JP2008164188A - 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント - Google Patents

微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント Download PDF

Info

Publication number
JP2008164188A
JP2008164188A JP2006351536A JP2006351536A JP2008164188A JP 2008164188 A JP2008164188 A JP 2008164188A JP 2006351536 A JP2006351536 A JP 2006351536A JP 2006351536 A JP2006351536 A JP 2006351536A JP 2008164188 A JP2008164188 A JP 2008164188A
Authority
JP
Japan
Prior art keywords
boiler
furnace
wall
pulverized coal
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006351536A
Other languages
English (en)
Other versions
JP2008164188A5 (ja
Inventor
Osamu Ito
修 伊藤
Masayuki Taniguchi
正行 谷口
Yoshinobu Kobayashi
啓信 小林
Keiichiro Yamamoto
圭一朗 山本
Yoshihiro Shimogoori
嘉大 下郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006351536A priority Critical patent/JP2008164188A/ja
Priority to US11/958,763 priority patent/US20080156236A1/en
Priority to EP07024648A priority patent/EP1939524A2/en
Publication of JP2008164188A publication Critical patent/JP2008164188A/ja
Publication of JP2008164188A5 publication Critical patent/JP2008164188A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は火炉に垂直に配列した水壁管に対向して配置したバーナを有する微粉炭焚き貫流ボイラで、火炉内の熱負荷を均一化し火炉の水壁管の管壁温度の上昇を抑制する。
【解決手段】本発明の微粉炭焚き貫流ボイラは、複数の水壁管を垂直方向に夫々配列して火炉の水壁を構成し、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に複数のバーナを対向して夫々配置し、複数のミルのうちの1つのミルから火炉の所定の高さの位置に対向して配置された複数のバーナの一部に微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁に分岐してこれらの複数のバーナの一部に接続するように配設し、更に複数のミルのうちの他の1つのミルから火炉の所定の高さの位置に対向して配置された複数のバーナの残りの一部に微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁に分岐してこれらの複数のバーナの残りの一部に接続するように配設して構成した。
【選択図】図1

