JP2008163150A - ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法 - Google Patents

ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法 Download PDF

Info

Publication number
JP2008163150A
JP2008163150A JP2006353218A JP2006353218A JP2008163150A JP 2008163150 A JP2008163150 A JP 2008163150A JP 2006353218 A JP2006353218 A JP 2006353218A JP 2006353218 A JP2006353218 A JP 2006353218A JP 2008163150 A JP2008163150 A JP 2008163150A
Authority
JP
Japan
Prior art keywords
acid
hyperbranched polymer
core
group
oxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353218A
Other languages
English (en)
Inventor
Minoru Tamura
実 田村
Akinori Uno
彰記 宇野
Mineko Horibe
峰子 堀部
Yuukai Sasaki
悠介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2006353218A priority Critical patent/JP2008163150A/ja
Publication of JP2008163150A publication Critical patent/JP2008163150A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】ハイパーブランチポリマーの合成に際しての操作および工程数の低減を図ること。
【解決手段】金属触媒の存在下におけるモノマーのリビングラジカル重合を経てハイパーブランチポリマーを合成する際に、リビングラジカル重合によって生成されたハイパーブランチポリマーをコア部とし、当該コア部に酸分解性基を導入することによりシェル部を形成するシェル部形成工程と、酸性物質を用いて、シェル部形成工程後の反応系の中に存在する金属を除去するとともに、シェル部形成工程において合成されたハイパーブランチポリマーのシェル部を形成する酸分解性基の一部を分解して酸基を形成する精製工程と、をおこなうようにした。
【選択図】なし

Description

この発明は、ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法に関する。
ハイパーブランチポリマーとは、繰り返し単位に枝分かれ構造をもつ多分岐高分子の総称である。ハイパーブランチポリマーは、一般的な従来の高分子が紐状の形状であるのに対して積極的に分岐を導入しているという特異な構造を有する、ナノメートルオーダーのサイズである、表面に多くの官能基を保持することができる、などの点から様々な応用が期待されている。
ハイパーブランチポリマーには、たとえば、コア部となるハイパーブランチポリマーと、コア部に酸分解性基を導入することによって形成されたシェル部と、を備えるコアシェル型のハイパーブランチポリマーがある。このようなコアシェル型のハイパーブランチポリマーは、たとえば、ATRP(原子移動ラジカル重合)法にしたがって合成することができる。
ATRP法にしたがった場合、まず、金属触媒存在下、リビングラジカル重合可能なモノマーを重合することによりコア部を生成し、生成されたコア部に酸分解性基を導入することによりシェル部を形成した後に、シェル部を形成する酸分解性基の一部を酸触媒により分解して酸基を形成すること(以下、「脱保護」という)によって、コアシェル型のハイパーブランチポリマーを合成する。コアシェル型のハイパーブランチポリマーの合成に際しては、脱保護に先立って、シェル部が形成されたハイパーブランチポリマーが存在する反応系の中から金属触媒を除去する。
たとえば、反応系に金属が存在した状態のハイパーブランチポリマーを用いたレジスト組成物は、性能の低下が懸念されるため、従来は、金属触媒を除去する操作後に、反応系に残存する金属を除去する操作を別途おこなっている。
国際公開第2005/061566号パンフレット
しかしながら、上述した従来の技術では、金属触媒を除去する操作後に、反応系に残存する金属を除去する操作を別途おこなっているため、ハイパーブランチポリマーの合成に際しての操作および工程数が多くなり煩雑であるという問題があった。
この発明は、上述した従来技術による問題点を解消するため、ハイパーブランチポリマーの合成に際しての操作および工程数の低減を図ることができるハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、この発明にかかるハイパーブランチポリマーの合成方法は、金属触媒の存在下におけるモノマーのリビングラジカル重合を経てハイパーブランチポリマーを合成するハイパーブランチポリマーの合成方法であって、前記リビングラジカル重合によって生成されたハイパーブランチポリマーをコア部とし、当該コア部に酸分解性基を導入することによりシェル部を形成するシェル部形成工程をおこなった後、酸性物質を用いて、前記シェル部形成工程後の反応系の中に存在する金属の除去と、前記シェル部形成工程において合成されたハイパーブランチポリマーのシェル部を形成する酸分解性基の一部を分解することによる酸基の形成をおこなう工程と、を同一工程内で40〜120℃で行うことを含むことを特徴とする。
この発明によれば、共に、酸性物質で処理することで実現される、金属除去および脱保護の反応を一度にまとめておこなうことができるので、従来のハイパーブランチポリマーの合成方法と比較して、ハイパーブランチポリマーの合成に際しての操作および工程数の低減を図ることができる。
また、この発明にかかるハイパーブランチポリマーは、上記のハイパーブランチポリマーの合成方法にしたがって製造されたことを特徴とする。
この発明によれば、合成のスケールアップにともなって廃液量を著しく増加させることなく、ハイパーブランチポリマーを安定的かつ大量に得ることができる。
また、この発明にかかるレジスト組成物は、上記のハイパーブランチポリマーを包含することを特徴とする。
この発明によれば、目的とする分子量および分岐度を有するハイパーブランチポリマーを含むレジスト組成物を安定的に得ることができる。
また、この発明にかかる半導体集積回路は、上記のレジスト組成物を用いて、電子線、遠紫外線(DUV)、または極紫外線(EUV)リソグラフィなどによりパターンを形成されることを特徴とする。
この発明によれば、性能が安定した、高集積、高容量な半導体集積回路を得ることができる。
また、この発明にかかる半導体集積回路の製造方法は、上記のレジスト組成物を用いて、電子線、遠紫外線(DUV)、または極紫外線(EUV)リソグラフィなどによりパターンを形成する工程を含むことを特徴とする。
この発明によれば、性能が安定した、高集積、高容量な半導体集積回路を製造することができる。
実施の形態のハイパーブランチポリマーは、金属触媒の存在下におけるモノマーのリビングラジカル重合を経てハイパーブランチポリマーを合成する際に、リビングラジカル重合によって生成されたハイパーブランチポリマーをコア部とし、当該コア部に酸分解性基を導入することによりシェル部を形成するシェル部形成工程と、酸性物質を用いる同一工程内で、シェル部形成工程後の反応系の中に存在する金属の除去と、シェル部形成工程において合成されたハイパーブランチポリマーのシェル部を形成する酸分解性基の一部を分解することによる酸基の形成をおこなう工程と、により合成される。
実施の形態のハイパーブランチポリマーは、上記のハイパーブランチポリマーの合成方法にしたがって合成されている。実施の形態のレジスト組成物は、上記のハイパーブランチポリマーを包含する。実施の形態の半導体集積回路は、上記のレジスト組成物によってパターンを形成されている。実施の形態の半導体集積回路の製造方法は、上記のレジスト組成物を用いてパターンを形成する工程を含んでいる。
以下に添付図面を参照して、この発明にかかるハイパーブランチポリマーの製造方法の好適な実施の形態を詳細に説明する。
(ハイパーブランチポリマーの製造に用いる物質)
はじめに、ハイパーブランチポリマーの合成方法を用いて合成されるハイパーブランチポリマー(以下、「ハイパーブランチポリマー」という)の合成に用いる物質について説明する。ハイパーブランチポリマーの合成に際しては、モノマー、金属触媒、および溶媒を用いる。
(モノマー)
はじめに、ハイパーブランチポリマーの合成に用いるモノマーについて説明する。コアシェル型のハイパーブランチポリマーを合成する場合、ハイパーブランチポリマーの合成に用いるモノマーとしては、大別して、コア部を構成するモノマーとシェル部を構成するモノマーとがある。
<コア部を構成するモノマー>
まず、ハイパーブランチポリマーの合成に用いるモノマーのうち、コア部を構成するモノマーについて説明する。ハイパーブランチポリマーのコア部は、当該ハイパーブランチポリマー分子の核を構成する。ハイパーブランチポリマーのコア部は、少なくとも下記式(I)であらわされるモノマーを重合させてなる。
Figure 2008163150
上記式(I)中のYは、炭素数1〜10の直鎖状、分岐状または環状のアルキレン基を
あらわしている。Yにおける炭素数は、1〜8であることが好ましい。Yにおけるより好ましい炭素数は、1〜6である。上記の式(I)中のYは、ヒドロキシル基またはカルボ
キシル基を含んでいてもよい。
上記式(I)中のYとしては、具体的には、たとえば、メチレン基、エチレン基、プロ
ピレン基、イソプロピレン基、ブチレン基、イソブチレン基、アミレン基、ヘキシレン基、シクロヘキシレン基などが挙げられる。また、上記式(I)中のYとしては、上記の各
基が結合した基、あるいは、上述した各基に「−O−」、「−CO−」、「−COO−」が介在した基が挙げられる。
上述した各基の中で、式(I)中のYとしては、炭素数1〜8のアルキレン基が好ましい。炭素数1〜8のアルキレン基の中で、上記式(I)中のYとしては、炭素数1〜8の直鎖アルキレン基がより好ましい。より好ましいアルキレン基としては、たとえば、メチレン基、エチレン基、−OCH2−基、−OCH2CH2−基が挙げられる。上記式(I)相当するモノマーは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子(ハロゲン基)をあらわしている。上記式(I)相当するモノマーとして、具体的には、たとえば、上述したハロゲン原子の中で、塩素原子、臭素原子が好ましい。
ハイパーブランチポリマーの合成に用いるモノマーの中で、上記式(I)であらわされ
るモノマーとしては、具体的には、たとえば、クロロメチルスチレン、ブロモメチルスチレン、p−(1−クロロエチル)スチレン、ブロモ(4−ビニルフェニル)フェニルメタン、1−ブロモ−1−(4−ビニルフェニル)プロパン−2−オン、3−ブロモ−3−(4−ビニルフェニル)プロパノール、などが挙げられる。より具体的に、ハイパーブランチポリマーの製造に用いるモノマーの中で、上記式(I)であらわされるモノマーとして
