JPH03110398A - Target detector - Google Patents

Target detector

Info

Publication number
JPH03110398A
JPH03110398A JP24529289A JP24529289A JPH03110398A JP H03110398 A JPH03110398 A JP H03110398A JP 24529289 A JP24529289 A JP 24529289A JP 24529289 A JP24529289 A JP 24529289A JP H03110398 A JPH03110398 A JP H03110398A
Authority
JP
Japan
Prior art keywords
target
infrared
filter
image
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24529289A
Other languages
Japanese (ja)
Other versions
JP2809744B2 (en
Inventor
Kazuo Gondo
権藤 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24529289A priority Critical patent/JP2809744B2/en
Publication of JPH03110398A publication Critical patent/JPH03110398A/en
Application granted granted Critical
Publication of JP2809744B2 publication Critical patent/JP2809744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To effectively obtain the center of a body and to detect a target with high sensitivity by providing a filter in which first and second infrared ray filter units having transmission properties, corresponding to wavelength characteristics of an infrared ray to be radiated from the body of the target and an infrared ray to be radiated from discharge gas of the target, are alternately disposed at a predetermined time interval. CONSTITUTION:First and second infrared ray filters a1, a2 and b1, b2 are alternately disposed on an optical axis in a filter section 153, an infrared ray to be radiated from the body of a target and an infrared ray to be radiated from discharge gas are output in a time division manner, image signals of both the rays are obtained by a photoelectric converter 155, and then separated into the signal of the first filter and the signal of the second filter. Here, one signal is delayed, both the signals are added in synchronization with the other signal in an initial state that the target is disposed remotely to form a composite image signal, thereby raising its sensitivity. Thereafter, when the target area is increased larger than the area of a reference, a body image is identified from the signal of the first filter instead of the composite signal to obtain the center of the detected body image.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば地対空誘導弾の誘導装置に用いられ
、目標の赤外線画像を捕らえてその中心を求め、求めた
中心に向けて誘導弾を誘導させる目標検出装置に関する
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention is used, for example, in a guidance device for a surface-to-air guided missile, by capturing an infrared image of a target and determining its center. The present invention relates to a target detection device that guides a guided missile toward a target.

(従来の技術) 一般に、地対空誘導弾の誘導装置に用いられる目標検出
装置は、赤外線撮像装置によって飛翔体日標の赤外線画
像を得て、この赤外線画像を画像処理することによって
飛翔体目標の中心点を求めている。すなわち、誘導装置
は目標検出装置によって?1?られた中心点に向けて誘
導弾を誘導し、これによって誘導弾を目標に命中させる
(Prior Art) Generally, a target detection device used in a guidance device for a surface-to-air guided missile obtains an infrared image of a projectile target using an infrared imaging device, and processes this infrared image to identify the projectile target. I'm looking for the center point. In other words, is the guidance device controlled by the target detection device? 1? The guided missile is guided toward the center point, which allows the guided missile to hit the target.

ここで、航空機等のジェットエンジンを有する飛翔体が
目標となる場合、機体の熱から出る赤外線の波長特性と
ジェットエンジンから出る排気ガスの赤外線の波長特性
は、第5図に示すように異なっている。そこで、従来の
目標検出装置では、より遠くに位置する目標を検出する
ため、赤外線撮像装置に用いる赤外線フィルタとして、
機体の波長特性11と排気ガスの波長特性12の両者を
透過する特性13を有するものを使用し、赤外線撮像装
置の検出感度を上げている。
If the target is a flying object with a jet engine, such as an aircraft, the wavelength characteristics of the infrared rays emitted from the heat of the aircraft and the wavelength characteristics of the infrared rays of the exhaust gas emitted from the jet engine are different, as shown in Figure 5. There is. Therefore, in conventional target detection devices, in order to detect targets located further away, infrared filters used in infrared imaging devices are used.
The detection sensitivity of the infrared imaging device is increased by using a filter having a characteristic 13 that transmits both the wavelength characteristic 11 of the aircraft body and the wavelength characteristic 12 of the exhaust gas.