Description

本発明は、火炉に垂直に配列した水壁管を配設した微粉炭焚き貫流ボイラに係り、特に火炉に垂直に配列した水壁管を設置し石炭を粉砕した燃料の微粉炭を火炉に設けたバーナに供給する給炭管を備えた微粉炭焚き貫流ボイラ、及び微粉炭焚き貫流ボイラを備えた発電プラントに関する。
部分負荷時の熱効率向上のためボイラで燃料の燃焼量を調節して発生する蒸気圧力を変化させる変圧運転を行う微粉炭焚き貫流ボイラでは、火炉の水壁に垂直に配設した水壁管を適用した場合に火炉に垂直に配置した水壁管に設けたバーナから火炉内に供給される微粉炭の燃料に偏差が生じると、火炉内で熱負荷が局所的に集中して水壁管内の亜臨界圧領域の蒸気に核沸騰離脱現象が発生する。
そうなると伝熱劣化が起こって火炉の水壁管の冷却効果が不十分となり、水壁管の管壁温度が急激に上昇して水壁管の材質の許容温度を越えて破損に至る可能性が懸念されるという問題がある。
核沸騰から膜沸騰に離脱する核沸騰離脱によって生じる火炉の水壁管の管壁温度の大幅な上昇を抑制するためには、水壁管内を流れる流体の質量流量を十分大きくし、熱負荷の局所的な集中をさけて核沸騰離脱による管壁温度の上昇を避ける方法がある。
しかしながら、そのためには水壁管の入口にて流体の流量バランスを保つために管内流量の調節を行うオリフェス等を設置する必要がありボイラの構造が非常に複雑となる。
特許第3091220号公報には、この問題を解決するために水壁管内の質量流量を所定の量以下に設定して管内圧力損失を静水頭支配の状態にして摩擦圧力損失、加速圧力損失の相対的な割合を減少させることにより、自然循環特性が得られるようにした技術が開示されている。
特許第3091220号公報
ところで、特許第3091220号公報に記載されたような変圧運転を行う貫流ボイラでは、微粉炭の燃料を火炉に供給するバーナを火炉のボイラ前壁とボイラ後壁の垂直の水壁管に対向式となるように配置すると、ボイラ前壁とボイラ後壁に夫々設けたバーナから火炉内に供給する微粉炭の燃料の偏差に起因して燃料が燃焼する熱負荷の分布に偏差が生じ、これが火炉の水壁管の出口の流体温度に反映されて、水壁管で発生する蒸気温度にアンバランスを生じる。
火炉内で熱負荷の分布に偏差が生じる原因は、ボイラの部分負荷に応じた燃料の微粉炭を製造する石炭粉砕用のミルの部分運転時にボイラ前壁又はボイラ後壁の何れか一方のバーナに運転中のミルから微粉炭を供給するように供給管を配設していることから、火炉のボイラ前壁とボイラ後壁との間でバーナから火炉内に供給される微粉炭の供給量に著しい差が生じることに起因するものである。
貫流ボイラの火炉内に生じる熱負荷の不均衡は、隣接して配設された水壁管の間の局所的な偏差ではないので、これらの複数の水壁管を火炉内の全周に亘って同一の管寄によって接続させないかぎり、水壁管で発生した蒸気温度のアンバランスは定常的に生じる。
よって、火炉のボイラ前壁とボイラ後壁の水壁管に設けたバーナから供給される燃料の偏差に伴う熱負荷の不均衡によって水壁管内の蒸気の亜臨界圧領域にて核沸騰離脱が発生し、伝熱劣化により火炉水壁管の冷却効果が不十分となり火炉水壁管の管壁温度が大幅に上昇する恐れがある。
また、同一の管寄で複数の水壁管を接続することは水壁管と管寄との配設が非常に複雑となりボイラの構造が複雑化するので実用的ではない。
貫流ボイラの火炉のボイラ前壁とボイラ後壁の水壁管に対向式にバーナを配置する場合、バーナ単独で燃焼炎を安定的に保持するに有利な構造を有しているので広い負荷範囲での燃焼性能確保に優れるが、発生蒸気温度にアンバランスが生じる問題があるために貫流ボイラの火炉の水壁を垂直に配列された水壁管で形成する場合には、バーナを火炉のボイラ前壁とボイラ後壁の水壁管に対向式に配置して燃焼させる方式を適用することが困難であった。
本発明の目的は、火炉のボイラ前壁とボイラ後壁の垂直に配列した水壁管に対向式で配置されたバーナを有する微粉炭焚き貫流ボイラにおいても、火炉内の熱負荷を均一化して火炉の水壁管の管壁温度の上昇を抑制する簡単な構成の微粉炭焚き貫流ボイラを提供することにある。
本発明の微粉炭焚き貫流ボイラは、火炉と、火炉の水壁を形成するように火炉に複数配置された水壁管と、水壁管を有する火炉の水壁を形成するボイラ前壁及びこのボイラ前壁に対向して配置されたボイラ後壁と、これらのボイラ前壁及びボイラ後壁に設置されて燃料の微粉炭を火炉の内部に供給する複数のバーナと、燃料の石炭を粉砕して微粉炭を製造する複数のミルと、これらのミルで製造した微粉炭を複数のバーナに夫々供給する給炭管とを備えた微粉炭焚き貫流ボイラにおいて、複数の水壁管を垂直方向に夫々配列して火炉の水壁を構成し、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に複数のバーナを対向して夫々配置し、複数のミルのうちの1つのミルから火炉の所定の高さの位置に対向して配置された複数のバーナの一部に微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの一部に接続するように配設し、更に複数のミルのうちの他の1つのミルから火炉の所定の高さの位置に対向して配置された複数のバーナの残りの一部に微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの残りの一部に接続するように配設することを特徴とする。
また、本発明の微粉炭焚き貫流ボイラを備えた発電プラントは、500MW以上の電気出力を有しており、この微粉炭焚き貫流ボイラは、火炉と、火炉の水壁を形成するように火炉に複数配置された水壁管と、水壁管を有する火炉の水壁を形成するボイラ前壁及びこのボイラ前壁に対向して配置されたボイラ後壁と、これらのボイラ前壁及びボイラ後壁に設置されて燃料の微粉炭を火炉の内部に供給する複数のバーナと、燃料の石炭を粉砕して微粉炭を製造する複数のミルと、これらのミルで製造した微粉炭を複数のバーナに夫々供給する給炭管とを備え、複数の水壁管を垂直方向に夫々配列して火炉の水壁を構成し、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に複数のバーナを対向して夫々配置し、複数のミルのうちの1つのミルから火炉の所定の高さの位置に対向して配置された複数のバーナに微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナに接続するように配設するように構成しており、更に、微粉炭焚き貫流ボイラから排出される排ガスは、微粉炭焚き貫流ボイラの下流側に配置した触媒装置、空気予熱器、電気集塵器またはバグフィルタ、及び脱硫装置を流下するように構成されていることを特徴とする。
本発明によれば、火炉のボイラ前壁とボイラ後壁の垂直に配列した水壁管に対向して配置されたバーナを有する微粉炭焚き貫流ボイラにおいても、火炉内の熱負荷を均一化して火炉の水壁管の管壁温度の上昇を抑制する簡単な構成の微粉炭焚き貫流ボイラが実現できる。
本発明の微粉炭焚き貫流ボイラの実施例について以下に図面を用いて説明する。
本発明の一実施例である微粉炭焚き貫流ボイラについて説明する。図1は本発明の一実施例である微粉炭焚き貫流ボイラ1の構造を示しており、微粉炭焚き貫流ボイラ1はボイラを構成する火炉2を備えている。
火炉2の内壁を構成する水壁5には垂直方向に並列に多数の水管を配列した複数の水壁管10が設置されている。これらの垂直方向に配列した水壁管10を設置した火炉2の水壁5は、ボイラ前面側のボイラ前壁6と、このボイラ前壁6に対向したボイラ後面側のボイラ後壁7と、これらのボイラ前壁6とボイラ後壁7との側面となるボイラ右側壁及びボイラ左壁とから構成されている。
また、炉2の天井には水壁管10を有する後部伝熱面4が備えられている。
微粉炭焚き貫流ボイラ1の火炉2の水壁5を形成する水壁管10を備えたボイラ前壁6とボイラ後壁7には、燃料の微粉炭を搬送用の空気と共に火炉2の内部に供給して燃焼させる複数のバーナ8と、このバーナ8より上部に位置して燃焼用空気を火炉2の内部に供給する複数の空気ノズル12とが夫々設置されている。
火炉2には火炉2の水壁5を構成する垂直に配列した複数の水壁管10にて燃焼ガス3からの輻射熱により加熱されて発生した蒸気を集積する混合管寄せ13が配設されている。
燃料の微粉炭は石炭をミル14によって粉砕されて微粉炭に製造され、ミル14で製造した微粉炭を搬送空気の一次空気に同伴させて複数配設した給炭管18を通じて複数のバーナ8からボイラの火炉2の内部に供給して火炉2で燃焼させる。
本実施例の微粉炭焚き貫流ボイラ1ではミル14は6台設置されており、この6台のミル14はそれぞれ(1)〜(6)の番号を付して区別している。
火炉2の水壁5を構成する水壁管10を備えたボイラ前壁6とボイラ後壁7に設置した複数のバーナ8は、火炉2の壁面の設置される所定の高さが夫々異なっており、最上段の所定の高さであるボイラ前壁6のE及びボイラ後壁7のFの高さ、中段の所定の高さであるボイラ前壁6のC及びボイラ後壁7のDの高さ、下段の所定の高さであるボイラ前壁6のA及びボイラ後壁7のBの高さの位置のバーナとして表示されている。
これらのバーナ8は火炉2のボイラ前壁6とボイラ後壁7とに対向して配置されており、前記した最上段のE及びFの高さ、中段のC及びDの高さ、下段のA及びBの各高さの位置にバーナ8は夫々6本ずつ配置されている。
