JP4818156B2 - Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst - Google Patents

Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Download PDF

Info

Publication number
JP4818156B2
JP4818156B2 JP2007038012A JP2007038012A JP4818156B2 JP 4818156 B2 JP4818156 B2 JP 4818156B2 JP 2007038012 A JP2007038012 A JP 2007038012A JP 2007038012 A JP2007038012 A JP 2007038012A JP 4818156 B2 JP4818156 B2 JP 4818156B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
hydrocarbon oil
mass
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007038012A
Other languages
Japanese (ja)
Other versions
JP2008200579A (en
Inventor
忠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Energy Center JPEC filed Critical Cosmo Oil Co Ltd
Priority to JP2007038012A priority Critical patent/JP4818156B2/en
Publication of JP2008200579A publication Critical patent/JP2008200579A/en
Application granted granted Critical
Publication of JP4818156B2 publication Critical patent/JP4818156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)と、それを用いる炭化水素油の接触分解方法に関し、さらに詳しくは、高い分解活性を有し、また、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成を低減させ、ガソリン留分(以下「FCCガソリン」と記すこともある)の収率を向上させることができる炭化水素油の接触分解触媒と、それを用いる炭化水素油の接触分解方法に関する。   The present invention relates to a catalytic cracking catalyst for hydrocarbon oil (hereinafter sometimes referred to as "FCC catalyst") and a method for catalytic cracking of hydrocarbon oil using the same, more specifically, having a high cracking activity, Hydrocarbons that can reduce the production of cracked products such as dry gas (hydrogen, C1-C2), LPG, and coke, and improve the yield of gasoline fractions (hereinafter sometimes referred to as “FCC gasoline”). The present invention relates to an oil catalytic cracking catalyst and a hydrocarbon oil catalytic cracking method using the catalyst.

重質炭化水素油の接触分解は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、ドライガス(水素、C1〜C2)、コーク、液化石油ガス(Liquefied Petroleum Gas:LPG)、中間留分(Light Cycle Oil :LCO)、重質留分(Heavy Cycle Oil :HCO)が生産される。効率的にFCCガソリンを製造するためには、触媒の分解活性が高く、またガソリン収率が高く、さらにはドライガス、LPG、コーク、重質留分の選択性が低いことが望ましい。   Catalytic cracking of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking. When producing FCC gasoline, As by-products, dry gas (hydrogen, C1 to C2), coke, liquefied petroleum gas (Liquid Petroleum Gas: LPG), middle distillate (Light Cycle Oil: LCO), heavy distillate (Heavy Cycle Oil: HCO) ) Is produced. In order to efficiently produce FCC gasoline, it is desirable that the catalytic cracking activity is high, the gasoline yield is high, and the selectivity of dry gas, LPG, coke and heavy fraction is low.

また、自動車用ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することにより製造されており、特に重質な炭化水素油の接触分解から得られるFCCガソリンは、ガソリンへの配合量も多いため、FCCガソリン収率を向上させることは当業者にとって望ましい。   In addition, gasoline for automobiles is manufactured by mixing a plurality of gasoline base materials obtained in the refining process of crude oil. FCC gasoline obtained from catalytic cracking of heavy hydrocarbon oils is blended with gasoline. Because of the large amount, it is desirable for those skilled in the art to improve FCC gasoline yield.

しかし、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分である結晶性アルミノ珪酸塩の構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリン留分の選択性を低下させるなどの問題を有している。   However, in the catalytic cracking method for hydrocarbon oils, with the recent increase in crude oil grades and grades, heavy metals such as vanadium and nickel and feedstocks with high residual carbon content must be put into the fluid catalytic cracking unit. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the crystalline aluminosilicate that is the active component of the FCC catalyst, causing a significant decrease in the activity of the catalyst and increasing the production of hydrogen and coke. It is known to have problems such as lowering the selectivity. Nickel is also deposited on the surface of the catalyst and has problems such as increasing the amount of hydrogen and coke generated in order to promote the dehydrogenation reaction and reducing the selectivity of the gasoline fraction.

従来から、炭化水素油の接触分解には、ゼオライト、粘土鉱物などの無機酸化物マトリックス及びバインダーからなる接触分解触媒がよく用いられている(例えば、特許文献1〜3参照)。しかし、従来の接触分解触媒では、上記のように近年の原油の重質化・低品位化に伴い、ドライガス、LPG、コークの生成量の増大や、ガソリン留分の選択性の低下などが問題となっており、接触分解触媒のドライガス、LPG、コークの生成量の低減や、ガソリン留分の選択性の向上などが強く望まれている。
特開平8−57328号公報 特開平9−285728号公報 特開平10−118501号公報
Conventionally, a catalytic cracking catalyst composed of an inorganic oxide matrix such as zeolite or clay mineral and a binder is often used for catalytic cracking of hydrocarbon oil (see, for example, Patent Documents 1 to 3). However, with conventional catalytic cracking catalysts, as described above, with the recent increase in crude oil weight and quality, there is an increase in the production of dry gas, LPG and coke, and a decrease in the selectivity of gasoline fractions. There is a problem, and there is a strong demand for reduction in the amount of dry gas, LPG, and coke produced from the catalytic cracking catalyst, and improvement in the selectivity of gasoline fractions.
JP-A-8-57328 JP-A-9-285728 Japanese Patent Laid-Open No. 10-118501

以上の諸状況に鑑み、本発明は、炭化水素油の接触分解において、重質留分の分解性を向上させると同時に分解生成物であるドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できる接触分解触媒を提供することを目的とする。   In view of the above circumstances, in the catalytic cracking of hydrocarbon oil, the present invention improves the decomposability of heavy fractions and at the same time reduces the amount of cracked products such as dry gas, LPG and coke, and An object of the present invention is to provide a catalytic cracking catalyst capable of improving the selectivity of gasoline fraction and producing FCC gasoline efficiently and in high yield.

本発明者らは、上記の目的を達成するために検討を重ねた結果、走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が特定の結晶構造を有し、特定の積層数を有する粘土鉱物を用いたFCC触媒によって、炭化水素油の接触分解反応において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できることを見出し、本発明を完成させるに至った。   As a result of repeated studies to achieve the above-described object, the present inventors have determined that a crystal particle has a specific crystal structure and a specific number of layers in image measurement using a scanning electron microscope (SEM). FCC catalyst using clay minerals that have high cracking activity in catalytic cracking reaction of hydrocarbon oil, reduce the production of dry gas, LPG, coke and improve the selectivity of gasoline fraction The present inventors have found that FCC gasoline can be produced efficiently and with high yield, and have completed the present invention.

