JP4689577B2 - Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst - Google Patents

Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Download PDF

Info

Publication number
JP4689577B2
JP4689577B2 JP2006288791A JP2006288791A JP4689577B2 JP 4689577 B2 JP4689577 B2 JP 4689577B2 JP 2006288791 A JP2006288791 A JP 2006288791A JP 2006288791 A JP2006288791 A JP 2006288791A JP 4689577 B2 JP4689577 B2 JP 4689577B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
hydrocarbon oil
clay mineral
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006288791A
Other languages
Japanese (ja)
Other versions
JP2008104926A (en
Inventor
純也 濱野
忠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2006288791A priority Critical patent/JP4689577B2/en
Publication of JP2008104926A publication Critical patent/JP2008104926A/en
Application granted granted Critical
Publication of JP4689577B2 publication Critical patent/JP4689577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)と、それを用いる炭化水素油の接触分解方法に関し、さらに詳しくは、コーク生成を低減させ、なおかつ得られるガソリン留分(以下「FCCガソリン」と記すこともある)の収率を向上させることができる炭化水素油の接触分解触媒と、それを用いる炭化水素油の接触分解方法に関する。   TECHNICAL FIELD The present invention relates to a catalytic cracking catalyst for hydrocarbon oil (hereinafter sometimes referred to as “FCC catalyst”) and a catalytic cracking method for hydrocarbon oil using the same, and more particularly, to reduce coke formation and obtain the same. The present invention relates to a hydrocarbon oil catalytic cracking catalyst capable of improving the yield of a gasoline fraction (hereinafter sometimes referred to as “FCC gasoline”), and a hydrocarbon oil catalytic cracking method using the catalyst.

重質炭化水素油の接触分解は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、水素・コーク、液化石油ガス(LiquidPetroleum Gas:LPG)、軽質留分(LightCycle Oil :LCO)、重質留分(HeavyCycle Oil :HCO)が生産される。効率的にFCCガソリンを製造するためには、触媒の分解活性が高く、またガソリン収率が高く、さらには重質留分の選択性が低いことが望ましい。   Catalytic cracking of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking. When producing FCC gasoline, As by-products, hydrogen coke, liquefied petroleum gas (Liquid Petroleum Gas: LPG), light fraction (Light Cycle Oil: LCO), and heavy fraction (Heavy Cycle Oil: HCO) are produced. In order to efficiently produce FCC gasoline, it is desirable that the cracking activity of the catalyst is high, the gasoline yield is high, and the selectivity of the heavy fraction is low.

また、自動車用ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することにより製造されており、特に重質な炭化水素油の接触分解から得られるFCCガソリンは、ガソリンへの配合量も多いため、FCCガソリン収率を向上させることは当業者にとって望ましい。
しかし、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分である結晶性アルミノ珪酸塩の構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリンの選択性を低下させるなどの問題を有している。
In addition, gasoline for automobiles is manufactured by mixing a plurality of gasoline base materials obtained in the refining process of crude oil. FCC gasoline obtained from catalytic cracking of heavy hydrocarbon oils is blended with gasoline. Because of the large amount, it is desirable for those skilled in the art to improve FCC gasoline yield.
However, in the catalytic cracking method for hydrocarbon oils, with the recent increase in crude oil grades and grades, heavy metals such as vanadium and nickel and feedstocks with high residual carbon content must be put into the fluid catalytic cracking unit. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the crystalline aluminosilicate that is the active component of the FCC catalyst, causing a significant decrease in the activity of the catalyst and increasing the production of hydrogen and coke. It is known to have problems such as lowering the selectivity. Nickel is also deposited and deposited on the catalyst surface, and has a problem of increasing the amount of hydrogen and coke produced to promote the dehydrogenation reaction and lowering the selectivity of gasoline.

従来から、炭化水素油の接触分解には、ゼオライト、粘土鉱物などの無機酸化物マトリックス及びバインダーからなる接触分解触媒が良く用いられている(例えば、特許文献1〜3参照)。しかし、従来の接触分解触媒では、上記のように近年の原油の重質化・低品位化に伴い、コークの生成量の増大や、ガソリンの選択性の低下などが問題となっており、接触分解触媒のコークの生成量の低減や、ガソリンの選択性の向上などが強く望まれている。
特開平8−57328号公報 特開平9−285728号公報 特開平10−118501号公報
Conventionally, a catalytic cracking catalyst comprising an inorganic oxide matrix such as zeolite or clay mineral and a binder is often used for catalytic cracking of hydrocarbon oil (see, for example, Patent Documents 1 to 3). However, with conventional catalytic cracking catalysts, as described above, with the recent increase in the weight and quality of crude oil, there are problems such as an increase in coke production and a decrease in gasoline selectivity. There is a strong demand for reducing the amount of cracked catalyst coke produced and improving gasoline selectivity.
JP-A-8-57328 JP-A-9-285728 Japanese Patent Laid-Open No. 10-118501

以上の諸状況に鑑み、本発明は、炭化水素油の接触分解において、重質留分の分解性を向上させると同時にコークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できる接触分解触媒を提供することを目的とする。   In view of the above circumstances, in the catalytic cracking of hydrocarbon oil, the present invention improves the decomposability of heavy fractions, reduces the amount of coke produced, and improves the selectivity of gasoline. An object of the present invention is to provide a catalytic cracking catalyst that can produce gasoline efficiently and in high yield.

本発明者らは、上記の目的を達成するために検討を重ねた結果、特定のX線回折(XRD)パターンを単独で示す粘土鉱物を用いたFCC触媒であれば、炭化水素油の接触分解反応において、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できることを見出し、本発明を完成させるに至った。   As a result of repeated investigations to achieve the above object, the inventors of the present invention have achieved catalytic cracking of hydrocarbon oils in the case of an FCC catalyst using a clay mineral that exhibits a specific X-ray diffraction (XRD) pattern alone. In the reaction, the present inventors have found that FCC gasoline can be produced efficiently and in high yield by reducing the amount of coke produced and improving the selectivity of gasoline, thereby completing the present invention.

