JP5445781B2 - Method for producing catalytic cracking catalyst - Google Patents
Method for producing catalytic cracking catalyst Download PDFInfo
- Publication number
- JP5445781B2 JP5445781B2 JP2010207135A JP2010207135A JP5445781B2 JP 5445781 B2 JP5445781 B2 JP 5445781B2 JP 2010207135 A JP2010207135 A JP 2010207135A JP 2010207135 A JP2010207135 A JP 2010207135A JP 5445781 B2 JP5445781 B2 JP 5445781B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- heat treatment
- zeolite
- mass
- aqueous slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 169
- 238000004523 catalytic cracking Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 76
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 71
- 239000002002 slurry Substances 0.000 claims description 70
- 239000010457 zeolite Substances 0.000 claims description 69
- 229910021536 Zeolite Inorganic materials 0.000 claims description 68
- 238000001694 spray drying Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 42
- 229910052665 sodalite Inorganic materials 0.000 claims description 28
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 25
- 238000005406 washing Methods 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 19
- 239000002734 clay mineral Substances 0.000 claims description 19
- 238000002360 preparation method Methods 0.000 claims description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 44
- 239000003921 oil Substances 0.000 description 41
- 235000019198 oils Nutrition 0.000 description 41
- 230000000694 effects Effects 0.000 description 36
- 239000003502 gasoline Substances 0.000 description 36
- 238000000354 decomposition reaction Methods 0.000 description 26
- 239000004215 Carbon black (E152) Substances 0.000 description 22
- 229930195733 hydrocarbon Natural products 0.000 description 22
- 150000002430 hydrocarbons Chemical class 0.000 description 22
- 238000005336 cracking Methods 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 14
- 239000004005 microsphere Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 150000002910 rare earth metals Chemical class 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 11
- 238000005342 ion exchange Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000000571 coke Substances 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 229910052622 kaolinite Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000000295 fuel oil Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000003915 liquefied petroleum gas Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000012018 catalyst precursor Substances 0.000 description 4
- 239000010779 crude oil Substances 0.000 description 4
- 238000004231 fluid catalytic cracking Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- -1 calcium fluoride Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000003421 catalytic decomposition reaction Methods 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- WWILHZQYNPQALT-UHFFFAOYSA-N 2-methyl-2-morpholin-4-ylpropanal Chemical compound O=CC(C)(C)N1CCOCC1 WWILHZQYNPQALT-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- YXHXDEBLSQQHQE-UHFFFAOYSA-N N.N.OP(O)=O Chemical compound N.N.OP(O)=O YXHXDEBLSQQHQE-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- URRHWTYOQNLUKY-UHFFFAOYSA-N [AlH3].[P] Chemical compound [AlH3].[P] URRHWTYOQNLUKY-UHFFFAOYSA-N 0.000 description 1
- AQQVTZBWWYVEGR-UHFFFAOYSA-N [NH4+].[O-][PH2]=O Chemical compound [NH4+].[O-][PH2]=O AQQVTZBWWYVEGR-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical compound [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- ZETCGWYACBNPIH-UHFFFAOYSA-N azane;sulfurous acid Chemical compound N.OS(O)=O ZETCGWYACBNPIH-UHFFFAOYSA-N 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)の製造方法に関する。より詳しくは、高い分解活性を有し、なおかつオクタン価の高いガソリン留分(以下「FCCガソリン」と記すこともある)を製造することができる炭化水素油の接触分解触媒の製造方法に関する。 The present invention relates to a method for producing a catalytic cracking catalyst for hydrocarbon oil (hereinafter sometimes referred to as “FCC catalyst”). More specifically, the present invention relates to a method for producing a catalytic cracking catalyst for hydrocarbon oil, which can produce a gasoline fraction having high cracking activity and a high octane number (hereinafter sometimes referred to as “FCC gasoline”).
近年、地球環境意識の高まりや温暖化への対策が重要視されるようになり、その中でも、自動車の排気ガスが環境に与える影響は大きいので、該排気ガスのクリーン化が期待されている。自動車排気ガスのクリーン化は、自動車の性能とガソリンの燃料組成に影響を受けることが一般的に知られており、特に石油精製産業では、高品質なガソリンを提供することが求められている。 In recent years, increasing awareness of the global environment and countermeasures against global warming have come to be emphasized, and among them, the exhaust gas of automobiles has a great influence on the environment, and thus the exhaust gas is expected to be cleaned. It is generally known that the purification of automobile exhaust gas is affected by the performance of the automobile and the fuel composition of gasoline. In particular, the oil refining industry is required to provide high-quality gasoline.
ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することによって製造される。特に、重質炭化水素油の接触分解反応によって得られるFCCガソリンは、ガソリンへの配合量が多く、ガソリンの品質改善に与える影響は非常に大きい。 Gasoline is produced by mixing a plurality of gasoline base materials obtained in a crude oil refining process. In particular, FCC gasoline obtained by catalytic cracking reaction of heavy hydrocarbon oil has a large blending amount in gasoline and has a great influence on quality improvement of gasoline.
重質炭化水素油の接触分解反応は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、水素・コーク、液化石油ガス(Liquid Petroleum Gas:LPG)、中間留分(Light Cycle Oil:LCO)、重質留分(Heavy Cycle Oil:HCO)が生産される。効率的にFCCガソリンを製造するためには、触媒の分解活性が高く、またFCCガソリン収率が高く、更にはオクタン価の高い高品質なFCCガソリンが得られることが当業者にとって好ましい。 The catalytic cracking reaction of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking. When producing FCC gasoline, In addition, hydrogen coke, liquefied petroleum gas (Liquid Petroleum Gas: LPG), middle distillate (Light Cycle Oil: LCO), and heavy distillate (Heavy Cycle Oil: HCO) are produced as by-products. In order to efficiently produce FCC gasoline, it is preferable for those skilled in the art to obtain a high-quality FCC gasoline having a high catalytic cracking activity, a high FCC gasoline yield, and a high octane number.
高品質なFCCガソリンを得るためには、ZSM―5などの酸性質の高いハイシリカゼオライトを触媒に添加し、FCCガソリン中の軽質オレフィン分を増加させ、FCCガソリンのオクタン価を向上させる方法が提案されている(例えば、特許文献1参照)。また、重質油を軽質オレフィン分と高オクタン価のFCCガソリンに転化する接触分解方法も提案されている(例えば、特許文献2参照)。更に、炭化水素油の接触分解を効率的に進行させる目的で、特定の性状の結晶性アルミノケイ酸塩をバインダーとしてシリカゾルとアルミナゾルを用いて粘土鉱物中に分散させた触媒を使用する方法が提案されている(例えば、特許文献3参照)。 In order to obtain high-quality FCC gasoline, a method has been proposed in which high-silica zeolite with high acid properties such as ZSM-5 is added to the catalyst to increase the light olefin content in FCC gasoline and improve the octane number of FCC gasoline. (For example, refer to Patent Document 1). In addition, a catalytic cracking method for converting heavy oil into light olefin content and high octane FCC gasoline has been proposed (see, for example, Patent Document 2). Furthermore, a method using a catalyst in which a crystalline aluminosilicate having a specific property is dispersed in a clay mineral using silica sol and alumina sol as a binder has been proposed in order to efficiently promote catalytic cracking of hydrocarbon oil. (For example, refer to Patent Document 3).
また、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分であるゼオライトの構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリンの選択性を低下させるなどの問題を有している。このような原油の重質化・低品位化に対応するためには、高い分解活性を有する触媒の開発が望まれている。 Also, in the catalytic cracking method of hydrocarbon oil, heavy oil such as vanadium and nickel and feedstock with a high residual carbon content must be put into the fluid catalytic cracking unit in accordance with the recent heavy and low grade crude oil. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the zeolite that is the active component of the FCC catalyst, resulting in a significant decrease in the activity of the catalyst and an increase in the production of hydrogen and coke, thus increasing the selectivity of gasoline. It is known to have problems such as lowering. Nickel is also deposited and deposited on the catalyst surface, and has a problem of increasing the amount of hydrogen and coke produced to promote the dehydrogenation reaction and lowering the selectivity of gasoline. In order to cope with such heavy and low grade crude oil, development of a catalyst having high cracking activity is desired.
更にまた、FCC触媒の分解活性を向上させる目的で、FCC触媒にリンを含有させる方法が提案されている(例えば、特許文献4、5、6参照)。 Furthermore, for the purpose of improving the decomposition activity of the FCC catalyst, a method of incorporating phosphorus into the FCC catalyst has been proposed (see, for example, Patent Documents 4, 5, and 6).
なお更にまた、FCC触媒にリンを含有させることで生成物選択性を向上させる方法が提案されている(例えば、特許文献7、8参照)。 Still further, a method for improving product selectivity by adding phosphorus to the FCC catalyst has been proposed (see, for example, Patent Documents 7 and 8).
しかしながら、特許文献1に記載の方法では、FCCガソリンの収率が低下する欠点があった。また、特許文献2に記載の方法では、オクタン価を高くするオレフィンの量は増加するが、触媒に堆積するコークも多くなってしまうという問題があった。そして、特許文献3に記載の方法では、反応生成物中のLCO留分を増加させることはできるものの、オクタン価の高い高品質なFCCガソリンを得ることができない問題があった。 However, the method described in Patent Document 1 has a drawback that the yield of FCC gasoline is reduced. In addition, the method described in Patent Document 2 has a problem that the amount of olefin that increases the octane number increases, but the amount of coke that accumulates on the catalyst also increases. And although the method of patent document 3 can increase the LCO fraction in a reaction product, there existed a problem which cannot obtain high quality FCC gasoline with a high octane number.
特許文献4〜6に記載の方法はいずれも、超安定化Yゼオライトを単独でリン酸処理し、その後にFCC触媒の粒子を形成する方法であって、分解活性の向上には効果があるものの、オクタン価の高い高品質なFCCガソリンの製造に関しては課題がある。 Each of the methods described in Patent Documents 4 to 6 is a method in which ultra-stabilized Y zeolite is treated with phosphoric acid alone and then FCC catalyst particles are formed, and is effective in improving the decomposition activity. There is a problem with the production of high-quality FCC gasoline with a high octane number.
特許文献7に記載の触媒組成物は、硝酸アルミニウムとリン酸から調製されたリン酸アルミニウムを原料に用いた触媒組成物であるが、分解生成物中のC3、C4オレフィン類やイソブチレンの収率増大を目的としており、FCC触媒の分解活性向上を図るものではない。 The catalyst composition described in Patent Document 7 is a catalyst composition using aluminum phosphate prepared from aluminum nitrate and phosphoric acid as a raw material, but the yield of C3, C4 olefins and isobutylene in the decomposition product It is intended to increase, and does not attempt to improve the decomposition activity of the FCC catalyst.
また、特許文献8に記載の触媒組成物は、結合剤に第一リン酸アルミニウムを使用した触媒組成物であるが、使用するゼオライトはペンタシル型ゼオライトのみであり、C3留分の選択性を向上させるものである。しかも、特許文献8に記載の触媒組成物は、FCC触媒に物理混合するアディティブ粒子であって、単独で重質油の接触分解に使用できるものではない。 In addition, the catalyst composition described in Patent Document 8 is a catalyst composition using primary aluminum phosphate as a binder, but the zeolite used is only a pentasil-type zeolite, improving the selectivity of the C3 fraction. It is something to be made. Moreover, the catalyst composition described in Patent Document 8 is additive particles that are physically mixed with the FCC catalyst, and cannot be used alone for the catalytic cracking of heavy oil.
本発明は、以上述べた従来の諸点を考慮し、高い分解活性を有し、なおかつオクタン価の高いFCCガソリンを製造できる炭化水素油の接触分解触媒の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a catalytic cracking catalyst for hydrocarbon oil that can produce FCC gasoline having high cracking activity and high octane number in consideration of the conventional points described above.