は、たとえば、クロロメチルスチレン、ブロモメチルスチレン、p−(1−クロロエチル)スチレンなどが好ましい。
ハイパーブランチポリマーのコア部を構成するモノマーとしては、上記式(I)であら
わされるモノマーに加え、他のモノマーを含むことができる。他のモノマーとしては、ラジカル重合が可能なモノマーであれば特に制限はなく、目的に応じて適宜選択することができる。ラジカル重合が可能な他のモノマーとしては、たとえば、(メタ)アクリル酸、および(メタ)アクリル酸エステル類、ビニル安息香酸、ビニル安息香酸エステル類、スチレン類、アリル化合物、ビニルエーテル類、ビニルエステル類などから選ばれるラジカル重合性の不飽和結合を有する化合物が挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられた(メタ)アクリル酸エステル類としては、具体的には、たとえば、アクリル酸tert−ブチル、アクリル酸2−メチルブチル、アクリル酸2−メチルペンチル、アクリル酸2−エチルブチル、アクリル酸3−メチルペンチル、アクリル酸2−メチルヘキシル、アクリル酸3−メチルヘキシル、アクリル酸トリエチルカルビル、アクリル酸1−メチル−1−シクロペンチル、アクリル酸1−エチル−1−シクロペンチル、アクリル酸1−メチル−1−シクロヘキシル、アクリル酸1−エチル−1−シクロヘキシル、アクリル酸1−メチルノルボニル、アクリル酸1−エチルノルボニル、アクリル酸2−メチル−2−アダマンチル、アクリル酸2−エチル−2−アダマンチル、アクリル酸3−ヒドロキシ−1−アダマンチル、アクリル酸テトラヒドロフラニル、アクリル酸テトラヒドロピラニル、アクリル酸1−メトキシエチル、アクリル酸1−エトキシエチル、アクリル酸1−n−プロポキシエチル、アクリル酸1−イソプロポキシエチル、アクリル酸n−ブトキシエチル、アクリル酸1−イソブトキシエチル、アクリル酸1−sec−ブトキシエチル、アクリル酸1−tert−ブトキシエチル、アクリル酸1−tert−アミロキシエチル、アクリル酸1−エトキシ−n−プロピル、アクリル酸1−シクロヘキシロキシエチル、アクリル酸メトキシプロピル、アクリル酸エトキシプロピル、アクリル酸1−メトキシ−1−メチル−エチル、アクリル酸1−エトキシ−1−メチル−エチル、アクリル酸トリメチルシリル、アクリル酸トリエチルシリル、アクリル酸ジメチル−tert−ブチルシリル、α−(アクロイル)オキシ−γ−ブチロラクトン、β−(アクロイル)オキシ−γ−ブチロラクトン、γ−(アクロイル)オキシ−γ−ブチロラクトン、α−メチル−α―(アクロイル)オキシ−γ−ブチロラクトン、β−メチル−β−(アクロイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(アクロイル)オキシ−γ−ブチロラクトン、α−エチル−α―(アクロイル)オキシ−γ−ブチロラクトン、β−エチル−β−(アクロイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(アクロイル)オキシ−γ−ブチロラクトン、α−(アクロイル)オキシ−δ−バレロラクトン、β−(アクロイル)オキシ−δ−バレロラクトン、γ−(アクロイル)オキシ−δ−バレロラクトン、δ−(アクロイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(アクロイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(アクロイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(アクロイル)オキシ−δ−バレロラクトン、α−エチル−α―(アクロイル)オキシ−δ−バレロラクトン、β−エチル−β−(アクロイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(アクロイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(アクロイル)オキシ−δ−バレロラクトン、アクリル酸1−メチルシクロヘキシル、アクリル酸アダマンチル、アクリル酸2−(2−メチル)アダマンチル、アクリル酸クロルエチル、アクリル酸2−ヒドロキシエチル、アクリル酸2,2−ジメチルヒドロキシプロピル、アクリル酸5−ヒドロキシペンチル、アクリル酸トリメチロールプロパン、アクリル酸グリシジル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸ナフチル、メタクリル酸tert−ブチル、メタクリル酸2−メチルブチル、メタクリル酸2−メチルペンチル、メタクリル酸2−エチルブチル、メタクリル酸3−メチルペンチル、メタクリル酸2−メチルヘキシル、メタクリル酸3−メチルヘキシル、メタクリル酸トリエチルカルビル、メタクリル酸1−メチル−1−シクロペンチル、メタクリル酸1−エチル−1−シクロペンチル、メタクリル酸1−メチル−1−シクロヘキシル、メタクリル酸1−エチル−1−シクロヘキシル、メタクリル酸1−メチルノルボニル、メタクリル酸1−エチルノルボニル、メタクリル酸2−メチル−2−アダマンチル、メタクリル酸2−エチル−2−アダマンチル、メタクリル酸3−ヒドロキシ−1−アダマンチル、メタクリル酸テトラヒドロフラニル、メタクリル酸テトラヒドロピラニル、メタクリル酸1−メトキシエチル、メタクリル酸1−エトキシエチル、メタクリル酸1−n−プロポキシエチル、メタクリル酸1−イソプロポキシエチル、メタクリル酸n−ブトキシエチル、メタクリル酸1−イソブトキシエチル、メタクリル酸1−sec−ブトキシエチル、メタクリル酸1−tert−ブトキシエチル、メタクリル酸1−tert−アミロキシエチル、メタクリル酸1−エトキシ−n−プロピル、メタクリル酸1−シクロヘキシロキシエチル、メタクリル酸メトキシプロピル、メタクリル酸エトキシプロピル、メタクリル酸1−メトキシ−1−メチル−エチル、メタクリル酸1−エトキシ−1−メチル−エチル、メタクリル酸トリメチルシリル、メタクリル酸トリエチルシリル、メタクリル酸ジメチル−tert−ブチルシリル、α−(メタクロイル)オキシ−γ−ブチロラクトン、β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−メチル−α―(メタクロイル)オキシ−γ−ブチロラクトン、β−メチル−β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−エチル−α―(メタクロイル)オキシ−γ−ブチロラクトン、β−エチル−β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−(メタクロイル)オキシ−δ−バレロラクトン、β−(メタクロイル)オキシ−δ−バレロラクトン、γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−(メタクロイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(メタクロイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(メタクロイル)オキシ−δ−バレロラクトン、α−エチル−α―(メタクロイル)オキシ−δ−バレロラクトン、β−エチル−β−(メタクロイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(メタクロイル)オキシ−δ−バレロラクトン、メタクリル酸1−メチルシクロヘキシル、メタクリル酸アダマンチル、メタクリル酸2−(2−メチル)アダマンチル、メタクリル酸クロルエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2,2−ジメチルヒドロキシプロピル、メタクリル酸5−ヒドロキシペンチル、メタクリル酸トリメチロールプロパン、メタクリル酸グリシジル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸ナフチル、などが挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられたビニル安息香酸エステル類としては、具体的には、たとえば、ビニル安息香酸tert−ブチル、ビニル安息香酸2−メチルブチル、ビニル安息香酸2−メチルペンチル、ビニル安息香酸2−エチルブチル、ビニル安息香酸3−メチルペンチル、ビニル安息香酸2−メチルヘキシル、ビニル安息香酸3−メチルヘキシル、ビニル安息香酸トリエチルカルビル、ビニル安息香酸1−メチル−1−シクロペンチル、ビニル安息香酸1−エチル−1−シクロペンチル、ビニル安息香酸1−メチル−1−シクロヘキシル、ビニル安息香酸1−エチル−1−シクロヘキシル、ビニル安息香酸1−メチルノルボニル、ビニル安息香酸1−エチルノルボニル、ビニル安息香酸2−メチル−2−アダマンチル、ビニル安息香酸2−エチル−2−アダマンチル、ビニル安息香酸3−ヒドロキシ−1−アダマンチル、ビニル安息香酸テトラヒドロフラニル、ビニル安息香酸テトラヒドロピラニル、ビニル安息香酸1−メトキシエチル、ビニル安息香酸1−エトキシエチル、ビニル安息香酸1−n−プロポキシエチル、ビニル安息香酸1−イソプロポキシエチル、ビニル安息香酸n−ブトキシエチル、ビニル安息香酸1−イソブトキシエチル、ビニル安息香酸1−sec−ブトキシエチル、ビニル安息香酸1−tert−ブトキシエチル、ビニル安息香酸1−tert−アミロキシエチル、ビニル安息香酸1−エトキシ−n−プロピル、ビニル安息香酸1−シクロヘキシロキシエチル、ビニル安息香酸メトキシプロピル、ビニル安息香酸エトキシプロピル、ビニル安息香酸1−メトキシ−1−メチル−エチル、ビニル安息香酸1−エトキシ−1−メチル−エチル、ビニル安息香酸トリメチルシリル、ビニル安息香酸トリエチルシリル、ビニル安息香酸ジメチル−tert−ブチルシリル、α−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−メチル−β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−エチル−α―(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−エチル−β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、α−エチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−エチル−β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、ビニル安息香酸1−メチルシクロヘキシル、ビニル安息香酸アダマンチル、ビニル安息香酸2−(2−メチル)アダマンチル、ビニル安息香酸クロルエチル、ビニル安息香酸2−ヒドロキシエチル、ビニル安息香酸2,2−ジメチルヒドロキシプロピル、ビニル安息香酸5−ヒドロキシペンチル、ビニル安息香酸トリメチロールプロパン、ビニル安息香酸グリシジル、ビニル安息香酸ベンジル、ビニル安息香酸フェニル、ビニル安息香酸ナフチル、などが挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられたスチレン類としては、具体的には、たとえば、スチレン、ベンジルスチレン、トリフルオルメチルスチレン、アセトキシスチレン、クロルスチレン、ジクロルスチレン、トリクロルスチレン、テトラクロルスチレン、ペンタクロルスチレン、ブロムスチレン、ジブロムスチレン、ヨードスチレン、フルオルスチレン、トリフルオルスチレン、2−ブロム−4−トリフルオルメチルスチレン、4−フルオル−3−トリフルオルメチルスチレン、ビニルナフタレン、などが挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられたアリル化合物としては、具体的には、たとえば、酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル、アリルオキシエタノール、などが挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられたビニルエーテル類としては、具体的には、たとえば、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロルエチルビニルエーテル、1−メチル−2,2−ジメチルプロピルビニルエーテル、2−エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル、ビニルフェニルエーテル、ビニルトリルエーテル、ビニルクロルフェニルエーテル、ビニル−2,4−ジクロルフェニルエーテル、ビニルナフチルエーテル、ビニルアントラニルエーテル、などが挙げられる。
ラジカル重合が可能な他のモノマーとして挙げられたビニルエステル類としては、具体的には、たとえば、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルフェニルアセテート、ビニルアセトアセテート、ビニルラクテート、ビニル−β−フェニルブチレート、ビニルシクロヘキシルカルボキシレート、などが挙げられる。
上述したラジカル重合可能な他のモノマーの中で、ハイパーブランチポリマーのコア部を構成するモノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸エステル類、4−ビニル安息香酸、4−ビニル安息香酸エステル類、スチレン類が好ましい。前述のラジカル重合可能な他のモノマー中でも、ハイパーブランチポリマーのコア部を構成するモノマーとしては、具体的には、たとえば、(メタ)アクリル酸、(メタ)アクリル酸tert−ブチル、4−ビニル安息香酸、4−ビニル安息香酸tert−ブチル、スチレン、ベンジルスチレン、クロルスチレン、ビニルナフタレン、などが好ましい。
ハイパーブランチポリマーにおいて、コア部を構成するモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、10〜90モル%の量で含まれていることが好ましい。ハイパーブランチポリマーにおいて、コア部を構成するモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、10〜80モル%がより好ましい。ハイパーブランチポリマーにおいて、コア部を構成するモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、10〜60モル%の量で含まれていることがより一層好ましい。
ハイパーブランチポリマーにおいて、コア部を構成するモノマーの量が上記の範囲内となるように調整することで、たとえば、ハイパーブランチポリマーを当該ハイパーブランチポリマーを含むレジスト組成物として利用する場合に、当該ハイパーブランチポリマーが現像液に対し適度な疎水性を付与することができる。これによって、ハイパーブランチポリマーを含むレジスト組成物を用いて、たとえば、半導体集積回路、フラットパネルディスプレイ、プリント配線板などの微細加工をおこなう際に、未露光部分の溶解を抑制することができるので、好ましい。
ハイパーブランチポリマーにおいて、上記式(I)で表わされるモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、5〜100モル%の量で含まれていることが好ましい。ハイパーブランチポリマーにおいて、コア部を構成するモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、20〜100モル%の量で含まれていることがより好ましい。
ハイパーブランチポリマーにおいて、コア部を構成するモノマーは、ハイパーブランチポリマーの合成に際して用いる全モノマーに対して、仕込み時において、50〜100モル%の量で含まれていることがより一層好ましい。ハイパーブランチポリマーにおいて、上記式(I)で表わされるモノマーの量が上記の範囲内にあると、コア部が球状形態をとるため、分子間の絡まり抑制に有利であり、好ましい。
ハイパーブランチポリマーのコア部が、上記式(I)であらわされるモノマーとその他のモノマーとの共重合物であるとき、コア部を構成する全モノマー中における上記式(I)の量は、10〜99モル%であるのが好ましい。ハイパーブランチポリマーのコア部が、式(I)であらわされるモノマーとその他のモノマーとの共重合物であるとき、コア部を構成する全モノマー中における上記式(I)の量は、20〜99モル%であるのがより好ましい。
ハイパーブランチポリマーのコア部が、上記式(I)であらわされるモノマーとその他のモノマーとの共重合物であるとき、仕込み時において、コア部を構成する全モノマー中における上記式(I)の量が、30〜99モル%であるのがより一層好ましい。ハイパーブランチポリマーにおいて、上記式(1)で表わされるモノマーの量が上記の範囲内にあると、コア部が球状形態をとるため、分子間の絡まり抑制に有利であり、好ましい。
ハイパーブランチポリマーにおいて、上記式(1)で表わされるモノマーの量が上記の範囲内にあると、コア部の球状形態を保ちつつ、基板密着性やガラス転移温度の上昇などの機能が付与されるので好ましい。なお、コア部における上記式(I)であらわされるモノマーとそれ以外のモノマーとの量は、目的に応じて重合時の仕込み量比により調節することができる。
<シェル部を構成するモノマー>
つぎに、ハイパーブランチポリマーの合成に用いるモノマーのうち、シェル部を構成するモノマーについて説明する。ハイパーブランチポリマーのシェル部は、当該ハイパーブランチポリマー分子の末端を構成する。ハイパーブランチポリマーのシェル部は、下記式(II)、(III)であらわされる繰り返し単位の少なくとも一方を備えている。
下記式(II)、(III)であらわされる繰り返し単位は、酢酸、マレイン酸、安息香酸などの有機酸あるいは塩酸、硫酸または硝酸などの無機酸の作用により、好ましくは光エネルギーによって酸を発生する光酸発生剤の作用により分解する酸分解性基を含む。酸分解性基は分解して親水基となるのが好ましい。
Figure 2008163150
Figure 2008163150
上記式(II)中のR1および上記式(III)中のR4は、水素原子または炭素数1〜3のアルキル基を示している。このうち、上記式(II)中のR1および上記式(III)中のR4としては、水素原子およびメチル基が好ましい。上記式(II)中のR1および上記式(III)中のR4としては、水素原子がさらに好ましい。
上記式(II)中のR2は、水素原子、アルキル基、またはアリール基を示している。上記式(II)中のR2におけるアルキル基としては、たとえば、炭素数が1〜30であることが好ましい。上記式(II)中のR2におけるアルキル基のより好ましい炭素数は、1〜20である。上記式(II)中のR2におけるアルキル基のより一層好ましい炭素数は、1〜10である。アルキル基は、直鎖状、分岐状もしくは環状構造を有している。具体的に、上記式(II)中のR2におけるアルキル基としては、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、シクロヘキシル基、などが挙げられる。
上記式(II)中のR2におけるアリール基としては、たとえば、炭素数6〜30であることが好ましい。上記式(II)中のR2におけるアリール基のより好ましい炭素数は、6〜20である。上記式(II)中のR2におけるアリール基のより一層好ましい炭素数は、6〜10である。具体的に、上記式(II)中のR2におけるアリール基としては、たとえば、フェニル基、4−メチルフェニル基、ナフチル基などが挙げられる。このうち、水素原子、メチル基、エチル基、フェニル基などが挙げられる。上記式(II)中のR2として、もっとも好ましい基の1つとして水素原子が挙げられる。
上記式(II)中のR3および上記式(III)中のR5は、水素原子、アルキル基、トリアルキルシリル基、オキソアルキル基、または下記式(i)であらわされる基を示している。上記式(II)中のR3および上記式(III)中のR5におけるアルキル基としては、炭素数1〜40であることが好ましい。上記式(II)中のR3および上記式(III)中のR5におけるアルキル基のより好ましい炭素数は、1〜30である。
上記式(II)中のR3および上記式(III)中のR5におけるアルキル基のより一層好ましい炭素数は、1〜20である。上記式(II)中のR3および上記式(III)中のR5におけるアルキル基は、直鎖状、分岐状もしくは環状構造を有している。上記式(II)中のR3および上記式(III)中のR5としては、炭素数1〜20の分岐状アルキル基がより好ましい。
上記式(II)中のR3および上記式(III)中のR5における各アルキル基の好ましい炭素数は1〜6であり、より好ましい炭素数は1〜4である。上記式(II)中のR3および上記式(III)中のR5におけるオキソアルキル基のアルキル基の炭素数は4〜20であり、より好ましい炭素数は4〜10である。
Figure 2008163150
上記式(i)中のR6は、水素原子またはアルキル基を示している。下記式(i)であらわされる基のR6におけるアルキル基は、直鎖状、分岐鎖状、もしくは環状構造を有している。下記式(i)であらわされる基のR6におけるアルキル基の炭素数は、1〜10であることが好ましい。下記式(i)であらわされる基のR6におけるアルキル基のより好ましい炭素数は、1〜8であり、より好ましい炭素数は1〜6である。
上記式(i)中のR7およびR8は、水素原子またはアルキル基である。上記式(i)中のR7およびR8における水素原子またはアルキル基は、互いに独立していてもよいし、一緒になって環を形成しても良い。上記式(i)中のR7およびR8におけるアルキル基は、直鎖状、分岐鎖状もしくは環状構造を有している。上記式(i)中のR7およびR8におけるアルキル基の炭素数は、1〜10であることが好ましい。上記式(i)中のR7およびR8におけるアルキル基のより好ましい炭素数は、1〜8である。上記式(i)中のR7およびR8におけるアルキル基のより一層好ましい炭素数は、1〜6である。上記式(i)中のR7およびR8としては、炭素数1〜20の分岐状アルキル基が好ましい。