即ち、本発明は、次の炭化水素油の接触分解触媒を提供する。
(1)X線回折(XRD)において、少なくともkaolinite−1Md及びQuartzのXRDパターンを示す粘土鉱物を50〜70質量%、安定化Y型ゼオライトを20〜50質量%、アルミナバインダーを15〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。
(2)前記粘土鉱物のX線回折(XRD)において、kaolinite−1MdのピークをI 、QuartzのピークをI とし、そのピーク強度比がI 2 /I 0 =0.5〜15となることを特徴とする上記(1)に記載の炭化水素油の接触分解触媒。
That is, the present invention provides a catalytic cracking catalysts of the following hydrocarbon oil.
(1) In X-ray diffraction (XRD), at least 50 to 70 % by mass of clay minerals showing an XRD pattern of kaolinite-1Md and Quartz, 20 to 50% by mass of stabilized Y-type zeolite , and 15 to 40% of alumina binder A catalytic cracking catalyst for hydrocarbon oils, characterized in that it is contained by mass%.
(2) In the X-ray diffraction (XRD) of the clay mineral, the peak of kaolinite-1Md is I 0 , the peak of Quartz is I 2 , and the peak intensity ratio is I 2 / I 0 = 0.5-15. The catalytic cracking catalyst for hydrocarbon oils as described in (1) above.

本発明に係る接触分解触媒は、炭化水素油の接触分解において、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができる。一般に、FCCプロセスにおいては、その性質上、わずかでもコークの生成量が低減できれば、FCC装置にかかるコスト及び負担を減少させることができる。さらに、一般にFCCガソリンは、市場に出荷するガソリンへの配合量が多いため、ガソリンの選択性の向上により生み出される利益は非常に大きい。
即ち、本発明のFCC触媒は、上記のようにコークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができるので、実用上極めて有効である。
The catalytic cracking catalyst according to the present invention can reduce the amount of coke produced in the catalytic cracking of hydrocarbon oil and improve the selectivity of gasoline to obtain FCC gasoline efficiently and in high yield. In general, in the FCC process, if the amount of coke produced can be reduced by a small amount, the cost and burden on the FCC apparatus can be reduced. Further, since FCC gasoline generally has a large blending amount with gasoline to be shipped to the market, the profit generated by improving the selectivity of gasoline is very large.
That is, the FCC catalyst of the present invention is extremely effective in practice because it can efficiently produce high yields of FCC gasoline by reducing the amount of coke produced and improving the selectivity of gasoline as described above. It is.

以下に本発明の実施の態様を詳細に説明する。
<触媒の構成成分>
本発明に係る接触分解触媒は、結晶性アルミノ珪酸塩、粘土鉱物、アルミナバインダーを含有してなる。
(結晶性アルミノ珪酸塩)
本発明で触媒成分に用いる結晶性アルミノ珪酸塩は、天然物であっても、人工物であってもよく、またその構造形態も多岐にわたっており、正方晶系、斜方晶系、立方晶系、六方晶系などの結晶構造を有する。結晶性アルミノ珪酸塩にはモルデナイト、βゼオライト、ZSM系ゼオライト、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることができ、Y型ゼオライトが好ましく、安定化Y型ゼオライトが特に好ましい。安定化Y型ゼオライトとしては、(a)化学組成分析によるバルクのSiO/Alモル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60、(c)全Alに対するゼオライト骨格内Alのモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いることができる。この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(0.02〜1.0)R/mO・Al・(5〜11)SiO・(5〜8)H
R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
Hereinafter, embodiments of the present invention will be described in detail.
<Components of catalyst>
The catalytic cracking catalyst according to the present invention comprises crystalline aluminosilicate, clay mineral, and alumina binder.
(Crystalline aluminosilicate)
The crystalline aluminosilicate used for the catalyst component in the present invention may be a natural product or an artificial product, and its structural form is wide-ranging, and is tetragonal, orthorhombic, cubic. Have a hexagonal crystal structure. As the crystalline aluminosilicate, mordenite, β zeolite, ZSM zeolite, A-type zeolite, X-type zeolite, Y-type zeolite and the like can be used, Y-type zeolite is preferred, and stabilized Y-type zeolite is particularly preferred. As the stabilized Y-type zeolite, (a) bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4 to 15, preferably 5 to 10, and (b) unit cell size is 24.35 to 24. 65 cm, preferably 24.40 to 24.60, (c) The molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Can do. This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition as an oxide.
(0.02~1.0) R 2 / mO · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: R valence

本発明で用いるゼオライトの単位格子寸法は、X線回折装置(XRD)により測定することができ、またその全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO/Al比及び単位格子寸法から下記の式(A)〜(C)を用いて算出することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。
・NA1=(a−2.425)/0.000868・・・・・(A)
:単位格子寸法/nm
Al:単位格子当たりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、aとNAlについて1次式で整理したとき(a=0.000868NAl+2.425)の傾き
・(Si/Al)計算式=(192−NAl)/NAl・・・・・(B)
192:Y型ゼオライトの単位格子寸法あたりの(Si+Al)の原子数
・ゼオライト骨格内Al/全Al=(Si/Al)化学組成分析値/(Si/Al)計算式・・・・・(C)
The unit cell size of the zeolite used in the present invention can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolite framework relative to the total Al is determined by SiO 2 / Al 2 O 3 by chemical composition analysis. It can be calculated from the ratio and unit cell size using the following formulas (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.
N A1 = (a o -2.425) /0.000868 (A)
a o : unit cell size / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a o and Inclination of N Al when arranged by a linear expression (a o = 0.000868N Al +2.425) (Si / Al) calculation formula = (192−N Al ) / N Al (B)
192: Number of atoms of (Si + Al) per unit cell dimension of Y-type zeolite-Al in zeolite framework / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula (C )

上記ゼオライトのSiO/Alモル比は、触媒の酸強度を示しており、一般にモル比が大きいほど触媒の酸強度が強くなる。そして、一般にSiO/Alモル比は、4以上であることが、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好適に進行して好ましい。また、15以下であることが、必要な酸の数が減少し、重質炭化水素油の分解活性が低下することを抑制できて好ましい。 The SiO 2 / Al 2 O 3 molar ratio of the zeolite indicates the acid strength of the catalyst. Generally, the larger the molar ratio, the stronger the acid strength of the catalyst. In general, when the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds suitably. preferable. Moreover, it is preferable that it is 15 or less because the number of required acids decreases and it can suppress that the decomposition activity of heavy hydrocarbon oil falls.

ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であることが、重質炭化水素油の分解に必要なAlの数が減少しすぎ、その結果分解が進行し難くなることを抑制できて好ましい。また、24.65Å以下であることが、ゼオライト結晶の劣化が進行しやすくなり、FCC触媒の分解活性の低下が著しくなることを抑制できて好ましい。   The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite. However, when the unit cell size is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy hydrocarbon oil is excessively reduced, and as a result It is preferable because decomposition can be prevented from being difficult to proceed. Moreover, it is preferable that it is 24.65 or less because deterioration of a zeolite crystal | crystallization progresses easily and it can suppress that the fall of the decomposition activity of a FCC catalyst becomes remarkable.

全Alに対するゼオライト骨格内Alのモル比は、0.3以上であることが、ゼオライト結晶を構成するAlの量が少なくなりすぎ、その結果ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなることを抑制できて好ましい。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more, the amount of Al constituting the zeolite crystal becomes too small, and as a result, more Al 2 O 3 particles fall off from the zeolite framework. Since the strong acid point is not expressed, it is preferable to prevent the catalytic decomposition reaction from proceeding. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to

上記のような要件を満たすゼオライトとして、特許第2544317号公報に記載されているヒートショック結晶性珪酸塩も使用することができる。このゼオライトは、SiO/Alモル比が5〜15、単位格子寸法が24.50以上24.70未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満である安定化Y型ゼオライトを600〜1200℃で5〜300分間、空気又は窒素雰囲気下で、結晶化度低下率が20%以下となるように焼成したものであり、化学組成分析によるバルクのSiO/Alモル比が5〜15、全Alに対するゼオライト骨格内Alのモル比が0.3〜0.6、単位格子寸法が24.45Å未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満、細孔分布において50Å付近及び180Å付近に特徴的なピークを示し、100Å以上の細孔容積が全細孔容積の10〜40%であり、かつY型ゼオライトの主要なX線回折パターンを有する結晶性アルミノ珪酸塩である。 As a zeolite that satisfies the above requirements, the heat shock crystalline silicate described in Japanese Patent No. 2544317 can also be used. This zeolite has a SiO 2 / Al 2 O 3 molar ratio of 5 to 15, a unit cell size of 24.50 or more and less than 24.70, and an alkali metal content of 0.02% by mass or more and less than 1% by mass in terms of oxides. The stabilized Y-type zeolite is calcined at 600 to 1200 ° C. for 5 to 300 minutes in air or nitrogen atmosphere so that the crystallinity reduction rate is 20% or less. SiO 2 / Al 2 O 3 molar ratio is 5 to 15, molar ratio of Al in zeolite framework to total Al is 0.3 to 0.6, unit cell size is less than 24.45 mm, alkali metal content is oxide equivalent 0.02% by mass or more and less than 1% by mass, showing a characteristic peak in the pore distribution around 50 and 180%, with a pore volume of 100 or more being 10 to 40% of the total pore volume, and Y Type Z It is a crystalline aluminosilicate with the main X-ray diffraction pattern of Olite.

(アルミナバインダー)
本発明で触媒成分に用いるアルミナバインダーは、結晶性アルミノケイ酸塩や粘土鉱物などの粒子間に存在し、触媒を微粒子化する時の成形性を良くし、触媒微粒子を球状にさせ、また得られる触媒微粒子の流動性及び耐摩耗性を図るために使用される。アルミナバインダーは分散性が良いため結合力が強く、触媒強度を高めることができる。また、分解性に優れ、オクタン価の高いガソリン留分を得ることができる。
上記アルミナバインダーとしては、幾つかの種類が知られており、ジブサイト、バイアライト、ベーマイト、ベントナイト、結晶性アルミナなどを酸溶液中に溶解させた溶液や、ベーマイトゲル、無定形のアルミナゲルを水溶液中に分散させた溶液、あるいはアルミナゾルを使用することができる。好ましくはアルミナゾルである。
本発明で用いるアルミナゾルの粒子サイズは小さければ小さい程よいが、本発明では、粒子径0.01〜5.0μmの範囲内のものを好適に使用することができる。アルミナゾルの粒子径が、0.01μmより大きいと、触媒を成形しやすく、流動性に優れた触媒粒子を得ることができるため好ましい。また、5.0μmより小さいと、強度、磨耗性に優れた触媒粒子を得ることができるため好ましい。アルミナバインダーを構成するアルミナ粒子の形状は特に制限されるものではなく、球状、繊維状、不定形等のいずれかであってもよい。また、アルミナゾルは、陽性電荷を帯びるため、一般には陰性の安定剤が使用されており、本発明で用いるアルミナゾルの安定剤としては、塩素イオン、硝酸イオン、酢酸イオン等が挙げられ、好ましくは塩素イオンである。また、本発明で得られる効果を逸脱しない限り、シリカバインダーなどを混合して使用することもできる。
(Alumina binder)
The alumina binder used as a catalyst component in the present invention is present between particles such as crystalline aluminosilicate and clay mineral, improves the moldability when the catalyst is atomized, makes the catalyst particles spherical, and is also obtained. Used for fluidity and wear resistance of catalyst fine particles. Since the alumina binder has good dispersibility, the bonding strength is strong and the catalyst strength can be increased. In addition, a gasoline fraction having excellent decomposability and a high octane number can be obtained.
As the above-mentioned alumina binder, several types are known. A solution obtained by dissolving dibsite, vialite, boehmite, bentonite, crystalline alumina, etc. in an acid solution, boehmite gel, amorphous alumina gel in aqueous solution A solution dispersed therein or an alumina sol can be used. Alumina sol is preferred.
The smaller the particle size of the alumina sol used in the present invention is, the better. However, in the present invention, those having a particle diameter in the range of 0.01 to 5.0 μm can be suitably used. When the particle diameter of the alumina sol is larger than 0.01 μm, it is preferable because the catalyst can be easily molded and catalyst particles having excellent fluidity can be obtained. Moreover, when it is smaller than 5.0 micrometers, since the catalyst particle excellent in intensity | strength and abrasion property can be obtained, it is preferable. The shape of the alumina particles constituting the alumina binder is not particularly limited, and may be any of spherical, fibrous, amorphous, and the like. In addition, since alumina sol is positively charged, a negative stabilizer is generally used. Examples of the alumina sol stabilizer used in the present invention include chlorine ion, nitrate ion, acetate ion, and preferably chlorine chloride. Ion. Moreover, a silica binder etc. can also be mixed and used, unless it deviates from the effect acquired by this invention.