しかしながら、上記のような従来の目標検出装置では、
赤外線撮像装置によって得られる赤外線画像が、第6図
に示すように機体の(象aと共に排気ガスの像すが写る
ため、求めた中心点か実際の機体中心点からずれてしま
う。したがって、目標がかなり遠方に位置する場合はあ
まり問題ないが、近付くにつれてその誤差の比率が大き
くなり、排気ガスの広がりが大きくなると、求めた中心
点が機体からはずれてしまうことになる。
However, in the conventional target detection device as described above,
As shown in Fig. 6, the infrared image obtained by the infrared imaging device includes the image of the exhaust gas as well as the image of the aircraft, so the calculated center point deviates from the actual center point of the aircraft. If it is located quite far away, there is not much of a problem, but as you get closer, the error ratio increases, and as the exhaust gas spreads out, the determined center point will deviate from the aircraft.

(発明が解決しようとする課題) 上述したように従来の目標検出装置では、目標か排気ガ
スを噴射する飛翔体である場合、機体と排気ガスとの赤
外線波長特性が異なっており、赤外線撮像装置の赤外線
フィルタに両特性を満足するようなものを使用している
ため、この撮像装置によって撮像した赤外線画像が機体
だけでなく排気ガスの部分も含んでしまうので、画像の
中心を求めても、実際の機体中心からずれてしまう。
(Problems to be Solved by the Invention) As described above, in conventional target detection devices, when the target is a flying object that injects exhaust gas, the infrared wavelength characteristics of the aircraft and the exhaust gas are different, and the infrared imaging device Since the infrared filter used in this camera satisfies both characteristics, the infrared image taken by this imaging device includes not only the aircraft body but also the exhaust gas, so even if you find the center of the image, It shifts from the actual center of the aircraft.

また、赤外線撮像装置に、単に機体の波長特性のみに対
応する赤外線フィルタを用いると、検出感度が極めて低
くなってしまい、目標が遠方に位置している場合に検出
できなくなってしまう。
Furthermore, if an infrared imaging device uses an infrared filter that only responds to the wavelength characteristics of the aircraft, the detection sensitivity will be extremely low, making it impossible to detect the target if it is located far away.

