obtained in the same manner as in Example 1 except that the clay mineral (d) having the properties shown in Table 2 and showing the XRD pattern of FIG. 4 (“NZ · UF” manufactured by Inagaki Kogyo Co., Ltd.) was used. It was.

実施例5(触媒Eの調製)
表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図11の結晶形状を示す粘土鉱物(e)(イメリス社製 “CapimDG”)を使用したこと以外は、実施例1と同様にして、触媒Eを得た。
Example 5 (Preparation of catalyst E)
Except for using the clay mineral (e) ("CapimDG" manufactured by Imeris) having the properties shown in Table 2 and showing the crystal shape of Fig. 11 in image measurement using a scanning electron microscope (SEM). In the same manner as in Example 1, Catalyst E was obtained.

比較例1(触媒Fの調製)
表2の性状を有し、図5のXRDパターン及び図7、8の粒子径分布を示す粘土鉱物(f)を使用したこと以外は、実施例1と同様にして、触媒Fを得た。
Comparative Example 1 (Preparation of catalyst F)
Catalyst F was obtained in the same manner as in Example 1 except that the clay mineral (f) having the properties shown in Table 2 and having the XRD pattern of FIG. 5 and the particle size distributions of FIGS.

比較例2(触媒Gの調製)
表2の性状を有し、図6のXRDパターンを示す粘土鉱物(g)を使用したこと以外は、実施例1と同様にして、触媒Gを得た。
Comparative Example 2 (Preparation of catalyst G)
Catalyst G was obtained in the same manner as in Example 1 except that a clay mineral (g) having the properties shown in Table 2 and showing the XRD pattern of FIG. 6 was used.

比較例3(触媒Hの調製)
表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図12の結晶形状と、図13、14の積層数分布を示す粘土鉱物(h)を使用したこと以外は、実施例1と同様にして、触媒Hを得た。
Comparative Example 3 (Preparation of catalyst H)
Except for having the properties of Table 2 and using the clay mineral (h) showing the crystal shape of FIG. 12 and the distribution of the number of layers of FIGS. 13 and 14 in image measurement using a scanning electron microscope (SEM), Catalyst H was obtained in the same manner as in Example 1.

〔触媒組成〕
上記の実施例及び比較例で得た触媒の組成を表3に纏めて示す。
[Catalyst composition]
Table 3 summarizes the compositions of the catalysts obtained in the above Examples and Comparative Examples.

〔磨耗強度評価〕
実施例及び比較例で得た各触媒について、磨耗強度測定装置(触媒化成技報 Vol.13 No.1(1996)に記載の条件をもとに自社設計した装置)を用いて、同一測定条件のもと、次のようにして磨耗特性を試験した。即ち、前処理として、各触媒について、500℃×5時間の焼成処理を行った後に、触媒試料45g(乾燥基準)、添加水5gの条件で磨耗強度を測定した。測定においては、触媒管の流速を0.104m/secになるように、窒素供給量を調整し、測定開始から12時間までに飛散した微粒子の量を初期磨耗量(Initial Fines)とし、12〜42時間までに飛散した微粒子の量を平均磨耗量(Average Attririon Rate)とし、42時間測定を行った。その結果算出された磨耗量を表4にそれぞれ示す。
(Abrasion strength evaluation)
About each catalyst obtained by the Example and the comparative example, it is the same measurement conditions using the abrasion strength measuring apparatus (The apparatus designed in-house based on the conditions described in the catalyst conversion technical report Vol.13 No.1 (1996)). The wear characteristics were tested as follows. That is, as a pretreatment, each catalyst was subjected to a calcination treatment at 500 ° C. for 5 hours, and then the wear strength was measured under the conditions of 45 g of catalyst sample (dry basis) and 5 g of added water. In the measurement, the nitrogen supply amount was adjusted so that the flow rate of the catalyst tube was 0.104 m / sec, and the amount of fine particles scattered within 12 hours from the start of measurement was defined as the initial wear amount (Initial Fines). The amount of fine particles scattered up to 42 hours was defined as the average amount of abrasion (Average Attrition Rate), and measurements were performed for 42 hours. Table 4 shows the wear amounts calculated as a result.

比較例1〜3で得られた触媒F〜Hは、初期磨耗量、平均磨耗量が多く、即ち触媒強度が低いため、炭化水素油の接触分解反応において、装置運用にかかるコストや負担を考慮すると不利である。
これに対して、本発明の実施例1〜5で得られた触媒A〜Eは、初期磨耗量、特に平均磨耗量が少なく磨耗強度が高いので、接触分解反応において磨耗による触媒ロスを低減できるだけでなく、装置エロージョンや精留塔の不具合を回避することができてメリットが大きい。実施例1と比較例1,2との対比から、粘土鉱物の粒子径が本願発明の範囲内であってその値が小さいほど耐磨耗性が高いことが分かった。また実施例1と実施例4との対比から、粘土鉱物の粒子径性状が同程度であれば、結晶形状が六角板状である実施例1の方がより磨耗強度が向上することが分かった。実施例2、3、5、比較例3の対比から、粘土鉱物の粒子径が小さく、SEM分析結果の平均積層数が少ないほど耐磨耗性が向上することが確認できた。
Since the catalysts F to H obtained in Comparative Examples 1 to 3 have a large initial wear amount and a large average wear amount, that is, the catalyst strength is low, the cost and burden for operation of the apparatus are considered in the catalytic cracking reaction of hydrocarbon oil. Then it is disadvantageous.
On the other hand, since the catalysts A to E obtained in Examples 1 to 5 of the present invention have a low initial wear amount, particularly an average wear amount and a high wear strength, the catalyst loss due to wear can be reduced in the catalytic cracking reaction. In addition, it is possible to avoid problems with the device erosion and the rectification tower, which is very advantageous. From the comparison between Example 1 and Comparative Examples 1 and 2, it was found that the particle size of the clay mineral is within the range of the present invention and the smaller the value, the higher the wear resistance. Further, from comparison between Example 1 and Example 4, it was found that if the particle size property of the clay mineral is approximately the same, Example 1 in which the crystal shape is a hexagonal plate shape improves the wear strength more. . From the comparison between Examples 2, 3, 5 and Comparative Example 3, it was confirmed that the wear resistance was improved as the particle diameter of the clay mineral was smaller and the average number of layers in the SEM analysis result was smaller.

〔触媒活性評価〕
実施例1〜4及び比較例1および2で得た各触媒について、沸騰床マイクロ活性試験装置(KAYSER TECHNOLOGY社製 ACE−Model R+)を用いて、同一原料油、同一測定条件のもと、接触分解特性を試験した。なお、試験に先立ち、上記触媒について、実際の使用状況に近似させるべく、即ち平衡化させるべく以下の模擬平衡化処理(強制劣化処理)を行った。まず、各触媒を室温から600℃まで30分間で昇温し、600℃にて2時間保持して乾燥した後、ニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させた。次いで100℃で乾燥し、しかる後600℃まで30分間で昇温し、600℃で2時間保持して焼成を行い、さらに、各触媒を、流動状態で、空気雰囲気下で室温から800℃まで90分間で昇温し、800℃に到達後、100%スチーム雰囲気に切替え、6時間処理した。
[Evaluation of catalyst activity]
About each catalyst obtained in Examples 1 to 4 and Comparative Examples 1 and 2, using a boiling bed microactivity test apparatus (ACE-Model R + manufactured by KAYSER TECHNOLOGY), under the same feedstock and the same measurement conditions, The catalytic cracking properties were tested. Prior to the test, the following simulated equilibration process (forced deterioration process) was performed on the catalyst in order to approximate the actual usage, that is, to equilibrate. First, each catalyst was heated from room temperature to 600 ° C. over 30 minutes, kept at 600 ° C. for 2 hours and dried, and then nickel naphthenate so that nickel and vanadium were 1000 ppm by mass and 2000 ppm by mass, A cyclohexane solution containing vanadium naphthenate was absorbed. Next, it is dried at 100 ° C., then heated up to 600 ° C. over 30 minutes, held at 600 ° C. for 2 hours and calcined, and each catalyst is allowed to flow from room temperature to 800 ° C. in an air atmosphere. The temperature was raised in 90 minutes, and after reaching 800 ° C., the atmosphere was switched to a 100% steam atmosphere and treated for 6 hours.