本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、FCC触媒の原料としてソーダライトケージ構造を有するゼオライト・シリカゾル・第一リン酸アルミニウム・粘土鉱物を特定の割合で含有するスラリーを用いて、該スラリーを特定の温度条件で噴霧乾燥するか、又は噴霧乾燥工程後に特定の条件で熱処理を行った後に、洗浄工程を行う製造方法で触媒を製造することにより、高い分解活性を示し、なおかつオクタン価の高い高品質なFCCガソリンを製造できるFCC触媒が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention contain zeolite, silica sol, monoaluminum phosphate, and clay mineral having a sodalite cage structure in a specific ratio as a raw material for the FCC catalyst. The slurry is sprayed and dried at a specific temperature condition, or the catalyst is manufactured by a manufacturing method in which a washing process is performed after the heat treatment is performed under a specific condition after the spray drying process. It has been found that an FCC catalyst that exhibits activity and can produce high-quality FCC gasoline having a high octane number can be obtained, and the present invention has been completed.
すなわち、本発明は以下の接触分解触媒の製造方法に関する。
(1)水性スラリー中の全固形分基準で以下の各成分を固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20〜50質量%、シリカゾルをSiO2換算で10〜30質量%、第一リン酸アルミニウムをAl2O3・3P2O5換算で0.1〜21質量%、及び粘土鉱物を5〜65質量%含有する水性スラリーを調製する工程、
該水性スラリー調製工程で得られた水性スラリーを1気圧における温度で450℃以上の温度領域を有する噴霧乾燥装置を用いて噴霧乾燥する噴霧乾燥工程、
該噴霧乾燥工程で得られた生成物を洗浄する洗浄工程、及び
該洗浄工程の後に生成物を乾燥する乾燥工程を有することを特徴とする接触分解触媒の製造方法。
(2)水性スラリー中の全固形分基準で以下の各成分を固形分換算したときに、ソーダライトケージ構造を有するゼオライトを20〜50質量%、シリカゾルをSiO2換算で10〜30質量%、第一リン酸アルミニウムをAl2O3・3P2O5換算で0.1〜21質量%、及び粘土鉱物を5〜65質量%含有する水性スラリーを調製する工程、
該水性スラリー調製工程で得られた水性スラリーを噴霧乾燥する噴霧乾燥工程、
該噴霧乾燥工程で得られた生成物を熱処理温度が1気圧における温度で100℃以上、かつ「熱処理温度(℃、但し1気圧における温度)×熱処理時間(分)」が550以上となる条件で処理する熱処理工程、
該熱処理工程を経た生成物を洗浄する洗浄工程、及び
該洗浄工程の後に生成物を乾燥する乾燥工程を有することを特徴とする接触分解触媒の製造方法。
That is, this invention relates to the manufacturing method of the following catalytic cracking catalysts.
(1) when converted solid content of each component below the total solids in the aqueous slurry, from 20 to 50 wt% of zeolite having a sodalite cage structure, 10 to 30 wt% of silica sol in terms of SiO 2, A step of preparing an aqueous slurry containing 0.1 to 21% by mass of primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 and 5 to 65% by mass of clay mineral,
A spray drying step of spray drying the aqueous slurry obtained in the aqueous slurry preparation step using a spray drying apparatus having a temperature range of 450 ° C. or higher at a temperature of 1 atm;
A method for producing a catalytic cracking catalyst, comprising: a washing step for washing a product obtained in the spray drying step; and a drying step for drying the product after the washing step.
(2) when converted solid content of each component below the total solids in the aqueous slurry, from 20 to 50 wt% of zeolite having a sodalite cage structure, 10 to 30 wt% of silica sol in terms of SiO 2, A step of preparing an aqueous slurry containing 0.1 to 21% by mass of primary aluminum phosphate in terms of Al 2 O 3 .3P 2 O 5 and 5 to 65% by mass of clay mineral,
A spray drying step of spray drying the aqueous slurry obtained in the aqueous slurry preparation step;
The product obtained in the spray drying step is subjected to a heat treatment temperature of 100 ° C. or higher at a pressure of 1 atm, and “heat treatment temperature (° C., temperature at 1 atm) × heat treatment time (minutes)” is 550 or higher. Heat treatment process,
A method for producing a catalytic cracking catalyst, comprising: a washing step for washing a product that has undergone the heat treatment step; and a drying step for drying the product after the washing step.
本発明の接触分解触媒の製造方法によれば、高い分解活性を有し、なおかつオクタン価の高いFCCガソリンを製造できる接触分解触媒を製造し得て、上記目的を達成することができる。 According to the method for producing a catalytic cracking catalyst of the present invention, a catalytic cracking catalyst having high cracking activity and capable of producing FCC gasoline having a high octane number can be produced, and the above object can be achieved.
以下に本発明の実施の形態を詳細に説明する。
[触媒の製造方法]
本発明の製造方法は、2つの製造方法を包含し(一方を「本発明1」、他方を「本発明2」とも言う。)いずれもソーダライトケージ構造を有するゼオライトを20〜50質量%、シリカゾルをSiO2換算で10〜30質量%、第一リン酸アルミニウムをAl2O3・3P2O5換算で0.1〜21質量%、及び粘土鉱物を5〜65質量%含有する水性スラリーを調製する工程、該水性スラリー調製工程で得られた水性スラリーを噴霧乾燥する噴霧乾燥工程、該噴霧乾燥工程で得られた生成物を洗浄する洗浄工程を有する製造方法であるが、本発明1では(イ)噴霧乾燥工程において、1気圧における温度で450℃以上の温度領域を有する噴霧乾燥装置を用いる点、本発明2では(ロ)噴霧乾燥工程を経た後で洗浄工程を行う前に、噴霧乾燥工程で得た生成物を熱処理温度が1気圧における温度で100℃以上でかつ「熱処理温度(℃、但し1気圧における温度)×熱処理時間(分)」が550以上となる条件で処理する熱処理工程を有する点が異なり、本発明1や本発明2では、この(イ)や(ロ)の工程により高い分解活性を有する触媒を製造できるものである。
Hereinafter, embodiments of the present invention will be described in detail.
[Method for producing catalyst]
The production method of the present invention includes two production methods (one is also referred to as “the present invention 1” and the other is also referred to as “the present invention 2”). 20-50% by mass of zeolite having a sodalite cage structure, 10 to 30 mass% of silica sol in terms of SiO 2, from 0.1 to 21 wt% of aluminum primary phosphate in Al 2 O 3 · 3P 2 O 5 in terms, and an aqueous slurry containing 5 to 65 wt% of the clay mineral The production method includes a step of preparing the aqueous slurry, a spray drying step of spray drying the aqueous slurry obtained in the aqueous slurry preparation step, and a washing step of washing the product obtained in the spray drying step. In (a) the spray drying step, a spray drying apparatus having a temperature region of 450 ° C. or higher at a pressure of 1 atm is used, and in the present invention 2, (b) before performing the washing step after the spray drying step, The product obtained in the spray-drying process is treated under the conditions that the heat treatment temperature is 100 ° C. or higher at a temperature of 1 atm and “heat treatment temperature (° C., temperature at 1 atm) × heat treatment time (minutes)” is 550 or more. In the present invention 1 and the present invention 2, a catalyst having high decomposition activity can be produced by the steps (a) and (b).
この(イ)噴霧乾燥工程を1気圧における温度で450℃以上の温度領域を有する噴霧乾燥装置を用いる噴霧乾燥工程や、(ロ)噴霧乾燥工程を経た後で洗浄工程を行う前に噴霧乾燥工程で得た生成物を熱処理温度が1気圧における温度で100℃以上でかつ「熱処理温度(℃、但し1気圧における温度)×熱処理時間(分)」が450以上となる条件で処理する熱処理工程は、これを行わなくても従来の公知技術よりも高い分解活性を有する触媒を得ることはできるが、本発明1や本発明2ではこれらの工程を備えることでより一層高い分解活性を有する触媒を得ることのできる触媒の製造方法を提供するものである。 This (b) spray-drying process is a spray-drying process using a spray-drying apparatus having a temperature range of 450 ° C. or higher at a pressure of 1 atm. The heat treatment step of treating the product obtained in step 1 at a temperature of 1 atm at a heat treatment temperature of 100 ° C. or higher and “heat treatment temperature (° C., temperature at 1 atm) × heat treatment time (minutes)” is 450 or higher is Even without this, it is possible to obtain a catalyst having a higher cracking activity than that of the known prior art, but in the present invention 1 or 2, the catalyst having a higher cracking activity can be obtained by including these steps. The present invention provides a method for producing a catalyst that can be obtained.
ここで、本発明者らが、分解活性を向上させるべく(イ)又は(ロ)の工程を製造工程に組み入れることを着想した理由は以下の通りである。本発明の製造方法では原料に第一リン酸アルミニウムを使用しており、第一リン酸アルミニウムは加熱によって脱水し、酸化物状態となって安定するが、十分な加熱処理を行うことにより、第一リン酸アルミニウムの十分な脱水縮合が生じ、第一リン酸アルミニウムの結晶性はより高まり、流動接触分解を促進する酸点が増えるため、その結果、分解活性が向上することが期待できると考えられる。このような思想に基づき、第一リン酸アルミニウムの脱水縮合を十分に生じさせるべく、種々の乾燥条件の検討を行ったところ、上記(イ)又は(ロ)の工程を組み入れることにより、分解活性が向上することを見出した。 Here, the reason why the present inventors conceived of incorporating the process (a) or (b) into the production process in order to improve the decomposition activity is as follows. In the production method of the present invention, primary aluminum phosphate is used as a raw material, and the primary aluminum phosphate is dehydrated by heating and becomes stable in an oxide state. However, by performing sufficient heat treatment, Sufficient dehydration condensation of aluminum monophosphate occurs, the crystallinity of primary aluminum phosphate is further increased, and the acid sites that promote fluid catalytic cracking are increased. As a result, it can be expected that the decomposition activity can be improved. It is done. Based on such a concept, various drying conditions were examined in order to sufficiently generate dehydration condensation of primary aluminum phosphate. By incorporating the above-mentioned steps (a) or (b), the decomposition activity Found to improve.
以下、本発明1と本発明2を分けて説明する。
≪本発明1の製造方法≫
<スラリー調製工程>
本発明1(以下、本発明1と本発明2を特に区別せずに単に「本発明」と称する場合がある)の製造方法においては、ソーダライトケージ構造を有するゼオライト、シリカゾル、第一リン酸アルミニウム及び粘土鉱物を含有する水性スラリーを用いる。
本発明の製造方法で用いる水性スラリー中に含まれる上記各成分とその含有量や、水性スラリーの調製方法などを以下詳しく説明する。
Hereinafter, the present invention 1 and the present invention 2 will be described separately.
<< Production Method of Invention 1 >>
<Slurry preparation process>
In the production method of the present invention 1 (hereinafter, the present invention 1 and the present invention 2 may be simply referred to as “the present invention” without particularly distinguishing them), zeolite having a sodalite cage structure, silica sol, and primary phosphoric acid An aqueous slurry containing aluminum and clay minerals is used.
The above-mentioned components and their contents contained in the aqueous slurry used in the production method of the present invention, the preparation method of the aqueous slurry, etc. will be described in detail below.