上記式(i)で示される基としては、1−メトキシエチル基、1−エトキシエチル基、1−n−プロポキシエチル基、1−イソプロポキシエチル基、1−n−ブトキシエチル基、1−イソブトキシエチル基、1−sec−ブトキシエチル基、1−tert−ブトキシエチル基、1−tert−アミロキシエチル基、1−エトキシ−n−プロピル基、1−シクロヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、1−メトキシ−1−メチル−エチル基、1−エトキシ−1−メチル−エチル基などの直鎖状または分岐状アセタール基;テトラヒドロフラニル基、テトラヒドロピラニル基などの環状アセタール基、などが挙げられる。上記式(i)で示される基としては、前述した各基の中でも、エトキシエチル基、ブトキシエチル基、エトキシプロピル基、テトラヒドロピラニル基が特に好適である。
上記式(II)中のR3および上記式(III)中のR5において、直鎖状、分岐状もしくは環状のアルキル基としては、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、アダマンチル基、2−(2−メチル)アダマンチル基、tert−アミル基などが挙げられる。このうち、tert−ブチル基が特に好ましい。
上記式(II)中のR3および上記式(III)中のR5において、トリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基などの、各アルキル基の炭素数が1〜6のものが挙げられる。オキソアルキル基としては、3−オキソシクロヘキシル基などが挙げられる。
上記式(II)であらわされる繰り返し単位を与えるモノマーとしては、ビニル安息香酸、ビニル安息香酸tert−ブチル、ビニル安息香酸2−メチルブチル、ビニル安息香酸2−メチルペンチル、ビニル安息香酸2−エチルブチル、ビニル安息香酸3−メチルペンチル、ビニル安息香酸2−メチルヘキシル、ビニル安息香酸3−メチルヘキシル、ビニル安息香酸トリエチルカルビル、ビニル安息香酸1−メチル−1−シクロペンチル、ビニル安息香酸1−エチル−1−シクロペンチル、ビニル安息香酸1−メチル−1−シクロヘキシル、ビニル安息香酸1−エチル−1−シクロヘキシル、ビニル安息香酸1−メチルノルボニル、ビニル安息香酸1−エチルノルボニル、ビニル安息香酸2−メチル−2−アダマンチル、ビニル安息香酸2−エチル−2−アダマンチル、ビニル安息香酸3−ヒドロキシ−1−アダマンチル、ビニル安息香酸テトラヒドロフラニル、ビニル安息香酸テトラヒドロピラニル、ビニル安息香酸1−メトキシエチル、ビニル安息香酸1−エトキシエチル、ビニル安息香酸1−n−プロポキシエチル、ビニル安息香酸1−イソプロポキシエチル、ビニル安息香酸n−ブトキシエチル、ビニル安息香酸1−イソブトキシエチル、ビニル安息香酸1−sec−ブトキシエチル、ビニル安息香酸1−tert−ブトキシエチル、ビニル安息香酸1−tert−アミロキシエチル、ビニル安息香酸1−エトキシ−n−プロピル、ビニル安息香酸1−シクロヘキシロキシエチル、ビニル安息香酸メトキシプロピル、ビニル安息香酸エトキシプロピル、ビニル安息香酸1−メトキシ−1−メチル−エチル、ビニル安息香酸1−エトキシ−1−メチル−エチル、ビニル安息香酸トリメチルシリル、ビニル安息香酸トリエチルシリル、ビニル安息香酸ジメチル−tert−ブチルシリル、α−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−メチル−β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−エチル−α―(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、β−エチル−β−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(4−ビニルベンゾイル)オキシ−γ−ブチロラクトン、α−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、α−エチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−エチル−β−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、ビニル安息香酸1−メチルシクロヘキシル、ビニル安息香酸アダマンチル、ビニル安息香酸2−(2−メチル)アダマンチル、ビニル安息香酸クロルエチル、ビニル安息香酸2−ヒドロキシエチル、ビニル安息香酸2,2−ジメチルヒドロキシプロピル、ビニル安息香酸5−ヒドロキシペンチル、ビニル安息香酸トリメチロールプロパン、ビニル安息香酸グリシジル、ビニル安息香酸ベンジル、ビニル安息香酸フェニル、ビニル安息香酸ナフチルなどが挙げられる。このうち、4−ビニル安息香酸と4−ビニル安息香酸tert−ブチルの共重合体が好ましい。
上記式(III)であらわされる繰り返し単位を与えるモノマーとしては、アクリル酸、アクリル酸tert−ブチル、アクリル酸2−メチルブチル、アクリル酸2−メチルペンチル、アクリル酸2−エチルブチル、アクリル酸3−メチルペンチル、アクリル酸2−メチルヘキシル、アクリル酸3−メチルヘキシル、アクリル酸トリエチルカルビル、アクリル酸1−メチル−1−シクロペンチル、アクリル酸1−エチル−1−シクロペンチル、アクリル酸1−メチル−1−シクロヘキシル、アクリル酸1−エチル−1−シクロヘキシル、アクリル酸1−メチルノルボニル、アクリル酸1−エチルノルボニル、アクリル酸2−メチル−2−アダマンチル、アクリル酸2−エチル−2−アダマンチル、アクリル酸3−ヒドロキシ−1−アダマンチル、アクリル酸テトラヒドロフラニル、アクリル酸テトラヒドロピラニル、アクリル酸1−メトキシエチル、アクリル酸1−エトキシエチル、アクリル酸1−n−プロポキシエチル、アクリル酸1−イソプロポキシエチル、アクリル酸n−ブトキシエチル、アクリル酸1−イソブトキシエチル、アクリル酸1−sec−ブトキシエチル、アクリル酸1−tert−ブトキシエチル、アクリル酸1−tert−アミロキシエチル、アクリル酸1−エトキシ−n−プロピル、アクリル酸1−シクロヘキシロキシエチル、アクリル酸メトキシプロピル、アクリル酸エトキシプロピル、アクリル酸1−メトキシ−1−メチル−エチル、アクリル酸1−エトキシ−1−メチル−エチル、アクリル酸トリメチルシリル、アクリル酸トリエチルシリル、アクリル酸ジメチル−tert−ブチルシリル、α−(アクロイル)オキシ−γ−ブチロラクトン、β−(アクロイル)オキシ−γ−ブチロラクトン、γ−(アクロイル)オキシ−γ−ブチロラクトン、α−メチル−α―(アクロイル)オキシ−γ−ブチロラクトン、β−メチル−β−(アクロイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(アクロイル)オキシ−γ−ブチロラクトン、α−エチル−α―(アクロイル)オキシ−γ−ブチロラクトン、β−エチル−β−(アクロイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(アクロイル)オキシ−γ−ブチロラクトン、α−(アクロイル)オキシ−δ−バレロラクトン、β−(アクロイル)オキシ−δ−バレロラクトン、γ−(アクロイル)オキシ−δ−バレロラクトン、δ−(アクロイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(アクロイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(アクロイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(アクロイル)オキシ−δ−バレロラクトン、α−エチル−α―(アクロイル)オキシ−δ−バレロラクトン、β−エチル−β−(アクロイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(アクロイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(アクロイル)オキシ−δ−バレロラクトン、アクリル酸1−メチルシクロヘキシル、アクリル酸アダマンチル、アクリル酸2−(2−メチル)アダマンチル、アクリル酸クロルエチル、アクリル酸2−ヒドロキシエチル、アクリル酸2,2−ジメチルヒドロキシプロピル、アクリル酸5−ヒドロキシペンチル、アクリル酸トリメチロールプロパン、アクリル酸グリシジル、アクリル酸ベンジル、アクリル酸フェニル、アクリル酸ナフチル、メタクリル酸、メタクリル酸tert−ブチル、メタクリル酸2−メチルブチル、メタクリル酸2−メチルペンチル、メタクリル酸2−エチルブチル、メタクリル酸3−メチルペンチル、メタクリル酸2−メチルヘキシル、メタクリル酸3−メチルヘキシル、メタクリル酸トリエチルカルビル、メタクリル酸1−メチル−1−シクロペンチル、メタクリル酸1−エチル−1−シクロペンチル、メタクリル酸1−メチル−1−シクロヘキシル、メタクリル酸1−エチル−1−シクロヘキシル、メタクリル酸1−メチルノルボニル、メタクリル酸1−エチルノルボニル、メタクリル酸2−メチル−2−アダマンチル、メタクリル酸2−エチル−2−アダマンチル、メタクリル酸3−ヒドロキシ−1−アダマンチル、メタクリル酸テトラヒドロフラニル、メタクリル酸テトラヒドロピラニル、メタクリル酸1−メトキシエチル、メタクリル酸1−エトキシエチル、メタクリル酸1−n−プロポキシエチル、メタクリル酸1−イソプロポキシエチル、メタクリル酸n−ブトキシエチル、メタクリル酸1−イソブトキシエチル、メタクリル酸1−sec−ブトキシエチル、メタクリル酸1−tert−ブトキシエチル、メタクリル酸1−tert−アミロキシエチル、メタクリル酸1−エトキシ−n−プロピル、メタクリル酸1−シクロヘキシロキシエチル、メタクリル酸メトキシプロピル、メタクリル酸エトキシプロピル、メタクリル酸1−メトキシ−1−メチル−エチル、メタクリル酸1−エトキシ−1−メチル−エチル、メタクリル酸トリメチルシリル、メタクリル酸トリエチルシリル、メタクリル酸ジメチル−tert−ブチルシリル、α−(メタクロイル)オキシ−γ−ブチロラクトン、β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−メチル−α―(メタクロイル)オキシ−γ−ブチロラクトン、β−メチル−β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−メチル−γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−エチル−α―(メタクロイル)オキシ−γ−ブチロラクトン、β−エチル−β−(メタクロイル)オキシ−γ−ブチロラクトン、γ−エチル−γ−(メタクロイル)オキシ−γ−ブチロラクトン、α−(メタクロイル)オキシ−δ−バレロラクトン、β−(メタクロイル)オキシ−δ−バレロラクトン、γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−(メタクロイル)オキシ−δ−バレロラクトン、α−メチル−α―(4−ビニルベンゾイル)オキシ−δ−バレロラクトン、β−メチル−β−(メタクロイル)オキシ−δ−バレロラクトン、γ−メチル−γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−メチル−δ−(メタクロイル)オキシ−δ−バレロラクトン、α−エチル−α―(メタクロイル)オキシ−δ−バレロラクトン、β−エチル−β−(メタクロイル)オキシ−δ−バレロラクトン、γ−エチル−γ−(メタクロイル)オキシ−δ−バレロラクトン、δ−エチル−δ−(メタクロイル)オキシ−δ−バレロラクトン、メタクリル酸1−メチルシクロヘキシル、メタクリル酸アダマンチル、メタクリル酸2−(2−メチル)アダマンチル、メタクリル酸クロルエチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2,2−ジメチルヒドロキシプロピル、メタクリル酸5−ヒドロキシペンチル、メタクリル酸トリメチロールプロパン、メタクリル酸グリシジル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸ナフチル、などが挙げられる。このうち、アクリル酸とアクリル酸tert−ブチルの共重合体が好ましい。