上記平衡化処理した触媒を用い、また、原料油として表5に性状を示す炭化水素油(脱硫減圧軽油(VGO)50容量%+脱流残油(DDSP)50容量%)を使用し、沸騰床マイクロ活性試験装置にて、触媒活性評価試験を行った。その際、反応温度510℃、反応時間75〜150秒、触媒/炭化水素油比(質量比)3.0、4.0、5.0、6.0とした。その試験結果をグラフ化し、このグラフ(図示省略)から転化率が60質量%となる触媒/炭化水素油比(質量比)を回帰計算により算出した。ここで、転化率とは100−中間留分(質量%)−重質留分(質量%)である。さらに、回帰計算により転化率60質量%の時の算出されたFCC生成油の組成を表6にそれぞれ示す。   Using the above equilibrated catalyst and boiling hydrocarbon oil (desulfurized vacuum gas oil (VGO) 50 vol% + desulfurized residual oil (DDSP) 50 vol%) as shown in Table 5 as the feedstock A catalytic activity evaluation test was performed using a floor microactivity test apparatus. At that time, the reaction temperature was 510 ° C., the reaction time was 75 to 150 seconds, and the catalyst / hydrocarbon oil ratio (mass ratio) was 3.0, 4.0, 5.0, 6.0. The test results were graphed, and from this graph (not shown), the catalyst / hydrocarbon oil ratio (mass ratio) at which the conversion was 60% by mass was calculated by regression calculation. Here, the conversion rate is 100-middle fraction (mass%)-heavy fraction (mass%). Furthermore, Table 6 shows the compositions of the FCC-generated oil calculated by the regression calculation when the conversion is 60% by mass.

比較例1および2で得られた触媒F、Gは、FCCガソリンの収率が低く、ドライガス、LPG及びコーク量が多いため、接触分解反応において、装置にかかるコストや負担を考慮すると不利である。
しかしながら、本発明に従った実施例1〜4で得られた触媒A〜Dは、ドライガス、コーク、LPGの生成量を低減させ、FCCガソリンを高収率で得ることができる。
Catalysts F and G obtained in Comparative Examples 1 and 2 have a low FCC gasoline yield and a large amount of dry gas, LPG, and coke, which is disadvantageous when considering the cost and burden on the apparatus in the catalytic cracking reaction. is there.
However, the catalysts A to D obtained in Examples 1 to 4 according to the present invention can reduce the generation amount of dry gas, coke and LPG, and can obtain FCC gasoline in high yield.

特にFCCを高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。また、FCCガソリンは、市場に出荷されるガソリンへの配合量が多いため、FCCガソリンを若干でも高収率で得ることができれば、経済的なメリットが大きい。   In particular, when operating FCC at a high operating rate, reducing the dry gas, LPG, and coke allows more room for the regeneration tower and the gas section, thus enabling more efficient equipment operation. In addition, since FCC gasoline has a large blending amount with gasoline shipped to the market, if FCC gasoline can be obtained even in a slightly high yield, there is a great economic merit.