(ソーダライトケージ構造を有するゼオライト)
本発明の製造方法で用いるソーダライトケージ構造を有するゼオライトとは、アルミニウム及びケイ素四面体を基本単位とし、頂点の酸素をアルミニウム又はケイ素が共有することにより形成される立体的な正八面体の結晶構造の各頂点を切り落とした形の十四面体のゼオライトの結晶構造により規定される空隙構造であって、四員環と六員環の細孔構造を有するゼオイラトである。このソーダライトケージ同士の結合場所や方法が変化することによって種々の細孔構造、骨格密度、チャンネル構造を有するソーダライトケージ構造を有するゼオライトがある。しかして、本発明で用いるソーダライトケージ構造を有するゼオライトとしては、上記種々の細孔構造、骨格密度、チャンネル構造を有するソーダライトケージ構造を有するゼオライトを用い得て、ソーダライト、A型ゼオライト、EMT、Xゼオライト、Yゼオライト、安定化Yゼオライトなどが挙げられ、好ましくは安定化Yゼオライトである。
(Zeolite with sodalite cage structure)
Zeolite having a sodalite cage structure used in the production method of the present invention is a three-dimensional octahedral crystal structure formed by aluminum and silicon tetrahedron as a basic unit, and aluminum or silicon sharing apex oxygen. Is a void structure defined by the crystal structure of a tetradecahedral zeolite with the respective apexes cut off, and is a zeoliate having a four-membered ring structure and a six-membered ring structure. There are zeolites having sodalite cage structures having various pore structures, skeleton densities, and channel structures by changing the bonding sites and methods of the sodalite cages. Thus, as the zeolite having a sodalite cage structure used in the present invention, a zeolite having a sodalite cage structure having various pore structures, skeleton densities, and channel structures can be used, sodalite, A-type zeolite, Examples thereof include EMT, X zeolite, Y zeolite, and stabilized Y zeolite. Preferred is stabilized Y zeolite.
この好ましく用いられる安定化Yゼオライトは、Yゼオライトを出発原料として合成され、Yゼオライトと比較して、結晶化度の劣化に対し耐性を示すものであり、一般には、Yゼオライトを高温での水蒸気処理を数回行った後、必要に応じて、塩酸等の鉱酸、水酸化ナトリウム等の塩基、フッ化カルシウム等の塩、エチレンジアミン四酢酸等のキレート剤で処理することにより得られる。上記の手法で得られた安定化Yゼオライトは、水素、アンモニウムあるいは多価金属から選ばれるカチオンでイオン交換された形で使用することができる。また、安定化Yゼオライトとして、より安定性に優れたヒートショック結晶性アルミノシリケートゼオライト(特許第2544317号公報参照)を使用することもできる。 The stabilized Y zeolite that is preferably used is synthesized using Y zeolite as a starting material, and is more resistant to deterioration of crystallinity than Y zeolite. In general, Y zeolite is water vapor at high temperature. After the treatment is performed several times, it is obtained by treating with a mineral acid such as hydrochloric acid, a base such as sodium hydroxide, a salt such as calcium fluoride, and a chelating agent such as ethylenediaminetetraacetic acid, if necessary. The stabilized Y zeolite obtained by the above method can be used in an ion exchanged form with a cation selected from hydrogen, ammonium or a polyvalent metal. Further, as the stabilized Y zeolite, a heat shock crystalline aluminosilicate zeolite (see Japanese Patent No. 2544317) which is more excellent in stability can also be used.
本発明で用いる安定化Yゼオライトは、一般に、(a)化学組成分析によるバルクのSiO2/Al2O3モル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60Å、(c)ゼオライト骨格内Alの全Alに対するモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いる。この安定化Yゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記組成式(I)を有する。
〔組成式(I)〕
(0.02〜1.0)R2/mO・Al2O3・(5〜11)SiO2・(5〜8)H2O
式中;R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
The stabilized Y zeolite used in the present invention generally has (a) a bulk SiO 2 / Al 2 O 3 molar ratio of 4 to 15, preferably 5 to 10, and (b) a unit cell size of 24. 35 to 24.65%, preferably 24.40 to 24.60%, and (c) the molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Use things. This stabilized Y zeolite has basically the same crystal structure as natural faujasite and has the following composition formula (I) as an oxide.
[Composition Formula (I)]
(0.02~1.0) R 2 / m O · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: valence of R
上記安定化Yゼオライトにおける単位格子寸法はX線回折装置(XRD)により測定することができ、また、全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO2/Al2O3比及び単位格子寸法から下記数式(A)〜(C)を用いて算出される値である。なお、数式(A)は、H.K.Beyer et al.,J.Chem.Soc.,Faraday Trans.1,(81),2899(1985).に記載の式を採用したものである。
〔数式(A)〕
NAl= (a0−2.425)/0.000868
式中;a0:単位格子寸法/nm
NAl:単位格子あたりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、a0とNAlについて1次式で整理したとき(a0=0.000868NAl+2.425)の傾き
〔数式(B)〕
(Si/Al)計算式=(192−NAl)/NAl
式中;192:Yゼオライトの単位格子寸法あたりの(Si+Al)の原子数
〔数式(C)〕
ゼオライト骨格内Al/全Al =(Si/Al)化学組成分析値/(Si/Al)計算式
The unit cell size in the stabilized Y zeolite can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolitic framework relative to the total Al is the SiO 2 / Al 2 O 3 ratio according to chemical composition analysis. And a value calculated from the unit cell dimensions using the following mathematical formulas (A) to (C). Note that the mathematical formula (A) K. Beyer et al. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.
[Formula (A)]
N Al = (a0-2.425) /0.000868
A0: unit cell size / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a0 and N slope when the organized information in a linear expression Al (a0 = 0.000868N Al +2.425) [equation (B)]
(Si / Al) calculation formula = (192-N Al ) / N Al
192: number of (Si + Al) atoms per unit cell dimension of Y zeolite [Formula (C)]
Zeolite framework Al / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula
ゼオライトのSiO2/Al2O3モル比は、触媒の酸強度を示しており、モル比が大きいほど触媒の酸強度が強くなる。SiO2/Al2O3モル比が4以上であれば、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好ましく進行する。SiO2/Al2O3モル比が15以下であれば、触媒の酸強度は強くなり、また必要な酸の数を確保でき、重質炭化水素油の分解活性を確保し易くなる。 The SiO 2 / Al 2 O 3 molar ratio of zeolite indicates the acid strength of the catalyst. The larger the molar ratio, the stronger the acid strength of the catalyst. When the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds preferably. When the SiO 2 / Al 2 O 3 molar ratio is 15 or less, the acid strength of the catalyst becomes strong, the number of necessary acids can be secured, and the decomposition activity of heavy hydrocarbon oil can be easily secured.
上記ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であれば、重質油の分解に必要なAlの数が適当であり、その結果分解反応が好適に進行する。24.65Å以下であれば、ゼオライトの結晶の劣化を防ぎやすく、触媒の分解活性の低下が著しくなることを回避することができる。 The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite, but if it is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy oil is appropriate, and as a result, the decomposition reaction Preferably proceeds. If it is 24.65% or less, it is easy to prevent deterioration of zeolite crystals, and it is possible to avoid a significant decrease in the decomposition activity of the catalyst.
ゼオライト結晶を構成するAlの量が多くなりすぎると、結果、ゼオライトの骨格から脱落したAl2O3粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなるおそれがあるが、上記ゼオライト骨格内Alの全Alに対するモル比が0.3以上であれば、上記現象を回避できる。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the amount of Al constituting the zeolite crystal is too large, as a result, the Al 2 O 3 particles dropped from the skeleton of the zeolite will increase, and there is a possibility that the catalytic decomposition reaction will not proceed because the strong acid point is not expressed. The above phenomenon can be avoided if the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to
本発明の製造方法では、以上述べたソーダライトケージ構造を有するゼオライトを原料に用いることが所期の高分解活性を有する接触分解触媒を製造するために必要である。
水性スラリー中に含有されるソーダライトケージ構造を有するゼオライトの割合は、スラリー中の全固形分を基準に換算したときに、20〜50質量%であり、35〜45質量%とすることが好ましい。水性スラリー中に含有するソーダライトケージ構造を有するゼオライトの量が20質量%以上であると、得られる接触分解触媒に所期の分解活性を付与することができ、また、50質量%以下であると、得られる接触分解触媒における他の成分の含有量を所望の範囲にすることができることから、好ましい触媒強度や触媒の嵩密度としやすく、装置を好適に運転し得る接触分解触媒を得ることができる。
In the production method of the present invention, it is necessary to use the zeolite having the sodalite cage structure described above as a raw material in order to produce a desired catalytic cracking catalyst having a high cracking activity.
The ratio of the zeolite having a sodalite cage structure contained in the aqueous slurry is 20 to 50% by mass, preferably 35 to 45% by mass when converted to the total solid content in the slurry. . When the amount of the zeolite having a sodalite cage structure contained in the aqueous slurry is 20% by mass or more, an intended cracking activity can be imparted to the obtained catalytic cracking catalyst, and the amount is 50% by mass or less. In addition, the content of other components in the obtained catalytic cracking catalyst can be within a desired range, so that it is easy to obtain a preferable catalyst strength and bulk density of the catalyst, and it is possible to obtain a catalytic cracking catalyst that can operate the apparatus suitably. it can.
(シリカゾル)
本発明の製造方法で用いるシリカゾルとしては、種々の珪素化合物を使用できるが、水溶性のシリカゾルが好ましい。また、シリカゾルには、幾つかの種類が知られており、コロイダルシリカを例に挙げれば、ナトリウム型、リチウム型、酸型等があり、本発明はいずれの型を用いてもよい。また、シリカゾルとしては、ゾル状である限りにおいてはそのSiO2濃度は特に限定はなく、例えば10質量%程度のものから50質量%程度のものまで幅広く使用することができる。更に、商業的規模での生産の場合、希釈水ガラス水溶液と硫酸水溶液とを反応させて得られるシリカヒドロゾルなどを用いることもできる。
(Silica sol)
Although various silicon compounds can be used as the silica sol used in the production method of the present invention, a water-soluble silica sol is preferred. Also, several types of silica sol are known. If colloidal silica is taken as an example, there are sodium type, lithium type, acid type and the like, and any type may be used in the present invention. Further, as long as the silica sol is in the form of sol, the SiO 2 concentration is not particularly limited, and can be widely used, for example, from about 10% by mass to about 50% by mass. Furthermore, in the case of production on a commercial scale, silica hydrosol obtained by reacting a dilute water glass aqueous solution and a sulfuric acid aqueous solution can also be used.
水性スラリー中に含有されるシリカゾルの割合は、スラリー中の全固形分を基準に換算したときに、SiO2換算で10〜30質量%、好ましくは15〜30質量%、より好ましくは15〜25質量%含有する。含有量が10質量%未満では十分な強度が得づらく、触媒の散飛、生成油中への混入等の好ましくない現象が起きやすくなる。30質量%を超えても使用量に見合った触媒性能の向上は得られない傾向にあり、経済的ではない。
本発明においては、シリカゾルは結合剤として機能するものであり、ゼオライト及び粘土鉱物の粒子間に存在して、触媒を微粒子化する時の成形性を良くし、球状にさせ、また得られる触媒微粒子の流動性及び耐摩耗性を図る機能を有する。
The ratio of the silica sol contained in the aqueous slurry is 10 to 30% by mass, preferably 15 to 30% by mass, more preferably 15 to 25% in terms of SiO 2 when converted to the total solid content in the slurry. Contains by mass%. If the content is less than 10% by mass, it is difficult to obtain sufficient strength, and undesirable phenomena such as scattering of the catalyst and mixing into the produced oil tend to occur. Even if it exceeds 30% by mass, improvement in catalyst performance commensurate with the amount used tends not to be obtained, which is not economical.
In the present invention, the silica sol functions as a binder and is present between the zeolite and clay mineral particles to improve the moldability when the catalyst is atomized, to make it spherical, and to obtain the catalyst fine particles It has a function to improve the fluidity and wear resistance of the.