なお、シェル部を構成するモノマーとしては、4−ビニル安息香酸またはアクリル酸の少なくとも一方と、4−ビニル安息香酸tert−ブチルまたはアクリル酸tert−ブチルの少なくとも一方と、の共重合体も好ましい。シェル部を構成するモノマーとしては、ラジカル重合性の不飽和結合を有する構造であれば、上記式(II)および上記式(III)であらわされる繰り返し単位を与えるモノマー以外のモノマーであってもよい。
使用することができる共重合モノマーとしては、たとえば、上記以外のスチレン類、アリル化合物、ビニルエーテル類、ビニルエステル類、クロトン酸エステル類などから選ばれるラジカル重合性の不飽和結合を有する化合物などが挙げられる。
シェル部を構成するモノマーとして使用することができる共重合モノマーとして挙げられたスチレン類としては、具体例には、たとえば、スチレン、tert−ブトキシスチレン、α−メチル−tert−ブトキシスチレン、4−(1−メトキシエトキ)シスチレン、4−(1−エトキシエトキ)シスチレン、テトラヒドロピラニルオキシスチレン、アダマンチルオキシスチレン、4−(2−メチル−2−アダマンチルオキシ)スチレン、4−(1−メチルシクロヘキシルオキシ)スチレン、トリメチルシリルオキシスチレン、ジメチル−tert−ブチルシリルオキシスチレン、テトラヒドロピラニルオキシスチレン、ベンジルスチレン、トリフルオルメチルスチレン、アセトキシスチレン、クロルスチレン、ジクロルスチレン、トリクロルスチレン、テトラクロルスチレン、ペンタクロルスチレン、ブロムスチレン、ジブロムスチレン、ヨードスチレン、フルオルスチレン、トリフルオルスチレン、2−ブロム−4−トリフルオルメチルスチレン、4−フルオル−3−トリフルオルメチルスチレン、ビニルナフタレンなどが挙げられる。
シェル部を構成するモノマーとして使用することができる共重合モノマーとして挙げられたアリルエステル類としては、具体例には、たとえば、酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル、アリルオキシエタノール、などが挙げられる。
シェル部を構成するモノマーとして使用することができる共重合モノマーとして挙げられたビニルエーテル類としては、具体例には、たとえば、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロルエチルビニルエーテル、1−メチル−2,2−ジメチルプロピルビニルエーテル、2−エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル、ビニルフェニルエーテル、ビニルトリルエーテル、ビニルクロルフェニルエーテル、ビニル−2,4−ジクロルフェニルエーテル、ビニルナフチルエーテル、ビニルアントラニルエーテル、などが挙げられる。
シェル部を構成するモノマーとして使用することができる共重合モノマーとして挙げられたビニルエステル類としては、具体例には、たとえば、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルフェニルアセテート、ビニルアセトアセテート、ビニルラクテート、ビニル−β−フェニルブチレート、ビニルシクロヘキシルカルボキシレート、などが挙げられる。
シェル部を構成するモノマーとして使用することができる共重合モノマーとして挙げられたクロトン酸エステル類としては、具体例には、たとえば、クロトン酸ブチル、クロトン酸ヘキシル、グリセリンモノクロトネート、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチル、ジメチルマレレート、ジブチルフマレート、無水マレイン酸、マレイミド、アクリロニトリル、メタクリロニトリル、マレイロニトリルなどが挙げられる。
また、シェル部を構成するモノマーとして使用することができる共重合モノマーとしては、具体的には、たとえば、下記式(IV)〜式(XIII)なども挙げられる。
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
Figure 2008163150
シェル部を構成するモノマーとして使用することができる共重合モノマーの中で、スチレン類、クロトン酸エステル類が好ましい。シェル部に相当するモノマーとして使用することができる共重合モノマーの中でもスチレン、ベンジルスチレン、クロルスチレン、ビニルナフタレン、クロトン酸ブチル、クロトン酸ヘキシル、無水マレイン酸が好ましい。
ハイパーブランチポリマーにおいて、上記式(II)または上記式(III)の少なくとも一方であらわされる繰り返し単位を与えるモノマーは、ハイパーブランチポリマーの合成に用いるモノマー全体の仕込み量に対して、仕込み時において、10〜90モル%の範囲で含まれていることが好ましい。前述した繰り返し単位を与えるモノマーは、ハイパーブランチポリマーの合成に用いるモノマー全体の仕込み量に対して、仕込み時において、20〜90モル%の範囲で含まれていることがより好ましい。
前述した繰り返し単位を与えるモノマーは、ハイパーブランチポリマーの合成に用いるモノマー全体の仕込み量に対して、仕込み時において、30〜90モル%の範囲でポリマーに含まれるのがより一層好ましい。特に、シェル部において上記式(II)または上記式(III)であらわされる繰り返し単位が、ハイパーブランチポリマーの合成に用いるモノマー全体の仕込み量に対して、仕込み時において、50〜100モル%、好ましくは80〜100モル%の範囲で含まれるのが好適である。前述した繰り返し単位を与えるモノマーが、ハイパーブランチポリマーの合成に用いるモノマー全体での仕込み量に対して、仕込み時において、前述の範囲内にあると、当該ハイパーブランチポリマーを含んだレジスト組成物を用いたリソグラフィの現像工程において、露光部が効率よくアルカリ溶液に溶解し除去されるので好ましい。
ハイパーブランチポリマーのシェル部が、上記式(II)または上記式(III)であらわされる繰り返し単位を与えるモノマーとその他のモノマーとの共重合物であるとき、シェル部を形成する全モノマー中における上記式(II)または上記式(III)の少なくとも一方の量は、30〜90モル%であるのが好ましく、50〜70モル%であるのがより好ましい。シェル部を形成する全モノマー中における上記式(II)または上記式(III)の少なくとも一方の量が前述の範囲内にあると、露光部の効率的アルカリ溶解性を阻害せずに、エッチング耐性、ぬれ性、ガラス転移温度の上昇などの機能が付与されるので好ましい。
なお、シェル部における上記式(II)または上記式(III)の少なくとも一方であらわされる繰り返し単位とそれ以外の繰り返し単位との量は、目的に応じてシェル部導入時のモル比の仕込み量比により調節することができる。
(金属触媒)
つぎに、ハイパーブランチポリマーの合成に用いる金属触媒について説明する。ハイパーブランチポリマーの合成に際しては、銅、鉄、ルテニウム、クロムなどの遷移金属化合物と配位子との組み合わせからなる金属触媒を使用することが可能である。遷移金属化合物としては、たとえば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅、塩化第一鉄、臭化第一鉄、ヨウ化第一鉄、などが挙げられる。
配位子としては、未置換、あるいはアルキル基、アリール基、アミノ基、ハロゲン基、エステル基などにより置換されたピリジン類、ビピリジン類、ポリアミン類、ホスフィン類などが挙げられる。好ましい金属触媒としては、たとえば、塩化銅と配位子により構成される銅(I)ビピリジル錯体、銅(I)ペンタメチルジエチレントリアミン錯体、塩化鉄と配位子より構成される鉄(II)トリフェニルホスフィン錯体、鉄(II)トリブチルアミン錯体、などを挙げることができる。また、配位子としては、他にも、Chem.rev.2001,101,3689−に記載の配位子を使用することもできる。
ハイパーブランチポリマーの合成に用いる金属触媒の使用量は、ハイパーブランチポリマーの合成に用いるモノマーの全量に対して、仕込み時において、0.01〜70モル%であることが好ましい。ハイパーブランチポリマーの合成に用いる金属触媒の使用量は、ハイパーブランチポリマーの合成に用いるモノマーの全量に対して、仕込み時において、0.1〜60モル%であることがより好ましい。ハイパーブランチポリマーの合成に用いる金属触媒の使用量を前述した量でとすることで、反応性を向上させ、好適な分岐度を有するハイパーブランチポリマーを合成することができる。
ハイパーブランチポリマーの合成に用いる金属触媒の使用量が前述した範囲を下回った場合、反応性が著しく低下し、重合が進行しない。一方、ハイパーブランチポリマーの合成に用いる金属触媒の使用量が前述した範囲を上回った場合、重合反応が過剰に活発になり、生長末端のラジカル同士がカップリング反応しやすくなり、重合の制御が困難になる傾向がある。また、ハイパーブランチポリマーの合成に用いる金属触媒の使用量が前述の範囲を上回った場合、ラジカル同士のカップリング反応により、反応系のゲル化が誘発される。
(溶媒)
つぎに、ハイパーブランチポリマーの合成に用いる溶媒について説明する。ハイパーブランチポリマーの重合反応は、無溶媒でも可能であるが、以下に示した各種の溶媒中でおこなうことが望ましい。ハイパーブランチポリマーの合成に用いる溶媒の種類としては、特に限定はされないが、たとえば、炭化水素系溶媒、エーテル系溶媒、ハロゲン化炭化水素溶媒、ケトン系溶媒、アルコール系溶媒、ニトリル系溶媒、エステル系溶媒、カーボネート系溶媒、アミド系溶媒、などが挙げられる。
ハイパーブランチポリマーの合成に用いる溶媒である炭化水素系溶媒としては、具体的には、たとえば、ベンゼン、トルエン、キシレン、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒であるエーテル系溶媒としては、具体的には、たとえば、ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼン、などが挙げられる。