(粘土鉱物)
本発明で用いる粘土鉱物は、kaolinite−1MdのXRD(X線回折)パターンを示し、かつkaolinite−1A、Quartz及びBoehmiteの少なくとも一つのXRDパターンを示すものを用いる。
本発明の接触分解触媒は、X線回折(XRD)において、kaolinite−1Mdのピーク(I)を含み、かつkaolinite−1A(I)、Quartz(I)及びBoehmite(I)の少なくとも一つのピークを有するXRDパターンを示し、そのピーク強度比の好ましい値は、I/Iは5以下、I/Iは15以下、I/Iは5以下である。さらに、I/I=0.5〜5、I/I=0.5〜15、I/I=0.1〜5であることが、より好ましい。特定の粘土鉱物を含有することにより、炭化水素油の接触分解において、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができる。
本発明でかかる優れた効果が得られる原因の詳細は必ずしも明らかではないが、上記一定のXRDパターンを示す特定の粘土鉱物を含有することで、接触分解触媒内に好適な細孔径が形成されたためと考えられる。つまり本発明の接触分解触媒では油と分解活性点との接触効率が向上したため、コークの生成量が低減し、かつガソリン選択性が向上して優れた効果が得られると考えられる。
上記のような特定のXRDピークを単独で示す粘土鉱物は、シリカやベーマイト(焼成によりアルミナに転移)を既に含んでいるということを意味する。本発明ではこのような粘土鉱物を用いることで、従来のように複数の無機酸化物を配合せずとも所望の活性が得られる触媒を提供することができる。
(Clay mineral)
As the clay mineral used in the present invention, a clay mineral that exhibits an XRD (X-ray diffraction) pattern of kaolinite-1Md and at least one XRD pattern of kaolinite-1A, Quartz, and Boehmite is used.
The catalytic cracking catalyst of the present invention contains a peak (I 0 ) of kaolinite-1Md in X-ray diffraction (XRD), and at least of kaolinite-1A (I 1 ), Quartz (I 2 ) and Boehmite (I 3 ). An XRD pattern having one peak is shown, and preferable values of the peak intensity ratio are I 1 / I 0 of 5 or less, I 2 / I 0 of 15 or less, and I 3 / I 0 of 5 or less. Further, I 1 / I 0 = 0.5~5 , I 2 / I 0 = 0.5~15, to be I 3 / I 0 = 0.1~5, more preferably. By containing a specific clay mineral, in the catalytic cracking of hydrocarbon oil, the amount of coke produced is reduced and the selectivity of gasoline is improved so that FCC gasoline can be produced efficiently and in high yield. An effect can be obtained.
Although the details of the reason why such excellent effects can be obtained in the present invention are not necessarily clear, the inclusion of the specific clay mineral showing the above-mentioned constant XRD pattern has formed a suitable pore diameter in the catalytic cracking catalyst. it is conceivable that. In other words, in the catalytic cracking catalyst of the present invention, the contact efficiency between the oil and the cracking active point is improved, so that it is considered that the amount of coke produced is reduced and the gasoline selectivity is improved and an excellent effect is obtained.
The clay mineral showing a specific XRD peak alone as described above means that it already contains silica or boehmite (transferred to alumina by firing). In the present invention, by using such a clay mineral, it is possible to provide a catalyst capable of obtaining a desired activity without blending a plurality of inorganic oxides as in the prior art.

kaolinite−1Mdの代表的なピークは20°付近に観測され、(110)面のピークを意味する。kaolinite−1Aの代表的なピークは21°付近に観測され、(-1-11)面、(-111)面のピークを意味する。Quartzの代表的なピークは27°付近に観測され、(101)面のピークを意味する。Boehmiteのピークは14°付近に観測され、(020)面のピークを意味する。なお、粘土鉱物のXRDパターンにおけるkaolinite−1A、Quartz及びBoehmiteのピークは、そのいずれか一つのピークでも、いずれか二つのピークでも、三つの全ピークでも良い。   A typical peak of kaolinite-1Md is observed around 20 °, and means a peak on the (110) plane. A typical peak of kaolinite-1A is observed at around 21 °, and means peaks on the (−1-11) plane and the (−111) plane. A typical peak of Quartz is observed around 27 °, and means a peak on the (101) plane. The Boehmite peak is observed at around 14 °, and means a peak on the (020) plane. In addition, the peak of kaolinite-1A, Quartz, and Boehmite in the XRD pattern of the clay mineral may be any one of these peaks, any two peaks, or all three peaks.

本発明で触媒成分に用いる粘土鉱物には、さらに、シリカ、シリカ−アルミナ、アルミナ、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解触媒に使用される公知の無機酸化物の酸化物微粒子を含有させることもできる。   The clay mineral used as the catalyst component in the present invention further includes a usual catalytic cracking catalyst such as silica, silica-alumina, alumina, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina, etc. It is also possible to contain oxide fine particles of known inorganic oxides used in the above.