(第一リン酸アルミニウム)
本発明の製造方法で用いる第一リン酸アルミニウムとは、一般式[Al(H2PO4)3]で示される水溶性の酸性リン酸塩であり、第一リン酸アルミニウム、モノリン酸アルミニウム又は重リン酸アルミニウムとも称される。第一リン酸アルミニウムは加熱によって脱水縮合され、水分を失うと、酸化物形態となって安定化する。第一リン酸アルミニウムとしては、第一リン酸アルミニウムの状態である限りにおいてはそのAl2O3・3P2O5換算濃度に特に限定はなく、例えば30質量%程度のものから95質量%程度のものまで幅広く用いることができる。また、第一リン酸アルミニウムとしては、本発明の製造方法で得られる触媒の性能に影響しない程度の含有量、例えば10質量%以下の含有量であればホウ素やマグネシウムなどの金属分や、乳酸などの有機化合物を含有するものを用いることもできる。
(Primary aluminum phosphate)
The primary aluminum phosphate used in the production method of the present invention is a water-soluble acidic phosphate represented by the general formula [Al (H 2 PO 4 ) 3 ], and includes primary aluminum phosphate, aluminum monophosphate or Also called aluminum biphosphate. The primary aluminum phosphate is dehydrated and condensed by heating, and when it loses moisture, it becomes oxide form and stabilizes. As long as it is the state of primary aluminum phosphate, there is no particular limitation on the Al 2 O 3 · 3P 2 O 5 equivalent concentration as long as it is in the state of primary aluminum phosphate, for example, from about 30% by mass to about 95% by mass Can be used widely. Further, as the primary aluminum phosphate, a content that does not affect the performance of the catalyst obtained by the production method of the present invention, for example, a metal content such as boron or magnesium, or lactic acid if the content is 10% by mass or less. What contains organic compounds, such as these, can also be used.
水性スラリー中に含有される第一リン酸アルミニウムの割合は、スラリー中の全固形分を基準に換算したときに、Al2O3・3P2O5換算で0.1〜21質量%、好ましくは0.1〜10質量%、更に好ましくは0.5〜10質量%、特に好ましくは0.5〜5質量%である。水性スラリー中に含有する第一リン酸アルミニウムの量が0.1質量%未満では十分な分解活性向上効果が得づらい。21質量%を超えても使用量に見合った触媒性能の向上は得られない傾向にあり、またオクタン価の高いFCCガソリンが得づらくなる。 The proportion of the primary aluminum phosphate contained in the aqueous slurry is 0.1 to 21% by mass in terms of Al 2 O 3 .3P 2 O 5 when converted to the total solid content in the slurry, preferably Is 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5% by mass. When the amount of primary aluminum phosphate contained in the aqueous slurry is less than 0.1% by mass, it is difficult to obtain a sufficient effect of improving decomposition activity. Even if it exceeds 21% by mass, improvement in catalyst performance commensurate with the amount used tends not to be obtained, and it becomes difficult to obtain FCC gasoline having a high octane number.
第一リン酸アルミニウムは他のアルミニウム源と比較して、水溶液中で多核錯体のポリマーとして存在しており、表面に多量の水酸基を含有しているため、強い結合力を発揮する。すなわち、上記のシリカゾルと同様に、本発明の接触分解触媒の製造において、結合剤として機能する。
また、第一リン酸アルミニウムを使用することで触媒中の酸性質が変化し酸点が増加し、それによって所期の高い分解活性を示し、オクタン価の高いFCCガソリンを得られる触媒とすることができる。
Compared with other aluminum sources, primary aluminum phosphate is present as a polymer of a polynuclear complex in an aqueous solution, and since it contains a large amount of hydroxyl groups on the surface, it exerts a strong binding force. That is, like the above silica sol, it functions as a binder in the production of the catalytic cracking catalyst of the present invention.
In addition, by using primary aluminum phosphate, the acid properties in the catalyst are changed and the acid point is increased, so that the catalyst exhibits the desired high decomposition activity and can obtain FCC gasoline having a high octane number. it can.
(リン/ケイ素モル比)
本発明の製造方法においては、水性スラリー中において、シリカゾル由来のケイ素に対する第一リン酸アルミニウム由来のリンのモル比(以下「リン/ケイ素モル比」とも言う。)を、好ましくは0.01〜0.75、より好ましくは0.01〜0.35、特に好ましくは0.03〜0.35の範囲とすることが好ましい。リン/ケイ素モル比が0.01以上であればより高い分解活性を有する触媒が得られ、また0.75以下であればより高オクタン価のFCCガソリンが得られる触媒が得られるため好ましい。リン/ケイ素モル比は、第一リン酸アルミニウムとシリカゾルの配合量を調節することにより設定することができる。
(Phosphorus / silicon molar ratio)
In the production method of the present invention, in the aqueous slurry, the molar ratio of phosphorus derived from primary aluminum phosphate to silicon derived from silica sol (hereinafter also referred to as “phosphorus / silicon molar ratio”) is preferably 0.01 to. It is preferable to set it in the range of 0.75, more preferably 0.01 to 0.35, particularly preferably 0.03 to 0.35. If the phosphorus / silicon molar ratio is 0.01 or more, a catalyst having higher decomposition activity can be obtained, and if it is 0.75 or less, a catalyst from which higher octane FCC gasoline can be obtained is preferable. The phosphorus / silicon molar ratio can be set by adjusting the blending amount of primary aluminum phosphate and silica sol.
(粘土鉱物)
本発明の製造方法で用いる粘土鉱物としては、モンモリロナイト、カオリナイト、ハロイサイト、ベントナイト、アタパルガイト、ボーキサイト等の粘土鉱物を用いることができる。また、本発明の製造方法においては、シリカ、シリカ−アルミナ、アルミナ、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解触媒に使用される公知の無機酸化物の微粒子を上記粘土鉱物と併用して使用することもできる。
(Clay mineral)
As the clay mineral used in the production method of the present invention, clay minerals such as montmorillonite, kaolinite, halloysite, bentonite, attapulgite and bauxite can be used. Further, in the production method of the present invention, it is used for ordinary catalytic cracking catalysts such as silica, silica-alumina, alumina, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina. Known inorganic oxide fine particles may be used in combination with the clay mineral.
水性スラリー中に含有される粘土鉱物の割合は、スラリー中の全固形分を基準に換算したときに、5〜65質量%であり、10〜60質量%であることが好ましい。水性スラリー中に含有する粘土鉱物の量が5質量%未満であると、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすおそれがあり、また、65質量%を超えると、相対的にソーダライトケージ構造を有するゼオライトや結合剤の量が少なくなり、所期の分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となるおそれがある。 The ratio of the clay mineral contained in the aqueous slurry is 5 to 65% by mass and preferably 10 to 60% by mass when converted to the total solid content in the slurry. If the amount of the clay mineral contained in the aqueous slurry is less than 5% by mass, the catalyst strength and the bulk density of the catalyst may be small, which may hinder the operation of the apparatus, and if it exceeds 65% by mass. However, the amount of zeolite or binder having a sodalite cage structure is relatively small, and the desired decomposition activity may not be obtained, and preparation of the catalyst may be difficult due to insufficient amount of the binder.
(スラリー中の全固形分の含有割合)
上記各成分を含有する水性スラリー中の全固形分の含有割合は、約5〜60質量%になるように調整することが好ましく、10〜50質量%になるように調整することがより好ましい。固形分の含有割合が上記範囲内であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、水性スラリーの粘度が高くなり過ぎて、得られる水性スラリーの輸送が困難になることがない。
(Content ratio of total solids in slurry)
The content ratio of the total solid content in the aqueous slurry containing the above components is preferably adjusted to be about 5 to 60% by mass, and more preferably adjusted to be 10 to 50% by mass. If the solid content is within the above range, the amount of water to be evaporated is appropriate, and there is no hindrance in the spray drying process, and the viscosity of the aqueous slurry becomes too high. Transportation is not difficult.
(スラリーの調製方法)
上記各成分を含む水性スラリーの調製方法としては、上記の各成分を所定の割合で含有し、均一に分散したものとすることができれば特に限定はなく、例えば、シリカゾルを用いて均一な結合剤水溶液を調製し、次いで、該調製した結合剤水溶液と、第一リン酸アルミニウム、ソーダライトケージ構造を有するゼオライト及び粘土鉱物を混合し、均一な触媒構成成分を混合してなる水性スラリーを得る方法が挙げられる。また、シリカゾルと第一リン酸アルミニウムを用い、均一な結合剤水溶液を調製し、該調製した結合剤水溶液と、ソーダライトケージ構造を有するゼオライト及び粘土鉱物を混合し、均一な触媒構成成分を混合してなる水性スラリーを得るようにすることもできる。
(Method for preparing slurry)
The method for preparing the aqueous slurry containing the above components is not particularly limited as long as the above components are contained in a predetermined ratio and can be uniformly dispersed. For example, a uniform binder using silica sol. A method of obtaining an aqueous slurry obtained by preparing an aqueous solution and then mixing the prepared aqueous binder solution with primary aluminum phosphate, a zeolite having a sodalite cage structure and a clay mineral, and mixing uniform catalyst components. Is mentioned. Also, using silica sol and primary aluminum phosphate, prepare a uniform aqueous binder solution, mix the prepared aqueous binder solution with zeolite and clay mineral having sodalite cage structure, and mix uniform catalyst components. An aqueous slurry can be obtained.
このように、第一リン酸アルミニウムの添加段階は、結合剤水溶液調製段階でも、ソーダライトケージ構造を有するゼオライト及び粘土鉱物を含むスラリーの調製段階でも差し支えなく、第一リン酸アルミニウムは任意段階で添加して本発明の効果を得ることができる。 As described above, the addition step of the primary aluminum phosphate may be either the preparation step of the aqueous binder solution or the preparation step of the slurry containing the zeolite having the sodalite cage structure and the clay mineral, and the primary aluminum phosphate is an optional step. The effect of this invention can be acquired by adding.
<噴霧乾燥工程>
上記スラリー調製工程で調製した水性スラリーは噴霧乾燥装置による噴霧乾燥がなされ、微小球体(触媒あるいは触媒前駆体)が得られる。
この噴霧乾燥は、噴霧乾燥が行われる部分に450℃以上、好ましくは500〜550℃の温度領域を有する噴霧乾燥装置を用いて行うことが肝要である。450℃以上の温度領域を有する噴霧乾燥装置を用いて噴霧乾燥を行うことにより、高い活性を有する触媒を得ることができる。これは、前述の通り、第一リン酸アルミニウム中のリンが接触分解反応に最適な形で保持されるためと推測される。なお、装置内に450℃以上の温度領域を有していれば、装置内に450℃以下の部分があってもよく、噴霧乾燥の際に装置に投入した水性スラリーが噴霧状態で450℃以上の曝されることが肝要である。
なお、上記温度条件は、上記した通り1気圧での温度に換算した場合の温度を示す。したがって、減圧条件下でこの噴霧乾燥処理を行った場合には、その温度条件を1気圧での温度に換算した場合の温度が上記範囲内であれば、本発明1の範囲に含まれる。
<Spray drying process>
The aqueous slurry prepared in the slurry preparation step is spray-dried by a spray-drying device to obtain microspheres (catalyst or catalyst precursor).
It is important to perform this spray drying using a spray drying apparatus having a temperature range of 450 ° C. or higher, preferably 500 to 550 ° C., in a portion where the spray drying is performed. A catalyst having high activity can be obtained by spray drying using a spray drying apparatus having a temperature range of 450 ° C. or higher. As described above, this is presumed to be because phosphorus in the primary aluminum phosphate is held in an optimum form for the catalytic decomposition reaction. If the apparatus has a temperature range of 450 ° C. or higher, the apparatus may have a portion of 450 ° C. or lower, and the aqueous slurry charged into the apparatus during spray drying is 450 ° C. or higher in the spray state. It is important to be exposed.
In addition, the said temperature conditions show the temperature at the time of converting into the temperature at 1 atmosphere as above-mentioned. Therefore, when this spray-drying process is performed under reduced pressure conditions, the temperature is converted into a temperature at 1 atm. If the temperature is within the above range, it is included in the scope of the present invention 1.