実施例1で用いた粘土鉱物(a)のXRDパターンである。It is an XRD pattern of the clay mineral (a) used in Example 1. 実施例2で用いた粘土鉱物(b)のXRDパターンである。It is an XRD pattern of the clay mineral (b) used in Example 2. 実施例3で用いた粘土鉱物(c)のXRDパターンである。It is an XRD pattern of the clay mineral (c) used in Example 3. 実施例4で用いた粘土鉱物(d)のXRDパターンである。It is an XRD pattern of the clay mineral (d) used in Example 4. 比較例1で用いた粘土鉱物(f)のXRDパターンである。It is an XRD pattern of the clay mineral (f) used in Comparative Example 1. 比較例2で用いた粘土鉱物(g)のXRDパターンである。It is an XRD pattern of the clay mineral (g) used in Comparative Example 2. 実施例1、2、比較例1で用いた粘土鉱物(a)、(b)および(f)の粒子径分布図である。It is a particle size distribution map of clay minerals (a), (b) and (f) used in Examples 1 and 2 and Comparative Example 1. 実施例1、2、比較例1で用いた粘土鉱物(a)、(b)および(f)の粒子径分布(積算値)図である。It is a particle diameter distribution (integrated value) figure of the clay minerals (a), (b), and (f) used in Examples 1 and 2 and Comparative Example 1. 実施例2で用いた粘土鉱物(b)を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (b) used in Example 2 with the scanning electron microscope (SEM). 実施例3で用いた粘土鉱物(c)を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (c) used in Example 3 with the scanning electron microscope (SEM). 実施例5で用いた粘土鉱物(e)を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (e) used in Example 5 with the scanning electron microscope (SEM). 比較例3で用いた粘土鉱物(h)を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (h) used in the comparative example 3 with the scanning electron microscope (SEM). 実施例2及び比較例3で用いた粘土鉱物(b)及び(h)の積層数分布図である。It is a number distribution map of the clay minerals (b) and (h) used in Example 2 and Comparative Example 3. 実施例2及び比較例3で用いた粘土鉱物(b)及び(h)の積層数分布(積算値)図である。It is a lamination number distribution (integrated value) figure of the clay minerals (b) and (h) used in Example 2 and Comparative Example 3.

Claims (8)

粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜60質量%、アルミナバインダーを5〜40質量%含有してなり、かつ前記粘土鉱物の平均粒子径が1μm以下で、90質量%の粒子径が2μm以下であることを特徴とする炭化水素油の接触分解触媒。   10 to 75% by mass of clay mineral, 20 to 60% by mass of crystalline aluminosilicate, 5 to 40% by mass of alumina binder, and the clay mineral has an average particle diameter of 1 μm or less and 90% by mass. Hydrocarbon oil catalytic cracking catalyst characterized by having a particle size of 2 μm or less. 前記粘土鉱物が、粒子径0.2〜0.8μmの範囲に粒子数の最大ピークを有することを特徴とする請求項1に記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to claim 1, wherein the clay mineral has a maximum peak in the number of particles in a particle diameter range of 0.2 to 0.8 µm. 前記粘土鉱物が、カオリン鉱物であることを特徴とする請求項1又は2に記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to claim 1 or 2, wherein the clay mineral is a kaolin mineral. 走査型電子顕微鏡を用いた画像測定において、結晶粒子が板状の結晶構造を有し、その平均積層数が1〜10である粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜50質量%、アルミナバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。   In image measurement using a scanning electron microscope, the crystal particles have a plate-like crystal structure, the clay mineral having an average number of layers of 1 to 10 is 10 to 75% by mass, and the crystalline aluminosilicate is 20 to 20%. A catalytic cracking catalyst for hydrocarbon oil, comprising 50% by mass and 5 to 40% by mass of an alumina binder. 前記粘土鉱物が、平均粒子径が1μm以下で、90質量%の粒子径が2μm以下であることを特徴とする請求項4に記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to claim 4, wherein the clay mineral has an average particle size of 1 µm or less and a 90 mass% particle size of 2 µm or less. 前記粘土鉱物が、粒子径0.2〜0.8μmの範囲に粒子数の最大ピークを有することを特徴とする請求項4又は5に記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to claim 4 or 5, wherein the clay mineral has a maximum peak in the number of particles in a particle diameter range of 0.2 to 0.8 µm. 前記粘土鉱物が、カオリン鉱物であることを特徴とする請求項4〜6のいずれかに記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to any one of claims 4 to 6, wherein the clay mineral is a kaolin mineral. 炭化水素油を接触分解するに当たり、請求項1〜7のいずれかに記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。   A method for catalytic cracking of hydrocarbon oil, wherein the catalytic cracking catalyst according to any one of claims 1 to 7 is used for catalytic cracking of hydrocarbon oil.
JP2007010420A 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Active JP4916321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010420A JP4916321B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010420A JP4916321B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2008173583A true JP2008173583A (en) 2008-07-31
JP4916321B2 JP4916321B2 (en) 2012-04-11