即ち、本発明は、次の炭化水素油の接触分解触媒、及びそれを用いた炭化水素油の接触分解方法を提供する。
(1)走査型電子顕微鏡を用いた画像測定において、結晶粒子が板状の結晶構造を持ち、その平均積層数が15〜50の性状を有する粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜50質量%、結合剤であるシリカバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。
(2)炭化水素油を接触分解するに当たり、上記(1)に記載の炭化水素油の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。
That is, this invention provides the following catalytic cracking catalyst of hydrocarbon oil, and the catalytic cracking method of hydrocarbon oil using the same.
(1) In image measurement using a scanning electron microscope, 10 to 75% by mass of a clay mineral having a plate-like crystal structure and an average number of stacked layers of 15 to 50 %, crystalline aluminosilicate A catalytic cracking catalyst for hydrocarbon oil, comprising 20 to 50% by mass of a salt and 5 to 40% by mass of a silica binder as a binder.
(2) A method for catalytic cracking of hydrocarbon oil, wherein the catalytic cracking catalyst for hydrocarbon oil described in (1) above is used for catalytic cracking of hydrocarbon oil.

本発明に係る接触分解触媒は、炭化水素油の接触分解において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で得ることができる。一般に、FCCプロセスにおいては、その性質上、わずかでもドライガス、LPG、コークの生成量を低減できれば、FCC装置にかかるコスト及び負担を減少させることができる。特にFCC装置を高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。さらに、一般にFCCガソリンは、市場に出荷するガソリンへの配合量が多いため、ガソリンの選択性の向上により生み出される利益は非常に大きい。   The catalytic cracking catalyst according to the present invention has high cracking activity in catalytic cracking of hydrocarbon oil, reduces the amount of dry gas, LPG and coke produced, and improves the selectivity of gasoline fractions. Gasoline can be obtained efficiently and in high yield. In general, in the FCC process, the cost and burden on the FCC apparatus can be reduced if the amount of dry gas, LPG, and coke produced can be reduced even slightly. In particular, when the FCC apparatus is operated at a high operating rate, by reducing the dry gas, LPG, and coke, the regeneration tower temperature and the gas section can be afforded, so that the apparatus can be operated more efficiently. Further, since FCC gasoline generally has a large blending amount with gasoline to be shipped to the market, the profit generated by improving the selectivity of gasoline is very large.

即ち、本発明のFCC触媒は、上記のように高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で得ることができるので、実用上極めて有効である。   That is, the FCC catalyst of the present invention has a high cracking activity as described above, reduces the generation amount of dry gas, LPG and coke, and improves the selectivity of the gasoline fraction, so that FCC gasoline can be efficiently used. Since it can be obtained in a high yield, it is extremely effective in practice.

以下に本発明の実施の態様を詳細に説明する。
<触媒の構成成分>
本発明に係る接触分解触媒は、結晶性アルミノ珪酸塩、粘土鉱物、及びシリカバインダーを含有してなる。
Hereinafter, embodiments of the present invention will be described in detail.
<Components of catalyst>
The catalytic cracking catalyst according to the present invention comprises a crystalline aluminosilicate, a clay mineral, and a silica binder.

(結晶性アルミノ珪酸塩)
本発明で触媒成分に用いる結晶性アルミノ珪酸塩は、天然物であっても、人工物であってもよく、またその構造形態も多岐にわたっており、正方晶系、斜方晶系、立方晶系、六方晶系などの結晶構造を有する。この結晶性アルミノ珪酸塩としては、モルデナイト、βゼオライト、ZSM系ゼオライト、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることができ、Y型ゼオライトが好ましく、安定化Y型ゼオライトが特に好ましい。安定化Y型ゼオライトとしては、(a)化学組成分析によるバルクのSiO/Alモル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60、(c)全Alに対するゼオライト骨格内Alのモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いることができる。この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(0.02〜1.0)R/mO・Al・(5〜11)SiO・(5〜8)H
R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
(Crystalline aluminosilicate)
The crystalline aluminosilicate used for the catalyst component in the present invention may be a natural product or an artificial product, and its structural form is wide-ranging, and is tetragonal, orthorhombic, cubic. Have a hexagonal crystal structure. As this crystalline aluminosilicate, mordenite, β zeolite, ZSM zeolite, A-type zeolite, X-type zeolite, Y-type zeolite and the like can be used, Y-type zeolite is preferable, and stabilized Y-type zeolite is particularly preferable. . As the stabilized Y-type zeolite, (a) bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4 to 15, preferably 5 to 10, and (b) unit cell size is 24.35 to 24. 65 cm, preferably 24.40 to 24.60, (c) The molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Can do. This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition as an oxide.
(0.02~1.0) R 2 / mO · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: R valence

本発明で用いるゼオライトの単位格子寸法は、X線回折装置(XRD)により測定することができ、またその全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO/Al比及び単位格子寸法から下記の式(A)〜(C)を用いて算出
することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。
・NA1=(a−2.425)/0.000868・・・・・(A)
:単位格子寸法/nm
Al:単位格子当たりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、aとNAlについて1次式で整理したとき(a=0.000868NAl+2.425)の傾き
・(Si/Al)計算式=(192−NAl)/NAl・・・・・(B)
192:Y型ゼオライトの単位格子寸法あたりの(Si+Al)の原子数
・ゼオライト骨格内Al/全Al=(Si/Al)化学組成分析値/(Si/Al)計算式・・・・・(C)
The unit cell size of the zeolite used in the present invention can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolite framework relative to the total Al is determined by SiO 2 / Al 2 O 3 by chemical composition analysis. It can be calculated from the ratio and unit cell size using the following formulas (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.
N A1 = (a o -2.425) /0.000868 (A)
a o : unit cell size / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a o and Inclination of N Al when arranged by a linear expression (a o = 0.000868N Al +2.425) (Si / Al) calculation formula = (192−N Al ) / N Al (B)
192: Number of atoms of (Si + Al) per unit cell dimension of Y-type zeolite-Al in zeolite framework / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula (C )

上記ゼオライトのSiO/Alモル比は、触媒の酸強度を示しており、一般にモル比が大きいほど触媒の酸強度が強くなる。そして、一般にSiO/Alモル比は、4以上であることが、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好適に進行して好ましい。また、15以下であることが、必要な酸の数が減少し、重質炭化水素油の分解活性が低下することを抑制できて好ましい。 The SiO 2 / Al 2 O 3 molar ratio of the zeolite indicates the acid strength of the catalyst. Generally, the larger the molar ratio, the stronger the acid strength of the catalyst. In general, when the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds suitably. preferable. Moreover, it is preferable that it is 15 or less because the number of required acids decreases and it can suppress that the decomposition activity of heavy hydrocarbon oil falls.

ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であることが、重質炭化水素油の分解に必要なAlの数が減少しすぎ、その結果分解が進行し難くなることを抑制できて好ましい。また、24.65Å以下であることが、ゼオライト結晶の劣化が進行しやすくなり、FCC触媒の分解活性の低下が著しくなることを抑制できて好ましい。   The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite. However, when the unit cell size is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy hydrocarbon oil is excessively reduced, and as a result It is preferable because decomposition can be prevented from being difficult to proceed. Moreover, it is preferable that it is 24.65 or less because deterioration of a zeolite crystal | crystallization progresses easily and it can suppress that the fall of the decomposition activity of a FCC catalyst becomes remarkable.