このような450℃以上の温度領域を有する噴霧乾燥装置としては、例えば装置のガス入口温度が450〜550℃で180〜280℃のガス出口温度の装置などが挙げられる。すなわち、装置内で噴霧処理されるスラリー由来の成分が450℃以上の温度にさらされる領域を有する装置であれば、どのような装置であってもよい。 Examples of the spray drying apparatus having a temperature range of 450 ° C. or higher include an apparatus having a gas inlet temperature of 450 to 550 ° C. and a gas outlet temperature of 180 to 280 ° C. That is, any apparatus may be used as long as the apparatus has a region where the slurry-derived component sprayed in the apparatus is exposed to a temperature of 450 ° C. or higher.
なお、噴霧乾燥の場合にはスラリーが噴霧状態で高温にさらされるため、噴霧乾燥時の装置内での滞留時間だけで第一リン酸アルミニウムの十分な脱水縮合が生じ高結晶性状態となり、触媒中の酸点が増加し、高い分解活性を有する触媒が得られるものと考えられる。そのため、本発明1の噴霧乾燥工程では、後記本発明2における噴霧乾燥工程後に行う熱処理工程のように別途処理時間のファクターを考慮する必要はない。
噴霧乾燥により得られる微小球体は、20〜150μmの粒子径を有している。
In the case of spray drying, since the slurry is exposed to a high temperature in a sprayed state, sufficient dehydration condensation of the primary aluminum phosphate occurs only in the residence time in the apparatus during the spray drying, resulting in a highly crystalline state. It is considered that a catalyst having a high decomposition activity can be obtained by increasing the acid sites therein. Therefore, in the spray drying process of the present invention 1, it is not necessary to consider the factor of the processing time separately as in the heat treatment process performed after the spray drying process in the present invention 2 described later.
Microspheres obtained by spray drying have a particle size of 20 to 150 μm.
<洗浄工程>
上記のようにして得られた微小球体は、必要に応じて、公知の方法で洗浄し、引き続いてイオン交換を行い、各種の成分の原料から持ち込まれる過剰のアルカリ金属や可溶性の不純物等を除去した後、乾燥し、本発明で目的とする触媒を得ることができる。なお、微小球体に過剰のアルカリ金属や可溶性の不純物等が存在しない場合には、洗浄やイオン交換等を行うことなくそのまま触媒として使用することもできる。
<Washing process>
The microspheres obtained as described above are washed by a known method, if necessary, followed by ion exchange to remove excess alkali metals or soluble impurities brought in from various component raw materials. Then, it is dried to obtain the target catalyst in the present invention. In addition, when an excess alkali metal, a soluble impurity, etc. do not exist in a microsphere, it can also be used as a catalyst as it is, without performing washing | cleaning, ion exchange, etc.
上記の洗浄は具体的には、水あるいはアンモニア水を用いて行い、これにより可溶性不純物量を低減させることができる。
この洗浄終了後の微小球体は次いで、イオン交換を行う。イオン交換は具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液によって行うことができ、このイオン交換によって微小球体に残存するナトリウムやカリウムなどのアルカリ金属を低減させることができる。
Specifically, the above-described cleaning is performed using water or aqueous ammonia, whereby the amount of soluble impurities can be reduced.
The microsphere after completion of this cleaning is then subjected to ion exchange. Specifically, ion exchange includes ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, ammonium phosphate, ammonium hydrogen phosphate, dihydrogen phosphate. Ammonium, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate and other ammonium salt aqueous solutions can be used, and this ion exchange remains in the microspheres Alkali metals such as sodium and potassium can be reduced.
本発明で目的とする触媒では、アルカリ金属や可溶性不純物は、乾燥触媒基準で、アルカリ金属が1.0質量%以下、好ましくは0.5質量%以下、可溶性不純物が2.0質量%以下、好ましくは1.5質量%以下にまで低減させることが、触媒活性を高める上で好ましい。また、上記の洗浄及びイオン交換の工程は、本発明の所期の効果が得られる限りにおいて、順序を逆にして行うこともできる。 In the catalyst intended in the present invention, the alkali metal or soluble impurity is 1.0% by mass or less, preferably 0.5% by mass or less, and the soluble impurity is 2.0% by mass or less, based on the dry catalyst. Preferably, the amount is reduced to 1.5% by mass or less from the viewpoint of enhancing the catalytic activity. Further, the above washing and ion exchange steps can be performed in reverse order as long as the desired effect of the present invention is obtained.
<乾燥工程>
上記の洗浄及びイオン交換の操作の後続いて、得られた微小球体を100〜500℃の温度で再度乾燥し、水分含有量を1〜25質量%にして、本発明の目的の触媒を得ることができる。
<Drying process>
Subsequent to the above washing and ion exchange operations, the obtained microspheres are dried again at a temperature of 100 to 500 ° C., and the water content is adjusted to 1 to 25% by mass to obtain the target catalyst of the present invention. Can do.
<希土類金属等の含有>
本発明の製造方法においては、希土類金属を得られる触媒へ含有させる工程を有していてもよい。触媒中に希土類金属を含有させると、ゼオライト結晶の崩壊を抑制することができ、触媒の耐久性を高めることができる。
本発明の製造方法において、希土類金属を触媒へ含有させる態様としては、上記イオン交換によるアルカリ金属の洗浄除去後、微小球体を乾燥する前に、希土類金属によるイオン交換を行う態様や、ソーダライトケージ構造を有するゼオライトに予め希土類金属を担持させ、いわゆる金属修飾型のソーダライトケージ構造を有するゼオライトとし、該金属修飾型のソーダライトケージ構造を有するゼオライトを用いて触媒を製造する態様が挙げられる。具体的には、希土類金属の塩化物、硝酸塩、硫酸塩、酢酸塩等の化合物の単独あるいは2種以上を含有する水溶液を、乾燥状態あるいは湿潤状態にあるソーダライトケージ構造を有するゼオライト、あるいはそれを含有する触媒にイオン交換あるいは含浸させ、必要に応じて加熱することにより行うことができる。なお、希土類金属を含有させる態様が、上記予め金属修飾型にしたソーダライトケージ構造を有するゼオライトを用いて触媒を製造する態様の場合も、触媒の製造は、修飾型でないソーダライトケージ構造を有するゼオライトを用いて触媒を製造する場合と同様に、前記のスラリー調製工程においてスラリー中に含有させる。
<Contains rare earth metals, etc.>
In the manufacturing method of this invention, you may have the process of making it contain in the catalyst which can obtain rare earth metals. When a rare earth metal is contained in the catalyst, the decay of the zeolite crystals can be suppressed, and the durability of the catalyst can be enhanced.
In the production method of the present invention, as a mode in which the rare earth metal is contained in the catalyst, a mode in which ion exchange with the rare earth metal is performed after the alkali metal is washed and removed by the ion exchange and before the microsphere is dried, or a sodalite cage There is an embodiment in which a rare earth metal is supported on a zeolite having a structure in advance to form a zeolite having a so-called metal-modified sodalite cage structure, and the catalyst is produced using the zeolite having the metal-modified sodalite cage structure. Specifically, zeolite having a sodalite cage structure in a dry or wet state, or an aqueous solution containing two or more kinds of compounds such as rare earth metal chlorides, nitrates, sulfates and acetates, or the like. Can be carried out by ion exchange or impregnation in a catalyst containing, and heating as necessary. In the case where the catalyst is manufactured using the zeolite having the sodalite cage structure that has been previously made into the metal-modified type, the catalyst is produced in a mode in which the rare earth metal is contained. As in the case of producing a catalyst using zeolite, the catalyst is contained in the slurry in the slurry preparation step.
希土類金属の種類としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ディスプロシウム、ホルミウム等の1種あるいは2種以上を含有させることができ、好ましいのはランタン、セリウムである。
なお、本発明で目的とする触媒には、本発明の所期の効果が得られる限りにおいて、希土類以外の金属も含有させることができる。
As the kind of rare earth metal, one or more of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium, holmium and the like can be contained, and lanthanum and cerium are preferred. is there.
The catalyst intended in the present invention can contain a metal other than rare earths as long as the desired effect of the present invention is obtained.
≪本発明2の製造方法≫
<スラリー調製工程>
本発明2(以下単に「本発明」ということがある)の製造方法におけるスラリー調製工程は、上記本発明1におけるスラリー調製工程と同一工程である。すなわち、本発明1におけるスラリー調製工程と同一の成分原料を用い、同一の方法により行われる。
<< Production Method of Invention 2 >>
<Slurry preparation process>
The slurry preparation step in the production method of the present invention 2 (hereinafter sometimes simply referred to as “the present invention”) is the same as the slurry preparation step in the present invention 1 described above. That is, it is carried out by the same method using the same component raw materials as in the slurry preparation step in the present invention 1.
<噴霧乾燥工程>
上記スラリー調製工程で調製した水性スラリーは噴霧乾燥装置による噴霧乾燥がなされ、微小球体(触媒あるいは触媒前駆体)が得られる。この噴霧乾燥は、噴霧乾燥装置により、一般に、200〜600℃のガス入口温度、及び100〜300℃のガス出口温度で行うことができる。噴霧乾燥により得られる微小球体は、20〜150μmの粒子径を有している。
<Spray drying process>
The aqueous slurry prepared in the slurry preparation step is spray-dried by a spray-drying device to obtain microspheres (catalyst or catalyst precursor). This spray drying can be generally performed by a spray drying apparatus at a gas inlet temperature of 200 to 600 ° C and a gas outlet temperature of 100 to 300 ° C. Microspheres obtained by spray drying have a particle size of 20 to 150 μm.
そして、本発明2においては、次に述べる熱処理工程を有するため、本発明2の噴霧乾燥工程では、本発明1の噴霧乾燥工程のように噴霧乾燥装置内に450℃以上の温度領域を有する噴霧乾燥装置を用いなくても高い分解活性を有する触媒を得ることができる。なお、噴霧乾燥工程において噴霧乾燥装置内に450℃以上の温度領域を有する噴霧乾燥装置を用いた上で、次に述べる熱処理工程を行っても特に問題はないが、熱的経済上、噴霧乾燥工程は230〜260℃のガス入口温度、及び450〜520℃のガス出口温度で行うことが好ましい。 And in this invention 2, since it has the heat processing process described below, in the spray-drying process of this invention 2, the spray which has a temperature range of 450 degreeC or more in a spray-drying apparatus like the spray-drying process of this invention 1 A catalyst having high decomposition activity can be obtained without using a drying apparatus. In the spray drying process, there is no particular problem even if the following heat treatment process is performed after using a spray drying apparatus having a temperature range of 450 ° C. or higher in the spray drying apparatus. The step is preferably performed at a gas inlet temperature of 230 to 260 ° C and a gas outlet temperature of 450 to 520 ° C.
<熱処理工程>
上記噴霧乾燥工程で得られた微小球体(触媒あるいは触媒前駆体)は、熱処理温度が100℃以上、かつ「熱処理温度(℃)×熱処理時間(分)」が550以上となる条件で熱処理がなされる。
熱処理が100℃未満では、微小球体中の第一リン酸アルミニウムの脱水縮合が十分に進まず十分な結晶性を得づらいため、高い分解活性を得ることができない。
温度条件は、好ましくは100℃以上、より好ましくは200℃以上である。一方、温度の上限値は特にないが、触媒中のアルミナやゼオライトの結晶構造の相転移を抑制する点、一般的に入手しやすい装置の性能上の制約、及びエネルギー効率の点から、好ましくは700℃以下、より好ましくは600℃以下である。
<Heat treatment process>
The microspheres (catalyst or catalyst precursor) obtained in the spray drying step are heat-treated under conditions where the heat treatment temperature is 100 ° C. or higher and “heat treatment temperature (° C.) × heat treatment time (minutes)” is 550 or higher. The
When the heat treatment is less than 100 ° C., the dehydration condensation of the primary aluminum phosphate in the microspheres does not proceed sufficiently and it is difficult to obtain sufficient crystallinity, so that high decomposition activity cannot be obtained.