粘土鉱物の平均粒子径は、0.1〜100μmであることが望ましく、さらには0.1〜10μmの範囲内にあることがさらに望ましい。平均粒子径が0.1μm以上であれば、触媒中に粘土鉱物を好適に分散させることができて、好ましい。また、100μm以下であれば、流動性に優れた触媒粒子を造粒することができ、触媒の強度が保たれるため、触媒の散飛、生成油中への混入等の好ましくはない現象を回避することができて、好ましい。さらに、表面積は、4〜50m/g、好ましくは5〜20m/gの範囲内にあることが分解活性を得る上で望ましい。比表面積が4m/g以上であれば、油滴と十分な接触面積が得られるため、好ましく、50m/g以下であれば、重質油が接触できるだけの細孔径を有するため、好ましい。
また粘土鉱物には、板状、粒状、針状、六角板状等の形態が知られているが、本発明ではどのような形態でも使用することができる。
The average particle size of the clay mineral is preferably 0.1 to 100 μm, and more preferably 0.1 to 10 μm. If the average particle diameter is 0.1 μm or more, the clay mineral can be suitably dispersed in the catalyst, which is preferable. Further, if it is 100 μm or less, catalyst particles having excellent fluidity can be granulated, and the strength of the catalyst can be maintained, so that undesirable phenomena such as scattering of the catalyst and mixing in the produced oil are caused. This is preferable because it can be avoided. Further, the surface area is preferably in the range of 4 to 50 m 2 / g, preferably 5 to 20 m 2 / g, in order to obtain decomposition activity. A specific surface area of 4 m 2 / g or more is preferable because a sufficient contact area with oil droplets can be obtained, and a specific surface area of 50 m 2 / g or less is preferable because the heavy oil has a pore diameter that can be contacted.
The clay mineral is known to have a plate shape, granular shape, needle shape, hexagonal plate shape or the like, but any form can be used in the present invention.

<触媒の調製>
以上のような各成分から構成されている本発明の接触分解触媒を調製するには、種々の方法があって、その調製方法は特に制限されないが、例えば次のような手順で調製することができる。
先ず、上記の結晶性アルミノ珪酸塩、アルミナバインダー及び粘土鉱物を混合溶液中で攪拌混合し、均一な水性スラリーを得る。このときの結晶性アルミノ珪酸塩、アルミナバインダー、及び粘土鉱物の混合割合は、触媒乾燥基準で、結晶性アルミノ珪酸塩が20〜50質量%、好ましくは32〜50質量%、アルミナバインダーが5〜40質量%、好ましくは15〜20質量%、粘土鉱物が10〜75質量%、好ましくは50〜70質量%の範囲に入るようにする。
<Preparation of catalyst>
There are various methods for preparing the catalytic cracking catalyst of the present invention composed of the above components, and the preparation method is not particularly limited. For example, it can be prepared by the following procedure. it can.
First, the above crystalline aluminosilicate, alumina binder and clay mineral are stirred and mixed in a mixed solution to obtain a uniform aqueous slurry. At this time, the mixing ratio of the crystalline aluminosilicate, the alumina binder, and the clay mineral is 20 to 50% by mass of the crystalline aluminosilicate, preferably 32 to 50% by mass, and 5 to 5% of the alumina binder on the basis of catalyst drying. 40 mass%, preferably 15 to 20 mass%, and clay mineral is in the range of 10 to 75 mass%, preferably 50 to 70 mass%.

結晶性アルミノ珪酸塩の量が20質量%以上であれば、所期の分解活性を得ることができ、また、50質量%以下であれば、相対的に粘土鉱物やアルミナバインダーの量が少なくなりすぎて、次のような好ましくない現象が生じることを回避できる。即ち、粘土鉱物やアルミナバインダーの量が少なすぎると、触媒強度が低下するのみならず、触媒の嵩密度が小さくなり、装置の運転において好ましくない結果を生じる。
また、アルミナバインダーの量が5質量%以上であれば、触媒の強度が保てるため、触媒の飛散、生成油中への混入等の好ましくない現象を回避でき、また、40質量%以下であれば、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。
さらにまた、粘土鉱物の量が10質量%以上であれば、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすことを回避でき、また、75質量%以下であれば、相対的に結晶性アルミノ珪酸塩やアルミナバインダーの量が少なくなり、結晶性アルミノ珪酸塩の量の不足により所期の高い分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となることを回避できる。そして、粘土鉱物の混合割合を上記範囲とすることが、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという本発明の優れた効果を得る上で肝要である。
If the amount of crystalline aluminosilicate is 20% by mass or more, the desired decomposition activity can be obtained, and if it is 50% by mass or less, the amount of clay mineral and alumina binder is relatively reduced. Therefore, the following undesirable phenomenon can be avoided. That is, if the amount of the clay mineral or the alumina binder is too small, not only the catalyst strength is lowered, but also the bulk density of the catalyst is reduced, which produces an undesirable result in the operation of the apparatus.
Further, if the amount of the alumina binder is 5% by mass or more, the strength of the catalyst can be maintained, so that undesirable phenomena such as catalyst scattering and mixing in the produced oil can be avoided, and if it is 40% by mass or less. An improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.
Furthermore, if the amount of the clay mineral is 10% by mass or more, the catalyst strength and the bulk density of the catalyst are small, and it can be avoided that the operation of the apparatus is hindered, and if it is 75% by mass or less, The amount of crystalline aluminosilicate and alumina binder is relatively small, the expected amount of decomposition activity cannot be obtained due to the insufficient amount of crystalline aluminosilicate, and the catalyst preparation due to the insufficient amount of binder. The difficulty can be avoided. And the mixing ratio of the clay mineral is within the above range, the production amount of coke is reduced, the selectivity of gasoline is improved, and FCC gasoline can be produced efficiently and in high yield. It is essential to obtain an effect.

上記の各成分を混合して調製される水性スラリー中の固形分の割合は、約5〜60質量%、より好ましくは10〜50質量%が適している。固形分の割合がこの範囲であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、スラリーの粘度が高くなり過ぎて、スラリーの輸送が困難になることがない。   The ratio of the solid content in the aqueous slurry prepared by mixing the above components is about 5 to 60% by mass, more preferably 10 to 50% by mass. If the ratio of the solid content is within this range, the amount of water to be evaporated will be appropriate, and there will be no trouble in the spray drying process, etc., and the viscosity of the slurry will be too high, making it difficult to transport the slurry. There is no.