ここでボイラ前壁6とボイラ後壁7にて対向するバーナ8の高さは必ずしも同一の高さに配置されるものでなく、ボイラ水壁の熱負荷を適正に調整するために、図10に示すように最上段のE及びFの高さ、中段のC及びDの高さ、下段のA及びBの各高さがそれぞれ千鳥式に高さ方向にずれて配置される場合もある。この場合においてもボイラ前壁6とボイラ後壁7での最上段、中段、下段のバーナをそれぞれ対向するバーナとする。
バーナ8及び空気ノズル12に燃焼用空気を供給する空気の供給系統は、空気ブロア19と、空気ブロア19から空気を取り込んで加熱する空気予熱器22と、空気予熱器22にて加熱した空気を燃焼用空気としてバーナ8及び空気ノズル12に供給する空気配管11から構成される。
また、バーナ8から供給された微粉炭と空気、及び空気ノズル12から供給された燃焼用空気によって火炉2の内部で燃料の微粉炭が燃焼して生じた燃焼ガス3は、火炉2を流下して微粉炭焚き貫流ボイラ1から排ガス3bとして排出される。
排出された排ガス3bは微粉炭焚き貫流ボイラ1の下流側に設置された触媒装置21にて脱硝処理された後に空気予熱器22で熱回収され、更にその下流側で排ガス3bの脱塵、脱硫処理されて大気中に放出される。
次に、燃料の微粉炭をミル14からバーナ8に供給する供給管18の配設方法について図2を用いて説明する。図2は図1の微粉炭焚き貫流ボイラ1の火炉2をX−Xの方向に断面した部分断面図を模式的に示している
バーナ8は、ボイラ前壁6とボイラ後壁7であって火炉の高さ方向に複数段配置されている。そして、ミル14で粉砕した微粉炭は、ボイラ前壁6とボイラ後壁7の同じ段に配置されたバーナ8に、給炭管を通じて夫々導いている。図1は、ボイラ前壁6とボイラ後壁7において、バーナ8が火炉の高さ方向にそれぞれ3段配置されている。
図2において、(1)〜(6)の番号を付して表示した6台のミル14で粉砕した微粉炭は、火炉2の壁面のボイラ前壁6とボイラ後壁7の最上段の所定の高さであるE及びFの高さ、中段の所定の高さであるC及びDの高さ、下段の所定の高さであるA及びBの各高さの位置に夫々に設置した各6本のバーナ8に給炭管18を通じて夫々導いている。
図2に示すように、最上段のボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに位置するバーナ8に微粉炭を供給する給炭管18の配設は、(5)のミル14から分岐した6本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された6本のバーナ8のうちの3本に夫々接続するように配設する。
そして、(5)のミル14から分岐した6本の給炭管18のうちの3本の配設方法は、ボイラ後壁7のFの高さに位置する火炉2の左側のバーナ8から右側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続するように配設して、これらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(5)のミル14から分岐した6本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された6本のバーナ8のうちの3本に夫々接続するように配設する。
そしてその配設方法は、ボイラ前壁6のEの高さに位置する火炉2の右側のバーナ8から左側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続してこれらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
同様に、(6)のミル14から分岐した6本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された火炉2の左側のバーナ8から右側のバーナ8にかけて2番目、4番目、6番目に位置するバーナ8に1本おきに接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(6)のミル14から分岐した6本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の右側のバーナ8から左側のバーナ8にかけて2番目、4番目、6番目に位置するバーナ8に1本おきに接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
このようにバーナ8が最上段のE及びFの同一の高さのボイラ前壁6とボイラ後壁7とに夫々6台設置している場合のように、所定の高さである同一の高さのボイラ前壁6とボイラ後壁7とに偶数列のバーナ本数を有する配置では、(5)のミル14及び(6)のミル14とからバーナ8に接続する給炭管18を、丁度、火炉2の壁面のボイラ前壁6に設けたバーナ8と、このバーナ8と相対向して位置するようにボイラ後壁7に設けたバーナ8との双方に、異なるミル14から接続するように配設している。
即ち、ボイラ前壁6とボイラ後壁7とに相対向して配置されたバーナ8には、異なる(5)のミル14と(6)のミル14とから燃料の微粉炭を供給するように給炭管18を夫々配設している。
したがって、給炭管18による微粉炭の搬送における圧損に差異がない場合には、ほぼ同量の石炭を(5)のミル14及び(6)のミル14から各給炭管18を通じて火炉2の壁面のボイラ前壁6とボイラ後壁7に設置した複数のバーナ8に均等に供給できる。
上記の実施例によれば、(5)のミル14と(6)のミル14から火炉2の所定の高さに設置されたバーナ8に夫々供給する微粉炭をボイラ前壁6とボイラ後壁7とから均等に火炉2の内部に供給することが可能となる。
よって、微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とでは、ボイラの部分負荷時に複数台あるミル14の一部に休止運転するものがあっても、運転中の同一のミル14からは微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とに配設したバーナ8に微粉炭を均等に供給できるので、微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7との間の熱負荷を均一化することが可能となる。
また、図2には明示されていない(2)と(3)のミル14で粉砕した微粉炭を中段のボイラ前壁6のC及びボイラ後壁7のDの高さに夫々配置した6本のバーナ8に供給する給炭管18、並びに、(1)と(4)のミル14で粉砕した微粉炭を下段のボイラ前壁6のA及びボイラ後壁7のBの高さに夫々配置した6本のバーナ8に供給する給炭管18の配設方法は、前述した(2)と(3)のミル14から最上段のボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに位置する6本のバーナ8に微粉炭を供給する給炭管18の配設方法と同様であるので、ここでの説明は省略する。
本実施例によれば、微粉炭焚き貫流ボイラの全負荷帯域において、特に約半数のバーナが休止するような部分負荷の状態においても、火炉のボイラ前壁とボイラ後壁とに設置した複数のバーナから供給する燃料の投入量をほぼ均等に調節することが可能となり、微粉炭燃料の火炉への供給量の偏差を抑制させて微粉炭焚き貫流ボイラの熱負荷を均一化することができる。
これによって微粉炭焚き貫流ボイラの火炉のボイラ前壁とボイラ後壁の熱負荷が不均一化の場合に生じる火炉の水壁管内の蒸気の亜臨界圧領域での核沸騰離脱の発生が防止でき、伝熱劣化による火炉の水壁管の管壁温度の上昇を抑制することが可能となる。
次に、本実施例による微粉炭焚き貫流ボイラの作用効果を説明する。
図8は、図1及び図2に示す本実施例の微粉炭焚き貫流ボイラと、比較のために本実施例と異なる構成の微粉炭焚き貫流ボイラについて、火炉2の水壁5として垂直に配列した水壁管10の出口の蒸気温度を計算してこの蒸気温度の分布を火炉2の内周方向に沿って表示したものである。
図8に示した火炉2の水壁管10の出口の蒸気温度を計算する基となった微粉炭焚き貫流ボイラの構成は、バーナ8の全てが火炉2のボイラ前壁6とボイラ後壁7とに対向して配置された方式のものである。
図8の中で図8(c)は、図1乃至図2に示した本実施例のように2台のミル14から微粉炭をバーナ8に供給する給炭管18がミル14から火炉2のボイラ前壁6とボイラ後壁7に夫々分岐して、最上段、中段、下段の所定の高さである各同一の高さに対向して配置されたバーナ8に接続される構成を採用した微粉炭焚き貫流ボイラについて計算したものである。
垂直方向に並列に配置される火炉2の水壁5を構成する水壁管10を上昇する流体の平均管内質量流速は1000kg/msと比較的低流速の条件に設定し、ボイラ負荷50%の運転条件に設定している。
また、図8の(a)及び図8の(b)は、図8(c)との比較のために、一台のミルから微粉炭をバーナに供給する給炭管が、同一の高さに対向して配置されたバーナに接続されている構成の微粉炭焚き貫流ボイラについて計算したものである。