全Alに対するゼオライト骨格内Alのモル比は、0.3以上であることが、ゼオライト結晶を構成するAlの量が少なくなりすぎ、その結果ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなることを抑制できて好ましい。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more, the amount of Al constituting the zeolite crystal becomes too small, and as a result, more Al 2 O 3 particles fall off from the zeolite framework. Since the strong acid point is not expressed, it is preferable to prevent the catalytic decomposition reaction from proceeding. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to

上記のような要件を満たすゼオライトとして、特許第2544317号公報に記載されているヒートショック結晶性珪酸塩も使用することができる。このゼオライトは、SiO/Alモル比が5〜15、単位格子寸法が24.50以上24.70未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満である安定化Y型ゼオライトを600〜1200℃で5〜300分間、空気又は窒素雰囲気下で、結晶化度低下率が20%以下となるように焼成したものであり、化学組成分析によるバルクのSiO/Alモル比が5〜15、全Alに対するゼオライト骨格内Alのモル比が0.3〜0.6、単位格子寸法が24.45Å未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満、細孔分布において50Å付近及び180Å付近に特徴的なピークを示し、100Å以上の細孔容積が全細孔容積の10〜40%であり、かつY型ゼオライトの主要なX線回折パターンを有する結晶性アルミノ珪酸塩である。 As a zeolite that satisfies the above requirements, the heat shock crystalline silicate described in Japanese Patent No. 2544317 can also be used. This zeolite has a SiO 2 / Al 2 O 3 molar ratio of 5 to 15, a unit cell size of 24.50 or more and less than 24.70, and an alkali metal content of 0.02% by mass or more and less than 1% by mass in terms of oxides. The stabilized Y-type zeolite is calcined at 600 to 1200 ° C. for 5 to 300 minutes in air or nitrogen atmosphere so that the crystallinity reduction rate is 20% or less. SiO 2 / Al 2 O 3 molar ratio is 5 to 15, molar ratio of Al in zeolite framework to total Al is 0.3 to 0.6, unit cell size is less than 24.45 mm, alkali metal content is oxide equivalent 0.02% by mass or more and less than 1% by mass, showing a characteristic peak in the pore distribution around 50 and 180%, with a pore volume of 100 or more being 10 to 40% of the total pore volume, and Y Type Z It is a crystalline aluminosilicate with the main X-ray diffraction pattern of Olite.

(シリカバインダー)
本発明で触媒成分に用いるシリカバインダーは、結晶性アルミノケイ酸塩や粘土鉱物などの粒子間に存在し、触媒を微粒子化する時の成形性を良くし、触媒微粒子を球状にさせ、また得られる触媒微粒子の流動性及び耐摩耗性を図るために結合剤として使用される。シリカバインダーは固体酸性質を示さないため、それ自身に分解活性は持たないが、メソ細孔の形成に寄与しコークの生成量を低減させることができる。
(Silica binder)
The silica binder used as a catalyst component in the present invention exists between particles such as crystalline aluminosilicate and clay mineral, improves the moldability when the catalyst is made fine, makes the catalyst fine particles spherical, and is also obtained. Used as a binder to improve the fluidity and wear resistance of the catalyst fine particles. Since the silica binder does not exhibit solid acid properties, it does not have decomposition activity by itself, but contributes to the formation of mesopores and can reduce the amount of coke produced.

上記シリカバインダーとしては、幾つかの種類が知られており、コロイダルシリカを例に挙げれば、ナトリウム型、リチウム型、酸型等のシリカゾルがある。本発明では、これらいずれの型のものも使用することができる。商業用規模での接触分解触媒の生産を考慮すれば、低コストの希釈水ガラス水溶液と硫酸水溶液とを反応させて得られるシリカヒドロゾル等を好ましく用いることができる。また本発明で得られる効果を逸脱しない限り、アルミナバインダーなどを混合して使用することもできる。   Several types of silica binders are known. Examples of colloidal silica include sodium sol, lithium type, and acid type silica sols. Any of these types can be used in the present invention. Considering production of a catalytic cracking catalyst on a commercial scale, silica hydrosol obtained by reacting a low-cost diluted water glass aqueous solution with a sulfuric acid aqueous solution can be preferably used. Moreover, an alumina binder etc. can also be mixed and used unless it deviates from the effect acquired by this invention.

(粘土鉱物)
本発明で用いる粘土鉱物は、走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が板状の結晶構造を持ち、その平均積層数が10を超える性状を有するものであるが、その積層数はいかなる積層数のものが混在していてもかまわない。また、板状結晶の平均積層数が10を超えるものは、触媒粒子中への分解性が良好で、好ましいが、平均積層数が100を超えるものは触媒粒子中への分散性が悪くなることが懸念されるため、板状結晶の平均積層数は、10を超えかつ100以下であることが好ましく、15〜50がさらに好ましい。板状結晶の平均積層数が15〜250のものを用いた触媒は、炭化水素油の接触分解において、より一層、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができる。
(Clay mineral)
The clay mineral used in the present invention has a property in which the crystal particles have a plate-like crystal structure and the average number of layers exceeds 10 in image measurement using a scanning electron microscope (SEM). Any number of layers may be mixed. In addition, a plate crystal having an average number of layers exceeding 10 is preferable because it has good decomposability into the catalyst particles, but a sample having an average number of layers exceeding 100 has poor dispersibility in the catalyst particles. Therefore, the average number of plate crystals is preferably more than 10 and 100 or less, more preferably 15-50. A catalyst using a plate crystal having an average number of laminated layers of 15 to 250 has a higher cracking activity in catalytic cracking of hydrocarbon oil, and reduces the amount of dry gas, LPG and coke produced, In addition, the selectivity of the gasoline fraction can be improved, and an excellent effect that FCC gasoline can be produced efficiently and in high yield can be obtained.

ここで、粘土鉱物の平均積層数は次の方法で規定するものを言う。すなわち、走査型電子顕微鏡(SEM)によって、撮影倍率5000倍以上(積層数が解析できる倍率)において異なるロケーションの画像数十枚を撮影する。各画像に写る粒子合計100個分の積層数を算出し、平均積層数を求める。   Here, the average number of laminated clay minerals is defined by the following method. That is, dozens of images at different locations are photographed with a scanning electron microscope (SEM) at a photographing magnification of 5000 times or more (a magnification at which the number of layers can be analyzed). The number of layers for a total of 100 particles in each image is calculated to determine the average number of layers.