The temperature condition is preferably 100 ° C. or higher, more preferably 200 ° C. or higher. On the other hand, although there is no upper limit of temperature, it is preferable from the viewpoint of suppressing the phase transition of the crystal structure of alumina or zeolite in the catalyst, the restrictions on the performance of a generally available device, and the energy efficiency. It is 700 degrees C or less, More preferably, it is 600 degrees C or less.
また、この熱処理工程は「熱処理温度(℃)×熱処理時間(分)」が550以上となる条件で処理することが必要である。当該条件が550未満では、微小球体中の脱水が十分でなく、第一リン酸アルミニウムの脱水縮合も十分に進まないため、高い分解活性を得ることができないためである。一方、「熱処理温度(℃)×熱処理時間(分)」の上限値は特にないが、アルミナやゼオライトの結晶構造の相転移を抑制する点やエネルギー効率の観点から、120,000以下であることが好ましい。
なお、本発明2における熱処理温度は、上記の通り1気圧での温度に換算した場合の温度を示す。したがって、減圧条件下でこの熱処理を行った場合には、その熱処理温度を1気圧での温度に換算した場合に、その熱処理温度と「熱処理温度(℃)×熱処理時間(分)」とがそれぞれ上記範囲内であれば、本発明2の範囲に含まれる。
Further, this heat treatment step needs to be performed under the condition that “heat treatment temperature (° C.) × heat treatment time (minutes)” is 550 or more. If the condition is less than 550, the dehydration in the microspheres is not sufficient, and the dehydration condensation of the primary aluminum phosphate does not proceed sufficiently, so that high decomposition activity cannot be obtained. On the other hand, there is no upper limit for “heat treatment temperature (° C.) × heat treatment time (minutes)”, but it is 120,000 or less from the viewpoint of suppressing phase transition of the crystal structure of alumina or zeolite and energy efficiency. Is preferred.
In addition, the heat processing temperature in this invention 2 shows the temperature at the time of converting into the temperature in 1 atmosphere as above-mentioned. Therefore, when this heat treatment is performed under reduced pressure, when the heat treatment temperature is converted to a temperature at 1 atm, the heat treatment temperature and “heat treatment temperature (° C.) × heat treatment time (minutes)” are respectively If it is within the above range, it is included in the scope of the present invention 2.
<洗浄工程>
本発明2における洗浄工程は、上記本発明1における洗浄工程と同様に行うことができる。
<Washing process>
The washing step in the present invention 2 can be performed in the same manner as the washing step in the present invention 1 described above.
<乾燥工程>
本発明2における乾燥工程も、上記本発明1における乾燥工程と同様に行うことができる。
<Drying process>
The drying step in the present invention 2 can also be performed in the same manner as the drying step in the present invention 1.
<希土類金属等の含有>
本発明2における希土類金属を得られる触媒へ含有させる工程も、上記本発明1における希土類金属を得られる触媒へ含有させる工程と同様に行うことができる。
<Contains rare earth metals, etc.>
The step of containing the rare earth metal in the catalyst according to the present invention 2 can be performed in the same manner as the step of incorporating the rare earth metal into the catalyst of the present invention 1 described above.
[本発明で得られる接触分解触媒]
本発明(本発明1及び本発明2)で得られる接触分解触媒は、本発明に従って接触分解触媒を調製するに当たって用いた各成分の原料に起因して、ソーダライトケージ構造を有するゼオライトを20〜50質量%、シリカゾル由来のケイ素をSiO2換算で10〜30質量%、第一リン酸アルミニウム由来のリン・アルミニウムをAl2O3・3P2O5換算で0.1〜21質量%、粘土鉱物を5〜65質量%含有するものである。また、接触分解触媒の調製に当たって、希土類金属や希土類以外の金属を触媒中に含有させた場合は、それらをも含有している。また、触媒性能の観点から、シリカゾル由来のケイ素に対する第一リン酸アルミニウム由来のリンのモル比(リン/ケイ素モル比)が0.01〜0.75であることが好ましく、0.01〜0.35であることがより好ましく、0.03〜0.35であることが特に好ましい。
[Catalytic cracking catalyst obtained in the present invention]
The catalytic cracking catalyst obtained in the present invention (the present invention 1 and the present invention 2) contains 20 to 20 zeolite having a sodalite cage structure due to the raw materials of each component used in preparing the catalytic cracking catalyst according to the present invention. 50 wt%, 0.1 to 21 wt% of silicon from silica sol 10 to 30 mass% in terms of SiO 2, phosphorus-aluminum from primary aluminum phosphate Al 2 O 3 · 3P 2 O 5 in terms, clay It contains 5 to 65% by mass of mineral. Further, when the catalyst for catalytic cracking is prepared, when a rare earth metal or a metal other than the rare earth is contained in the catalyst, these are also contained. From the viewpoint of catalyst performance, the molar ratio of phosphorus derived from primary aluminum phosphate to silicon derived from silica sol (phosphorus / silicon molar ratio) is preferably 0.01 to 0.75, and preferably 0.01 to 0. .35 is more preferable, and 0.03-0.35 is particularly preferable.
本発明で得られる接触分解触媒は、本発明の、所定の成分を含有する水性スラリーを調製し、それを所定の条件で噴霧乾燥し、あるいは、更に所定の条件で加熱処理を施すという特異な製造方法に起因して、高い分解活性を有し、なおかつオクタン価の高いFCCガソリンを製造できる、優れた性能の接触分解触媒である。 The catalytic cracking catalyst obtained by the present invention is a unique slurry of the present invention in which an aqueous slurry containing predetermined components is prepared and spray-dried under predetermined conditions, or further subjected to heat treatment under predetermined conditions. Due to the production method, it is a catalytic cracking catalyst with excellent performance that can produce FCC gasoline having high cracking activity and high octane number.
[本発明で得られた接触分解触媒を用いた接触分解方法]
本発明(本発明1及び本発明2)の製造方法によって製造された触媒を使用して炭化水素油を接触分解するには、ガソリンの沸点以上で沸騰する炭化水素油(炭化水素混合物)を、本発明で得られた触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素油とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、溶剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油、GTL(Gas to Liquids)油、植物油、廃潤滑油、廃食油をも包括するものである。 更にこれらの原料炭化水素油は、当業者に周知の水素化処理、即ちNi−Mo系触媒、Co−Mo系触媒、Ni−Co−Mo系触媒、Ni−W系触媒などの水素化処理触媒の存在下、高温・高圧下で水素化脱硫した水素化処理油も接触分解の原料として使用できることは言うまでもない。
[Catalytic cracking method using the catalytic cracking catalyst obtained in the present invention]
In order to catalytically crack hydrocarbon oil using the catalyst produced by the production method of the present invention (present invention 1 and present invention 2), hydrocarbon oil boiling over the boiling point of gasoline (hydrocarbon mixture) What is necessary is just to contact the catalyst obtained by this invention. The hydrocarbon oil boiling above the boiling range of gasoline means light oil fraction obtained by atmospheric or vacuum distillation of crude oil, atmospheric distillation residue oil and vacuum distillation residue oil. Of course, coker gas oil, solvent defoaming oil Solvent dewaxing asphalt, tar sand oil, shale oil oil, coal liquefied oil, GTL (Gas to Liquids) oil, vegetable oil, waste lubricating oil, waste cooking oil are also included. Furthermore, these raw material hydrocarbon oils are known to those skilled in the art, that is, hydrotreating catalysts such as Ni—Mo based catalysts, Co—Mo based catalysts, Ni—Co—Mo based catalysts, Ni—W based catalysts. Needless to say, hydrotreated oil hydrodesulfurized under high temperature and high pressure can be used as a raw material for catalytic cracking.
商業的規模での炭化水素油の接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明で得られた触媒を連続的に循環させて行う。すなわち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活した触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した失活した触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物は、ドライガス、LPG、ガソリン留分、中間留分(LCO)、及び重質留分(HCO)あるいはスラリー油のような1種以上の重質留分に分離する。もちろん、分解生成物から分離したLCO、HCO、スラリー油のような重質留分の一部あるいは全部を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。 In the catalytic cracking of hydrocarbon oil on a commercial scale, the catalyst obtained in the present invention described above is usually applied to a catalytic cracking apparatus consisting of two types of containers, a vertically installed cracking reactor and a catalyst regenerator. Cycle continuously. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed, and the inside of the cracking reactor is guided in the upward direction. As a result, the catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The deactivated catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is circulated again to the cracking reactor. On the other hand, the cracked product is separated into one or more heavy fractions such as dry gas, LPG, gasoline fraction, middle fraction (LCO), and heavy fraction (HCO) or slurry oil. Of course, part or all of the heavy fraction such as LCO, HCO, and slurry oil separated from the cracked product can be recycled into the cracking reactor to further promote the cracking reaction.
このときのFCC装置におけるクラッキング反応器の運転条件としては、反応温度を400〜600℃、好ましくは450〜550℃、反応圧力を常圧〜5kg/cm2、好ましくは常圧〜3kg/cm2、触媒/原料炭化水素油の質量比を2〜20、好ましくは4〜15とすることが適当である。 As operating conditions of the cracking reactor in the FCC apparatus at this time, the reaction temperature is 400 to 600 ° C., preferably 450 to 550 ° C., the reaction pressure is normal pressure to 5 kg / cm 2 , preferably normal pressure to 3 kg / cm 2. The mass ratio of the catalyst / raw hydrocarbon oil is 2-20, preferably 4-15.
反応温度が400℃以上であれば、炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができ経済的である。 If reaction temperature is 400 degreeC or more, the decomposition reaction of hydrocarbon oil will advance suitably and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, light gas production | generation amounts, such as dry gas and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object can be increased relatively and it is economical.
圧力は5kg/cm2以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の質量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを回避できる。 If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the mass ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. Moreover, if it is 20 or less, it is possible to avoid the disadvantage that the effect of increasing the catalyst concentration is saturated and an effect commensurate with increasing the catalyst concentration is not obtained.
<触媒の調製>
下記実施例1〜30は本発明2に対応する実施例、実施例31は本発明1に対応する実施例である。
<Preparation of catalyst>
The following Examples 1 to 30 are examples corresponding to the present invention 2, and Example 31 is an example corresponding to the present invention 1.
実施例1
ソーダライトケージ構造を有するゼオライトとして表1の物性を有する安定化Yゼオライトを、結合剤として第一リン酸アルミニウム(Al2O3・3P2O5濃度46.2質量%)とシリカゾル(SiO2濃度29.0質量%)を、粘土鉱物としてカオリナイトを、それぞれ使用した。
Example 1
Stabilized Y zeolite having physical properties shown in Table 1 as a zeolite having a sodalite cage structure, primary aluminum phosphate (Al 2 O 3 .3P 2 O 5 concentration 46.2 mass%) and silica sol (SiO 2 as a binder) Kaolinite was used as the clay mineral.
シリカゾル144.8gを25%硫酸で希釈し、第一リン酸アルミニウム2g(乾燥基準)を加え攪拌し、第一リン酸アルミニウム由来のリンとシリカゾル由来のケイ素のモル比、すなわちリン/ケイ素モル比が0.02となる結合剤水溶液を調製した。一方、表1の物性を有する安定化Yゼオライト80.0g(乾燥基準)に蒸留水を加え、ゼオライトスラリーを調製した。上記の結合剤水溶液に、カオリナイト76.0g(乾燥基準)を加えて混合し、更に上記のゼオライトスラリーを添加し、更に10分間混合し、水性スラリーを得た(総水分量746.3mL、固形分量200g)。得られた水性スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、触媒前駆体である微小球体を得た。その後に1気圧において200℃、10分間熱処理を行った。次いで60℃の5質量%硫酸アンモニウム水溶液3リットル(以下、「L」と記すこともある)で2回イオン交換し、更に3Lの蒸留水で洗浄し、乾燥機中、110℃で一晩乾燥して触媒Aを得た。 144.8 g of silica sol is diluted with 25% sulfuric acid, 2 g of primary aluminum phosphate (dry basis) is added and stirred, and the molar ratio of phosphorus derived from primary aluminum phosphate to silicon derived from silica sol, ie, phosphorus / silicon molar ratio A binder aqueous solution with a 0.02 was prepared. On the other hand, distilled water was added to 80.0 g of a stabilized Y zeolite having the physical properties shown in Table 1 (dry basis) to prepare a zeolite slurry. To the aqueous binder solution, 76.0 g of kaolinite (dry basis) was added and mixed, and the zeolite slurry was further added, and further mixed for 10 minutes to obtain an aqueous slurry (total water content 746.3 mL, Solid content 200 g). The obtained aqueous slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C. to obtain microspheres as catalyst precursors. Thereafter, heat treatment was performed at 200 ° C. for 10 minutes at 1 atmosphere. Next, ion exchange was performed twice with 3 liters of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. (hereinafter sometimes referred to as “L”), and further washed with 3 L of distilled water, and dried overnight at 110 ° C. in a dryer. Thus, catalyst A was obtained.