そして図8(a)では水壁管を上昇する流体の平均管内質量流速は2000kg/msと比較的高流速の条件に設定し、図8の(b)では水壁管を上昇する流体の平均管内質量流速は1000kg/msと比較的低流速の条件に設定し、ボイラ負荷は何れも50%の運転条件に設定している。
また、ボイラ負荷50%の運転を実施する場合に、6台のミルのうち3台を運転し、他の3台は休止の状態とする。この場合に通常運用するバーナは、微粉炭焚き貫流ボイラでは、中段のC、Dの高さにある火炉のボイラ前壁とボイラ後壁に対向して設けたバーナと、下段のBの高さにあるボイラ後壁に設けたバーナとで燃焼させることが望ましいので、これらのバーナに給炭管を通じて微粉炭を供給する3台のミルを運転することになる。
そうすると、火炉のボイラ後壁のバーナには、ボイラ前壁のバーナに比較して約2倍の微粉炭が供給されることになるので、その結果、図8の(a)に示したように水壁管の出口の蒸気温度は供給された燃料の偏差を反映して後壁の水壁管出口の蒸気温度分布がボイラ前壁のそれに比較して高い温度分布を形成することになる。
図8の(a)に示した場合では、平均管内質量流速が高流速の条件であり、摩擦圧力損失が全水頭で支配的であるので、熱負荷の大きい火炉の中央部での水壁管の蒸発量が増加すると摩擦圧力損失の増加分が静水頭の減少分を上回る。
よって熱負荷の大きい火炉のボイラ前壁とボイラ後壁の部分の流量がより減少するので火炉の水壁管内で核沸騰離脱が容易に発生し、水壁管のメタル温度の上昇による伝熱管の損傷の可能性が非常に高くなる。
図8の(b)では、平均管内質量流速は1000kg/msと低流速の条件であり、静水頭が全圧力損失で支配的であるので、熱負荷の大きい火炉の中央部での水壁管の蒸発量が増加すると静水頭の減少分が摩擦圧力損失の増加分を上回るため、全水頭は火炉の中央部の水壁管のものが周辺部の水壁管のものよりも小さくなり、火炉2の中央部での水壁管の流量が増加する。
これにより、火炉のボイラ前壁とボイラ後壁では、コーナ部と中央部の熱負荷の分布に差があっても、水壁管の蒸気温度の差は図8(a)に比較して緩和されるが、依然としてボイラ後壁ではバーナから投入される燃料量の偏差を反映してボイラ後壁の水壁管の蒸気温度分布がボイラ前壁に比較して高く、水壁管の管内質量流速を低減させるだけではこの温度分布の差は解消されない。
これに対して図8の(c)に示した本実施例で負荷50%の運転を実施する場合には、図1及び図2で説明したように火炉2のボイラ前壁6とボイラ後壁7とに対向して配置されたバーナ8から火炉2に夫々供給される微粉炭の供給量がほぼ同量になるように、ミル14からバーナ8に給炭管18を配設し、中段のC、Dの高さにある火炉2のボイラ前壁6とボイラ後壁7に対向して設けたバーナ8のうちの半分のバーナ8と、下段のA,Bの高さにあるボイラ前壁6とボイラ後壁7に設けたバーナ8とから微粉炭を火炉2の内部に供給して燃焼するように、6台あるミル14のうちの3台の(1)、(2)、(4)のミル14を運転させる。
即ち、火炉2のボイラ前壁6の下段のAの高さにあるバーナ8には、半分の本数のバーナ8に対して(1)、(4)のミル14から給炭管18を通じて微粉炭を夫々供給する。同様に、火炉2のボイラ後壁7の下段のBの高さにあるバーナ8には、半分の本数のバーナ8に対して(1)、(4)のミル14から給炭管18を通じて微粉炭を夫々供給する。
また、火炉2のボイラ前壁6の中段のCの高さにあるバーナ8には、半分の本数のバーナ8に対して(3)のミル14から給炭管18を通じて微粉炭を供給し、火炉2のボイラ後壁7の中段のDの高さにあるバーナ8には、半分の本数のバーナ8に対して(2)のミル14から給炭管18を通じて微粉炭を供給するようにしている。
前記したようにミル14と火炉のボイラ前壁とボイラ後壁の各段の高さに配置されたバーナ8とを接続する給炭管18を配設したことにより、これらのミル14から給炭管18を通じて中段のC、Dの高さのバーナ8の半分と、下段のA、Bの高さのバーナ8とから火炉2に微粉炭が投入されるので、火炉2のボイラ前壁6とボイラ後壁7の水壁管10で発生する蒸気温度にアンバランスが生じるのが解消される。
従って、火炉に垂直方向に配列した水壁管10を流れる流体の平均管内質量流速を1000kg/ms以下と比較的低流速の条件に設定し、ボイラ負荷を50%以下の運転条件に設定して運転するようにすれば、火炉のボイラ前壁6とボイラ後壁7の垂直に配列した水壁管10で発生する蒸気に生じる蒸気温度の差は抑制されるので、垂直に配列した水壁管10に対向して配置されたバーナ8を有する微粉炭焚き貫流ボイラでの部分負荷運転においても、火炉2の内周に沿って熱負荷の均一化ができるので、核沸騰離脱による伝熱劣化により水壁管10の管壁温度の上昇を抑制することができる。
また、水壁管10を流れる流体の平均管内質量流速はボイラ負荷が約50%の1000kg/msからボイラ負荷が約30%の400kg/msの範囲に設定して運転しても、火炉2のボイラ前壁6とボイラ後壁7の垂直に配列した水壁管10で発生する蒸気の温度の差は同様に抑制され、微粉炭焚き貫流ボイラでの部分負荷運転時に火炉の内周に沿って熱負荷の均一化ができるので核沸騰離脱による伝熱劣化により水壁管の管壁温度の上昇の抑制が可能となる。
次に、本実施例による微粉炭焚き貫流ボイラの別の作用効果を説明する。
図9は、図8の(c)と同様に、図1乃至図5に示す本発明の各実施例の微粉炭焚き貫流ボイラについて、火炉2の水壁5として垂直に配列した水壁管10を流れる流体の管内質量流速を計算してこの管内質量流速の分布を火炉2の内周方向に沿って表示したものである。
図9に示した場合でも図8の(c)と同様に負荷50%の運転を実施し、図1及び図2で説明したように火炉2のボイラ前壁6とボイラ後壁7とに対向して配置されたバーナ8から火炉2に夫々供給される微粉炭の供給量がほぼ同量になるように、火炉2のボイラ前壁6の下段のAの高さにあるバーナ8には、半分の本数のバーナ8に対して(1)、(4)のミル14から給炭管18を通じて微粉炭を夫々供給する。同様に、火炉2のボイラ後壁7の下段のBの高さにあるバーナ8には、半分の本数のバーナ8に対して(1)、(4)のミル14から給炭管18を通じて微粉炭を夫々供給している。
これによって火炉2の各段のA、B、C、Dの高さに設けたバーナ8から均等に微粉炭が火炉2内に投入でき、火炉2内での熱負荷のアンバランスは解消される。
図9では垂直方向に配置される火炉2の水壁管10内での平均管内質量流速は1000kg/msと比較的低流速の条件に設定しているので静水頭が全水頭で支配的である。よって熱負荷の大きくなる火炉2の中央部の水壁管10の蒸発量が増加しても静水頭の減少分が摩擦圧力損失の増加分を上回るため、全水頭においては火炉2の中央部の水壁管10がコーナ部水壁管より小さくなる。
従って、火炉に垂直方向に配列した水壁管10を流れる流体の平均管内質量流速をボイラ負荷50%にて1000kg/ms〜400kg/msと比較的低流速の条件に設定して運転するようにすれば、火炉2の中央部の水壁管10の流量が増加して熱負荷の大きい中央部の水壁管に多く流れ、中央部の水壁管の流量が増加するという自然循環特性が得られる。これは、必然的に水壁管出口の蒸気温度を均一化することにつながり、微粉炭焚き貫流ボイラの温度制御の観点で好適な特性となる。
本発明の他の実施例である微粉炭焚き貫流ボイラの構成について図3を用いて説明する。
本実施例の微粉炭焚き貫流ボイラ1は、図1及び図2に示した先の実施例と基本構成は共通しているので、この先の実施例と共通した構成の説明は省略し、相違する部分についてのみ説明する。
図3に示した本実施例の場合も図2に示した先の実施例と同様に図1の微粉炭焚き貫流ボイラ1の火炉2をX−Xの方向に断面した部分断面図を模式的に示している
図3の実施例においては、最上段と中段と下段の各段に配置したバーナ8のうち、最上段の所定の高さであるボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに配置したバーナ8と、このバーナ8に燃料の微粉炭をミル14から供給する給炭管18の配設について説明し、中段と下段の所定の高さである各段に配置したバーナ8と給炭管18の配設については最上段に配設した構成と同様であるのでその説明を省略する。
図3において、所定の高さである最上段のボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに位置する各6本のバーナ8に微粉炭を供給する各6本の給炭管18の配設は、(5)のミル14から分岐した6本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された6本のバーナ8のうちの3本に夫々接続するように配設する。
そして、(5)のミル14から分岐した6本の給炭管18のうちの3本の配設方法は、火炉2のボイラ後壁7の最上段のFの高さに位置する火炉2の左側のバーナ8から右側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続するように配設して、これらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(5)のミル14から分岐した6本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の右側のバーナ8のうちの3本に夫々接続するように配設する。