粘土鉱物には、モンモリロナイト、カオリン、ベントナイト、アタパルガイト、ボーキサイト、クオーツ(石英)、イライト、ベーマイト等各種あるが、本発明では、粘土鉱物として、上記走査型電子顕微鏡(SEM)を用いた画像測定において、結晶粒子が板状の結晶構造であることが確認され、かつその平均積層数が10を超える性状を有するものであれば、各種粘土鉱物のいずれか1種を単独で使用することも、複数種を混合して使用することもできる。また、天然物でも合成物であってもよい。中でも、カオリンもしくはカオリンを主成分とするものが好ましく使用される。また、本発明では、必要に応じて、上記一定の結晶構造性状を有する粘土鉱物と、有しない粘土鉱物とを、本発明の所期の効果が得られる限りにおいて、混合して使用することもできる。   There are various types of clay minerals such as montmorillonite, kaolin, bentonite, attapulgite, bauxite, quartz (quartz), illite, boehmite, etc. In the present invention, in the image measurement using the scanning electron microscope (SEM) as the clay mineral. As long as it is confirmed that the crystal particles have a plate-like crystal structure and the average number of laminated layers exceeds 10, any one of various clay minerals may be used alone. It is also possible to use a mixture of seeds. Further, it may be a natural product or a synthetic product. Of these, kaolin or those containing kaolin as a main component is preferably used. In the present invention, if necessary, a clay mineral having the above-mentioned certain crystal structure and a clay mineral not having the above-mentioned crystal structure may be mixed and used as long as the desired effect of the present invention can be obtained. it can.

カオリン鉱物には、カオリナイト(六角板状、kaolinite−1A)、積層に乱れのあるカオリナイト(六角板状、kaolinite−1Md)、ハロイサイト(針状)、ナクライト(六角板状、kaolinite−1M)、ディッカイト(板状、kaolinite−2M)等が知られているが、本発明に使用するカオリン鉱物は、その結晶構造が六角板状あるいはその他の形の板状など、板状であるものである。六角板状の結晶構造のものは、粒子形状が整いやすく、より強度、耐磨耗性に優れた触媒粒子を造粒できるため好ましい。さらに、kaolinite−1MdのXRDパターン(代表ピーク:2θ=約12、20、25°)を示すものは、一層、強度、耐磨耗性に優れた触媒粒子を造粒できると共に、炭化水素油の接触分解において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができ、最も好ましい。ここで、「1A」や「1Md」といった記号は、結晶のポリタイプ(多形)を示しており、Aは三斜(Asym/Triclinic)を、Mは単斜(monoclinic)を示し、また、記号の前の数字は、単位胞中に含む単位構造層の枚数を示す。
上記カオリン鉱物は下記に示す組成式で表される。
AlSiO(OH) (層間に水分子を有する場合はAlSiO(OH)・2HO)
The kaolinite includes kaolinite (hexagonal plate shape, kaolinite-1A), kaolinite with disordered stacking (hexagonal plate shape, kaolinite-1Md), halloysite (needle shape), nacrite (hexagonal plate shape, kaolinite-1M). Dickite (plate shape, kaolinite-2M) is known, but the kaolin mineral used in the present invention is a plate shape such as a hexagonal plate shape or other shape plate shape. . A hexagonal plate-shaped crystal structure is preferable because the particle shape can be easily adjusted and catalyst particles having higher strength and wear resistance can be granulated. Furthermore, the one showing the XRD pattern of kaolinite-1Md (representative peak: 2θ = about 12, 20, 25 °) can granulate catalyst particles having further excellent strength and wear resistance, In catalytic cracking, it has high cracking activity, reduces the amount of dry gas, LPG and coke produced, and improves the selectivity of gasoline fraction, making it possible to produce FCC gasoline efficiently and in high yield. An effect can be acquired and it is the most preferable. Here, the symbols “1A” and “1Md” indicate the polytype (polymorphism) of the crystal, A indicates triclinic, M indicates monoclinic, and The number before the symbol indicates the number of unit structural layers included in the unit cell.
The kaolin mineral is represented by the composition formula shown below.
Al 2 SiO 5 (OH) 4 (Al 2 SiO 5 when with water molecules between the layers (OH) 4 · 2H 2 O )

また、本発明で用いる粘土鉱物の粒子径は、触媒の粒子径以下であれば特に制限されないが、平均粒子径が0.1〜10μmであることが、強度、磨耗性に優れた触媒粒子を造粒できるため好ましい。また、本発明で用いる粘土鉱物は、SiO/Alモル比1.0〜2.5、水分2.0質量%以下、吸油量40〜80(cc/100g)、表面積5〜40m/gの性状を有することが、原料炭化水素油を効率よく吸油し、分解することができるため好ましい。 Further, the particle diameter of the clay mineral used in the present invention is not particularly limited as long as it is equal to or smaller than the particle diameter of the catalyst, but the average particle diameter is 0.1 to 10 μm. It is preferable because it can be granulated. Moreover, the clay mineral used in the present invention, SiO 2 / Al 2 O 3 molar ratio 1.0 to 2.5, water content 2.0% by mass or less, oil absorption of 40~80 (cc / 100g), the surface area 5~40m It is preferable to have a property of 2 / g because the raw material hydrocarbon oil can be efficiently absorbed and decomposed.

本発明の触媒では、上記一定の結晶形状及び平均積層数の性状を有する粘土鉱物を含有することにより、炭化水素油の接触分解において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができる。
本発明の触媒でかかる優れた効果が得られる原因の詳細は、必ずしも明らかではないが、上記一定の結晶構造及び平均積層数の性状を有する粘土鉱物を含有することで、接触分解反応に好適な細孔特性が形成されたためと考えられる。つまり本発明の接触分解触媒では、原料炭化水素油と分解活性点との接触効率が向上したため、ドライガス、LPG、コークの生成量が低減し、かつガソリン留分の選択性が向上して優れた効果が得られると考えられる。
In the catalyst of the present invention, by containing a clay mineral having the above-mentioned constant crystal shape and average number of layers, the catalyst has high cracking activity in the catalytic cracking of hydrocarbon oil and produces dry gas, LPG and coke. By reducing the amount and improving the selectivity of the gasoline fraction, it is possible to obtain an excellent effect that FCC gasoline can be produced efficiently and in high yield.
Although the details of the reason why such excellent effects can be obtained with the catalyst of the present invention are not necessarily clear, it is suitable for catalytic cracking reaction by containing the clay mineral having the above-mentioned constant crystal structure and properties of average number of layers. This is probably because the pore characteristics were formed. That is, in the catalytic cracking catalyst of the present invention, the contact efficiency between the raw hydrocarbon oil and the cracking active point is improved, so that the production amount of dry gas, LPG and coke is reduced, and the selectivity of the gasoline fraction is improved. It is thought that the effect is obtained.

(その他の成分)
本発明の触媒には、その他の成分として、シリカ、シリカ−アルミナ、アルミナ、擬ベーマイト、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解用触媒に使用される公知の無機酸化物の酸化物微粒子を含有させることもできる。これらも上記粘土鉱物と同様に、触媒のマトリックス成分として機能する。また、アルカリ土類や、マンガン、アンチモン、スズ等のメタル不活性化機能を持つ無機酸化物を含有させることもできる。
(Other ingredients)
In the catalyst of the present invention, as other components, ordinary catalytic cracking such as silica, silica-alumina, alumina, pseudoboehmite, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina, etc. It is also possible to contain oxide fine particles of a known inorganic oxide used for a catalyst for a catalyst. These also function as a matrix component of the catalyst in the same manner as the clay mineral. In addition, an alkaline earth or an inorganic oxide having a metal inactivating function such as manganese, antimony, tin, or the like can be contained.