この発明は上記の課題を解決するためになされたもので
、目標が機体がら排気ガスを噴出するものであっても、
機体中心を確実に求めることのでき、しかも目標が遠方
にある場合でも感度良く目標を検出することのできる目
標検出装置を提供することを目的とする。
This invention was made to solve the above problems, and even if the target is to emit exhaust gas from the aircraft body,
To provide a target detection device capable of reliably finding the center of an aircraft body and detecting a target with good sensitivity even when the target is far away.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するためにこの発明に係る目標検出装
置は、機体がら排気ガスを噴出する目はから放射される
赤外線を捕らえ、これによって得られた赤外線画像を画
像処理して前記目標の中心を求める装置において、前記
目標の存在する方向に向けて入射光を結像する集光光学
系と、前記目標の機体から放射される赤外線の波長特性
に対応した透過特性を有する第1の赤外線フィルタと前
記目標の排気ガスから放射される赤外線の波長特性に対
応した透過特性を有する第2の赤外線フィルタとを備え
、前記集光光学系の透過光光軸上に前記第1、第2の赤
外線フィルタを一定の時間間隔で交互に配置するフィル
タ部と、このフィルタ部を透過した赤外線を入射して赤
外線画像信号に変換する光電変換部と、この光電変換部
の出力信号を前記第1の赤外線フィルタの透過時の画像
信号と前記第2の赤外線フィルタの透過時の画像信号と
に分離する分離回路部と、この分能回路部で分離された
第1の赤外線フィルタの透過時の画像信号および一方の
画像信号を遅延して他方の画像信号に同期させて両信号
を加算した合成画像信号のいずれか一方を選択的に出力
する信号処理部と、この信号処理部で選択された画像信
号から目標像を識別し、その検出した目標像の中心を求
める画像処理部と、この画像処理部で検出された目標像
が基準の面積より小さいとき前記信号処理部に前記合成
画像信号を選択させ、基準の面積より大きいとき前記第
1の赤外線フィルタの透過時の画像信号を選択させる切
換制御回路部とを具備することを特徴とする 特に、前記フィルタ部は、前記第1、第2の赤外線フィ
ルタをそれぞれ2枚ずつ備え、同一フィルタが回転軸を
挟んで対向するようにかつ互いに平行となるように配置
し、前記回転軸を前記集光光学系から赤外線検知部への
入射経路上に入射光に対して垂直となるように配置し、
一定間隔て各赤外線フィルタが順次入射経路上で入射光
に対して垂直に配置されるように回転するようにしたこ
とを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the target detection device according to the present invention captures infrared rays emitted from the eyes of the aircraft body spouting exhaust gas, and thereby A device for determining the center of the target by image processing the obtained infrared image, which includes a condensing optical system that focuses incident light in the direction of the target, and an infrared light emitted from the target aircraft. A first infrared filter having a transmission characteristic corresponding to the wavelength characteristic and a second infrared filter having a transmission characteristic corresponding to the wavelength characteristic of the infrared rays emitted from the target exhaust gas, a filter section in which the first and second infrared filters are arranged alternately at regular time intervals on the optical axis of transmitted light; and a photoelectric conversion section that enters the infrared rays that have passed through the filter section and converts them into an infrared image signal. , a separation circuit section that separates the output signal of the photoelectric conversion section into an image signal transmitted through the first infrared filter and an image signal transmitted through the second infrared filter; and a separation circuit section separated by the dividing circuit section. signal processing that selectively outputs either an image signal transmitted through the first infrared filter, or a composite image signal obtained by delaying one image signal, synchronizing it with the other image signal, and adding both signals; an image processing section that identifies a target image from the image signal selected by this signal processing section and determines the center of the detected target image; Particularly, it is characterized by comprising a switching control circuit unit that causes the signal processing unit to select the composite image signal when the area is larger than a reference area, and selects the image signal transmitted through the first infrared filter when the area is larger than a reference area. The filter section includes two each of the first and second infrared filters, and the same filters are arranged so as to face each other across the rotation axis and to be parallel to each other, and the rotation axis is connected to the light condensing filter. Placed perpendicular to the incident light on the incident path from the optical system to the infrared detection section,
It is characterized in that each infrared filter is sequentially rotated at regular intervals so that it is arranged perpendicular to the incident light on the incident path.

(作用) 上記構成の目標検出装置では、目標の機体と排気ガスと
の各赤外線波長特性が異なることに若目し、フィルタ部
において第1及び第2の赤外線フィルタを光軸上に交互
に配置して、目標の機体から放射される赤外線と排気ガ
スから放射される赤外線とを時分割で取出し、光電変換
部で両赤外線による画像信号を得た後、第1の赤外線フ
ィルタの透過時の画像信号と第2の赤外線フィルタの透
過時の画像信号とに分離する。ここで、目標か遠方にあ
る初期状態では、一方の画像信号を遅延して他方の画像
信号に同期させて両信号を加算することにより合成画像
信号を作成して感度を上げ、この合成画像信号から目標
像を識別し、その検出した目標像の中心を求める。その
後、目標像が基僧の面積より大きくなったとき、合成画
像信号に代わって第1の赤外線フィルタの透過時の画像
信号から目標像、すなわち機体像を識別し、その検出し
た機体像の中心を求める。
(Function) In the target detection device with the above configuration, the first and second infrared filters are arranged alternately on the optical axis in the filter section, taking into account that the infrared wavelength characteristics of the target aircraft and the exhaust gas are different. Then, the infrared rays emitted from the target aircraft and the infrared rays emitted from the exhaust gas are extracted in a time-sharing manner, and after obtaining image signals of both infrared rays in the photoelectric conversion section, an image when transmitted through the first infrared filter is obtained. The signal is separated into a signal and an image signal transmitted through the second infrared filter. Here, in the initial state where the target is far away, one image signal is delayed and synchronized with the other image signal, and both signals are added to create a composite image signal and increase the sensitivity. The target image is identified from the target image, and the center of the detected target image is determined. After that, when the target image becomes larger than the area of the base, the target image, that is, the aircraft image, is identified from the image signal transmitted through the first infrared filter instead of the composite image signal, and the center of the detected aircraft image is identified. seek.