ハイパーブランチポリマーの合成に用いる溶媒であるハロゲン化炭化水素系溶媒としては、具体的には、たとえば、塩化メチレン、クロロホルム、クロロベンゼン、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒であるケトン系溶媒としては、具体的には、たとえば、アセトン、メチルエチルケトン、メチルイソブチルケトン、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒であるアルコール系溶媒としては、具体的には、たとえば、メタノール、エタノール、プロパノール、イソプロパノール、などが挙げられる。
ハイパーブランチポリマーの合成に用いる溶媒であるニトリル系溶媒としては、具体的には、たとえば、アセトニトリル、プロピオニトリル、ベンゾニトリル、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒であるエステル系溶媒としては、具体的には、たとえば、酢酸エチル、酢酸ブチル、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒であるカーボネート系溶媒としては、具体的には、たとえば、エチレンカーボネート、プロピレンカーボネート、などが挙げられる。
ハイパーブランチポリマーの合成に用いる溶媒であるアミド系溶媒としては、具体的には、たとえば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、などが挙げられる。ハイパーブランチポリマーの合成に用いる溶媒として前述した各種の溶媒は、単独で使用してもよいし、2種以上を併用してもよい。
(金属触媒の調整方法)
つぎに、ハイパーブランチポリマーの合成に用いる金属触媒の調整方法について説明する。ハイパーブランチポリマーの合成に用いる金属触媒は、遷移金属化合物と配位子とからなり、ハイパーブランチポリマーの合成における重合反応において、遷移金属化合物と配位子とを装置内で混合し、錯体化されてもよい。遷移金属化合物と配位子からなる金属触媒は、活性を持つ錯体の状態で装置に加えられてもよい。遷移金属化合物と配位子とを装置内で混合し、錯体化される方が、合成作業の簡便化を図ることができる。
また、触媒が酸化され、失活するのを防ぐため、重合前には、重合に使用する全ての物質、すなわち、金属触媒、溶媒、モノマーなどは、減圧、あるいは、窒素やアルゴンのような不活性ガスの吹き込みにより、十分に脱酸素されることが好ましい。
(金属触媒の添加方法)
つぎに、ハイパーブランチポリマーの合成に用いる金属触媒の添加方法について説明する。ハイパーブランチポリマーの合成に用いる金属触媒の添加方法は、特に限定されるものではなく、たとえば、重合前に一括して添加することができる。また、重合開始後、金属触媒の失活具合に応じて、金属触媒を追加して添加してもよい。たとえば、金属触媒となる錯体の反応系全体での分散状態が不均一である場合には、遷移金属化合物を装置内にあらかじめ添加しておき、配位子のみを後から添加するようにしてもよい。
(コア重合)
つぎに、ハイパーブランチポリマーの合成工程について説明する。はじめに、ハイパーブランチポリマーの合成に際してのコア重合について説明する。コア重合は、ラジカルが酸素の影響を受けることを防ぐために、窒素や不活性ガス存在あるいはフロー下、酸素不存在条件の下でおこなわれることが好ましい。具体的に、コア重合に際しては、金属触媒が酸化されて失活することを防ぐため、コア重合に使用する全ての物質、すなわち、金属触媒、溶媒、モノマーなどは、減圧、あるいは、窒素やアルゴンのような不活性ガスの吹き込みによって、十分に脱酸素(脱気)したものを使用する。また、コア重合は、バッチ方式、連続式のいずれの方法にも適用することができる。
コア重合は、たとえば、反応容器内にモノマーを滴下しながら重合をおこなうことができる。触媒が低量である場合、滴下スピードをコントロールすることで、生成されるコア部における高い分岐度を保つことができる。生成されるコア部における高い分岐度を保つために、滴下するモノマーの濃度は、反応全量に対して、1〜50質量%であることが好ましい。滴下するモノマーのより好ましい濃度は、反応全量に対して、2〜20質量%である。
重合時間は、重合物の分子量に応じて、0.1〜30時間の間でおこなうのが好ましい。コア重合に際して、反応温度は、0〜200℃の範囲であることが好ましい。コア重合に際してのより好ましい反応温度は、50〜150℃の範囲である。使用溶媒の沸点よりも高い温度で重合させる場合は、たとえば、オートクレープ中で加圧してもよい。
コア重合に際しては、反応系を均一に分散することが好ましい。反応系は、たとえば、撹拌することによって均一に分散することができる。コア重合に際しての具体的な撹拌条件としては、たとえば、単位容積当たりの攪拌所要動力が、0.01kW/m3以上であることが好ましい。コア重合に際しては、さらに、重合の進行や触媒の失活の程度に応じて、触媒を追加したり、触媒を再生させる還元剤を添加したりしてもよい。
コア重合は、分子量が所定レベル進行した時点で重合反応を停止させる。コア重合の停止方法は、特に限定されるものではないが、たとえば、冷却する、酸化剤やキレート剤などの添加によって触媒を失活させる、などの方法を用いることができる。
ハイパーブランチコアポリマーの合成(コア重合)に際しては、ラジカルが酸素の影響を受けることを防ぐために、窒素や不活性ガス存在あるいはフロー下、酸素不存在条件の下でコア重合をおこなうことが好ましい。コア重合は、バッチ方式、連続式のいずれの方法にも適用することができる。コア重合に際しては、金属触媒が酸化されて失活することを防ぐため、コア重合に使用する全ての物質、すなわち、金属触媒、溶媒、モノマーなどは、減圧、あるいは、窒素やアルゴンのような不活性ガスの吹き込みによって、十分に脱酸素(脱気)したものを使用する。
(シェル重合)
つぎに、シェル重合について説明する。実施の形態においては、ここに、シェル部形成工程が実現されている。シェル重合は、ラジカルが酸素の影響を受けることを防ぐために、窒素や不活性ガス存在下あるいはフロー下、酸素不存在条件の下でおこなわれることが好ましい。具体的に、シェル重合に際しては、金属触媒が酸化されて失活することを防ぐため、シェル重合に使用する全ての物質、すなわち、金属触媒、溶媒、モノマーなどは、減圧、あるいは、窒素やアルゴンのような不活性ガスの吹き込みによって、十分に脱酸素(脱気)したものを使用する。
シェル重合は、バッチ方式、連続式のいずれの方法にも適用することができる。シェル重合は、上述したコア重合と連続しておこなってもよいし、上述したコア重合後に金属触媒とモノマーを除去してから、再度、金属触媒を添加することでおこなってもよい。
シェル重合に際しては、コア重合によって合成されたコア部(コアマクロマー)を用いて、たとえば、反応開始前にあらかじめ反応系内に金属触媒を設けておき、この反応系にコア部およびモノマーを滴下する。具体的には、たとえば、反応用の釜の内面にあらかじめ金属触媒を設けておき、この反応用の釜にコア部およびモノマーを滴下する。また、具体的には、たとえば、あらかじめコア部が存在する反応用の釜に、上述したシェル部に相当するモノマーを滴下するようにしてもよい。
シェル重合に際し、コア重合によって合成されたコア部にモノマーを滴下することにより、反応濃度が高い場合におけるゲル化を効率的に防ぐことができる。シェル重合に際してのコア部の濃度は、仕込み時において、反応全量に対して0.1〜30質量%であることが好ましい。シェル重合に際してのコア部の濃度は、仕込み時において、反応全量に対して1〜20質量%であることがより好ましい。
シェル重合に際してのシェル部に相当するモノマーの濃度は、コア部の反応活性点に対して、仕込み時において、0.5〜20モル当量であることが好ましい。シェル重合に際してのシェル部に相当するモノマーの濃度は、コア部の反応活性点に対して、仕込み時において、1〜15モル当量であることがより好ましい。シェル重合に際してのシェル部に相当するモノマー量を適切にコントロールすることで、ハイパーブランチポリマーにおけるコア/シェル比をコントロールすることができる。
シェル重合に際しての重合時間は、重合物の分子量に応じて、たとえば、0.1〜30時間の間でおこなうのが好ましい。シェル重合に際しての反応温度は、0〜200℃の範囲であることが好ましい。シェル重合に際しての反応温度は、50〜150℃の範囲であることがより好ましい。使用溶媒の沸点よりも高い温度で重合させる場合は、たとえば、オートクレープ中で加圧するようにしてもよい。
シェル重合に際しては、反応系を均一に分散する。反応系は、たとえば、撹拌することによって均一に分散することができる。シェル重合に際しての具体的な撹拌条件としては、たとえば、単位容積当たりの攪拌所要動力が、0.01kW/m3以上とすることが好ましい。
シェル重合に際しては、さらに、重合の進行や金属触媒の失活に応じて、金属触媒の追加や金属触媒を再生させる還元剤を添加してもよい。シェル重合は、シェル重合が所定レベル進行した時点で重合反応を停止させる。シェル重合の停止方法は、特に限定されるものではないが、たとえば、冷却する、酸化剤やキレート剤などの添加によって金属触媒を失活させる、などの方法用いることができる。
(金属触媒の除去)
金属触媒の除去は、上述したシェル重合終了後におこなう。金属触媒の除去方法は、たとえば、以下に示す(a)〜(c)の方法を、単独あるいは複数組み合わせておこなうことができる。
(a)協和化学工業製キョーワードのような各種吸着剤を使用する。
(b)濾過や遠心分離によって不溶物を除去する。
(c)酸、およびまたは、キレート効果のある物質を含む水溶液で抽出する。
上記の(c)の方法を用いた触媒除去に用いる酸としては、たとえば、パラトルエンスルホン酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ギ酸、塩酸、硫酸などが挙げられる。キレート効果のある物質としては、たとえば、シュウ酸、クエン酸、グルコン酸、酒石酸、マロン酸等の有機カルボン酸、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミノ五酢酸等のアミノカーボネート、ヒドロキシアミノカーボネート、などが挙げられる。酸の水溶液中の濃度は、酸の種類により異なるが、0.03質量%〜20質量%であることが好ましい。キレート能を持つ物質の水溶液中の濃度は、化合物のキレート能に応じて異なるが、たとえば、0.05質量%〜10質量%であることが好ましい。酸とキレート能を持つ物質は、それぞれ単独、または併用して使用することができる。
<モノマーの除去>
モノマーの除去は、金属触媒の除去後におこなっても、金属触媒の除去に引き続く金属洗浄まで行った後におこなってもどちらでも良い。モノマーの除去に際しては、上述したコア重合およびシェル重合に際して滴下したモノマーのうち、未反応のモノマーを除去する。未反応のモノマーを除去する方法としては、たとえば、以下に示す(d)〜(e)の方法を、単独あるいは複数組み合わせておこなうことができる。
(d)良溶媒に溶解した反応物に貧溶媒を添加することにより、ポリマーを沈殿させる。
(e)良溶媒と貧溶媒の混合溶媒でポリマーを洗浄する。