<触媒の調製>
以上のような各成分から構成されている本発明の接触分解触媒を調製するには、種々の方法があって、その調製方法は特に制限されないが、例えば次のような手順で調製することができる。
先ず、上記の結晶性アルミノ珪酸塩、シリカバインダー及び粘土鉱物を混合溶液中で攪拌混合し、均一な水性スラリーを得る。このときの結晶性アルミノ珪酸塩、シリカバインダー、及び粘土鉱物の混合割合は、触媒乾燥基準で、結晶性アルミノ珪酸塩が20〜50質量%、好ましくは30〜50質量%、シリカバインダーが5〜40質量%、好ましくは10〜30質量%、粘土鉱物が10〜75質量%、好ましくは30〜70質量%の範囲に入るようにする。
<Preparation of catalyst>
There are various methods for preparing the catalytic cracking catalyst of the present invention composed of the above components, and the preparation method is not particularly limited. For example, it can be prepared by the following procedure. it can.
First, the above crystalline aluminosilicate, silica binder, and clay mineral are stirred and mixed in a mixed solution to obtain a uniform aqueous slurry. At this time, the mixing ratio of the crystalline aluminosilicate, the silica binder, and the clay mineral is 20 to 50% by mass of the crystalline aluminosilicate, preferably 30 to 50% by mass, and 5 to 5% of the silica binder on the basis of catalyst drying. It is made to fall within the range of 40% by mass, preferably 10-30% by mass, and clay minerals by 10-75% by mass, preferably 30-70% by mass.

結晶性アルミノ珪酸塩の量が20質量%以上であれば、所期の分解活性を得ることができ、また、50質量%以下であれば、相対的に粘土鉱物やシリカバインダーの量が少なくなりすぎて、次のような好ましくない現象が生じることを回避できる。即ち、粘土鉱物やシリカバインダーの量が少なすぎると、触媒強度が低下するのみならず、触媒の嵩密度が小さくなり、装置の運転において好ましくない結果を生じる。   If the amount of crystalline aluminosilicate is 20% by mass or more, the desired decomposition activity can be obtained, and if it is 50% by mass or less, the amount of clay mineral and silica binder is relatively reduced. Therefore, the following undesirable phenomenon can be avoided. That is, if the amount of the clay mineral or the silica binder is too small, not only the catalyst strength is lowered but also the bulk density of the catalyst is reduced, resulting in undesirable results in the operation of the apparatus.

また、シリカバインダーの量が5質量%以上であれば、触媒の強度が保てるため、触媒の飛散、生成油中への混入等の好ましくない現象を回避でき、また、40質量%以下であれば、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。   Further, if the amount of the silica binder is 5% by mass or more, the strength of the catalyst can be maintained, so that undesirable phenomena such as catalyst scattering and mixing in the produced oil can be avoided, and if it is 40% by mass or less. An improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.

さらにまた、粘土鉱物の量が10質量%以上であれば、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすことを回避でき、また、75質量%以下であれば、相対的に結晶性アルミノ珪酸塩やシリカバインダーの量が少なくなり、結晶性アルミノ珪酸塩の量の不足により所期の高い分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となることを回避できる。そして、粘土鉱物の混合割合を上記範囲とすることが、高い分解活性を有し、分解生成物であるドライガス、LPG、コークの生成量を低減させ、かつガソリン留分の選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという本発明の優れた効果を得る上で肝要である。   Furthermore, if the amount of the clay mineral is 10% by mass or more, the catalyst strength and the bulk density of the catalyst are small, and it can be avoided that the operation of the apparatus is hindered, and if it is 75% by mass or less, The amount of crystalline aluminosilicate and silica binder is relatively small, the expected amount of decomposition activity cannot be obtained due to the insufficient amount of crystalline aluminosilicate, and the catalyst preparation is not possible due to the insufficient amount of binder. The difficulty can be avoided. And, when the mixing ratio of clay minerals is within the above range, it has high cracking activity, reduces the amount of cracked products such as dry gas, LPG, and coke, and improves the selectivity of gasoline fraction. Thus, it is important to obtain the excellent effect of the present invention that FCC gasoline can be produced efficiently and in high yield.

上記の各成分を混合して調製される水性スラリー中の固形分の割合は、約5〜60質量%、より好ましくは10〜50質量%が適している。固形分の割合がこの範囲であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、スラリーの粘度が高くなり過ぎて、スラリーの輸送が困難になることがない。   The ratio of the solid content in the aqueous slurry prepared by mixing the above components is about 5 to 60% by mass, more preferably 10 to 50% by mass. If the ratio of the solid content is within this range, the amount of water to be evaporated will be appropriate, and there will be no trouble in the spray drying process, etc., and the viscosity of the slurry will be too high, making it difficult to transport the slurry. There is no.

次いで、調製された結晶性アルミノ珪酸塩/シリカバインダー/粘土鉱物の混合スラリーを通常噴霧乾燥し、触媒粒子を得る。噴霧乾燥工程は、一般に、噴霧乾燥装置を用い、ガス入口温度を約200〜400℃、ガス出口温度を約100〜200℃として行う。噴霧乾燥により得られる微小球体は、一般に、約20〜150μmの粒子径で、約10〜30質量%の水分含有量であることが好ましい。   Next, the prepared mixed slurry of crystalline aluminosilicate / silica binder / clay mineral is usually spray-dried to obtain catalyst particles. The spray drying process is generally performed using a spray drying apparatus at a gas inlet temperature of about 200 to 400 ° C and a gas outlet temperature of about 100 to 200 ° C. In general, the microspheres obtained by spray drying preferably have a particle size of about 20 to 150 μm and a water content of about 10 to 30% by mass.

上記の水性スラリーを噴霧乾燥して得られた微小球体は、必要に応じて200℃以上で焼成し、焼成物とすることもでき、また、噴霧乾燥装置で水性スラリーの噴霧乾燥を行う際、ガス出口温度を200℃以上に保つことができる設備を備えている場合には、噴霧乾燥工程に微小球体の焼成工程を含めることも可能である。   The microspheres obtained by spray-drying the above aqueous slurry can be fired at 200 ° C. or higher as necessary to form a fired product, and when spray drying of the aqueous slurry with a spray drying device, In the case where a facility capable of maintaining the gas outlet temperature at 200 ° C. or higher is provided, it is possible to include a microsphere firing step in the spray drying step.