次いで、調製された結晶性アルミノ珪酸塩/アルミナバインダー/粘土鉱物の混合スラリーを通常噴霧乾燥し、触媒粒子を得る。噴霧乾燥工程は、一般に、噴霧乾燥装置を用い、ガス入口温度を約200〜400℃、ガス出口温度を約100〜200℃として行う。噴霧乾燥により得られる微小球体は、一般に、約20〜150μmの粒子径で、約10〜30質量%の水分含有量であることが好ましい。
上記の水性スラリーを噴霧乾燥して得られた微小球体は、必要に応じて200℃以上で焼成し、焼成物とすることもでき、また、噴霧乾燥装置で水性スラリーの噴霧乾燥を行う際、ガス出口温度を200℃以上に保つことができる設備を備えている場合には、噴霧乾燥工程に微小球体の焼成工程を含めることも可能である。
Next, the prepared mixed slurry of crystalline aluminosilicate / alumina binder / clay mineral is usually spray-dried to obtain catalyst particles. The spray drying process is generally performed using a spray drying apparatus at a gas inlet temperature of about 200 to 400 ° C and a gas outlet temperature of about 100 to 200 ° C. In general, the microspheres obtained by spray drying preferably have a particle size of about 20 to 150 μm and a water content of about 10 to 30% by mass.
The microspheres obtained by spray-drying the above aqueous slurry can be fired at 200 ° C. or higher as necessary to form a fired product, and when spray drying of the aqueous slurry with a spray drying device, In the case where a facility capable of maintaining the gas outlet temperature at 200 ° C. or higher is provided, it is possible to include a microsphere firing step in the spray drying step.

<触媒の洗浄>
上記のようにして得られた触媒の微小球体あるいはその焼成物は、通常、結晶性アルミノ珪酸塩や、アルミナバインダーや、粘土鉱物の各触媒成分からの可溶性不純物やナトリウムやカリウム等のアルカリ金属が含まれているため、水やアンモニア水を用いて可溶性不純物を洗浄除去し、次いでアルカリ金属をイオン交換することによって洗浄除去する。得られた微小球体やその焼成物に過剰のナトリウムやカリウムが存在しない場合は、その 洗浄除去を行うことなく、そのまま触媒として用いることもできる。
上記のナトリウムやカリウム等のアルカリ金属の洗浄除去は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液を用いてイオン交換して行うことができる。
上記洗浄に続いて、この微小球体あるいはその焼成物を約100〜500℃の温度で再度乾燥し、水分含有量を約1〜25質量%にして、本発明に係る接触分解触媒が得られる。
<Catalyst cleaning>
The catalyst microspheres or calcined product obtained as described above are usually composed of crystalline aluminosilicate, alumina binder, soluble impurities from each catalyst component of clay mineral, and alkali metals such as sodium and potassium. Since it is contained, soluble impurities are washed away using water or aqueous ammonia, and then the alkali metal is washed away by ion exchange. If there is no excess sodium or potassium in the obtained microspheres or the calcined product thereof, they can be used as a catalyst without being washed away.
Specifically, the washing and removal of alkali metals such as sodium and potassium are specifically ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, and phosphoric acid. Ions using aqueous solutions of ammonium salts such as ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate Can be exchanged.
Subsequent to the washing, the microspheres or the calcined product thereof is dried again at a temperature of about 100 to 500 ° C. to adjust the water content to about 1 to 25% by mass, whereby the catalytic cracking catalyst according to the present invention is obtained.

<接触分解方法>
本発明において、炭化水素油を接触分解するには、ガソリンの沸点範囲200℃以上で沸騰する炭化水素油(炭化水素混合物)を、上記本発明の接触分解触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素混合物とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や、常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、脱剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油をも包括するものである。
商業的規模での接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明のFCC触媒を連続的に流動循環させて行う。即ち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活したFCC触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した使用済みのFCC触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物はドライガス、LPG、ガソリン留分、中間留分、及び重質サイクル油(HCO)あるいはスラリー油のような1種類以上の重質留分に分離する。もちろん、これらの重質留分を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。
<Catalytic decomposition method>
In the present invention, in order to catalytically crack hydrocarbon oil, hydrocarbon oil (hydrocarbon mixture) boiling in a boiling range of gasoline of 200 ° C. or higher may be brought into contact with the catalytic cracking catalyst of the present invention. The hydrocarbon mixture boiling above the gasoline boiling range means a light oil fraction obtained by atmospheric or vacuum distillation of crude oil, an atmospheric distillation residue oil, and a vacuum distillation residue oil. This includes oil, dehumidified and deasphalted asphalt, tar sand oil, shale oil, and coal liquefied oil.
In the catalytic cracking on a commercial scale, the above-described FCC catalyst of the present invention is usually continuously fluidized and circulated in a catalytic cracking apparatus composed of two kinds of containers, a vertically installed cracking reactor and a catalyst regenerator. Do it. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed and guided in the upward direction in the cracking reactor. As a result, the FCC catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The spent FCC catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is recycled to the cracking reactor. On the other hand, the cracked product separates into dry gas, LPG, gasoline fraction, middle distillate, and one or more heavy fractions such as heavy cycle oil (HCO) or slurry oil. Of course, these heavy fractions can be recycled into the cracking reactor to further proceed the cracking reaction.

上記の接触分解におけるクラッキング反応器の運転条件としては、圧力が常圧〜5kg/cm、温度が約400〜600℃、好ましくは約450〜550℃、触媒/原料炭化水素油の重量比が約2〜20、好ましくは約4〜15とすることが適している。
反応温度が400℃以上であれば、原料炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができて経済的である。
圧力が5kg/cm以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の重量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを防ぐことができる。
The operating conditions of the cracking reactor in the catalytic cracking are as follows: the pressure is normal pressure to 5 kg / cm 2 , the temperature is about 400 to 600 ° C., preferably about 450 to 550 ° C., and the weight ratio of catalyst / raw hydrocarbon oil is It is suitable to be about 2-20, preferably about 4-15.
If reaction temperature is 400 degreeC or more, the decomposition reaction of raw material hydrocarbon oil will advance suitably, and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, the amount of light gas production | generations, such as dry gas and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object can be increased relatively, and it is economical. .
If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the weight ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. On the other hand, if it is 20 or less, the effect of increasing the catalyst concentration is saturated, and it is possible to prevent disadvantages without obtaining an effect commensurate with increasing the catalyst concentration.

以下、本発明を実施例、比較例により具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this is only an illustration and does not restrict | limit this invention.