上記の(d)〜(e)において、良溶媒としては、たとえば、ハロゲン化炭化水素系溶媒、ニトロ化合物、ニトリル系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、カーボネ―ト系溶媒、またはこれらを含む混合溶媒が挙げられる。具体的には、たとえば、テトラヒドロフランやクロロベンゼン、クロロホルムなどが挙げられる。貧溶媒としては、たとえば、メタノール、エタノール、1−プロパノール、2−プロパノール、水、またはこれらの溶媒を組み合わせた溶媒が挙げられる。未反応のモノマーを除去する方法としては、上述した方法に特に限定されるものではない。
(金属除去および脱保護)
つぎに、上述した金属除去および脱保護について説明する。金属除去および脱保護に際しては、金属の除去と、脱保護と、を同一の工程においておこなう。実施の形態では、金属除去および脱保護によって精製工程および酸基形成工程が実現されている。金属の除去は、ポリマー中に残存する少量の金属を低減させるためにおこなう。脱保護は、酸分解性基の部分的分解をおこなうためにおこなう。酸分解性基の部分的分解に際しては、たとえば、酸分解性基の一部を上述した酸触媒用いて酸基に分解する。
金属除去および脱保護に際しては、たとえば、ポリマーを溶解した有機溶媒とキレート能を持つ有機化合物と無機酸含有水溶液との混合物を攪拌し、攪拌後の溶液を用いた液々抽出をおこなって水層を除去する操作をおこなう。あるいは、金属除去および脱保護に際しては、たとえば、ポリマーを溶解した有機溶媒とキレート能を持つ有機化合物と無機酸含有水溶液と熱時混合して攪拌し、攪拌後の溶液を用いた液々抽出をおこなって水層を除去する操作などをおこなう。なお、金属除去および脱保護を同一の工程においておこなう方法は前述の方法に限るものではない。
金属除去および脱保護における液々抽出に使用する有機溶媒としては、たとえば、ハロゲン化炭化水素系溶媒、酢酸エステル系溶媒、ケトン系溶媒、グリコールエーテルアセテート系溶媒、芳香族炭化水素系溶媒、などが好ましい有機溶媒として挙げられる。具体的に、ハロゲン化炭化水素系溶媒としては、たとえば、クロロベンゼンやクロロホルム、などが挙げられる。具体的に、酢酸エステル系溶媒としては、たとえば、酢酸エチル、酢酸n−ブチル、酢酸イソアミル、などが挙げられる。
具体的に、ケトン系溶媒としては、たとえば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2−ヘプタン、2−ペンタノン、などが挙げられる。具体的に、グリコールエーテルアセテート系溶媒としては、たとえば、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、などが挙げられる。具体的に、芳香族炭化水素系溶媒としては、たとえば、トルエン、キシレン、などが挙げられる。
金属除去および脱保護における液々抽出に使用する有機溶媒として上述した各種の有機溶媒のうち、トルエン、キシレン、クロロホルムが好ましい有機溶媒の一例として挙げられる。金属除去および脱保護における液々抽出に使用する有機溶媒として上述した各種の有機溶媒は、それぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。
金属除去および脱保護における液々抽出に使用する有機溶媒の量に対する、精製後のハイパーブランチポリマーの量は、たとえば、0.1〜30質量%程度であることが好ましい。金属除去および脱保護における液々抽出に使用する有機溶媒の量に対する、精製後のハイパーブランチポリマーの量は、たとえば、5〜20質量%程度であることがより好ましい。
金属除去および脱保護に用いる、キレート能を持つ有機化合物としては、たとえば、有機カルボン酸、アミノカーボネート、ヒドロキシアミノカーボネート、などが挙げられる。具体的に、キレート能を持つ有機化合物として挙げられた有機カルボン酸としては、たとえば、蟻酸、酢酸、シュウ酸、クエン酸、グルコン酸、酒石酸、マロン酸、などが挙げられる。具体的に、キレート能を持つ有機化合物として挙げられたアミノカーボネート、ヒドロキシアミノカーボネートとしては、たとえば、ニトリロ三酢酸、エチレンジアミン四酢酸、ジエチレントリアミノ五酢酸、などが挙げられる。
金属除去および脱保護に用いる、無機酸としては、塩酸、硫酸、燐酸、臭化水素酸、p−トルエンスルホン酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、などが挙げられる。これらは、単独で用いてもよいし、2種以上を混合して用いてもよい。
金属除去および脱保護に用いる物質である、キレート能を持つ有機化合物や無機酸として挙げられた各種の物質は、単独で用いてもよいし、2種以上を混合して用いてもよい。なお、金属除去および脱保護に用いる物質として挙げられた各種のキレート能を持つ有機化合物や無機酸は、前述した物質に特に限るものではない。
キレート能を持つ有機化合物水溶液の濃度は、各有機化合物のキレート能に応じて異なるが、たとえば、0.05質量%〜10質量%であることが好ましい。また、無機酸の使用量は、酸分解性基に対する酸触媒の量が、通常、0.001〜100当量となる範囲であることが好ましい。無機酸含有水溶液は、超純水を用いて調製される。
ポリマーを溶解した有機溶媒と、キレート能を持つ有機化合物および無機酸含有水溶液(無機酸を含む水溶液)と、を混合して攪拌する際の比率は、0.1/1〜1/0.1であることが好ましい。ポリマーを溶解した有機溶媒と、キレート能を持つ有機化合物および無機酸含有水溶液(無機酸を含む水溶液)と、を混合する際の反応系の温度は、40〜120℃であることが好ましい。前記の反応系の温度は、50〜90℃であることがより好ましい。
ポリマーを溶解した有機溶媒と、キレート能を持つ有機化合物および無機酸含有水溶液(無機酸を含む水溶液)と、を混合する際は、激しく攪拌することが重要である。激しく攪拌することによって、有機溶媒によってなされる有機層と上記水溶液によってなされる水層との接触機会が増加し、液々抽出の効率向上を図ることができる。攪拌時間は、1〜10時間の範囲でおこなわれることが好ましい。攪拌時間は、3〜7時間の範囲でおこなわれることがより好ましい。
金属除去および脱保護に際しては、上述した攪拌後に、攪拌後の反応液を室温に戻す。反応液を室温に戻した後は、当該反応液における水層を除去する。そして、水層が除去された反応液に対して、再度、キレート能を持つ有機化合物と無機酸とを含む水溶液を添加して、熱時攪拌する。水層が除去された反応液に対してキレート能を持つ有機化合物と無機酸とを含む水溶液を添加して、熱時攪拌する操作を繰り返すことで、徐々に酸分解性基の分解が進行する。攪拌および水層除去の操作は、1〜10回繰り返すことが好ましい。攪拌および水層除去の操作は、3〜5回繰り返すことがより好ましい。
水層を除去後、水層が除去された後の有機溶媒を、室温において、超純水を用いて洗浄する。これによって、精製後のハイパーブランチポリマーとともに残存する酸を除去することができる。超純水を用いた洗浄回数は、特に限定されないが、水層のpHが強酸を示さなくなるまでおこなう。具体的に、超純水を用いた洗浄回数は、たとえば、1〜10回おこなうことが好ましい。具体的に、超純水を用いた洗浄回数は、たとえば、2〜5回おこなうことがより好ましい。
金属除去および脱保護に際しては、金属除去および脱保護に用いる有機溶媒の選定によっては、酸分解性基の分解が進行するにともなって、精製後のハイパーブランチポリマーが、選定された有機溶媒にも水層にも溶解せずに析出してくる場合がある。このような場合は、金属除去および脱保護に用いる有機溶媒を、MIBKや酢酸エチルなどに置換して、超純水洗浄をおこなうようにしてもよい。
(分子構造)
つぎに、ハイパーブランチポリマーの分子構造について説明する。コアシェル型のハイパーブランチポリマーにおけるコア部の分岐度(Br)は、0.3〜0.5であるのが好ましい。より好ましい分岐度(Br)は、0.4〜0.5である。コアシェル型のハイパーブランチポリマーにおけるコア部の分岐度(Br)が、上記の範囲にある場合、ポリマー分子間での絡まりが小さく、パターン側壁における表面ラフネスが抑制されるので好ましい。
ここで、コアシェル型のハイパーブランチポリマーにおけるコア部の分岐度(Br)は、生成物の1H−NMRを測定し、以下のようにして求めることができる。すなわち、4.6ppmに現われる−CH2Cl部位のプロトンの積分比H1°と、4.8ppmに現われるCHCl部位のプロトンの積分比H2°を用いて、下記数式(A)の演算をおこなうことにより算出できる。−CH2Cl部位とCHCl部位との両方で重合が進行し、分岐が高まった場合、Br値は0.5に近づく。
Figure 2008163150
コアシェル型のハイパーブランチポリマーにおけるコア部の重量平均分子量は、300〜8,000であるのが好ましく、500〜8,000であるのもまた好ましく、1,000〜8,000であるのが最も好ましい。コア部の分子量がこのような範囲にあると、コア部は球状形態をとり、また酸分解性基導入反応において、反応溶媒への溶解性を確保できるので好ましい。さらに、成膜性に優れ、上記分子量範囲のコア部に酸分解性基を誘導したハイパーブランチポリマーおいて、未露光部の溶解抑止に有利となるので好ましい。
コアシェル型のハイパーブランチポリマーにおけるコア部の多分散度(Mw/Mn)は1〜3であるのが好ましく、1〜2.5であるのがさらに好ましい。このような範囲にあると、露光後に不溶化などの悪影響を招く恐れがなく、望ましい。
コアシェル型のハイパーブランチポリマーの重量平均分子量(M)は、500〜21,000が好ましく、2,000〜21,000がより好ましく、最も好ましくは3,000〜21,000である。ハイパーブランチポリマーの重量平均分子量(M)がこのような範囲にあると、該ハイパーブランチポリマーを含有するレジストは、成膜性が良好であり、リソグラフィ工程で形成された加工パターンの強度があるため形状を保つことができる。またドライエッチング耐性にも優れ、表面ラフネスも良好である。
ここで、コアシェル型のハイパーブランチポリマーにおけるコア部の重量平均分子量(Mw)は、0.05質量%のテトラヒドロフラン溶液を調製し、温度40℃でGPC測定をおこなって求めることができる。移動溶媒としてはテトラヒドロフランを用い、標準物質としてはスチレンを使用することができる。
コアシェル型のハイパーブランチポリマーの重量平均分子量(M)は、酸分解性基が導入されたポリマーの各繰り返し単位の導入比率(構成比)を1H−NMRにより求め、前記コアシェル型のハイパーブランチポリマーのコア部分の重量平均分子量(Mw)をもとにして、各構成単位の導入比率および、各構成単位の分子量を使って計算により求めることができる。
(レジスト組成物)
つぎに、ハイパーブランチポリマーを用いたレジスト組成物について説明する。ハイパーブランチポリマーを用いたレジスト組成物(以下、単に「レジスト組成物」という。)における、コアシェル型のハイパーブランチポリマー(レジストポリマー)の配合量は、レジスト組成物の全量に対し、4〜40質量%が好ましく、4〜20質量%がより好ましい。
レジスト組成物は、上述したコアシェル型のハイパーブランチポリマーと、光酸発生剤と、を含んでいる。レジスト組成物は、さらに、必要に応じて、酸拡散抑制剤(酸捕捉剤)、界面活性剤、その他の成分、および溶剤などを含んでいてもよい。
レジスト組成物に含まれる光酸発生剤としては、たとえば、紫外線、X線、電子線など