フィルタ部としては、各一対の第1、第2の赤外線フィ
ルタを互いに対向して平行に配置した光学体を入射光の
経路上で回転させることにより、順次機体からの赤外線
と排気ガスからの赤外線を交互に得ることができる。
As a filter part, by rotating an optical body in which each pair of first and second infrared filters are arranged in parallel and facing each other on the path of the incident light, infrared rays from the aircraft body and infrared rays from the exhaust gas are sequentially removed. can be obtained alternately.

(実施例) 以下、図面を参照してこの発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は誘導弾に搭載される目標検出装置にこの発明を
適用した場合の構成を示すもので、14は弾頭に形成さ
れるドーム、15は赤外線撮像装置、16は信号処理装
置、17は画像処理装置、18は切換制御装置である。
FIG. 1 shows the configuration when the present invention is applied to a target detection device mounted on a guided missile, in which 14 is a dome formed on the warhead, 15 is an infrared imaging device, 16 is a signal processing device, and 17 is a dome formed on the warhead. The image processing device 18 is a switching control device.

赤外線撮像装置15において、ドーム14から入射され
た光は第1のレンズ151で集光され、さらに第2のレ
ンズ152で平行光に変換された後、フィルタ部153
に入射される。このフィルタ部153はそれぞれ目標の
機体から発せられる赤外線の波長特性に合った第1の透
過波長帯域を有する一対の赤外線フィルタal、a2と
、排気ガスから発せられる赤外線の波長特性に合った第
2の透過波長帯域を白゛する一対の赤外線フィルタb、
、b2を、回転軸Ωに対して対向するようにかつ互いに
平行となるように配置して構成され、その回転軸gは赤
外線入射経路上に入射光に対して垂直となるように配置
され、所定間隔で各赤外線フィルタa。
In the infrared imaging device 15, the light incident from the dome 14 is collected by a first lens 151, further converted into parallel light by a second lens 152, and then passed through a filter section 153.
is incident on the This filter section 153 includes a pair of infrared filters al and a2 each having a first transmission wavelength band that matches the wavelength characteristics of the infrared rays emitted from the target aircraft, and a second infrared filter that matches the wavelength characteristics of the infrared rays emitted from the exhaust gas. a pair of infrared filters b that whiten the transmission wavelength band of
, b2 are arranged so as to face the rotation axis Ω and to be parallel to each other, and the rotation axis g is arranged perpendicular to the incident light on the infrared incident path, Each infrared filter a at predetermined intervals.

a2とbl、blが順次入射経路上で入射光に対して垂
直に配置されるように回転駆動される。
a2, bl, and bl are sequentially driven to rotate so that they are arranged perpendicular to the incident light on the incident path.

このフィルタ部153を透過した赤外線は第3のレンズ
154によって撮像素子155の撮像面に結1′ぐされ
る。この撮像素子155の撮像面は、例えば第2図に示
すように多数の光電変換素子を直線上に配列したりニア
アレイを複数列配置して構成されている。この撮像素子
155で得られた撮像信号は信号処理装置16に送られ
る。
The infrared rays that have passed through this filter section 153 are focused by the third lens 154 onto the imaging surface of the imaging element 155. The imaging surface of the image sensor 155 is configured, for example, as shown in FIG. 2, by arranging a large number of photoelectric conversion elements in a straight line or by arranging a plurality of near arrays. The image signal obtained by this image sensor 155 is sent to the signal processing device 16.

信号処理装置16において、入力した撮像信号は分離回
路部161に送られる。この分離回路部161は赤外線
フィルタ”l+  a2を透過した赤外線による画像信
号とす、、blを透過した赤外線による画像信号とを分
離出力するもので、al、a2透過時の赤外線画像信号
Saは加算回路部162に送られ、b、、b2透過時の
赤外線画像信号sbは遅延回路部163に送られる。遅
延回路部163は入力したsb画像信号を遅延してSa
画像信号に同期させるもので、ここで遅延された画像信
号Sb′はスイッチ164を介して上記加算回路部16
3に送られ、Sa画像信号に加算される。この加算によ
り得られた合成画像信号は画像処理装置17に送られる
In the signal processing device 16, the input imaging signal is sent to a separation circuit section 161. This separation circuit section 161 separates and outputs an infrared image signal transmitted through the infrared filter "l+a2" and an infrared image signal transmitted through bl, and the infrared image signal Sa when transmitted through al and a2 is added. The infrared image signal sb transmitted to the circuit section 162 and transmitted through b, , b2 is sent to the delay circuit section 163.The delay circuit section 163 delays the input sb image signal and converts it into Sa.
The delayed image signal Sb' is synchronized with the image signal, and the delayed image signal Sb' is sent to the adder circuit section 16 via the switch 164.
3 and added to the Sa image signal. The composite image signal obtained by this addition is sent to the image processing device 17.