そしてその配設方法は、ボイラ前壁6のEの高さに位置する火炉2の右側のバーナ8から左側のバーナ8にかけて2番目、4番目、6番目に位置するバーナ8に1本おきに接続してこれらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
同様に、(6)のミル14から分岐した6本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された火炉2の左側のバーナ8から右側のバーナ8にかけて2番目、4番目、6番目に位置するバーナ8に1本おきに接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(6)のミル14から分岐した6本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の右側のバーナ8から左側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
本実施例では、同一の(5)のミル14及び同一の(6)のミル14から分岐した6本の給炭管18は、同一の高さである最上段のFの位置のボイラ後壁7に配置された3本のバーナ8及び最上段のEの位置のボイラ前壁6に配置された3本のバーナ8に夫々接続されているが、図2で示した先の実施例のバーナ8の配置形態とは異なり、同一の(5)のミル14及び(6)のミル14から分岐した6本の各給炭管18は、同一の高さである最上段のF及びEの位置に配置された相対向するバーナ8に夫々接続されるように配設されている。
即ち、ボイラ前壁6とボイラ後壁7とに相対向して配置されたバーナ8には、同一の(5)のミル14、並びに同一の(6)のミル14から燃料の微粉炭を供給するように給炭管18を夫々配設している。
したがって、火炉2のボイラ前壁6とボイラ後壁7との所定の高さである同一の高さに偶数列、例えば6個のバーナ8を有する配置では、同一の(5)のミル14及び(6)のミル14からバーナ8と同じ本数の給炭管18を、火炉2の壁面のボイラ前壁6とボイラ後壁7の同一の高さ位置に設置され相対向して配置されたバーナ8に接続するように配設していることから、一部のミル14に部分的な休止があっても、稼動中のミル14から給炭管18を通じて微粉炭が供給されているバーナ8は常時対向配置されたバーナ8となる。
本実施例によれば、この対向配置したバーナ8から供給された微粉炭が燃焼して生じる燃焼炎9を相対向して火炉2の内部に形成させることが出来ることから、微粉炭焚き貫流ボイラの火炉のボイラ前壁とボイラ後壁の熱負荷をより均一化することが可能となる。
本実施例によれば、ボイラの火炉2のボイラ前壁6とボイラ後壁7とに対向して配置されたバーナ8から火炉2の内部に供給された微粉炭が火炉の中心部で相互に衝突するので、燃料の微粉炭の混合が促進され、微粉炭の燃焼も促進するので火炉の熱負荷が安定して確保できる。
本発明の更に他の実施例である微粉炭焚き貫流ボイラについて図4を用いて説明する。
本実施例の微粉炭焚き貫流ボイラ1は、図1及び図2に示した先の実施例と基本構成は共通しているので、共通した構成の説明を省略し、相違する部分についてのみ説明する。
図4に示した本実施例も図2に示した先の実施例と同様に図1の微粉炭焚き貫流ボイラ1の火炉2をX−Xの方向に断面した部分断面図を模式的に示している
図4の実施例においては、5本のバーナ8と5本の給炭管18を火炉2の壁面のボイラ前壁6とボイラ後壁7との双方に夫々配設している。
図4の実施例では、最上段と中段と下段の各段に配置したバーナ8のうち、最上段の所定の高さであるボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに配置したバーナ8と、これらのバーナ8に燃料の微粉炭を(5)のミル14及び(6)のミル14から供給する給炭管18の配設について説明し、中段と下段の所定の高さである各段に配置したバーナ8と給炭管18の配設については最上段に配設した構成と同様であるのでその説明を省略する。
図4において、最上段のボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに位置する各5本バーナ8に微粉炭を供給する各5本の給炭管18の配設は、(5)のミル14から分岐した5本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された5本のバーナ8のうちの3本に夫々接続するように配設する。
そして、(5)のミル14から分岐した5本の給炭管18のうちの3本の配設方法は、火炉2のボイラ後壁7の最上段のFの高さに位置する火炉2の左側のバーナ8から右側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続するように配設して、これらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(5)のミル14から分岐した他の2本の給炭管18の配設方法は、火炉2のボイラ前壁6の最上段のEの高さに位置する火炉2の右側のバーナ8から左側のバーナ8にかけて2番目、4番目に位置するバーナ8に接続してこれらの2本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
同様に、(6)のミル14から分岐した5本の給炭管18のうちの2本を、火炉2のボイラ後壁7の最上段のFの高さに設置された火炉2の左側のバーナ8から右側のバーナ8にかけて2番目、4番目に位置するバーナ8に接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(6)のミル14から分岐した5本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の右側のバーナ8から左側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
本実施例のようにバーナ8が火炉2のボイラ前壁6とボイラ後壁7との同一の高さに奇数列、例えば5個のバーナ8が設置されていて、火炉2のボイラ前壁6とボイラ後壁7との同一の高さに奇数列のバーナ本数を有する配置では、同一の(5)のミル14及び同一の(6)のミル14からは、火炉2のボイラ前壁6とボイラ後壁7とにバーナ8と同じ本数の給炭管18を配設することができず、火炉2のボイラ前壁6とボイラ後壁7との間でバーナ8に接続される給炭管18の本数に1本の差がでる。
バーナ8に接続した各給炭管18で微粉炭の搬送における圧損に差異がない場合には、その給炭管18の数の比に応じた微粉炭の量が微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とに設置したバーナ8に供給されることになる。
このように、本実施例では微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とで給炭の量に差がでるが、ミル14の一部が部分的に休止していても、稼動中の同一のミル14からは微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7の同一の高さに設置したバーナ8に給炭管18を通じて燃料を所定量供給できることに変わりはなく、微粉炭焚き貫流ボイラ1の熱負荷の均一化を著しく妨げることにはならない。
バーナ8の配列はボイラの容量と火炉に設置されるバーナのサイズから定まるので本実施例のボイラのようにバーナ8を奇数列設置させる場合も生じるが、前述したようにバーナ8を奇数列設置した微粉炭焚き貫流ボイラにおいても火炉の熱負荷を均一化させることが可能となる。
本発明の別の実施例である微粉炭焚き貫流ボイラについて図5を用いて説明する。
本実施例の微粉炭焚き貫流ボイラ1は、図1及び図2に示した先の実施例と基本構成は共通しているので、共通した構成の説明を省略し、相違する部分についてのみ説明する。
図5に示した本実施例も図2に示した先の実施例と同様に図1の微粉炭焚き貫流ボイラ1の火炉2をX−Xの方向に断面した部分断面図を模式的に示している
図5の実施例においては、図4に示した実施例と同様に5本のバーナ8と、(5)のミル14又は(6)のミル14からこれらのバーナ8に接続する5本の給炭管18とを火炉2の壁面のボイラ前壁6とボイラ後壁7との双方に夫々配設している。
図5の実施例では、最上段と中段と下段の各段に配置したバーナ8のうち、最上段の所定の高さであるボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに配置したバーナ8と、これらのバーナ8に燃料の微粉炭を(5)のミル14及び(6)のミル14から供給する給炭管18の配設について説明し、中段と下段の所定の高さである各段に配置したバーナ8と給炭管18の配設については最上段に配設した構成と同様であるのでその説明を省略する。
図5において、最上段のボイラ前壁6のEの高さ及びボイラ後壁7のFの高さに位置する各5本バーナ8に微粉炭を供給する各5本の給炭管18の配設は、(5)のミル14から分岐した5本の給炭管18のうちの3本を、火炉2のボイラ後壁7の最上段のFの高さに設置された5本のバーナ8のうちの3本に夫々接続するように配設する。