<触媒の洗浄>
上記のようにして得られた触媒の微小球体あるいはその焼成物は、通常、結晶性アルミノ珪酸塩や、シリカバインダーや、粘土鉱物の各触媒成分からの可溶性不純物やナトリウムやカリウム等のアルカリ金属が含まれているため、水やアンモニア水を用いて可溶性不純物を洗浄除去し、次いでアルカリ金属をイオン交換することによって洗浄除去する。得られた微小球体やその焼成物に過剰のナトリウムやカリウムが存在しない場合は、その洗浄除去を行うことなく、そのまま触媒として用いることもできる。
<Catalyst cleaning>
The catalyst microspheres or the calcined product obtained as described above are usually composed of crystalline aluminosilicate, silica binder, soluble impurities from each catalyst component of clay mineral, and alkali metals such as sodium and potassium. Since it is contained, soluble impurities are washed away using water or aqueous ammonia, and then the alkali metal is washed away by ion exchange. When there is no excess sodium or potassium in the obtained microspheres or the fired product thereof, they can be used as a catalyst without being washed away.

上記のナトリウムやカリウム等のアルカリ金属の洗浄除去は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液を用いてイオン交換して行うことができる。   Specifically, alkali metal such as sodium and potassium is removed by washing with ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, and phosphoric acid. Ions using aqueous solutions of ammonium salts such as ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate Can be exchanged.

上記洗浄に続いて、この微小球体あるいはその焼成物を約100〜500℃の温度で再度乾燥し、水分含有量を約1〜25質量%にして、本発明に係る接触分解触媒が得られる。   Subsequent to the washing, the microspheres or the calcined product thereof is dried again at a temperature of about 100 to 500 ° C. to adjust the water content to about 1 to 25% by mass, whereby the catalytic cracking catalyst according to the present invention is obtained.

<接触分解方法>
本発明において、炭化水素油を接触分解するには、ガソリンの沸点範囲200℃以上で沸騰する炭化水素油(炭化水素混合物)を、上記本発明の接触分解触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素混合物とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や、常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、脱剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油をも包括するものである。
<Catalytic decomposition method>
In the present invention, in order to catalytically crack hydrocarbon oil, hydrocarbon oil (hydrocarbon mixture) boiling in a boiling range of gasoline of 200 ° C. or higher may be brought into contact with the catalytic cracking catalyst of the present invention. The hydrocarbon mixture boiling above the gasoline boiling range means a light oil fraction obtained by atmospheric or vacuum distillation of crude oil, an atmospheric distillation residue oil, and a vacuum distillation residue oil. This includes oil, dehumidified and deasphalted asphalt, tar sand oil, shale oil, and coal liquefied oil.

商業的規模での接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明のFCC触媒を連続的に流動循環させて行う。即ち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活したFCC触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した使用済みのFCC触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物はドライガス、LPG、ガソリン留分、中間留分、及び重質サイクル油(HCO)あるいはスラリー油のような1種類以上の重質留分に分離する。もちろん、これらの重質留分を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。   In the catalytic cracking on a commercial scale, the above-described FCC catalyst of the present invention is usually continuously fluidized and circulated in a catalytic cracking apparatus composed of two kinds of containers, a vertically installed cracking reactor and a catalyst regenerator. Do it. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed and guided in the upward direction in the cracking reactor. As a result, the FCC catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The spent FCC catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is recycled to the cracking reactor. On the other hand, the cracked product separates into dry gas, LPG, gasoline fraction, middle distillate, and one or more heavy fractions such as heavy cycle oil (HCO) or slurry oil. Of course, these heavy fractions can be recycled into the cracking reactor to further proceed the cracking reaction.

上記の接触分解におけるクラッキング反応器の運転条件としては、圧力が常圧〜5kg/cm、温度が約400〜600℃、好ましくは約450〜550℃、触媒/原料炭化水素油の重量比が約2〜20、好ましくは約4〜15とすることが適している。 The operating conditions of the cracking reactor in the catalytic cracking are as follows: the pressure is normal pressure to 5 kg / cm 2 , the temperature is about 400 to 600 ° C., preferably about 450 to 550 ° C., and the weight ratio of catalyst / raw hydrocarbon oil is It is suitable to be about 2-20, preferably about 4-15.

反応温度が400℃以上であれば、原料炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができて経済的である。   If reaction temperature is 400 degreeC or more, the decomposition reaction of raw material hydrocarbon oil will advance suitably, and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, the amount of light gas production | generations, such as dry gas and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object can be increased relatively, and it is economical. .

圧力が5kg/cm以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の重量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを防ぐことができる。 If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the weight ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. On the other hand, if it is 20 or less, the effect of increasing the catalyst concentration is saturated, and it is possible to prevent disadvantages without obtaining an effect commensurate with increasing the catalyst concentration.

以下、本発明を実施例、比較例により具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this is only an illustration and does not restrict | limit this invention.

〔分析機器、分析条件等〕
実施例、比較例で得た各触媒や使用粘土鉱物の分析に使用した機器、計算式等は次のとおりである。
・組成分析(ICP):Thermo Jarrell Ash社製 “IRIS Advantage”
[Analytical equipment, analysis conditions, etc.]
The equipment and calculation formulas used in the analysis of each catalyst and clay mineral used in Examples and Comparative Examples are as follows.
Composition analysis (ICP): “IRIS Advantage” manufactured by Thermo Jarrel Ash

・走査型電子顕微鏡(SEM):日本電子社製電界放射走査型電子顕微鏡“JSM−6340F”
試料調製:粘土鉱物試料を導電性の両面テープを用いて試料台に固定した後、Auを約200Åコーティングし観察用試料を調製した。
分析方法:SEM(加速電圧:5KV)による2次電子像の撮影。
積層数の算出方法:撮影倍率5000倍以上(積層数が解析できる倍率)において異なるロケーションの画像数十枚を撮影し、各画像に写る粒子合計100個分の積層数を算出し、積層数の分布及び平均積層数を求めた。
Scanning electron microscope (SEM): Field emission scanning electron microscope “JSM-6340F” manufactured by JEOL Ltd.
Sample preparation: A clay mineral sample was fixed to a sample table using a conductive double-sided tape, and then coated with about 200 mm of Au to prepare a sample for observation.
Analysis method: Taking a secondary electron image by SEM (acceleration voltage: 5 KV).
Method for calculating the number of layers: Shooting dozens of images at different locations at an imaging magnification of 5000 times or more (a magnification at which the number of layers can be analyzed), calculating the number of layers for a total of 100 particles in each image, Distribution and average number of layers were determined.