この画像処理装置17は入力した画像信号から目標像を
識別し、その中心点を演算すると共に、その目標像の面
積を演算するもので、中心点の情報は誘導弾操舵機構部
(図示せず)に送られて誘導弾の誘導方向決定に供され
、面積情報は切換制御装置18に送られる。この切換制
御装置18は入力した面積情報が基準値未満のときは上
記スイッチ164を閉じて遅延回路部163の出力を加
算回路部162に導出し、基準値以上のときはスイッチ
164を開いて遅延回路部1.63の出力を遮断するよ
うに制御するものである。
This image processing device 17 identifies the target image from the input image signal, calculates its center point, and calculates the area of the target image. Information on the center point is stored in the guided missile steering mechanism (not shown). ) is used to determine the guidance direction of the guided missile, and area information is sent to the switching control device 18. This switching control device 18 closes the switch 164 when the inputted area information is less than a reference value and derives the output of the delay circuit section 163 to the addition circuit section 162, and when it is equal to or greater than the reference value, opens the switch 164 and delays the input area information. This controls the output of the circuit section 1.63 to be cut off.

上記構成において、以下第3図及び第4図を参照してそ
の動作を説明する。
The operation of the above configuration will be described below with reference to FIGS. 3 and 4.

まず、被搭載誘導弾が目標方向に向けられ、目標方向の
光がドーム14を透過して赤外線撮像装置15に入射さ
れると、その光は第1のレンズ151、第2のレンズ1
52を介してフィルタ部153に入射される。このフィ
ルタ部153では、第3図に示すように、目標の機体か
ら発せられる赤外線波長持性11のピーク付近に合致す
る透過帯域ををする赤外線フィルタaI+  a2と、
目標の排気ガスから発せられる赤外線波長持性12のピ
ーク付近に合致する透過帯域を有する赤外線フィルタb
、、b2とを備え、交互に光軸上に配置する。このため
、フィルタ部153はa1+  a2の配置時に機体か
らの赤外線を透過し、b1+  b2の配置時に排気ガ
スからの赤外線を透過する。したがって、撮像素子15
5には第3のレンズ154を介して機体からの赤外線と
排気ガスからの赤外線が交互に結像されることになり、
これによって機体画像信号と排気ガス画像信号を時分割
出力するようになる。
First, when the loaded guided missile is directed toward the target and light in the target direction passes through the dome 14 and enters the infrared imaging device 15, the light passes through the first lens 151 and the second lens 1.
The light enters the filter section 153 via the filter 52 . In this filter section 153, as shown in FIG. 3, infrared filters aI+a2 having a transmission band matching near the peak of infrared wavelength retention 11 emitted from the target aircraft,
an infrared filter b having a transmission band matching near the peak of infrared wavelength retention 12 emitted from the target exhaust gas;
, , b2, arranged alternately on the optical axis. Therefore, the filter section 153 transmits infrared rays from the aircraft body when a1+a2 is arranged, and transmits infrared rays from the exhaust gas when b1+b2 is arranged. Therefore, the image sensor 15
5, the infrared rays from the aircraft body and the infrared rays from the exhaust gas are alternately imaged through the third lens 154.
This allows time-divisional output of the aircraft image signal and the exhaust gas image signal.