実施例2
熱処理を1気圧において200℃、120分間行った以外は実施例1と同様の方法で、触媒Bを得た。
Example 2
Catalyst B was obtained in the same manner as in Example 1 except that the heat treatment was performed at 200 ° C. for 120 minutes at 1 atmosphere.
実施例3
熱処理を1気圧において200℃、240分間行った以外は実施例1と同様の方法で、触媒Cを得た。
Example 3
Catalyst C was obtained in the same manner as in Example 1 except that heat treatment was performed at 200 ° C. for 240 minutes at 1 atmosphere.
実施例4
熱処理を1気圧において500℃、3分間行った以外は実施例1と同様の方法で、触媒Dを得た。
Example 4
Catalyst D was obtained in the same manner as in Example 1 except that the heat treatment was performed at 500 ° C. for 3 minutes at 1 atmosphere.
実施例5
熱処理を1気圧において500℃、10分間行った以外は実施例1と同様の方法で、触媒Eを得た。
Example 5
Catalyst E was obtained in the same manner as in Example 1 except that the heat treatment was performed at 500 ° C. for 10 minutes at 1 atmosphere.
実施例6
熱処理を1気圧において500℃、240分間行った以外は実施例1と同様の方法で、触媒Fを得た。
Example 6
Catalyst F was obtained in the same manner as in Example 1 except that the heat treatment was performed at 500 ° C. for 240 minutes at 1 atmosphere.
実施例7
ホウ素を3.5質量%(乾燥基準で、全「Al2O3+B2O3」中のB2O3量)含有した第一リン酸アルミニウム(商品名:タキアルファ 多木化学製)を用い、1気圧において200℃、5分間熱処理を行った以外は実施例1と同様の方法で、触媒Gを得た。
Example 7
Primary aluminum phosphate (trade name: manufactured by Taki Alpha Taki Chemical Co., Ltd.) containing 3.5% by mass of boron (B 2 O 3 amount in all “Al 2 O 3 + B 2 O 3 ” on a dry basis) The catalyst G was obtained in the same manner as in Example 1 except that heat treatment was performed at 200 ° C. for 5 minutes at 1 atmosphere.
実施例8
熱処理を1気圧において200℃、10分間行った以外は実施例7と同様の方法で、触媒Hを得た。
Example 8
Catalyst H was obtained in the same manner as in Example 7 except that the heat treatment was performed at 200 ° C. for 10 minutes at 1 atmosphere.
実施例9
熱処理を1気圧において200℃、240分間行った以外は実施例7と同様の方法で、触媒Iを得た。
Example 9
Catalyst I was obtained in the same manner as in Example 7 except that heat treatment was performed at 200 ° C. for 240 minutes at 1 atmosphere.
実施例10
熱処理を1気圧において500℃、3分間行った以外は実施例7と同様の方法で、触媒Jを得た。
Example 10
Catalyst J was obtained in the same manner as in Example 7, except that heat treatment was performed at 500 ° C. for 3 minutes at 1 atmosphere.
実施例11
熱処理を1気圧において500℃、5分間行った以外は実施例7と同様の方法で、触媒Kを得た。
Example 11
Catalyst K was obtained in the same manner as in Example 7 except that the heat treatment was performed at 500 ° C. for 5 minutes at 1 atmosphere.
実施例12
熱処理を1気圧において500℃、240分間行った以外は実施例7と同様の方法で、触媒Lを得た。
Example 12
Catalyst L was obtained in the same manner as in Example 7, except that heat treatment was performed at 500 ° C. for 240 minutes at 1 atmosphere.
実施例13
ホウ素を3.8質量%(乾燥基準で、全「Al2O3+B2O3」中のB2O3量)及びマグネシウムを2.0質量%(第一リン酸アルミニウムの乾燥基準で、全[Al2O3+MgO]中のMgO量)含有した第一リン酸アルミニウム(商品名:アシドホス120M 多木化学製)を用い、1気圧において200℃、3分間熱処理を行った以外は実施例1と同様の方法で、触媒Mを得た。
Example 13
3.8% by mass of boron (B 2 O 3 amount in the total “Al 2 O 3 + B 2 O 3 ”) and 2.0% by mass of magnesium (based on the dry basis of the primary aluminum phosphate, based on the dry basis) Example 1 except that primary aluminum phosphate (trade name: Acidophos 120M manufactured by Taki Chemical Co., Ltd.) containing all [Al 2 O 3 + MgO] was subjected to heat treatment at 200 ° C. for 3 minutes at 1 atm. Catalyst M was obtained in the same manner as in Example 1.
実施例14
熱処理を1気圧において200℃、10分間行った以外は実施例13と同様の方法で、触媒Nを得た。
Example 14
Catalyst N was obtained in the same manner as in Example 13 except that the heat treatment was performed at 200 ° C. for 10 minutes at 1 atmosphere.
実施例15
熱処理を1気圧において200℃、240分間行った以外は実施例13と同様の方法で、触媒Oを得た。
Example 15
Catalyst O was obtained in the same manner as in Example 13, except that heat treatment was performed at 200 ° C. for 240 minutes at 1 atmosphere.
実施例16
熱処理を1気圧において500℃、3分間行った以外は実施例13と同様の方法で、触媒Pを得た。
Example 16
Catalyst P was obtained in the same manner as in Example 13 except that the heat treatment was performed at 500 ° C. for 3 minutes at 1 atmosphere.
実施例17
熱処理を1気圧において500℃、5分間行った以外は実施例13と同様の方法で、触媒Qを得た。
Example 17
Catalyst Q was obtained in the same manner as in Example 13 except that the heat treatment was performed at 500 ° C. for 5 minutes at 1 atmosphere.
実施例18
熱処理を1気圧において500℃、240分間行った以外は実施例13と同様の方法で、触媒Rを得た。
Example 18
A catalyst R was obtained in the same manner as in Example 13 except that the heat treatment was performed at 500 ° C. for 240 minutes at 1 atm.
実施例19
第一リン酸アルミニウムの量を1.0g(乾燥基準)に代え、リン/ケイ素モル比を0.01とし、更にカオリナイトの混合量を77.0g(乾燥基準)とし、水性スラリー中の総水分量を746.3mL、全固形分量200gとした以外は実施例1と同様の方法で、触媒Sを得た。
Example 19
The amount of primary aluminum phosphate was changed to 1.0 g (dry basis), the phosphorus / silicon molar ratio was set to 0.01, and the mixing amount of kaolinite was 77.0 g (dry basis). Catalyst S was obtained in the same manner as in Example 1 except that the water content was 746.3 mL and the total solid content was 200 g.
実施例20
熱処理を1気圧において200℃、120分間行った以外は実施例19と同様の方法で、触媒Tを得た。
Example 20
Catalyst T was obtained in the same manner as in Example 19 except that heat treatment was performed at 200 ° C. for 120 minutes at 1 atmosphere.
実施例21
熱処理を1気圧において200℃、240分間行った以外は実施例19と同様の方法で、触媒Uを得た。
Example 21
Catalyst U was obtained in the same manner as in Example 19 except that heat treatment was performed at 200 ° C. for 240 minutes at 1 atmosphere.
実施例22
熱処理を1気圧において500℃、3分間行った以外は実施例19と同様の方法で、触媒Vを得た。
Example 22
Catalyst V was obtained in the same manner as in Example 19 except that the heat treatment was performed at 500 ° C. for 3 minutes at 1 atmosphere.
実施例23
熱処理を1気圧において500℃、10分間行った以外は実施例19と同様の方法で、触媒Wを得た。
Example 23
Catalyst W was obtained in the same manner as in Example 19 except that the heat treatment was performed at 500 ° C. for 10 minutes at 1 atmosphere.
実施例24
熱処理を1気圧において500℃、240分間行った以外は実施例19と同様の方法で、触媒Xを得た。
Example 24
Catalyst X was obtained in the same manner as in Example 19 except that heat treatment was performed at 500 ° C. for 240 minutes at 1 atmosphere.
実施例25
第一リン酸アルミニウムの量を8.0g(乾燥基準)に代え、リン/ケイ素モル比を0.13とし、更にカオリナイトの混合量を70.0g(乾燥基準)とし、水性スラリーの総水分量を746.3mL、全固形分量200gとした以外は実施例1と同様の方法で、触媒Yを得た。
Example 25
The amount of primary aluminum phosphate was replaced with 8.0 g (dry basis), the phosphorus / silicon molar ratio was 0.13, the kaolinite mixture was 70.0 g (dry basis), and the total water content of the aqueous slurry was Catalyst Y was obtained in the same manner as in Example 1 except that the amount was 746.3 mL and the total solid content was 200 g.
実施例26
熱処理を1気圧において200℃、120分間行った以外は実施例25と同様の方法で、触媒Zを得た。
Example 26
Catalyst Z was obtained in the same manner as in Example 25 except that heat treatment was performed at 200 ° C. for 120 minutes at 1 atmosphere.
実施例27
熱処理を1気圧において200℃、240分間行った以外は実施例25と同様の方法で、触媒Iを得た。
Example 27
Catalyst I was obtained in the same manner as in Example 25 except that heat treatment was performed at 200 ° C. for 240 minutes at 1 atmosphere.
実施例28
熱処理を1気圧において500℃、3分間行った以外は実施例25と同様の方法で、触媒IIを得た。
Example 28
Catalyst II was obtained in the same manner as in Example 25 except that the heat treatment was performed at 500 ° C. for 3 minutes at 1 atmosphere.
実施例29
熱処理を1気圧において500℃、10分間行った以外は実施例25と同様の方法で、触媒IIIを得た。
Example 29
Catalyst III was obtained in the same manner as in Example 25 except that the heat treatment was carried out at 500 ° C. for 10 minutes at 1 atmosphere.
実施例30
熱処理を1気圧において500℃、240分間行った以外は実施例25と同様の方法で、触媒IVを得た。
Example 30
Catalyst IV was obtained in the same manner as in Example 25 except that the heat treatment was performed at 500 ° C. for 240 minutes at 1 atmosphere.
実施例31
噴霧乾燥条件を入口温度500℃、出口温度を200℃とし、1気圧における熱処理を行わなかった以外は実施例1と同様の方法で触媒アを得た。
Example 31
A catalyst was obtained in the same manner as in Example 1 except that the spray drying conditions were an inlet temperature of 500 ° C., the outlet temperature was 200 ° C., and no heat treatment was performed at 1 atm.
比較例1
第一リン酸アルミニウムを添加せず、更にカオリナイトの混合量を78.0g(乾燥基準)とし、水性スラリーの総水分量を746.3mL、全固形分量を200gとし、1気圧における熱処理を行わなかった以外は実施例1と同様の方法で、触媒Vを得た。
Comparative Example 1
Heat treatment at 1 atm was carried out without adding primary aluminum phosphate, further adding 78.0 g of kaolinite (dry basis), 746.3 mL of total water content of the aqueous slurry, and 200 g of total solid content. A catalyst V was obtained in the same manner as in Example 1 except that the catalyst V was not present.