そして、(5)のミル14から分岐した5本の給炭管18のうちの3本の配設方法は、火炉2のボイラ後壁7の最上段のFの高さに位置する火炉2の左側のバーナ8から右側のバーナ8にかけて1番目、3番目、5番目に位置するバーナ8に1本おきに接続するように配設して、これらの3本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(5)のミル14から分岐した5本の給炭管18のうちの他の2本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の左側のバーナ8から一番目と3番目の2本のバーナ8に夫々接続して、これらの2本のバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
更に、最上段のボイラ前壁6のEの高さに位置する火炉2の右側から1番目のバーナ8には(5)のミル14ではなく、(6)のミル14から分岐した5本の給炭管18のうちの1本の給炭管18が接続するように配置されている。
そして(6)のミル14から分岐した5本の給炭管18のうちの2本を、火炉2のボイラ後壁7の最上段のFの高さに設置された火炉2の左側のバーナ8から右側のバーナ8にかけて2番目、4番目に位置するバーナ8に接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
また、(6)のミル14から分岐した5本の給炭管18のうちの他の3本は、火炉2のボイラ前壁6の最上段のEの高さに設置された火炉2の右側のバーナ8から左側のバーナ8にかけて1番目、2番目、4番目に位置するバーナ8に接続してバーナ8から微粉炭を火炉2の内部に供給し、この微粉炭を燃焼させて燃焼炎9を形成させるようにしている。
つまり本実施例では、図4に示した先の実施例とは異なり、同一の(5)のミル14及び(6)のミル14から分岐した5本の給炭管18のうち4本の給炭管18は、火炉2のボイラ後壁7の右側から1番目に位置するバーナ8、並びにボイラ前壁6の右側から1番目に位置するバーナ8を除いて、火炉2のボイラ前壁6とボイラ後壁7とに相対向して配置された各2組のバーナ8に給炭管18が夫々接続されるように配設されている。
本実施例のようにバーナ8が火炉2のボイラ前壁6とボイラ後壁7との同一の高さに奇数列、例えば5個のバーナ8が設置されていて、火炉2のボイラ前壁6とボイラ後壁7との同一の高さに奇数列のバーナ本数を有する配置では、同一の(5)のミル14及び同一の(6)のミル14からは、火炉2のボイラ前壁6とボイラ後壁7とにバーナ8と同じ本数の給炭管18を配設することができず、火炉2のボイラ前壁6とボイラ後壁7との間でバーナ8に接続される給炭管18の本数に1本の差がでる。
バーナ8に接続した各給炭管18で微粉炭の搬送に圧損に差異がない場合には、その給炭管18の数の比に応じた微粉炭の量が微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とに設置したバーナ8に供給されることになる。
このように、本実施例では微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7とで給炭の量に差がでるが、ミル14の一部が部分的に休止していても、稼動中の同一のミル14からは微粉炭焚き貫流ボイラ1の火炉2のボイラ前壁6とボイラ後壁7の同一の高さに設置したバーナ8に給炭管18を通じて燃料を所定量供給できることに変わりはなく、微粉炭焚き貫流ボイラ1の熱負荷の均一化を著しく妨げることにはならない。
図6に本発明に係わる微粉炭焚き貫流ボイラを備えた一実施例である500MW以上の比較的大きな電気出力を有する発電プラントの全体構成を示す。
発電プラントの出力としては500MW〜1100MWのクラスに本発明に係わる微粉炭焚き貫流ボイラは適用可能である。
図6において、本実施例の発電プラントに採用される微粉炭焚き貫流ボイラの詳細構造は、図1乃至図5に示した各実施例と基本的に同じ構成であるので、ここでの説明は省略する。
尚、図6に示した発電プラントの微粉炭焚き貫流ボイラ1では、燃料の石炭は貯炭場15から運炭設備(図示せず)によって石炭バンカ16に運ばれ、この石炭バンカ16から石炭をミル14に供給することによって粉砕して微粉炭を製造している。
また、火炉2の内部で燃料の微粉炭を燃焼して発生する燃焼ガスは、火炉2の水壁を構成する水壁管を加熱し、火炉2の下流側に設置した過熱器、再熱器、節炭器(共に図示せず)を流下してから排ガス3bとして火炉2から排出される。
火炉2から排出された排ガス3bは、火炉2の下流側に配置された触媒装置21でNOxを低減させ、更に下流側に配置された空気予熱器22に流下して熱回収される。
触媒装置21及び空気予熱器22を順次流下した排ガス3bはこれらの下流側に配置された乾式電気集塵器23に流入し、ここで排ガス3b中に滞留しているフライアッシュを除塵した後に、更に下流側に配置された湿式脱硫装置25に流入して排ガス3b中の硫黄酸化物を除去し、クリーンな排ガスとなって煙突29から排ガス3bを大気中に放出する。
この湿式脱硫装置25では排ガス3bのSOxを水中に溶解して除去し、さらに脱硫装置内のスプレー噴霧による主に発生するミストSO3は湿式電気集塵器27により除去される。
このように排ガス3b中から規制物質が除去された排ガス3bは水分飽和であるため、湿式電気集塵器27の下流側に設置されたガスガスヒータ(再加熱器)28によって再加熱することにより煙突29から放出される排ガス3bに生じる煙の白煙化を抑制する。
ガスガスヒータ28で必要とする熱は、乾式電気集塵器23の上流側に設置されたガスガスヒータ(熱回収器)20によって熱回収された熱を用いる。
図7に本発明に係わる微粉炭焚き貫流ボイラを備えた他の実施例である500MW〜1100MWの比較的大きな電気出力を有する発電プラントの全体構成を示す。
図7に示した本実施例の発電プラントに採用される微粉炭焚き貫流ボイラの詳細構造は、図1乃至図5に示した各実施例と基本的に同じ構成であるので、ここでの説明は省略する。また、本実施例の発電プラントの構成も図6に示した発電プラントと基本的な構成は同じなので、共通する構成の説明は省略し、相違する部分だけ説明する。
図7において、火炉2から排出されて触媒装置21及び空気予熱器22を流下した排ガス3bは、下流側に設置されたバグフィルタ24に流入して排ガス3b中に滞留しているフライアッシュを除塵した後に、更に下流側に設置されたS分の少ない微粉炭焚きボイラで用いられて簡便に脱硫処理ができる乾式脱硫装置26に流入する。
そして、この乾式脱硫装置26にて硫黄酸化物を除去してクリーンな排ガスとなった排ガス3bは煙突29から大気に放出されるように構成されている。
本発明は火炉に垂直に配列した水壁管を配設した微粉炭焚き貫流ボイラ、特に火炉に垂直に配列した水壁管を設置し石炭を粉砕した燃料の微粉炭を火炉に設けたバーナに供給する給炭管を備えた微粉炭焚き貫流ボイラに適用可能である。
また本発明は火炉の熱負荷を均一化することができるので、全負荷帯域だけでなくバーナの一部を休止させる部分負荷の運転状態を行う上記の微粉炭焚き貫流ボイラに適用するのに好適である。
本発明の実施例である微粉炭焚き貫流ボイラの構成を示す側面図。 図1に示した本発明の実施例の微粉炭焚きボイラの火炉をX−Xの方向に断面した本発明の一実施例である微粉炭焚きボイラの火炉の構造を示す部分断面図。 図1に示した本発明の実施例の微粉炭焚きボイラの火炉をX−Xの方向に断面した本発明の他の実施例である微粉炭焚きボイラの火炉の構造を示す部分断面図。 図1に示した本発明の実施例の微粉炭焚きボイラの火炉をX−Xの方向に断面した本発明の更に他の実施例である微粉炭焚きボイラの火炉の構造を示す部分断面図。 図1に示した本発明の実施例の微粉炭焚きボイラの火炉をX−Xの方向に断面した本発明の別の実施例である微粉炭焚きボイラの火炉の構造を示す部分断面図。 本発明に係わる微粉炭焚き貫流ボイラを備えた一実施例である発電プラントの概略系統図。 本発明に係わる微粉炭焚き貫流ボイラを備えた他の実施例である発電プラントの概略系統図。 本発明の実施例の構成と、比較のために本発明の実施例が採用されていない構成の微粉炭焚き貫流ボイラについて、火炉の水壁管の出口蒸気温度を夫々計算した蒸気温度の分布図。 本発明の実施例である微粉炭焚き貫流ボイラによる火炉の水壁管を流れる流体の管内質量流速を計算した管内質量流速の分布図。 ボイラ前壁とボイラ後壁において、バーナを火炉高さ方向にずれて配置した場合の微粉炭焚き貫流ボイラの構成を示す側面図。
符号の説明
1:微粉炭焚き貫流ボイラ、2:火炉、3:燃焼ガス、3b:排ガス、4:後部伝熱面、5:水壁、6:ボイラ前壁、7:ボイラ後壁、8:バーナ、9:燃焼炎、10:水壁管、11:空気配管、12:空気ノズル、13:混合管寄せ、14:ミル、15:貯炭場、16:石炭バンカ、17:給炭機、18:給炭管、19:空気ブロア、20:ガスガスヒータ(熱回収器)、21:脱硝装置、22:空気予熱器、23:乾式電気集塵器、24:バグフィルタ、25:湿式脱硫装置、26:乾式脱硫装置、27:湿式電気集塵器、28:ガスガスヒータ(再加熱器)、29:煙突。