・XRD機器:理学電機株式会社製“RINT2500V”
* 前処理:粘土鉱物試料を100℃で24時間乾燥してから以下の条件で測定した。
管電圧:50kv
管電流:200mA
走査モード:連続
スキャンスピード:2°/min
スキャンステップ:0.02°
測定範囲(2θ):5〜90°
発散,散乱スリット:1°
受光スリット:0.3mm
・ XRD * Equipment: “RINT2500V” manufactured by Rigaku Corporation
* Pretreatment: Clay mineral samples were dried at 100 ° C. for 24 hours and then measured under the following conditions.
Tube voltage: 50 kv
Tube current: 200 mA
Scanning mode: Continuous Scanning speed: 2 ° / min
Scan step: 0.02 °
Measurement range (2θ): 5 to 90 °
Divergence, scattering slit: 1 °
Receiving slit: 0.3mm

〔触媒の調製〕
実施例1(触媒Aの調製)
結晶性アルミノ珪酸塩として表1の性状を有する安定化Y型ゼオライト、粘土鉱物として表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図1の結晶形状と、図3、図4の積層数分布を示す粘土鉱物(a)(山陽クレー工業社製:BIカオリン)、及び結合剤としてシリカゾル(JIS3号水ガラス、SiO濃度20.0質量%)をそれぞれ用い、次のようにして触媒Aを調製した。
(Preparation of catalyst)
Example 1 (Preparation of catalyst A)
The stabilized Y-type zeolite having the properties shown in Table 1 as crystalline aluminosilicate, the properties shown in Table 2 as clay minerals, and the crystal shape shown in FIG. 1 in image measurement using a scanning electron microscope (SEM). 3, using clay mineral (a) showing the distribution of the number of layers shown in FIG. 4 (manufactured by Sanyo Clay Industry Co., Ltd .: BI Kaolin) and silica sol (JIS No. 3 water glass, SiO 2 concentration 20.0 mass%) as a binder, Catalyst A was prepared as follows.

希硫酸94gに水ガラス138gと純水176gの混合溶液を滴下し、シリカゾル水溶液(SiO濃度20.0質量%)を調製した。一方、表1の性状を有する安定化Y型ゼオライト69.4g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記のシリカゾル水溶液に、表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図1の結晶形状と、図3、図4の積層数分布を示す粘土鉱物(a)108.5g(乾燥基準)と上記のゼオライトスラリーを混合し、さらに5分間混合した。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。該触媒前駆体を、60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、触媒Aを得た。
A mixed solution of 138 g of water glass and 176 g of pure water was added dropwise to 94 g of dilute sulfuric acid to prepare an aqueous silica sol solution (SiO 2 concentration 20.0 mass%). On the other hand, distilled water was added to 69.4 g (dry basis) of a stabilized Y-type zeolite having the properties shown in Table 1 to prepare a zeolite slurry. Clay mineral (a) having the properties shown in Table 2 in the above silica sol aqueous solution and showing the crystal shape of FIG. 1 and the number distribution of stacks of FIGS. 3 and 4 in image measurement using a scanning electron microscope (SEM). 108.5 g (dry basis) and the above zeolite slurry were mixed and further mixed for 5 minutes.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. The catalyst precursor was ion-exchanged twice with 3 L of a 5% by mass ammonium sulfate aqueous solution at 60 ° C., and further washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst A was obtained.

比較例1(触媒Bの調製)
結晶性アルミノ珪酸塩として表1の性状を有する安定化Y型ゼオライト、粘土鉱物として表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図2の結晶形状と、図3、図4の積層数分布を示す粘土鉱物(b)、及び結合剤としてシリカゾル(JIS3号水ガラス、SiO濃度20.0質量%)をそれぞれ用い、次のようにして触媒を調製した。
Comparative Example 1 (Preparation of catalyst B)
The stabilized Y-type zeolite having the properties shown in Table 1 as crystalline aluminosilicate, the properties shown in Table 2 as clay minerals, and the crystal shape shown in FIG. 2 in image measurement using a scanning electron microscope (SEM). 3. Using a clay mineral (b) showing the distribution of the number of layers in FIG. 4 and silica sol (JIS No. 3 water glass, SiO 2 concentration 20.0 mass%) as a binder, a catalyst was prepared as follows.

希硫酸94gに水ガラス138gと純水176gの混合溶液を滴下し、シリカゾル水溶液(SiO濃度20.0質量%)を調製した。一方、表1の性状を有する安定化Y型ゼオライト69.4g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記のシリカゾル水溶液に、表2の性状を有し、走査型電子顕微鏡(SEM)を用いた画像測定において図2の結晶形状と、図3、図4の積層数分布を示す粘土鉱物(b)108.5g(乾燥基準)と上記のゼオライトスラリーを混合し、さらに5分間混合した。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。該触媒前駆体を、60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、触媒Bを得た。
A mixed solution of 138 g of water glass and 176 g of pure water was added dropwise to 94 g of dilute sulfuric acid to prepare an aqueous silica sol solution (SiO 2 concentration 20.0 mass%). On the other hand, distilled water was added to 69.4 g (dry basis) of a stabilized Y-type zeolite having the properties shown in Table 1 to prepare a zeolite slurry. Clay mineral (b) having the properties shown in Table 2 in the above silica sol aqueous solution and showing the crystal shape of FIG. 2 and the distribution of the number of layers shown in FIGS. 3 and 4 in image measurement using a scanning electron microscope (SEM). 108.5 g (dry basis) and the above zeolite slurry were mixed and further mixed for 5 minutes.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. The catalyst precursor was ion-exchanged twice with 3 L of a 5% by mass ammonium sulfate aqueous solution at 60 ° C., and further washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst B was obtained.

〔触媒組成〕
上記の実施例1及び比較例1で得た触媒の組成を表3に纏めて示す。
[Catalyst composition]
The compositions of the catalysts obtained in Example 1 and Comparative Example 1 are summarized in Table 3.

〔触媒活性評価〕
実施例1及び比較例1で得た各触媒について、それぞれ、沸騰床マイクロ活性試験装置(KAYSER TECHNOLOGY社製 ACE-Model R+)を用いて、同一原料油、同一測定条件のもと、次のようにして接触分解特性を試験した。即ち、前処理として、各触媒について、実際の使用状況に近似させるべく、即ち平衡化させるべく、各新触媒を室温から600℃まで30分間で昇温し、600℃にて2時間保持して乾燥した後、ニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させ、100℃で乾燥し、しかる後600℃まで30分間で昇温し、600℃で2時間保持して焼成を行い、次いで、各触媒を、流動状態で、空気雰囲気下で室温から800℃まで90分間で昇温し、800℃に到達後、100%スチーム雰囲気に切替え、6時間処理した。
[Evaluation of catalyst activity]
About each catalyst obtained in Example 1 and Comparative Example 1, respectively, using an ebullated bed microactivity test apparatus (ACE-Model R + manufactured by KAYSER TECHNOLOGY) under the same feedstock and the same measurement conditions as follows: The catalytic cracking properties were tested. That is, as a pretreatment, each catalyst is heated from room temperature to 600 ° C. in 30 minutes and kept at 600 ° C. for 2 hours to approximate each catalyst usage, that is, to equilibrate. After drying, the cyclohexane solution containing nickel naphthenate and vanadium naphthenate is absorbed so that nickel and vanadium become 1000 ppm by mass and 2000 ppm by mass, respectively, dried at 100 ° C., and then increased to 600 ° C. over 30 minutes. The catalyst is heated for 2 hours at 600 ° C. and calcined, and then each catalyst is heated in a flowing state from room temperature to 800 ° C. in 90 minutes in 90 minutes. After reaching 800 ° C., 100% steam is reached. It switched to atmosphere and processed for 6 hours.