このようにして撮像装置15から時分割出力される機体
及び排気ガスの赤外線画像信号は信号処理部16に入力
される。この信号処理部16では、初期状態において、
分離回路部161で機体画像信号Saと排気ガス画像信
号sbとに分離し、遅延回路部163で同期化した後、
加算回路部1B2で加算処理し、機体及び排気ガスの合
成画像信号Sa+Sb′を作成する。これによって画像
信号の輝度が上がるので感度が上がり、目標が遠方にあ
って画像が小さくかつ受光レベルが低い場合にも、確実
に目標画像を捕らえることができる。この合成画像信号
を画像処理装置17に送り、その中心点を求めると、排
気ガスの影響により機体のみの中心からずれることにな
るが、まだ目標が遠方にあるため問題は生じない。
The infrared image signals of the aircraft body and exhaust gas that are time-divisionally output from the imaging device 15 in this manner are input to the signal processing section 16 . In this signal processing section 16, in the initial state,
After separating into an aircraft image signal Sa and an exhaust gas image signal sb in a separation circuit section 161 and synchronizing them in a delay circuit section 163,
The addition circuit section 1B2 performs addition processing to create a composite image signal Sa+Sb' of the aircraft body and exhaust gas. This increases the brightness of the image signal, thereby increasing sensitivity, and even when the target is far away, the image is small, and the level of light reception is low, the target image can be reliably captured. When this composite image signal is sent to the image processing device 17 and its center point is determined, it will be shifted from the center of only the aircraft body due to the influence of exhaust gas, but since the target is still far away, no problem will occur.

被搭載誘導弾が目標に近付くと、画像処理装置17で得
られる目標画像が次第に大きくなる。そこで、画像処理
装置17において、目標画像の面積を計算し、その計算
結果を切換制御装置18に送り、その計算結果が所定値
以上となったときスイッチ164を開いて加算回路部1
62の出力を機体画像信号Saのみとする。これによっ
て、画像処理装置17では第4図に示すように機体aの
みの画像が得られ、その中心点を精度よく求めることが
できる。
As the loaded guided missile approaches the target, the target image obtained by the image processing device 17 gradually becomes larger. Therefore, the image processing device 17 calculates the area of the target image, sends the calculation result to the switching control device 18, and when the calculation result exceeds a predetermined value, the switch 164 is opened and the addition circuit section
The output of 62 is assumed to be only the aircraft image signal Sa. As a result, the image processing device 17 can obtain an image of only the aircraft body a, as shown in FIG. 4, and its center point can be determined with high accuracy.

このとき、感度の低下を生じるが、目標が近付いたこと
によって十分な輝度が得られるので差支えない。
At this time, sensitivity decreases, but this is not a problem because sufficient brightness can be obtained as the target approaches.

したがって、上記構成による目標検出製置は、機体から
排気ガスを噴出する目標が遠方にあって画像面積が小さ
く、受光レベルも低い状態でも、機体画像信号と排気ガ
ス画像信号とを合成して感度を上げるので、より遠くの
目標を検出することができ、目標が近付いて一定の面積
以上の画像が得られるようになれば、機体画像のみを取
出すことができるので、機体中心を確実に精度よく求め
ることができる。
Therefore, the target detection setup with the above configuration can combine the aircraft image signal and the exhaust gas image signal to increase sensitivity even when the target ejecting exhaust gas from the aircraft is far away, the image area is small, and the light reception level is low. This allows you to detect targets further away, and when the target approaches and an image of a certain area or larger can be obtained, only the aircraft image can be extracted, ensuring that the center of the aircraft is accurately detected. You can ask for it.

尚、この発明は上記実施例に限定されるものではなく、
例えばフィルタ部153は各特性の赤外線フィルタをそ
れぞれ1枚ずっとし、これらを90°で結合しておき、
回転軸Ωで回転させるようにしてもよい。また、信号処
理部16は、加算回路部162に遅延回路部163の出
力を直接供給するようにし、スイッチ164に代わって
、選択スイッチにより分離回路部161の出力と選択的
に画像処理装置■7に送るようにし、選択スイッチを切
換制御装置18の出力によって制御するようにしてもよ
い。その他、この発明の要旨を逸脱しない範囲で種々変
形しても同様に実施可能であることはいうまでもない。
Note that this invention is not limited to the above embodiments,
For example, the filter section 153 consists of one infrared filter of each characteristic, and these are combined at 90 degrees.
It may also be rotated around the rotation axis Ω. Further, the signal processing section 16 directly supplies the output of the delay circuit section 163 to the addition circuit section 162, and uses a selection switch instead of the switch 164 to selectively input the output of the separation circuit section 161 and the image processing device 7. Alternatively, the selection switch may be controlled by the output of the switching control device 18. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上のようにこの発明によれば、目標が機体から排気ガ
スを噴出するものであっても、機体中心を確実に求める
ことのでき、しかも目標が遠方にある場合でも感度良く
目標を検出することのできる目標検出装置を提供するこ
とができる。
[Effects of the Invention] As described above, according to the present invention, even if the target is one that spews exhaust gas from the aircraft, the center of the aircraft can be reliably determined, and even if the target is far away, the center of the aircraft can be determined with high sensitivity. A target detection device capable of detecting a target can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る目標検出装置の一実施例を示す
構成図、第2図は同実施例の撮像素子の構成を示す図、
第3図は同実施例のフィルタ部の特性を示す特性図、第
4図は同実施例の動作を説明するための図、第5図は従
来の目標検出装置のフィルタ部の特性を示す特性図、第
6図は従来装置の動作を説明するための図である。
FIG. 1 is a block diagram showing an embodiment of a target detection device according to the present invention, FIG. 2 is a diagram showing the structure of an image sensor of the same embodiment,
FIG. 3 is a characteristic diagram showing the characteristics of the filter section of the same embodiment, FIG. 4 is a diagram for explaining the operation of the same embodiment, and FIG. 5 is a characteristic diagram showing the characteristics of the filter section of the conventional target detection device. 6 are diagrams for explaining the operation of the conventional device.

Claims (2)

【特許請求の範囲】[Claims] (1)機体から排気ガスを噴出する目標から放射される
赤外線を捕らえ、これによって得られた赤外線画像を画
像処理して前記目標の中心を求める目標検出装置におい
て、前記目標の存在する方向に向けて入射光を結像する
集光光学系と、前記目標の機体から放射される赤外線の
波長特性に対応した透過特性を有する第1の赤外線フィ
ルタと前記目標の排気ガスから放射される赤外線の波長
特性に対応した透過特性を有する第2の赤外線フィルタ
とを備え、前記集光光学系の透過光光軸上に前記第1、
第2の赤外線フィルタを一定の時間間隔で交互に配置す
るフィルタ部と、このフィルタ部を透過した赤外線を入
射して赤外線画像信号に変換する光電変換部と、この光
電変換部の出力信号を前記第1の赤外線フィルタの透過
時の画像信号と前記第2の赤外線フィルタの透過時の画
像信号とに分離する分離回路部と、この分離回路部で分
離された第1の赤外線フィルタの透過時の画像信号およ
び一方の画像信号を遅延して他方の画像信号に同期させ
て両信号を加算した合成画像信号のいずれか一方を選択
的に出力する信号処理部と、この信号処理部で選択され
た画像信号から目標像を識別し、その検出した目標像の
中心を求める画像処理部と、この画像処理部で検出され
た目標像が基準の面積より小さいとき前記信号処理部に
前記合成画像信号を選択させ、基準の面積より大きいと
き前記第1の赤外線フィルタの透過時の画像信号を選択
させる切換制御回路部とを具備する目標検出装置。
(1) In a target detection device that captures infrared rays emitted from a target emitting exhaust gas from the aircraft, and processes the obtained infrared image to determine the center of the target, the device points in the direction where the target is located. a first infrared filter having transmission characteristics corresponding to wavelength characteristics of infrared rays emitted from the target aircraft; and a wavelength of infrared rays emitted from the target exhaust gas. and a second infrared filter having transmission characteristics corresponding to the characteristics, and the first infrared filter is provided on the optical axis of the transmitted light of the condensing optical system.
a filter section in which second infrared filters are arranged alternately at regular time intervals; a photoelectric conversion section that converts the infrared rays transmitted through the filter section into an infrared image signal; and a photoelectric conversion section that converts the output signal of the photoelectric conversion section into an infrared image signal a separation circuit unit that separates an image signal when transmitted through the first infrared filter and an image signal when transmitted through the second infrared filter; and an image signal when transmitted through the first infrared filter separated by the separation circuit unit; a signal processing section that selectively outputs either the image signal or a composite image signal obtained by delaying one image signal and synchronizing it with the other image signal and adding both signals; an image processing section that identifies a target image from an image signal and finds the center of the detected target image; and when the target image detected by the image processing section is smaller than a reference area, the composite image signal is sent to the signal processing section. and a switching control circuit unit that selects an image signal transmitted through the first infrared filter when the area is larger than a reference area.
(2)前記フィルタ部は、前記第1、第2の赤外線フィ
ルタをそれぞれ2枚ずつ備え、同一フィルタが回転軸を
挟んで対向するようにかつ互いに平行となるように配置
し、前記回転軸を前記集光光学系から赤外線検知部への
入射経路上に入射光に対して垂直となるように配置し、
一定間隔で各赤外線フィルタが順次入射経路上で入射光
に対して垂直に配置されるように回転するようにしたこ
とを特徴とする請求項(1)記載の目標検出装置。
(2) The filter section includes two each of the first and second infrared filters, and the same filters are arranged so as to face each other across the rotation axis and to be parallel to each other, and the rotation axis is arranged perpendicular to the incident light on the incident path from the condensing optical system to the infrared detection unit,
2. The target detection device according to claim 1, wherein each infrared filter is sequentially rotated at regular intervals so as to be disposed perpendicular to the incident light on the incident path.
JP24529289A 1989-09-22 1989-09-22 Target detection device Expired - Lifetime JP2809744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24529289A JP2809744B2 (en) 1989-09-22 1989-09-22 Target detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24529289A JP2809744B2 (en) 1989-09-22 1989-09-22 Target detection device