〔分析機器、分析条件等〕
なお、各分析に使用した機器、計算式等は次のとおりである。
ICP(組成分析):ThermoJarrell
SA(比評面積):日本ベル株式会社製‘BELSORP28SA’(高精度全自動ガス吸着装置)
XRD機器:理学電機株式会社製‘RINT2500V’
管電圧:50kv
管電流:200mA
走査モード:連続
スキャンスピード:2°/min
スキャンステップ:0.02°
測定範囲(2θ):5〜90°
発散,散乱スリット:1°
受光スリット:0.3mm
[Analytical equipment, analysis conditions, etc.]
The equipment, calculation formulas, etc. used for each analysis are as follows.
ICP (composition analysis): ThermoJarrell
SA (specific evaluation area): “BELSORP28SA” manufactured by Nippon Bell Co., Ltd. (high-precision fully automatic gas adsorption device)
XRD * Equipment: RINT2500V manufactured by Rigaku Corporation
Tube voltage: 50 kv
Tube current: 200 mA
Scanning mode: Continuous Scanning speed: 2 ° / min
Scan step: 0.02 °
Measurement range (2θ): 5 to 90 °
Divergence, scattering slit: 1 °
Receiving slit: 0.3mm

実施例1〔触媒Aの調製〕
アルミナゾル120gに蒸留水75gを加え、Al濃度15質量%のアルミナゾル水溶液を調製した。このアルミナゾル水溶液に、表2の性状を有し、XRD測定において図1のXRDパターンを示す粘土鉱物A(稲垣工業社製:NK・SP)を120g(乾燥基準)加え、5分間混合した。その後、表1の性状を有する安定化Y型ゼオライト69g(乾燥基準)に蒸留水125gを加えて調製したゼオライトスラリーを加えた後、10分間混合し、混合スラリーを得た。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。この触媒前駆体をマッフル炉で、250℃で1時間焼成した後、pH=5となるようにアンモニア水を加えていき、次いで60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、触媒Aを得た。
Example 1 [Preparation of catalyst A]
Distilled water 75 g was added to 120 g of alumina sol to prepare an alumina sol aqueous solution having an Al 2 O 3 concentration of 15% by mass. To this aqueous solution of alumina sol, 120 g (dry basis) of clay mineral A (Inagaki Kogyo Co., Ltd .: NK · SP) having the properties shown in Table 2 and showing the XRD pattern of FIG. 1 in XRD measurement was added and mixed for 5 minutes. Then, after adding a zeolite slurry prepared by adding 125 g of distilled water to 69 g of a stabilized Y-type zeolite having the properties shown in Table 1 (dry basis), the mixture was mixed for 10 minutes to obtain a mixed slurry.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. After calcining this catalyst precursor in a muffle furnace at 250 ° C. for 1 hour, ammonia water was added so that pH = 5, and then ion-exchanged twice with 3 L of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. Further, it was washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst A was obtained.

参考例2〔触媒Bの調製〕
粘土鉱物として、表2の性状を有し、XRD測定において図2のXRDパターンを示す粘土鉱物B(稲垣工業社製:ekalite)を使用したこと以外は、実施例1と同様にして、触媒Bを得た。
Reference Example 2 [Preparation of catalyst B]
As the clay mineral, catalyst B was obtained in the same manner as in Example 1 except that clay mineral B (Inagaki Kogyo Co., Ltd .: ekalite) having the properties shown in Table 2 and showing the XRD pattern of FIG. 2 in XRD measurement was used. Got.

実施例3〔触媒Cの調製〕
粘土鉱物として、表2の性状を有し、XRD測定において図3のXRDパターンを示す粘土鉱物C(山陽クレー工業社製:AAkaoline)を使用したこと以外は、実施例1と同様にして、触媒Cを得た。
Example 3 (Preparation of catalyst C)
As a clay mineral, a catalyst was prepared in the same manner as in Example 1 except that the clay mineral C (manufactured by Sanyo Clay Industry Co., Ltd .: AAkaoline) having the properties shown in Table 2 and showing the XRD pattern of FIG. 3 in XRD measurement was used. C was obtained.

比較例1〔触媒Dの調製〕
アルミナゾル120gに蒸留水75gを加え、Al濃度15質量%のアルミナゾル水溶液を調製した。このアルミナゾル水溶液に表2の性状を有し、XRD測定において図4のXRDパターンを示す粘土鉱物を120g(乾燥基準)加え、表1の性状を有する安定化Y型ゼオライト69g(乾燥基準)に蒸留水を加えて調製したゼオライトスラリーを加えた後、5分間混合し、混合スラリーを得た。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。この触媒前駆体をマッフル炉で、250℃で1時間焼成した後、pH=5となるようにアンモニア水を加えていき、次いで60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、触媒Dを得た。
Comparative Example 1 [Preparation of Catalyst D]
Distilled water 75 g was added to 120 g of alumina sol to prepare an alumina sol aqueous solution having an Al 2 O 3 concentration of 15% by mass. In this aqueous solution of alumina sol, 120 g (dry basis) of clay mineral D having the properties shown in Table 2 and showing the XRD pattern of FIG. After adding the zeolite slurry prepared by adding distilled water, the mixture was mixed for 5 minutes to obtain a mixed slurry.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. After calcining this catalyst precursor in a muffle furnace at 250 ° C. for 1 hour, ammonia water was added so that pH = 5, and then ion-exchanged twice with 3 L of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. Further, it was washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst D was obtained.

Figure 0004689577
Figure 0004689577

Figure 0004689577
Figure 0004689577

〔触媒組成〕
以上の実施例及び比較例で得た触媒の組成を表3に纏めて示す。
[Catalyst composition]
Table 3 summarizes the compositions of the catalysts obtained in the above Examples and Comparative Examples.