比較例2
リン酸を2.0g(乾燥基準)添加し、水性スラリーの総水分量を746.3mL、全固形分量を200gとし、1気圧における熱処理を行わなかった以外は実施例1と同様の方法で、触媒VIを得た。
Comparative Example 2
In the same manner as in Example 1, except that 2.0 g of phosphoric acid (dry basis) was added, the total water content of the aqueous slurry was 746.3 mL, the total solid content was 200 g, and heat treatment was not performed at 1 atm. Catalyst VI was obtained.
参考例1
1気圧における熱処理を行わなかった以外は実施例1と同様の方法で、触媒VIIを得た。
Reference example 1
Catalyst VII was obtained in the same manner as in Example 1 except that heat treatment at 1 atm was not performed.
参考例2
1気圧における熱処理を行わなかった以外は実施例19と同様の方法で、触媒VIIIを得た。
Reference example 2
Catalyst VIII was obtained in the same manner as in Example 19 except that heat treatment at 1 atm was not performed.
参考例3
1気圧における熱処理を行わなかった以外は実施例25と同様の方法で、触媒IXを得た。
Reference example 3
Catalyst IX was obtained in the same manner as in Example 25 except that heat treatment at 1 atmosphere was not performed.
<調製した触媒を用いた流動接触分解>
上記の実施例1〜31、比較例1〜2、参考例1〜3、にて調製した触媒は、反応容器と触媒再生器とを有する流動床式接触分解装置であるベンチスケールプラントを用い、同一原料油、同一測定条件のもとで接触分解特性を試験した。
なお、試験に先立ち、上記触媒について、実際の使用状態に近似させるべく、即ち平衡化させるべく、500℃にて5時間乾燥した後、各触媒にニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させ、乾燥し、500℃で5時間の焼成を行い、引き続き、各触媒を100%水蒸気雰囲気中、785℃で6時間処理した。
続いて、この実際の使用状態に近似させた触媒を表2に記載の反応条件、表3に記載の性状を示す炭化水素油(脱硫減圧軽油(VGO)50%+脱硫残油(DDSP)50%)を使用し、接触分解反応を行った。
得られた分解生成油は、Agilent technologies社製 AC Simdis Analyzerを用いてガスクロ蒸留法にて解析し、ガソリン(25〜190℃)、中間留分(LCO(190〜350℃))、HCO(350℃以上)の生成物量を解析した。
なお、得られたガソリンのオクタン価はヒューレッドパッカード社製PONA分析装置を用い、ガスクロマトグラフ法によるGC−RONで測定した。
<Fluid catalytic cracking using the prepared catalyst>
The catalysts prepared in the above Examples 1-31, Comparative Examples 1-2, and Reference Examples 1-3 use a bench scale plant that is a fluidized bed catalytic cracking apparatus having a reaction vessel and a catalyst regenerator, The catalytic cracking characteristics were tested under the same feedstock and the same measurement conditions.
Prior to the test, the catalyst was dried at 500 ° C. for 5 hours in order to approximate the actual use state, that is, equilibrated, and then nickel and vanadium were 1000 ppm by mass and 2000 ppm by mass, respectively. Then, a cyclohexane solution containing nickel naphthenate and vanadium naphthenate was absorbed, dried and calcined at 500 ° C. for 5 hours, and then each catalyst was treated at 785 ° C. in 100% steam atmosphere for 6 hours. .
Subsequently, the catalyst approximated to this actual use state is a hydrocarbon oil (desulfurized vacuum gas oil (VGO) 50% + desulfurized residual oil (DDSP) 50) having the reaction conditions described in Table 2 and the properties described in Table 3. %) Was used to conduct a catalytic cracking reaction.
The obtained cracked product oil was analyzed by gas chromatography using AC Simdis Analyzer manufactured by Agilent Technologies, and gasoline (25-190 ° C), middle distillate (LCO (190-350 ° C)), HCO (350 The product amount was analyzed.
In addition, the octane number of the obtained gasoline was measured by GC-RON by gas chromatography using a PONA analyzer manufactured by Hured Packard.
<調製した触媒の接触分解反応結果>
実施例1〜31、参考例1〜3、及び比較例1〜2で得られた触媒を用いた接触分解反応で得られた生成物の分布結果、ガソリン留分のオクタン価、及び触媒/原料油(質量比)=8における転化率を表4〜9に示す。ここで転化率は、100−(LCOの質量%)―(HCOの質量%)で表現する。
また、表4〜9には、実施例、参考例及び比較例における水性スラリー中成分濃度、噴霧乾燥条件、及び熱処理条件も合わせて示した。
<Results of catalytic cracking reaction of the prepared catalyst>
Distribution results of products obtained by catalytic cracking reactions using the catalysts obtained in Examples 1-31, Reference Examples 1-3, and Comparative Examples 1-2, octane number of gasoline fraction, and catalyst / feed oil The conversion ratios at (mass ratio) = 8 are shown in Tables 4-9. Here, the conversion rate is expressed as 100− (mass% of LCO) − (mass% of HCO).
Tables 4 to 9 also show the concentration of components in the aqueous slurry, spray drying conditions, and heat treatment conditions in Examples, Reference Examples and Comparative Examples.
表4〜9から明らかなように、本発明の製造方法により得られた触媒はいずれも適切な熱処理工程を経ることで第一リン酸アルミニウムが流動接触分解に適した形で保持されるため、高い転化率を示した。 As is clear from Tables 4 to 9, since the catalyst obtained by the production method of the present invention passes through an appropriate heat treatment step, the primary aluminum phosphate is held in a form suitable for fluid catalytic cracking, High conversion was shown.
Claims (2)
該水性スラリー調製工程で得られた水性スラリーを1気圧における温度で450℃以上の温度領域を有する噴霧乾燥装置を用いて噴霧乾燥する噴霧乾燥工程、
該噴霧乾燥工程で得られた生成物を洗浄する洗浄工程、及び
該洗浄工程の後に生成物を乾燥する乾燥工程を有することを特徴とする接触分解触媒の製造方法。 When converted solid content of each component below the total solids in the aqueous slurry, from 20 to 50 wt% of zeolite having a sodalite cage structure, 10 to 30 wt% of silica sol in terms of SiO 2, the first phosphorus A step of preparing an aqueous slurry containing 0.1 to 21% by mass of aluminum oxide in terms of Al 2 O 3 .3P 2 O 5 and 5 to 65% by mass of clay mineral,
A spray drying step of spray drying the aqueous slurry obtained in the aqueous slurry preparation step using a spray drying apparatus having a temperature range of 450 ° C. or higher at a temperature of 1 atm;
A method for producing a catalytic cracking catalyst, comprising: a washing step for washing a product obtained in the spray drying step; and a drying step for drying the product after the washing step.
該水性スラリー調製工程で得られた水性スラリーを噴霧乾燥する噴霧乾燥工程、
該噴霧乾燥工程で得られた生成物を熱処理温度が1気圧における温度で100℃以上、かつ「熱処理温度(℃、但し1気圧における温度)×熱処理時間(分)」が550以上となる条件で処理する熱処理工程、
該熱処理工程を経た生成物を洗浄する洗浄工程、及び
該洗浄工程の後に生成物を乾燥する乾燥工程を有することを特徴とする接触分解触媒の製造方法。 When converted solid content of each component below the total solids in the aqueous slurry, from 20 to 50 wt% of zeolite having a sodalite cage structure, 10 to 30 wt% of silica sol in terms of SiO 2, the first phosphorus A step of preparing an aqueous slurry containing 0.1 to 21% by mass of aluminum oxide in terms of Al 2 O 3 .3P 2 O 5 and 5 to 65% by mass of clay mineral,
A spray drying step of spray drying the aqueous slurry obtained in the aqueous slurry preparation step;
The product obtained in the spray drying step is subjected to a heat treatment temperature of 100 ° C. or higher at a pressure of 1 atm, and “heat treatment temperature (° C., temperature at 1 atm) × heat treatment time (minutes)” is 550 or higher. Heat treatment process,
A method for producing a catalytic cracking catalyst, comprising: a washing step for washing a product that has undergone the heat treatment step; and a drying step for drying the product after the washing step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207135A JP5445781B2 (en) | 2010-09-15 | 2010-09-15 | Method for producing catalytic cracking catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207135A JP5445781B2 (en) | 2010-09-15 | 2010-09-15 | Method for producing catalytic cracking catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012061408A JP2012061408A (en) | 2012-03-29 |
JP5445781B2 true JP5445781B2 (en) | 2014-03-19 |
Family
ID=46057710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010207135A Active JP5445781B2 (en) | 2010-09-15 | 2010-09-15 | Method for producing catalytic cracking catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5445781B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5499407B2 (en) * | 2010-09-15 | 2014-05-21 | 一般財団法人石油エネルギー技術センター | Method for producing catalytic cracking catalyst |
JP5911446B2 (en) | 2013-03-22 | 2016-04-27 | コスモ石油株式会社 | Method for producing catalytic cracking catalyst of hydrocarbon oil |
JP6428423B2 (en) * | 2015-03-20 | 2018-11-28 | 三菱ケミカル株式会社 | Zeolite compact |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149244A (en) * | 1984-12-24 | 1986-07-07 | Shokubai Kasei Kogyo Kk | Catalyst composition for catalytic cracking of hydrocarbon and preparation thereof |
CA1329580C (en) * | 1987-12-28 | 1994-05-17 | Pochen Chu | Catalytic cracking catalysts for metals laden feeds |
JP4685668B2 (en) * | 2006-03-14 | 2011-05-18 | 日揮触媒化成株式会社 | Hydrocarbon catalytic catalytic cracking composition and process for producing the same |
JP5126613B2 (en) * | 2008-03-31 | 2013-01-23 | 一般財団法人石油エネルギー技術センター | Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil |
MY153881A (en) * | 2008-05-30 | 2015-04-15 | Jgc Catalysts & Chemicals Ltd | Catalyst for fluid catalytic cracking of hydrocarbon oil and method for fluid catalytic cracking of hydrocarbon oil with the same |
JP5152925B2 (en) * | 2009-09-24 | 2013-02-27 | 一般財団法人石油エネルギー技術センター | Hydrocarbon oil catalytic cracking catalyst, method for producing hydrocarbon oil catalytic cracking catalyst, and hydrocarbon oil catalytic cracking method |
-
2010
- 2010-09-15 JP JP2010207135A patent/JP5445781B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012061408A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5392150B2 (en) | Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil | |
JP5911446B2 (en) | Method for producing catalytic cracking catalyst of hydrocarbon oil | |
JP5126613B2 (en) | Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil | |
JP5904922B2 (en) | Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method | |
JP5660674B2 (en) | Hydrocarbon oil catalytic cracking catalyst and method for producing the same | |
JP4948863B2 (en) | Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil | |
JP5470660B2 (en) | Method for producing catalytic cracking catalyst | |
JP5445781B2 (en) | Method for producing catalytic cracking catalyst | |
JP5499407B2 (en) | Method for producing catalytic cracking catalyst | |
JP5152925B2 (en) | Hydrocarbon oil catalytic cracking catalyst, method for producing hydrocarbon oil catalytic cracking catalyst, and hydrocarbon oil catalytic cracking method | |
JP2008173580A (en) | Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it | |
JP5445780B2 (en) | Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method | |
JP6327709B2 (en) | Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method | |
JP2008173582A (en) | Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it | |
JP4818157B2 (en) | Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst | |
JP2008173583A (en) | Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it | |
JP4818156B2 (en) | Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst | |
JP6632065B2 (en) | Catalytic cracking catalyst for hydrocarbon oil, method for producing catalytic cracking catalyst for hydrocarbon oil, and catalytic cracking method for hydrocarbon oil | |
JP2008173529A (en) | Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130116 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5445781 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |