JP2008164242A - Infrared ray detector - Google Patents

Infrared ray detector Download PDF

Info

Publication number
JP2008164242A
JP2008164242A JP2006355609A JP2006355609A JP2008164242A JP 2008164242 A JP2008164242 A JP 2008164242A JP 2006355609 A JP2006355609 A JP 2006355609A JP 2006355609 A JP2006355609 A JP 2006355609A JP 2008164242 A JP2008164242 A JP 2008164242A
Authority
JP
Japan
Prior art keywords
infrared
broadband
target
transmission filter
narrowband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006355609A
Other languages
Japanese (ja)
Other versions
JP4912866B2 (en
Inventor
Katsuhiko Hamada
雄彦 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006355609A priority Critical patent/JP4912866B2/en
Publication of JP2008164242A publication Critical patent/JP2008164242A/en
Application granted granted Critical
Publication of JP4912866B2 publication Critical patent/JP4912866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared ray detector improving detection accuracy of a target by facilitating discrimination of infrared radiation from a target rocket plume and infrared radiation from the background. <P>SOLUTION: The infrared ray detector is provided with a detection signal generating circuit 10 having a narrowband infrared ray transmitting filter 11b having a transmitting characteristic conforming to a typical infrared radiation characteristic radiated by the target rocket plume, and a broadband infrared ray transmitting filter 11a transmitting infrared radiation of high temperature gas of the rocket plume, and separately generating a narrowband passing electric signal after passing through the narrowband infrared ray transmitting filter 11b, and a broadband passing electric signal after passing through the broadband infrared ray transmitting filter 11a on the basis of infrared rays radiated from the target rocket plume. It is also provided with a target extraction calculation circuit 20 generating a target extraction image from a subtraction signal or an integration signal between the narrowband passing electric signal and the broadband passing electric signal separately generated by the detection signal generating circuit 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

目標のロケットプルームから放射される赤外線を、背景となる地上の地物や雲からの赤外線放射光あるいは反射光から弁別することにより、目標を検出する赤外線検出装置に関する。   The present invention relates to an infrared detection device that detects a target by discriminating infrared rays emitted from a target rocket plume from infrared radiation or reflected light from ground features or clouds as a background.

目標のロケットプルームが放射する赤外線分光強度を分析することにより、目標の空力加熱、排気口、排気ガスの分光特性がどの程度含まれているかを調べ、そのアスペクト角を判定する赤外線捜索追尾装置がある(例えば、特許文献1参照)。   By analyzing the infrared spectral intensity emitted by the target rocket plume, an infrared search and tracking device that examines how much spectral characteristics of the target aerodynamic heating, exhaust port and exhaust gas are included, and determines its aspect angle Yes (see, for example, Patent Document 1).

特開2004−162942号公報JP 2004-162942 A

しかしながら、従来技術には次のような課題がある。
対象となる広域波長帯での積分的強度による従来の検出方法では、目標のロケットプルームが放射する赤外線は、背景となる地上の地物や雲からの赤外線放射光または反射光の積分的強度との差異、あるいは赤外線像の形状での差異が小さい。従って、発射直後の地上や背景からの赤外線放射光と、本来検出すべき目標のロケットプルームが放射する赤外線との弁別が困難であった。
However, the prior art has the following problems.
In the conventional detection method based on the integral intensity in the target wide wavelength band, the infrared radiation emitted from the target rocket plume is the integral intensity of the infrared radiation or reflected light from the ground features and clouds in the background. Or the difference in the shape of the infrared image is small. Therefore, it is difficult to discriminate infrared radiation from the ground or background immediately after launch from the infrared radiation emitted from the target rocket plume to be detected.

本発明は上述のような課題を解決するためになされたもので、目標のロケットプルームからの赤外線放射と背景からの赤外線放射との弁別を容易にして目標の検出精度の向上を図る赤外線検出装置を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and an infrared detection apparatus that facilitates discrimination between infrared radiation from a target rocket plume and infrared radiation from a background to improve target detection accuracy. The purpose is to obtain.

本発明に係る赤外線検出装置は、目標のロケットプルームが放射する特徴的な分光赤外線放射特性に合致した透過特性を有する狭帯域赤外線透過フィルタと、ロケットプルームの高温ガスの赤外線放射を透過する広帯域赤外線透過フィルタとを有し、目標のロケットプルームから放射される赤外線に基づいて、狭帯域赤外線透過フィルタを通過した後の狭帯域通過電気信号と、広帯域赤外線透過フィルタを通過した後の広帯域通過電気信号とを分離生成する検出信号生成回路と、検出信号生成回路で分離生成された狭帯域通過電気信号と広帯域通過電気信号との差信号または積信号から目標抽出画像を生成する目標抽出演算回路とを備えたものである。   An infrared detector according to the present invention includes a narrowband infrared transmission filter having a transmission characteristic that matches a characteristic spectral infrared emission characteristic emitted by a target rocket plume, and a broadband infrared that transmits infrared radiation of a high temperature gas from the rocket plume. A narrow-band electrical signal after passing through the narrow-band infrared transmission filter and a broadband-pass electrical signal after passing through the broadband infrared transmission filter based on infrared radiation emitted from the target rocket plume. A detection signal generation circuit for generating and generating a target extraction image from a difference signal or product signal of a narrow band pass electric signal and a wide band pass electric signal separated and generated by the detection signal generation circuit. It is provided.

本発明によれば、目標のロケットプルームが放射する特徴的な分光赤外線放射特性を、狭帯域赤外線透過フィルタを利用して抽出することにより、目標のロケットプルームからの赤外線放射と背景からの赤外線放射との弁別を容易にして目標の検出精度の向上を図る赤外線検出装置を得ることができる。   According to the present invention, the characteristic spectral infrared radiation characteristics emitted by the target rocket plume are extracted using a narrow-band infrared transmission filter, so that the infrared radiation from the target rocket plume and the infrared radiation from the background are extracted. It is possible to obtain an infrared detection device that facilitates discrimination from the above and improves target detection accuracy.

実施の形態1.
図1は、本発明の実施の形態1における赤外線検出装置の構成図である。この赤外線検出装置は、検出信号生成回路10および目標抽出演算回路20で構成される。さらに、検出信号生成回路10は、広帯域赤外線透過フィルタ11aと狭帯域赤外線透過フィルタ11bとを装着したフィルタ板11と、光学系12と、赤外線検知器13と、信号分離回路14とで構成される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an infrared detection apparatus according to Embodiment 1 of the present invention. This infrared detection apparatus includes a detection signal generation circuit 10 and a target extraction calculation circuit 20. Further, the detection signal generation circuit 10 includes a filter plate 11 equipped with a broadband infrared transmission filter 11a and a narrowband infrared transmission filter 11b, an optical system 12, an infrared detector 13, and a signal separation circuit 14. .

このような構成を有する赤外線検出装置の具体的な動作について、次に説明する。
図2は、本発明の実施の形態1における赤外線検出装置に取り込まれる撮像画像31を示した図である。図2に示した撮像画像31には、目標であるロケットが含まれている。さらに、この図2では、ロケットプルーム32が燃焼中の状態を示している。
Next, a specific operation of the infrared detecting apparatus having such a configuration will be described.
FIG. 2 is a diagram illustrating a captured image 31 captured by the infrared detection device according to Embodiment 1 of the present invention. The captured image 31 shown in FIG. 2 includes a target rocket. Further, FIG. 2 shows a state in which the rocket plume 32 is burning.

図3は、本発明の実施の形態1における図2の撮像画像31に対応する分光放射特性33を示した図である。そして、この分光放射特性33には、上空の太陽光を反射した背景から放射される赤外線の分光放射特性33a、および目標のロケットプルーム32から放射される赤外線の分光放射特性33bが含まれている。   FIG. 3 is a diagram showing the spectral radiation characteristic 33 corresponding to the captured image 31 of FIG. 2 in the first embodiment of the present invention. The spectral radiation characteristic 33 includes an infrared spectral radiation characteristic 33a radiated from the background reflecting sunlight above the sky and an infrared spectral radiation characteristic 33b radiated from the target rocket plume 32. .

図4は、本発明の実施の形態1における2つの分光放射特性33a、33bを個別に示したものである。目標のロケットプルーム32から放射される赤外線の分光放射特性33bには、4.0〜4.5μmの波長帯での高温の二酸化炭素あるいは窒素酸化物の放射が含まれている。   FIG. 4 individually shows the two spectral radiation characteristics 33a and 33b in the first embodiment of the present invention. The infrared spectral radiation characteristic 33b radiated from the target rocket plume 32 includes radiation of high-temperature carbon dioxide or nitrogen oxide in a wavelength band of 4.0 to 4.5 μm.

従って、分光放射特性33の中から、目標のロケットプルーム32から放射される赤外線の分光放射特性33bを抽出し、その後の電気信号を利用して撮像画像を生成すれば、目標のロケットプルーム32を弁別した所望の画像を得ることができることになる。本発明では、このような所望の画像を得るために、2種類の分光透過特性を有するフィルタを活用しており、その詳細について、次に説明する。   Accordingly, if the infrared spectral radiation characteristic 33b radiated from the target rocket plume 32 is extracted from the spectral radiation characteristic 33 and a captured image is generated by using the subsequent electrical signal, the target rocket plume 32 is obtained. A desired image that has been discriminated can be obtained. In the present invention, in order to obtain such a desired image, a filter having two types of spectral transmission characteristics is utilized, and details thereof will be described below.

図5は、本発明の実施の形態1における広帯域赤外線透過フィルタ11aおよび狭帯域赤外線透過フィルタ11bの分光透過特性を示した図である。図5(a)は、広帯域赤外線透過フィルタ11aの分光透過特性を示しており、3〜5μmの波長域の赤外線を透過する。   FIG. 5 is a diagram showing the spectral transmission characteristics of the broadband infrared transmission filter 11a and the narrowband infrared transmission filter 11b according to Embodiment 1 of the present invention. FIG. 5A shows the spectral transmission characteristics of the broadband infrared transmission filter 11a, which transmits infrared rays having a wavelength range of 3 to 5 μm.

このような広帯域赤外線透過フィルタ11aとしては、例えば、SiあるいはGeのような1〜2μmより長く6〜7μmより短い波長域で透過特性を持つ基板材料に、誘電体薄膜加工を施すことにより、3〜5μmの波長域の透過率を向上させたフィルタを適用することができる。   As such a broadband infrared transmission filter 11a, for example, by applying dielectric thin film processing to a substrate material having transmission characteristics in a wavelength range longer than 1 to 2 μm and shorter than 6 to 7 μm, such as Si or Ge. A filter with improved transmittance in a wavelength region of ˜5 μm can be applied.

一方、図5(b)は、狭帯域赤外線透過フィルタ11bの分光透過特性を示しており、4〜4.5μmの波長域の赤外線を選択的に透過する。このような狭帯域赤外線透過フィルタ11bとしては、例えば、同じくSiあるいはGeのような1〜2μmより長く6〜7μmより短い波長域で透過特性を持つ基板材料の表面に、高屈折率誘電体材料薄膜と低屈折率誘電体材料薄膜とを交互に多層成膜させることにより、4〜4.5μmの波長域のみ高い透過率で透過させるようにしたフィルタを適用することができる。   On the other hand, FIG.5 (b) has shown the spectral transmission characteristic of the narrowband infrared transmission filter 11b, and selectively permeate | transmits the infrared rays of a wavelength range of 4-4.5 micrometers. As such a narrow band infrared transmission filter 11b, for example, a high refractive index dielectric material on the surface of a substrate material having transmission characteristics in a wavelength range longer than 1 to 2 μm and shorter than 6 to 7 μm, such as Si or Ge. By alternately forming a thin film and a low-refractive-index dielectric material thin film in multiple layers, it is possible to apply a filter that transmits light with a high transmittance only in the wavelength region of 4 to 4.5 μm.

図6は、本発明の実施の形態1における広帯域赤外線透過フィルタ11aおよび狭帯域赤外線透過フィルタ11bのそれぞれを通過した赤外線分光特性を示した図である。図6(a)は、広帯域赤外線透過フィルタ11aを通過した目標および背景からの赤外線分光特性を示している。   FIG. 6 is a diagram showing the infrared spectral characteristics that have passed through each of the broadband infrared transmission filter 11a and the narrowband infrared transmission filter 11b in the first embodiment of the present invention. FIG. 6A shows the infrared spectral characteristics from the target and background that have passed through the broadband infrared transmission filter 11a.

3〜5μmの波長域の透過率を向上させた広帯域赤外線透過フィルタ11aは、ロケットプルーム32の高温ガスの赤外線放射を透過することができ、目標および背景からの赤外線分光特性を得ることができる。しかしながら、目標からの赤外線放射は、背景からの放射に埋もれ、目標からの赤外線放射との弁別を困難にしている。   The broadband infrared transmission filter 11a having improved transmittance in the wavelength region of 3 to 5 μm can transmit infrared radiation of the hot gas of the rocket plume 32, and can obtain infrared spectral characteristics from the target and the background. However, the infrared radiation from the target is buried in the radiation from the background, making it difficult to distinguish it from the infrared radiation from the target.

一方、図6(b)は、狭帯域赤外線透過フィルタ11bを通過した目標および背景からの赤外線分光特性を示している。4〜4.5μmの波長域のみ高い透過率で透過させる狭帯域赤外線透過フィルタ11bは、目標のロケットプルームが放射する特徴的な分光放射特性に合致した透過特性を有している。   On the other hand, FIG. 6B shows infrared spectral characteristics from the target and the background that have passed through the narrow-band infrared transmission filter 11b. The narrow-band infrared transmission filter 11b that transmits only in the wavelength range of 4 to 4.5 μm with high transmittance has a transmission characteristic that matches the characteristic spectral emission characteristic emitted by the target rocket plume.

具体的には、この狭帯域赤外線透過フィルタ11bは、先の図4(b)に示したように、目標のロケットプルームからの赤外線放射の特徴である4.0〜4.5μmの波長帯での高温の二酸化炭素あるいは窒素酸化物の放射のみを通過させる。この結果、背景からの赤外線放射を抑圧し、背景からの目標のロケットプルームの弁別を容易にしている。   Specifically, as shown in FIG. 4B, the narrow-band infrared transmission filter 11b has a wavelength band of 4.0 to 4.5 μm, which is a characteristic of infrared radiation from the target rocket plume. Only high temperature carbon dioxide or nitrogen oxide radiation is allowed to pass through. As a result, infrared radiation from the background is suppressed and discrimination of the target rocket plume from the background is facilitated.

先の図1に示したように、このような広帯域赤外線透過フィルタ11aおよび狭帯域赤外線透過フィルタ11bは、フィルタ板11に装着されている。そして、赤外線検出装置内で、このフィルタ板11を定速回転させることにより、光学系12は、広帯域赤外線透過フィルタ11aおよび狭帯域赤外線透過フィルタ11bを透過する赤外線を、赤外線検知器13上に交互に集光結合することができる。そして、赤外線検知器13は、入力した赤外線信号を光電変換して出力する。   As shown in FIG. 1, the broadband infrared transmission filter 11a and the narrowband infrared transmission filter 11b are mounted on the filter plate 11. Then, by rotating the filter plate 11 at a constant speed in the infrared detection device, the optical system 12 alternately transmits the infrared rays transmitted through the broadband infrared transmission filter 11a and the narrowband infrared transmission filter 11b onto the infrared detector 13. It can be combined with light. The infrared detector 13 photoelectrically converts the input infrared signal and outputs it.

さらに、信号分離回路14は、フィルタ板11の回転同期信号を元に、赤外線検知器13からの出力信号を、広帯域赤外線透過フィルタ11aを通過する広帯域通過赤外線信号と、狭帯域赤外線透過フィルタ11bを通過する狭帯域通過赤外線信号に分離する信号分離回路である。   Further, the signal separation circuit 14 outputs the output signal from the infrared detector 13 based on the rotation synchronization signal of the filter plate 11, the broadband passing infrared signal passing through the broadband infrared transmission filter 11 a, and the narrowband infrared transmission filter 11 b. It is a signal separation circuit that separates a narrow-band passing infrared signal to pass.

このような一連の動作により、検出信号生成回路10は、最終的に、広帯域赤外線透過フィルタ11aを通過した後の広帯域通過電気信号と、狭帯域赤外線透過フィルタ11bを通過した後の狭帯域通過電気信号とを分離生成することができる。   Through such a series of operations, the detection signal generation circuit 10 finally has the wideband passing electric signal after passing through the wideband infrared transmitting filter 11a and the narrowband passing electric signal after passing through the narrowband infrared transmitting filter 11b. Signals can be generated separately.

次に、目標抽出演算回路20は、検出信号生成回路10で分離生成された狭帯域通過電気信号と広帯域通過電気信号との差信号または積信号から目標抽出画像を生成する。図7は、本発明の実施の形態1における目標抽出演算回路20により処理される画像を示した図である。   Next, the target extraction calculation circuit 20 generates a target extraction image from the difference signal or product signal between the narrow band pass electric signal and the wide band pass electric signal separated and generated by the detection signal generation circuit 10. FIG. 7 is a diagram showing an image processed by the target extraction calculation circuit 20 according to the first embodiment of the present invention.

より具体的には、図7(a)は、広帯域赤外線透過フィルタ11aを通過した後の広帯域通過電気信号による撮像画像である。また、図7(b)は、狭帯域赤外線透過フィルタ11bを通過した後の狭帯域通過電気信号による撮像画像である。さらに、図7(c)は、図7(a)の画像に対応する広帯域通過電気信号と、図7(b)の画像に対応する狭帯域通過電気信号との差信号または積信号により生成された目標抽出画像である。   More specifically, FIG. 7A is a captured image by a broadband passing electric signal after passing through the broadband infrared transmission filter 11a. FIG. 7B is a captured image by a narrow-band passing electric signal after passing through the narrow-band infrared transmission filter 11b. Further, FIG. 7C is generated by a difference signal or product signal between the wide-band electrical signal corresponding to the image of FIG. 7A and the narrow-band electrical signal corresponding to the image of FIG. This is a target extraction image.

このようにして、目標抽出演算回路20で生成された目標抽出画像は、図7(a)では背景データの中に埋もれて弁別が困難であったロケットプルームを弁別表示することが可能となり、目標のロケットプルームが燃焼中である場合を早期に探知することができる。   In this way, the target extraction image generated by the target extraction arithmetic circuit 20 can discriminate and display the rocket plume that is buried in the background data and difficult to discriminate in FIG. It is possible to detect early when the rocket plume is burning.

さらに、目標のロケットプルームの燃焼が終了した後は、高温ガスによる赤外線放射特性は消失し、図7(d)に示すとおり、狭帯域通過電気信号による撮像画像から目標像は消失し、目標のロケットプルームを検出できない。しかしながら、この段階では、目標は、高高度に達しており、背景が低温度の天空となるため、広帯域赤外線透過フィルタ11aを通過した信号は、低温背景に対して際立った信号強度を有する状態になるため、図7(e)に示すとおり、目標抽出画像から目標のロケットを弁別維持することができる。   Further, after the target rocket plume is combusted, the infrared radiation characteristic due to the hot gas disappears, and as shown in FIG. 7D, the target image disappears from the captured image by the narrow-band passing electric signal, The rocket plume cannot be detected. However, at this stage, the target has reached a high altitude and the background is a low-temperature sky, so that the signal that has passed through the broadband infrared transmission filter 11a has a signal strength that stands out from the low-temperature background. Therefore, the target rocket can be discriminated and maintained from the target extraction image as shown in FIG.

以上のように、実施の形態1によれば、目標のロケットプルームが放射する特徴的な分光赤外線放射特性を抽出可能な狭帯域赤外線透過フィルタを使用することにより、目標のロケットプルームの燃焼中において、背景からの赤外線放射との弁別を可能とし、目標を早期に探知できる赤外線検出装置を得ることができる。   As described above, according to the first embodiment, by using the narrow-band infrared transmission filter that can extract the characteristic spectral infrared radiation characteristic emitted by the target rocket plume, during the combustion of the target rocket plume. Therefore, it is possible to obtain an infrared detecting device that can distinguish the infrared radiation from the background and detect the target at an early stage.

実施の形態2.
本実施の形態2においては、検出信号生成回路10の構成が先の実施の形態1とは異なる赤外線検出装置について説明する。図8は、本発明の実施の形態2における赤外線検出装置の構成図である。この赤外線検出装置は、検出信号生成回路10および目標抽出演算回路20で構成される。
Embodiment 2. FIG.
In the second embodiment, an infrared detection device in which the configuration of the detection signal generation circuit 10 is different from that of the first embodiment will be described. FIG. 8 is a configuration diagram of the infrared detection apparatus according to Embodiment 2 of the present invention. This infrared detection apparatus includes a detection signal generation circuit 10 and a target extraction calculation circuit 20.

さらに、検出信号生成回路10は、光学系12と、光路分離器15と、広帯域赤外線透過フィルタ11aと、狭帯域赤外線透過フィルタ11bと、広帯域用赤外線検知器13aと、狭帯域用赤外線検知器13bとで構成される。   Further, the detection signal generation circuit 10 includes an optical system 12, an optical path separator 15, a broadband infrared transmission filter 11a, a narrowband infrared transmission filter 11b, a broadband infrared detector 13a, and a narrowband infrared detector 13b. It consists of.

先の実施の形態1では、フィルタ板11の定速回転と同期した信号分離回路14の働きにより広帯域通過電気信号と狭帯域通過電気信号とを分離生成していた。これに対して、本実施の形態2では、光路分離器15を用いて広帯域通過電気信号と狭帯域通過電気信号とを分離生成している。   In the first embodiment, the wide band electric signal and the narrow band electric signal are separated and generated by the function of the signal separation circuit 14 synchronized with the constant speed rotation of the filter plate 11. On the other hand, in the second embodiment, the optical path separator 15 is used to separate and generate the wide band electric signal and the narrow band electric signal.

本実施の形態2における光学系12は、目標から放射される赤外線を光路分離器15上に集光結像する。そして、光路分離器15は、光学系12により集光結像された赤外線を2系統の光路(すなわち、広帯域処理用の光路および狭帯域処理用の光路)に分割する。   The optical system 12 according to the second embodiment collects and images infrared light emitted from the target on the optical path separator 15. Then, the optical path separator 15 divides the infrared light focused by the optical system 12 into two optical paths (that is, an optical path for wideband processing and an optical path for narrowband processing).

広帯域処理用の光路には、広帯域赤外線透過フィルタ11aおよび広帯域用赤外線検知器13aが設けられている。先の実施の形態1で説明したように、3〜5μmの波長域の透過率を向上させた広帯域赤外線透過フィルタ11aは、ロケットプルーム32の高温ガスの赤外線放射を透過することができ、目標および背景からの赤外線分光特性を得ることができる。   A broadband infrared transmission filter 11a and a broadband infrared detector 13a are provided in the optical path for broadband processing. As described in the first embodiment, the broadband infrared transmission filter 11a with improved transmittance in the wavelength region of 3 to 5 μm can transmit the infrared radiation of the high-temperature gas of the rocket plume 32. Infrared spectral characteristics from the background can be obtained.

さらに、広帯域用赤外線検知器13aは、広帯域赤外線透過フィルタ11aを通過した赤外線放射を検知して光電変換することにより広帯域通過電気信号を生成する。   Further, the broadband infrared detector 13a detects infrared radiation that has passed through the broadband infrared transmission filter 11a and photoelectrically converts it to generate a broadband passing electric signal.

一方、狭帯域処理用の光路には、狭帯域赤外線透過フィルタ11bおよび狭帯域用赤外線検知器13bが設けられている。先の実施の形態1で説明したように、4〜4.5μmの波長域のみ高い透過率で透過させる狭帯域赤外線透過フィルタ11bは、目標のロケットプルームが放射する特徴的な分光放射特性に合致した透過特性を有している。   On the other hand, a narrowband infrared transmission filter 11b and a narrowband infrared detector 13b are provided in the optical path for narrowband processing. As described in the first embodiment, the narrow-band infrared transmission filter 11b that transmits only in the wavelength range of 4 to 4.5 μm with high transmittance matches the characteristic spectral radiation characteristic emitted by the target rocket plume. Transmission characteristics.

具体的には、この狭帯域赤外線透過フィルタ11bは、先の図4(b)に示したように、目標のロケットプルームからの赤外線放射の特徴である4.0〜4.5μmの波長帯での高温の二酸化炭素あるいは窒素酸化物の放射のみを通過させる。この結果、背景からの赤外線放射を抑圧し、背景からの目標のロケットプルームの弁別を容易にしている。   Specifically, as shown in FIG. 4B, the narrow-band infrared transmission filter 11b has a wavelength band of 4.0 to 4.5 μm, which is a characteristic of infrared radiation from the target rocket plume. Only high temperature carbon dioxide or nitrogen oxide radiation is allowed to pass through. As a result, infrared radiation from the background is suppressed and discrimination of the target rocket plume from the background is facilitated.

さらに、狭帯域用赤外線検知器13bは、狭帯域赤外線透過フィルタ11bを通過した赤外線放射を検知して光電変換することにより狭帯域通過電気信号を生成する。   Further, the narrowband infrared detector 13b detects the infrared radiation that has passed through the narrowband infrared transmission filter 11b and performs photoelectric conversion to generate a narrowband electrical signal.

このような一連の動作により、検出信号生成回路10は、最終的に、広帯域赤外線透過フィルタ11aを通過した後の広帯域通過電気信号と、狭帯域赤外線透過フィルタ11bを通過した後の狭帯域通過電気信号とを分離生成することができる。   Through such a series of operations, the detection signal generation circuit 10 finally has the wideband passing electric signal after passing through the wideband infrared transmitting filter 11a and the narrowband passing electric signal after passing through the narrowband infrared transmitting filter 11b. Signals can be generated separately.

検出信号生成回路10の後段である目標抽出演算回路20の動作は、先の実施の形態1と同様である。   The operation of the target extraction calculation circuit 20 that is a subsequent stage of the detection signal generation circuit 10 is the same as that of the first embodiment.

以上のように、実施の形態2によれば、先の実施の形態1と異なる構成の検出信号生成回路によっても、目標のロケットプルームが放射する特徴的な分光赤外線放射特性を抽出可能な狭帯域赤外線透過フィルタを使用することにより、目標のロケットプルームの燃焼中において、背景からの赤外線放射との弁別を可能とし、目標を早期に探知できる赤外線検出装置を得ることができる。   As described above, according to the second embodiment, it is possible to extract a characteristic spectral infrared radiation characteristic emitted by the target rocket plume even by a detection signal generation circuit having a configuration different from that of the first embodiment. By using the infrared transmission filter, it is possible to obtain an infrared detection device that enables discrimination from infrared radiation from the background while the target rocket plume is burning, and can detect the target early.

本発明の実施の形態1における赤外線検出装置の構成図である。It is a block diagram of the infrared rays detection apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における赤外線検出装置に取り込まれる撮像画像を示した図である。It is the figure which showed the captured image taken in by the infrared rays detection apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における図2の撮像画像に対応する分光放射特性を示した図である。It is the figure which showed the spectral radiation characteristic corresponding to the captured image of FIG. 2 in Embodiment 1 of this invention. 本発明の実施の形態1における2つの分光放射特性を個別に示したものである。The two spectral radiation characteristics in Embodiment 1 of this invention are shown separately. 本発明の実施の形態1における広帯域赤外線透過フィルタおよび狭帯域赤外線透過フィルタの分光透過特性を示した図である。It is the figure which showed the spectral transmission characteristic of the wideband infrared transmission filter and the narrowband infrared transmission filter in Embodiment 1 of this invention. 本発明の実施の形態1における広帯域赤外線透過フィルタおよび狭帯域赤外線透過フィルタのそれぞれを通過した赤外線分光特性を示した図である。It is the figure which showed the infrared spectral characteristic which each passed each of the broadband infrared transmission filter and narrowband infrared transmission filter in Embodiment 1 of this invention. 本発明の実施の形態1における目標抽出演算回路により処理される画像を示した図である。It is the figure which showed the image processed by the target extraction calculating circuit in Embodiment 1 of this invention. 本発明の実施の形態2における赤外線検出装置の構成図である。It is a block diagram of the infrared rays detection apparatus in Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 検出信号生成回路、11 フィルタ板、11a 広帯域赤外線透過フィルタ、11b 狭帯域赤外線透過フィルタ、12 光学系、13 赤外線検知器、13a 広帯域用赤外線検知器、13b 狭帯域用赤外線検知器、14 信号分離回路、15 光路分離器、20 目標抽出演算回路、31 撮像画像、32 ロケットプルーム。   DESCRIPTION OF SYMBOLS 10 Detection signal generation circuit, 11 Filter board, 11a Broadband infrared transmission filter, 11b Narrowband infrared transmission filter, 12 Optical system, 13 Infrared detector, 13a Broadband infrared detector, 13b Narrowband infrared detector, 14 Signal separation Circuit, 15 optical path separator, 20 target extraction calculation circuit, 31 captured image, 32 rocket plume.

Claims (3)

目標のロケットプルームが放射する特徴的な分光赤外線放射特性に合致した透過特性を有する狭帯域赤外線透過フィルタと、前記ロケットプルームの高温ガスの赤外線放射を透過する広帯域赤外線透過フィルタとを有し、前記目標のロケットプルームから放射される赤外線に基づいて、前記狭帯域赤外線透過フィルタを通過した後の狭帯域通過電気信号と、前記広帯域赤外線透過フィルタを通過した後の広帯域通過電気信号とを分離生成する検出信号生成回路と、
前記検出信号生成回路で分離生成された前記狭帯域通過電気信号と前記広帯域通過電気信号との差信号または積信号から目標抽出画像を生成する目標抽出演算回路と
を備えたことを特徴とする赤外線検出装置。
A narrowband infrared transmission filter having transmission characteristics that match the characteristic spectral infrared emission characteristics emitted by the target rocket plume, and a broadband infrared transmission filter that transmits infrared radiation of the hot gas of the rocket plume, Based on the infrared rays radiated from the target rocket plume, a narrow-band electrical signal after passing through the narrow-band infrared transmission filter and a wide-band electrical signal after passing through the broadband infrared transmission filter are separately generated. A detection signal generation circuit;
A target extraction operation circuit that generates a target extraction image from a difference signal or product signal between the narrowband electrical signal and the broadband electrical signal separated and generated by the detection signal generation circuit; Detection device.
請求項1に記載の赤外線検出装置において、
前記検出信号生成回路は、
前記狭帯域赤外線透過フィルタと前記広帯域赤外線透過フィルタとを装着したフィルタ板と、
前記フィルタ板を介して得られる前記目標からの赤外線放射を集光結像する光学系と、
前記光学系を通過した赤外線放射を検知して光電変換後の電気信号を出力する赤外線検知器と、
前記狭帯域赤外線透過フィルタおよび前記光学系を介して前記赤外線検知器で光電変換された狭帯域通過電気信号と、前記広帯域赤外線透過フィルタおよび前記光学系を介して前記赤外線検知器で光電変換された広帯域通過電気信号とを分離生成する信号分離回路と
を備えたことを特徴とする赤外線検出装置。
The infrared detection device according to claim 1,
The detection signal generation circuit includes:
A filter plate on which the narrowband infrared transmission filter and the broadband infrared transmission filter are mounted;
An optical system for focusing and imaging infrared radiation from the target obtained via the filter plate;
An infrared detector that detects infrared radiation that has passed through the optical system and outputs an electrical signal after photoelectric conversion;
Narrow-band passing electrical signal photoelectrically converted by the infrared detector through the narrow-band infrared transmission filter and the optical system, and photoelectric conversion by the infrared detector through the broadband infrared transmission filter and the optical system An infrared detection apparatus comprising: a signal separation circuit that separates and generates a wide-band passing electric signal.
請求項1に記載の赤外線検出装置において、
前記検出信号生成回路は、
前記目標のロケットプルームから放射される赤外線を集光結像する光学系と、
前記光学系により集光結像された赤外線を2系統の光路に分割する光路分離器と、
前記光路分離器で分割された一方の光路から、前記狭帯域赤外線透過フィルタを通過した赤外線放射を検知して光電変換することにより前記狭帯域通過電気信号を生成する狭帯域用赤外線検知器と、
前記光路分離器で分割された他方の光路から、前記広帯域赤外線透過フィルタを通過した赤外線放射を検知して光電変換することにより前記広帯域通過電気信号を生成する広帯域用赤外線検知器と
を備えたことを特徴とする赤外線検出装置。
The infrared detection device according to claim 1,
The detection signal generation circuit includes:
An optical system for focusing and imaging infrared rays emitted from the target rocket plume;
An optical path separator that divides the infrared light focused by the optical system into two optical paths;
From one of the optical paths divided by the optical path separator, an infrared detector for narrowband that generates the narrowband pass electrical signal by detecting and photoelectrically converting infrared radiation that has passed through the narrowband infrared transmission filter, and
A broadband infrared detector that detects the infrared radiation that has passed through the broadband infrared transmission filter from the other optical path divided by the optical path separator and photoelectrically converts the infrared radiation to generate the broadband passing electrical signal. Infrared detector characterized by.
JP2006355609A 2006-12-28 2006-12-28 Infrared detector Active JP4912866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355609A JP4912866B2 (en) 2006-12-28 2006-12-28 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355609A JP4912866B2 (en) 2006-12-28 2006-12-28 Infrared detector

Publications (2)

Publication Number Publication Date
JP2008164242A true JP2008164242A (en) 2008-07-17
JP4912866B2 JP4912866B2 (en) 2012-04-11

Family

ID=39693964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355609A Active JP4912866B2 (en) 2006-12-28 2006-12-28 Infrared detector

Country Status (1)

Country Link
JP (1) JP4912866B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112284A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Orbital estimation system
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector
KR101173227B1 (en) 2011-10-21 2012-08-10 국방과학연구소 Optical filter having at least two differentiable light transmittance regions, and infrared optical system locating the filter at field stop in optical path
WO2014014534A2 (en) * 2012-04-26 2014-01-23 Xyratex Technology Ltd. Monitoring radiated infrared

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110398A (en) * 1989-09-22 1991-05-10 Toshiba Corp Target detector
JP2004162942A (en) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp Infrared ray search tracking device
JP2005337809A (en) * 2004-05-25 2005-12-08 Nec Corp Infrared image identification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110398A (en) * 1989-09-22 1991-05-10 Toshiba Corp Target detector
JP2004162942A (en) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp Infrared ray search tracking device
JP2005337809A (en) * 2004-05-25 2005-12-08 Nec Corp Infrared image identification device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112284A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Orbital estimation system
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector
KR101173227B1 (en) 2011-10-21 2012-08-10 국방과학연구소 Optical filter having at least two differentiable light transmittance regions, and infrared optical system locating the filter at field stop in optical path
WO2014014534A2 (en) * 2012-04-26 2014-01-23 Xyratex Technology Ltd. Monitoring radiated infrared
WO2014014534A3 (en) * 2012-04-26 2014-04-10 Xyratex Technology Ltd. Monitoring radiated infrared

Also Published As

Publication number Publication date
JP4912866B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US8698939B2 (en) Dual beam optic with dichroic filter
JP4912866B2 (en) Infrared detector
Manchado et al. Near-infrared survey of IRAS sources with colours like planetary nebulae
JP2012021968A (en) Distance measurement module, display device including the same, method for measuring distance of display device
CN106254796A (en) A kind of iraser laser spot detection imaging device based on iconoscope and method
KR101039135B1 (en) Methanegas detecting device for optics having detecting points display
JP2006267097A (en) Device for visualizing flame
US11609338B2 (en) Method and device for detecting incident laser radiation on a spacecraft
JP2019165447A (en) Solid-state imaging apparatus and imaging system
US10417779B2 (en) Methods and systems for processing plenoptic images
CN106370311B (en) Temperature measuring device and method for thermal analyzer
JP5302511B2 (en) Two-wavelength infrared image processing device
WO2023077914A1 (en) Multi-parameter synchronous measurement method and apparatus, and electronic device and storage medium
US8253102B1 (en) Gaseous focal plane thermal imager
JP5279236B2 (en) Target imaging detector
JP2007235760A (en) Ultraviolet image, imaging apparatus for imaging ultraviolet image, and imaging method
Barbosa et al. High Spatial Resolution Spectroscopy of W51 IRS 2E and IRS 2W: Two Very Massive Young Stars in Early Formation Stages
EP3350986B1 (en) Systems and methods for detecting light sources
CN104154912B (en) Implementation method of high-accuracy three-spectrum colorful star sensor
JP5577747B2 (en) Infrared target detection device
JPH06273506A (en) Target detector
JP4013738B2 (en) Infrared search and tracking device
JP5358942B2 (en) Apparatus and method for removing sunlight clutter for infrared captured images
JP2018072050A (en) Radiation thermometer device and radiation thermometer method
JPH11297973A (en) Infrared imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250