Publications (2)

Publication Number Publication Date
JPH03110398A true JPH03110398A (en) 1991-05-10
JP2809744B2 JP2809744B2 (en) 1998-10-15

Family

ID=17131499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24529289A Expired - Lifetime JP2809744B2 (en) 1989-09-22 1989-09-22 Target detection device

Country Status (1)

Country Link
JP (1) JP2809744B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164242A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Infrared ray detector
JP2008304323A (en) * 2007-06-07 2008-12-18 Nec Corp View field switching part and infrared guidance device
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164242A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Infrared ray detector
JP2008304323A (en) * 2007-06-07 2008-12-18 Nec Corp View field switching part and infrared guidance device
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector

Also Published As

Publication number Publication date
JP2809744B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US5001348A (en) Method and apparatus for recognizing the start and motion of objects
US4796834A (en) Method for combatting of targets and projectile or missile for carrying out the method
US10628953B2 (en) Multiple target tracker and liquid crystal waveguide (LCWG) beam steerer for designation, range finding and active imaging
US6111241A (en) Semi-active laser last pulse logic seeker utilizing a focal plane array
US9568583B2 (en) Asynchronous pulse detection through sequential time sampling of optically spread signals
US8265338B2 (en) System and method for analysis of image data
US20200013181A1 (en) Multiple target tracker and micro-electro-mechanical system (mems) micro-mirror array for designation, range finding, and active imaging
GB2292280A (en) Missile guidance system
JP2008039600A (en) Surveying equipment with light split by dichroic prism
CN108063937B (en) Image pickup apparatus and image pickup method
JPH07318630A (en) Electrooptic apparatus
JPH03110398A (en) Target detector
EP2824474B1 (en) Dual function focal plane array seeker
WO2013108204A1 (en) Laser target seeker with photodetector and image sensor
JPS60229900A (en) Star and solar sensor for position regulating system
US7551276B2 (en) Method and apparatus for detecting optical spectra
GB2185556A (en) Actuation arrangement for aiming mines
JP2003098255A (en) Compound tracking-sensor system
JP2876518B2 (en) Time-division multi-wavelength lightwave measurement device
US4842247A (en) Method and apparatus for the detection of helicopters
RU170789U1 (en) MULTI-CHANNEL OPTICAL-LOCATION SYSTEM
CN220357412U (en) Multi-view imaging device
JPH0766049B2 (en) Aircraft optical system device
RU2770951C1 (en) Method for optoelectronic guidance and remote detonation of a guided projectile and a combined system for its implementation
JP5577747B2 (en) Infrared target detection device