Family

ID=39701016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010420A Active JP4916321B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4916321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173582A (en) * 2007-01-19 2008-07-31 Petroleum Energy Center Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it
JP2008200580A (en) * 2007-02-19 2008-09-04 Petroleum Energy Center Catalyst for catalytic cracking hydrocarbon oil and method for catalytic cracking hydrocarbon oil by using the same
JP2016155960A (en) * 2015-02-25 2016-09-01 出光興産株式会社 Fluid catalytic cracking apparatus and catalytic cracking method of stock oil using the apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111445A (en) * 1988-09-06 1990-04-24 Petroleo Brasileiro Sa Kaolin-containing fluidized cracking catalyst
JPH11300208A (en) * 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd Catalytically cracking catalyst
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP2008525185A (en) * 2004-12-28 2008-07-17 中國石油化工股▲フン▼有限公司 Catalyst and method for cracking hydrocarbons
JP2008173582A (en) * 2007-01-19 2008-07-31 Petroleum Energy Center Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it
JP2008200580A (en) * 2007-02-19 2008-09-04 Petroleum Energy Center Catalyst for catalytic cracking hydrocarbon oil and method for catalytic cracking hydrocarbon oil by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111445A (en) * 1988-09-06 1990-04-24 Petroleo Brasileiro Sa Kaolin-containing fluidized cracking catalyst
JPH11300208A (en) * 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd Catalytically cracking catalyst
JP2008525185A (en) * 2004-12-28 2008-07-17 中國石油化工股▲フン▼有限公司 Catalyst and method for cracking hydrocarbons
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP2008173582A (en) * 2007-01-19 2008-07-31 Petroleum Energy Center Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it
JP2008200580A (en) * 2007-02-19 2008-09-04 Petroleum Energy Center Catalyst for catalytic cracking hydrocarbon oil and method for catalytic cracking hydrocarbon oil by using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173582A (en) * 2007-01-19 2008-07-31 Petroleum Energy Center Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it
JP2008200580A (en) * 2007-02-19 2008-09-04 Petroleum Energy Center Catalyst for catalytic cracking hydrocarbon oil and method for catalytic cracking hydrocarbon oil by using the same
JP2016155960A (en) * 2015-02-25 2016-09-01 出光興産株式会社 Fluid catalytic cracking apparatus and catalytic cracking method of stock oil using the apparatus

Also Published As

Publication number Publication date
JP4916321B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5911446B2 (en) Method for producing catalytic cracking catalyst of hydrocarbon oil
JP5392150B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP5126613B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP5904922B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP4689472B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5660674B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same
JP4818135B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916321B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818157B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818156B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445781B2 (en) Method for producing catalytic cracking catalyst
JP4818136B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP6327709B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689577B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689576B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP2012061410A (en) Method for manufacturing catalytic cracking catalyst
JP6632065B2 (en) Catalytic cracking catalyst for hydrocarbon oil, method for producing catalytic cracking catalyst for hydrocarbon oil, and catalytic cracking method for hydrocarbon oil
JP5258281B2 (en) Catalyst composition for catalytic cracking of hydrocarbon and process for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250