上記平衡化処理した触媒を用い、また、原料油として表4に性状を示す炭化水素油(脱硫減圧軽油(VGO)50%+脱流残油(DDSP)50%)を使用し、沸騰床マイクロ活性試験装置にて、反応温度510℃、反応時間75〜150秒、触媒/炭化水素油比(質量比)3.0、4.0、5.0、6.0として、評価試験を行った。その試験結果をグラフ化し、このグラフ(図示省略)から転化率が60質量%となる触媒/炭化水素油比(質量比)を回帰計算により算出した。ここで、転化率とは100−中間留分(質量%)−重質留分(質量%)である。さらに、回帰計算により転化率60質量%の時の算出されたFCC生成油の組成を表5にそれぞれ示す。   Using the above-equilibrated catalyst, and hydrocarbon oil (desulfurized vacuum gas oil (VGO) 50% + deflow residual oil (DDSP) 50%) having properties shown in Table 4 as a feedstock oil, In an activity test apparatus, an evaluation test was performed with a reaction temperature of 510 ° C., a reaction time of 75 to 150 seconds, and a catalyst / hydrocarbon oil ratio (mass ratio) of 3.0, 4.0, 5.0, 6.0. . The test results were graphed, and from this graph (not shown), the catalyst / hydrocarbon oil ratio (mass ratio) at which the conversion was 60% by mass was calculated by regression calculation. Here, the conversion rate is 100-middle fraction (mass%)-heavy fraction (mass%). Further, Table 5 shows the compositions of the FCC-generated oil calculated by the regression calculation when the conversion is 60% by mass.

比較例1で得られた触媒Bは、FCCガソリンの収率が低く、ドライガス(水素、C1〜C2)、LPG及びコーク量が多いため、炭化水素油の接触分解反応において、装置にかかるコストや負担を考慮すると不利である。
しかしながら、本発明に従った実施例1で得られた触媒Aは、ドライガス、コーク、LPGの生成量を低減させ、FCCガソリンを高収率で得ることができる。
The catalyst B obtained in Comparative Example 1 has a low FCC gasoline yield and a large amount of dry gas (hydrogen, C1 to C2), LPG, and coke. And disadvantageous when considering the burden.
However, the catalyst A obtained in Example 1 according to the present invention can reduce the generation amount of dry gas, coke and LPG, and can obtain FCC gasoline in high yield.

特にFCCを高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。また、FCCガソリンは、市場に出荷されるガソリンへの配合量が多いため、FCCガソリンを若干でも高収率で得ることができれば、経済的なメリットが大きい。   In particular, when the FCC is operated at a high operating rate, by reducing the dry gas, LPG, and coke, the regeneration tower temperature and the gas section can be afforded, so that more efficient operation of the apparatus becomes possible. In addition, since FCC gasoline has a large blending amount with gasoline shipped to the market, if FCC gasoline can be obtained even in a slightly high yield, there is a great economic merit.

実施例1で用いた粘土鉱物(a) を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (a) used in Example 1 with the scanning electron microscope (SEM). 比較例1で用いた粘土鉱物(b) を走査型電子顕微鏡(SEM)で観察した図である。It is the figure which observed the clay mineral (b) used in the comparative example 1 with the scanning electron microscope (SEM). 実施例1、比較例1で用いた粘土鉱物(a)及び粘土鉱物(b)の走査型電子顕微鏡(SEM)観察結果を解析して得た積層数分布図である。It is the number distribution of the lamination | stacking obtained by analyzing the scanning electron microscope (SEM) observation result of the clay mineral (a) used in Example 1 and the comparative example 1 and a clay mineral (b). 実施例1、比較例1で用いた粘土鉱物(a)及び粘土鉱物(b)の走査型電子顕微鏡(SEM)観察結果を解析して得た積層数分布(積算値)図である。It is a number distribution (integrated value) figure obtained by analyzing the scanning electron microscope (SEM) observation result of the clay mineral (a) and the clay mineral (b) used in Example 1 and Comparative Example 1.

Claims (2)

走査型電子顕微鏡を用いた画像測定において、結晶粒子が板状の結晶構造を持ち、その平均積層数が15〜50の性状を有する粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜50質量%、結合剤であるシリカバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。 In image measurement using a scanning electron microscope, the crystal particles have a plate-like crystal structure, and 10 to 75% by mass of a clay mineral having a property of an average number of layers of 15 to 50, and 20 of a crystalline aluminosilicate. A catalytic cracking catalyst for hydrocarbon oil, comprising ~ 50% by mass and 5-40% by mass of a silica binder as a binder. 炭化水素油を接触分解するに当たり、請求項1に記載の炭化水素油の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。   A method for catalytic cracking of hydrocarbon oil, wherein the catalytic cracking catalyst for hydrocarbon oil according to claim 1 is used for catalytic cracking of hydrocarbon oil.
JP2007038012A 2007-02-19 2007-02-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Active JP4818156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038012A JP4818156B2 (en) 2007-02-19 2007-02-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038012A JP4818156B2 (en) 2007-02-19 2007-02-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2008200579A JP2008200579A (en) 2008-09-04
JP4818156B2 true JP4818156B2 (en) 2011-11-16

Family

ID=39778610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038012A Active JP4818156B2 (en) 2007-02-19 2007-02-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4818156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916320B2 (en) * 2007-01-19 2012-04-11 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818157B2 (en) * 2007-02-19 2011-11-16 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1117511A (en) * 1977-11-02 1982-02-02 Edwin W. Albers Cracking catalyst composition
EP0358261B1 (en) * 1988-09-06 1994-04-13 Petroleo Brasileiro S.A. - Petrobras Kaolin containing fluid cracking catalyst
JPH11156197A (en) * 1997-11-26 1999-06-15 Cosmo Sogo Kenkyusho Kk Cracking catalyst for hydrocarbon oil
CN1069682C (en) * 1997-12-23 2001-08-15 中国石油化工总公司 Layer-column clay catalyst for heavy-oil catalytic thermal cracking and its preparation
WO2007005795A1 (en) * 2005-07-01 2007-01-11 Albemarle Netherlands Bv Use of anionic clay in an fcc process
JP4916320B2 (en) * 2007-01-19 2012-04-11 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818157B2 (en) * 2007-02-19 2011-11-16 一般財団法人石油エネルギー技術センター Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Also Published As

Publication number Publication date
JP2008200579A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP5911446B2 (en) Method for producing catalytic cracking catalyst of hydrocarbon oil
JP5392150B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP5126613B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
TWI627269B (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP4689472B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5660674B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same
JP4818135B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818157B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916321B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818156B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445781B2 (en) Method for producing catalytic cracking catalyst
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP6327709B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP4818136B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5499407B2 (en) Method for producing catalytic cracking catalyst
JP4689576B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689577B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP6632065B2 (en) Catalytic cracking catalyst for hydrocarbon oil, method for producing catalytic cracking catalyst for hydrocarbon oil, and catalytic cracking method for hydrocarbon oil
JP5258281B2 (en) Catalyst composition for catalytic cracking of hydrocarbon and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250