Claims (9)

  1. 火炉と、火炉の水壁を形成するように火炉に複数配置された水壁管と、水壁管を有する火炉の水壁を形成するボイラ前壁及びこのボイラ前壁に対向して配置されたボイラ後壁と、これらのボイラ前壁及びボイラ後壁に設置されて燃料の微粉炭を火炉の内部に供給する複数のバーナと、燃料の石炭を粉砕して微粉炭を製造する複数のミルと、これらのミルで製造した微粉炭を複数のバーナに夫々供給する給炭管とを備えた微粉炭焚き貫流ボイラにおいて、複数の水壁管をほぼ垂直方向に夫々配列して火炉の水壁を構成し、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に複数のバーナを対向して夫々配置し、複数のミルのうちの1つのミルから火炉の所定の高さの位置で対向する水壁面に配置された複数のバーナの一部に微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの一部に接続するように配設し、更に複数のミルのうちの他の1つのミルから火炉の所定の高さの位置で対向する水壁面に配置された複数のバーナの残りの一部に微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの残りの一部に接続するように配設することを特徴とする微粉炭焚き貫流ボイラ。
  2. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、火炉の所定の高さの位置のボイラ前壁及びボイラ後壁の各水壁管に対向して配置された複数のバーナのうち、相対向するバーナには、複数のミルのうちの1つのミルから微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこの相対向して配置されたバーナに夫々接続するように配設したことを特徴とする微粉炭焚き貫流ボイラ。
  3. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、火炉の所定の高さの位置のボイラ前壁及びボイラ後壁の各水壁管に対向して配置された複数のバーナのうち、相対向するバーナには、複数のミルのうちの1つのミルから微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁のうちの一方に分岐してこの相対向して配置されたバーナの一方に接続するように配設し、複数のミルのうちの他の1つのミルから微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁のうちの他方に分岐してこの相対向して配置されたバーナの他方に接続するように配設したことを特徴とする微粉炭焚き貫流ボイラ。
  4. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に配置された複数のバーナは、偶数列のバーナ本数によって配置されていることを特徴とする微粉炭焚き貫流ボイラ。
  5. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、火炉の所定の高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に配置された複数のバーナは、奇数列のバーナ本数によって配置されていることを特徴とする微粉炭焚き貫流ボイラ。
  6. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、各ミルから分岐して配設された給炭管を通じて火炉のボイラ前壁に設けた複数のバーナに供給される微粉炭の量と、このミルから分岐して配設された給炭管を通じてボイラ後壁に設けた複数のバーナに供給される微粉炭の量との比は、火炉の同一高さのボイラ前壁の水壁管に設けたバーナの本数と、火炉の同一高さのボイラ後壁の水壁管に設けたバーナの本数との比にほぼ等しくなるように構成していることを特徴とする微粉炭焚き貫流ボイラ。
  7. 請求項1に記載の微粉炭焚き貫流ボイラにおいて、火炉にほぼ垂直方向に配列された水壁管を流れる流体の平均管内質量流速はボイラ負荷50%にて1000kg/ms〜400kg/msとなるように運用されることを特徴とする微粉炭焚き貫流ボイラ。
  8. 微粉炭焚き貫流ボイラを備えた発電プラントが500MW〜1100MWの電気出力を有しており、この微粉炭焚き貫流ボイラは、火炉と、火炉の水壁を形成するように火炉に複数配置された水壁管と、水壁管を有する火炉の水壁を形成するボイラ前壁及びこのボイラ前壁に対向して配置されたボイラ後壁と、これらのボイラ前壁及びボイラ後壁に設置されて燃料の微粉炭を火炉の内部に供給する複数のバーナと、燃料の石炭を粉砕して微粉炭を製造する複数のミルと、これらのミルで製造した微粉炭を複数のバーナに夫々供給する給炭管とを備えた微粉炭焚き貫流ボイラにおいて、複数の水壁管をほぼ垂直方向に夫々配列して火炉の水壁を構成し、火炉の同一高さの位置となるボイラ前壁及びボイラ後壁の各水壁管に複数のバーナを対向して夫々配置し、複数のミルのうちの1つのミルから火炉の所定の高さの位置で対向する水壁面に配置された複数のバーナの一部に微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの一部に接続するように配設し、更に複数のミルのうちの他の1つのミルから火炉の所定の高さの位置で対向する水壁面に配置された複数のバーナの残りの一部に微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの残りの一部に接続するよう配設して構成しており、微粉炭焚き貫流ボイラから排出される排ガスは、微粉炭焚き貫流ボイラの下流側に配置した空気予熱器、電気集塵器またはバグフィルタを流下するように少なくとも構成されていることを特徴とする微粉炭焚き貫流ボイラを備えた発電プラント。
  9. 火炉と、火炉の水壁を形成するように火炉に複数配置された水壁管と、水壁管を有する火炉の水壁を形成するボイラ前壁及びこのボイラ前壁に対向して配置されたボイラ後壁と、これらのボイラ前壁及びボイラ後壁に設置されて燃料の微粉炭を火炉の内部に供給する複数のバーナと、燃料の石炭を粉砕して微粉炭を製造する複数のミルと、これらのミルで製造した微粉炭を複数のバーナに夫々供給する給炭管とを備えた微粉炭焚き貫流ボイラにおいて、複数の水壁管を垂直方向に夫々配列して火炉の水壁を構成し、前記ボイラ前壁及びボイラ後壁の各水壁管にバーナを前記火炉の高さ方向に複数段配置し、複数のミルのうちの1つのミルから前記ボイラ前壁及びボイラ後壁の同じ段に配置された複数のバーナの一部に微粉炭を給炭する給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの一部に接続するように配設し、更に複数のミルのうちの他の1つのミルから前記ボイラ前壁及びボイラ後壁の同じ段に配置された複数のバーナの残りの一部に微粉炭を給炭する別の給炭管をボイラ前壁及びボイラ後壁とに分岐してこれらの複数のバーナの残りの一部に接続するように配設することを特徴とする微粉炭焚き貫流ボイラ。
JP2006351536A 2006-12-20 2006-12-27 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント Pending JP2008164188A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006351536A JP2008164188A (ja) 2006-12-27 2006-12-27 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント
US11/958,763 US20080156236A1 (en) 2006-12-20 2007-12-18 Pulverized coal combustion boiler
EP07024648A EP1939524A2 (en) 2006-12-20 2007-12-19 Pulverized coal cumbustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351536A JP2008164188A (ja) 2006-12-27 2006-12-27 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント

Publications (2)

Publication Number Publication Date
JP2008164188A true JP2008164188A (ja) 2008-07-17
JP2008164188A5 JP2008164188A5 (ja) 2009-08-27

Family

ID=39693911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351536A Pending JP2008164188A (ja) 2006-12-20 2006-12-27 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント

Country Status (1)

Country Link
JP (1) JP2008164188A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330965A (zh) * 2011-07-28 2012-01-25 宜兴天地节能技术有限公司 一种高效节能环保煤粉工业锅炉
JP2013002658A (ja) * 2011-06-13 2013-01-07 Ihi Corp 対向燃焼ボイラ装置
CN102901079A (zh) * 2011-07-28 2013-01-30 宜兴天地节能技术有限公司 室燃式水管煤粉锅炉
CN107741004A (zh) * 2017-11-28 2018-02-27 湖南长宏南雁锅炉修理安装有限公司 生物质气体燃料蒸汽锅炉
CN110762516A (zh) * 2019-11-01 2020-02-07 国电南京电力试验研究有限公司 W火焰锅炉炉内燃烧组织定向调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893648U (ja) * 1981-12-16 1983-06-24 バブコツク日立株式会社 微粉炭燃焼装置
JPS61259019A (ja) * 1985-05-14 1986-11-17 Babcock Hitachi Kk 微粉炭燃焼装置
JPS62131244U (ja) * 1986-02-05 1987-08-19
JP2000065305A (ja) * 1998-08-20 2000-03-03 Hitachi Ltd 貫流型ボイラ
JP2001108229A (ja) * 1999-10-12 2001-04-20 Ishikawajima Harima Heavy Ind Co Ltd 火炉の未燃分低減装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893648U (ja) * 1981-12-16 1983-06-24 バブコツク日立株式会社 微粉炭燃焼装置
JPS61259019A (ja) * 1985-05-14 1986-11-17 Babcock Hitachi Kk 微粉炭燃焼装置
JPS62131244U (ja) * 1986-02-05 1987-08-19
JP2000065305A (ja) * 1998-08-20 2000-03-03 Hitachi Ltd 貫流型ボイラ
JP2001108229A (ja) * 1999-10-12 2001-04-20 Ishikawajima Harima Heavy Ind Co Ltd 火炉の未燃分低減装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002658A (ja) * 2011-06-13 2013-01-07 Ihi Corp 対向燃焼ボイラ装置
CN102330965A (zh) * 2011-07-28 2012-01-25 宜兴天地节能技术有限公司 一种高效节能环保煤粉工业锅炉
CN102901079A (zh) * 2011-07-28 2013-01-30 宜兴天地节能技术有限公司 室燃式水管煤粉锅炉
CN107741004A (zh) * 2017-11-28 2018-02-27 湖南长宏南雁锅炉修理安装有限公司 生物质气体燃料蒸汽锅炉
CN110762516A (zh) * 2019-11-01 2020-02-07 国电南京电力试验研究有限公司 W火焰锅炉炉内燃烧组织定向调控方法

Similar Documents

Publication Publication Date Title
JP5142735B2 (ja) 石炭焚きボイラ
EP2706294A1 (en) Pressurized oxy-combustion power boiler and power plant and method of operating the same
US20080156236A1 (en) Pulverized coal combustion boiler
EP2857746B1 (en) Advanced ultra supercritical steam generator
JP2011526355A (ja) 内部煙道ガス再循環を備えている炉装置
JP2008164188A (ja) 微粉炭焚き貫流ボイラ及び微粉炭焚き貫流ボイラを備えた発電プラント
CN111380052B (zh) 燃烧器、锅炉以及燃烧器的组装方法
JP4690924B2 (ja) 石炭焚きボイラの制御装置
KR20150145339A (ko) 저압 과열증기를 이용한 재열방식 석탄 건조장치
JP5498434B2 (ja) バイオマス燃焼ボイラ
EP3754255B1 (en) Incineration plant for solid material
JP5766527B2 (ja) 貫流ボイラの制御方法及び装置
JP7379944B2 (ja) 旋回燃焼ボイラの運転方法
US9587827B2 (en) Water cooled CO boiler floor with screen gas distribution inlet
JP5144447B2 (ja) ボイラ装置
JP6109718B2 (ja) ボイラ
Maryamchik et al. B&W IR-CFB: Operating Experience and New Developments
JP6087793B2 (ja) ボイラ
JP6284345B2 (ja) ボイラ
WO2023188589A1 (ja) バーナ、及びボイラ
JP2005147647A (ja) 排ガスボイラ
JP5986895B2 (ja) ボイラ
JP2020125859A (ja) Bfgバーナ装置、これを備えたボイラ、及びbfgバーナ装置の運転方法
TWI789359B (zh) 切線方向點火鍋爐及操作切線方向點火鍋爐的方法
JP2017146077A (ja) ボイラ

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20090713

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02