Figure 0004689577
Figure 0004689577

〔触媒活性評価〕
実施例、参考例及び比較例で得た各触媒について、ASTM基準の固定床マイクロ活性試験(MicroActivity Test)装置を用いて、同一原料油、同一測定条件のもと、接触分解特性を試験した。なお、試験に先立ち、上記触媒について、実際の使用状況に近似させるべく、即ち平衡化させるべく、600℃にて2時間乾燥した後、ニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させ、乾燥し、600℃で2時間焼成を行い、引き続き、100%水蒸気雰囲気中、800℃で6時間処理を行った。
原料油として表4に示す脱硫減圧軽油(VGO)を使用し、反応温度500℃、反応時間75秒、触媒/原料油比(質量比)2.4,3.2,4.0として、評価試験を行い、その結果をグラフ化し、このグラフ(図示省略)から転化率が55質量%となる触媒/原料油比(質量比)を回帰計算により算出した。ここで、転化率とは100−(LCOの質量%)−(HCOの質量%)である。さらに、回帰計算により転化率55質量%の時の算出されたFCCガソリンの収率及びコーク生成量を表5にそれぞれ示す。
[Evaluation of catalyst activity]
Each catalyst obtained in the Examples , Reference Examples and Comparative Examples was tested for catalytic cracking characteristics under the same feedstock and the same measurement conditions using an ASTM standard fixed-bed microactivity test apparatus (MicroActivity Test). Prior to the test, the catalyst was dried at 600 ° C. for 2 hours in order to approximate the actual usage, that is, to equilibrate, so that nickel and vanadium would be 1000 ppm by mass and 2000 ppm by mass, respectively. Then, a cyclohexane solution containing nickel naphthenate and vanadium naphthenate was absorbed, dried, calcined at 600 ° C. for 2 hours, and subsequently treated in a 100% steam atmosphere at 800 ° C. for 6 hours.
The desulfurized vacuum gas oil (VGO) shown in Table 4 was used as the feedstock, and the reaction temperature was 500 ° C., the reaction time was 75 seconds, and the catalyst / feedstock ratio (mass ratio) was 2.4, 3.2, 4.0. The test was conducted, the result was graphed, and from this graph (not shown), the catalyst / feed oil ratio (mass ratio) at which the conversion was 55% by mass was calculated by regression calculation. Here, the conversion rate is 100- (mass% of LCO)-(mass% of HCO). Further, Table 5 shows the yield of FCC gasoline and the amount of coke calculated when the conversion was 55% by regression calculation.

Figure 0004689577
Figure 0004689577

Figure 0004689577
Figure 0004689577

比較例1で得られた触媒DはFCCガソリンの収率が低く、コーク量が多いため、炭化水素油の接触分解反応において、装置にかかるコストや負担を考慮すると不利である。
しかしながら、本発明に従った実施例13で調製した触媒ACは、コークの生成量を低減させ、FCCガソリンを高収率で得ることができる。
FCCガソリンは、市場に出荷されるガソリンへの配合量が多いため、FCCガソリンを若干でも高収率で得ることができれば、経済的なメリットが大きい。
The catalyst D obtained in Comparative Example 1 has a low FCC gasoline yield and a large amount of coke, which is disadvantageous in consideration of the cost and burden on the apparatus in the catalytic cracking reaction of hydrocarbon oil.
However, the catalysts A and C prepared in Examples 1 and 3 according to the present invention can reduce the amount of coke produced and obtain FCC gasoline in high yield.
Since FCC gasoline has a large blending amount with gasoline to be shipped to the market, if FCC gasoline can be obtained even in a slightly high yield, there is a great economic merit.

実施例1で用いた粘土鉱物AのXRD測定におけるXRDパターンである。It is a XRD pattern in the XRD measurement of the clay mineral A used in Example 1. FIG. 参考例2で用いた粘土鉱物BのXRD測定におけるXRDパターンである。It is an XRD pattern in the XRD measurement of the clay mineral B used in Reference Example 2. 実施例3で用いた粘土鉱物CのXRD測定におけるXRDパターンである。It is an XRD pattern in the XRD measurement of the clay mineral C used in Example 3. 比較例1で用いた粘土鉱物DのXRD測定におけるXRDパターンである。It is an XRD pattern in the XRD measurement of the clay mineral D used in the comparative example 1.

Claims (2)

X線回折(XRD)において、少なくともkaolinite−1Md及びQuartzのXRDパターンを示す粘土鉱物を50〜70質量%、安定化Y型ゼオライトを20〜50質量%、アルミナバインダーを15〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。 In X-ray diffraction (XRD), 50-70 wt% of the clay mineral showing an XRD pattern of at least kaolinite-1Md and Quart z, stabilized Y type zeolite 20 to 50 wt%, containing 15 to 40 wt% alumina binder A catalytic cracking catalyst for hydrocarbon oils. 前記粘土鉱物のX線回折(XRD)において、kaolinite−1MdのピークをIIn the X-ray diffraction (XRD) of the clay mineral, the peak of kaolinite-1Md is represented by I 0 、QuartzのピークをIQuartz peak I 2 とし、そのピーク強度比がIAnd the peak intensity ratio is I 22 /I/ I 00 =0.5〜15となることを特徴とする請求項1に記載の炭化水素油の接触分解触媒。The catalytic cracking catalyst for hydrocarbon oil according to claim 1, wherein the catalyst is equal to 0.5 to 15.
JP2006288791A 2006-10-24 2006-10-24 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Active JP4689577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288791A JP4689577B2 (en) 2006-10-24 2006-10-24 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288791A JP4689577B2 (en) 2006-10-24 2006-10-24 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2008104926A JP2008104926A (en) 2008-05-08
JP4689577B2 true JP4689577B2 (en) 2011-05-25

Family

ID=39438739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288791A Active JP4689577B2 (en) 2006-10-24 2006-10-24 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4689577B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949778B2 (en) * 1996-07-01 2007-07-25 出光興産株式会社 Catalytic cracking catalyst
JPH11309380A (en) * 1998-02-26 1999-11-09 Nippon Soken Inc Production of cordierite honeycomb structure
JPH11300208A (en) * 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd Catalytically cracking catalyst
KR100632563B1 (en) * 2004-09-10 2006-10-09 에스케이 주식회사 Solid acid catalyst for catalytic cracking and process for selectively preparing light olefins from full range naphtha

Also Published As

Publication number Publication date
JP2008104926A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5911446B2 (en) Method for producing catalytic cracking catalyst of hydrocarbon oil
JP5392150B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP5126613B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP4948863B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP4689472B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5904922B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP2006305490A (en) Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP4818135B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5660674B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same
EP1377374B1 (en) Zeolite based catalyst of ultra-high kinetic conversion activity
JP4818157B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916321B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818156B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445781B2 (en) Method for producing catalytic cracking catalyst
JP4818136B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689577B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689576B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5499407B2 (en) Method for producing catalytic cracking catalyst
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250