が照射された場合に酸を発生するものであれば特に制限はなく、公知の各種光酸発生剤の中から目的に応じて適宜選択することができる。具体的に、光酸発生剤としては、たとえば、オニウム塩、スルホニウム塩、ハロゲン含有トリアジン化合物、スルホン化合物、スルホネート化合物、芳香族スルホネート化合物、N−ヒドロキシイミドのスルホネート化合物、などが挙げられる。
上述した光酸発生剤に含まれるオニウム塩としては、たとえば、ジアリールヨードニウム塩、トリアリールセレノニウム塩、トリアリールスルホニウム塩、などが挙げられる。前記ジアリールヨードニウム塩としては、たとえば、ジフェニルヨードニウムトリフルオロメタンスルホネート、4−メトキシフェニルフェニルヨードニウムヘキサフルオロアンチモネート、4−メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、ビス(4−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、などが挙げられる。
上述したオニウム塩に含まれるトリアリールセレノニウム塩としては、具体的には、たとえば、トリフェニルセレノニウムヘキサフロロホスホニウム塩、トリフェニルセレノニウムホウフツ化塩、トリフェニルセレノニウムヘキサフロロアンチモネート塩、などが挙げられる。上述したオニウム塩に含まれるトリアリールスルホニウム塩としては、たとえば、トリフェニルスルホニウムヘキサフロロホスホニウム塩、トリフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル−4一チオフエノキシフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル−4−チオフエノキシフェニルスルホニウムペンタフロロヒドロキシアンチモネート塩、などが挙げられる。
上述した光酸発生剤に含まれるスルホニウム塩としては、たとえば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、4−メトキシフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4−メトキシフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、p−トリルジフェニルスルホニウムトリフルオロメタンスルホネート、2,4,6−トリメチルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−tert−ブチルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、1−(2−ナフトイルメチル)チオラニウムヘキサフルオロアンチモネート、1−(2−ナフトイルメチル)チオラニウムトリフルオロアンチモネート、4−ヒドロキシ−1−ナフチルジメチルスルホニウムヘキサフルオロアンチモネート、4−ヒドロキシ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、などが挙げられる。
上述した光酸発生剤に含まれるハロゲン含有トリアジン化合物としては、具体的には、たとえば、2−メチル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロロメテル)−1,3,5−トリアジン(要確認:トリクロロメチルの記載が多くありますがここはメテルでよいでしょうか。)、2−フェニル−4,6−ビス(トリクロロメチルト1,3,5−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチルト1,3,5−トリアジン、2−(4−メトキシ−1−ナフチル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(ベンゾ[d][1,3]ジオキソラン−5−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(3,4,5−トリメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(3,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2−メトキシスチリル)4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ブトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ベンチルオキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、などが挙げられる。
上述した光酸発生剤に含まれるスルホン化合物としては、具体的には、たとえば、ジフェニルジスルホン、ジ−p−トリルジスルホン、ビス(フェニルスルホニル)ジアゾメタン、ビス(4−クロロフェニルスルホニル)ジアゾメタン、ビス(p−トリルスルホニル)ジアゾメタン、ビス(4−tert−ブチルフェニルスルホニル)ジアゾメタン、ビス(2,4−キシリルスルホニル)ジアゾメタン、ビス(シクロへキシルスルホニル)ジアゾメタン、(ベンゾイル)(フェニルスルホニル)ジアゾメタン、フェニルスルホニルアセトフェノン、などが挙げられる。
上述した光酸発生剤に含まれる芳香族スルホネート化合物としては、具体的には、たとえば、α−ベンゾイルベンジルp−トルエンスルホネート(通称ベンゾイントシレート)、β−ベンゾイル−β−ヒドロキシフェネチルp−トルエンスルホネート(通称α−メチロールベンゾイントシレート)、1,2,3−ベンゼントリイルトリスメタンスルホネート、2,6−ジニトロベンジルp−トルエンスルホネート、2−ニトロベンジルp−トルエンスルホネート、4−ニトロベンジルp−トルエンスルホネート、などが挙げられる。
上述した光酸発生剤に含まれるN−ヒドロキシイミドのスルホネート化合物としては、具体的には、たとえば、N−(フェニルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(p−クロロフェニルスルホニルオキシ)スクシンイミド、N−(シクロへキシルスルホニルオキシ)スクシンイミド、N−(1−ナフテルスルホニルオキシ)スクシンイミド、n−(ベンジルスルホニルオキシ)スクシンイミド、N−(10−カンファースルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)−5−ノルポルネン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ナフタルイミド、N−(10−カンファースルホニルオキシ)ナフタルイミド、などが挙げられる。
上述した各種の光酸発生剤のうち、スルホニウム塩が好ましい。特に、トリフェニルスルホニウムトリフルオロメタンスルホネート;スルホン化合物、特に、ビス(4−tert−ブチルフェニルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタンが好ましい。
上述した光酸発生剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。光酸発生剤の配合率としては、特に制限はなく、目的に応じて適宜選択することができるが、ハイパーブランチポリマー100重量部に対し0.1〜30重量部が好ましい。より好ましい光酸発生剤の配合率は、0.1〜10重量部である。
レジスト組成物に含まれる酸拡散抑制剤としては、露光により酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する作用を有する成分であれば特に制限はない。レジスト組成物に含まれる酸拡散抑制剤は、公知のも各種の酸拡散抑制剤の中から、目的に応じて適宜選択することができる。
レジスト組成物に含まれる酸拡散抑制剤としては、たとえば、同一分子内に窒素原子を1個有する含窒素化合物、同一分子内に窒素原子を2個有する化合物、同一分子内に窒素原子を3個以上有するポリアミノ化合物や重合体、アミド基含有化合物、ウレア化合物、含窒素複素環化合物、などが挙げられる。
上記の酸拡散抑制剤として挙げられた、同一分子内に窒素原子を1個有する含垂素化合物としては、たとえば、モノ(シクロ)アルキルアミン、ジ(シクロ)アルキルアミン、トリ(シクロ)アルキルアミン、芳香族アミン、などが挙げられる。モノ(シクロ)アルキルアミンとしては、具体的には、たとえば、n−ヘキシルアミン、n−へブチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、シクロへキシルアミン、などが挙げられる。
同一分子内に窒素原子を1個有する含垂素化合物に含まれるジ(シクロ)アルキルアミンとしては、たとえば、ジ−n−ブチルアミン、ジ−n−ベンチルアミン、ジ−n−ヘキシルアミン、ジ−n−ヘブチルアミン、ジ−n−オクチルアミン、ジ−n−ノニルアミン、ジ−n−デシルアミン、シクロへキシルメチルアミン、などが挙げられる。
同一分子内に窒素原子を1個有する含垂素化合物に含まれるトリ(シクロ)アルキルアミンとしては、たとえば、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ベンチルアミン、トリ−n−ヘキシルアミン、トリ−n−へブチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、シクロヘキシルジメチルアミン、メチルジシクロヘキシルアミン、トリシクロヘキシルアミン、などが挙げられる。
同一分子内に窒素原子を1個有する含垂素化合物に含まれる芳香族アミンとしては、たとえば、アニリン、N−メチルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、4−ニトロアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン、などが挙げられる。
上記の酸拡散抑制剤として挙げられた、同一分子内に窒素原子を2個有する含窒素化合物としては、たとえば、エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、1,3−ビス〔1−(4−アミノフェニル)−1−メチルエチル〕ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、などが挙げられる。
上記の酸拡散抑制剤として挙げられた、同一分子内に窒素原子を3個以上有するポリアミノ化合物や重合体としては、たとえば、ポリエチレンイミン、ポリアリルアミン、N−(2−ジメチルアミノエチル)アクリルアミドの重合体、などが挙げられる。
上記の酸拡散抑制剤として挙げられた、アミド基含有化合物としては、たとえば、N−t−ブトキシカルボニルジ−n−オクチルアミン、N−t−ブトキシカルボニルジ−n−ノニルアミン、N−t−ブトキシカルボニルジ−n−デシルアミン、N−t−ブトキシカルボニルジシクロへキシルアミン、N−t−ブトキシカルボニル−1−アダマンチルアミン、N−t−ブトキシカルボニル−N−メチル−1−アダマンチルアミン、N,N−ジ−t−ブトキシカルボニル−1−アダマンテルアミン(要確認:アダマンチルアミンでなくてよいでしょうか。)、N,N−ジ−t−ブトキシカルボニル−N−メチル−1−アダマンテルアミン(要確認:アダマンチルアミンでなくてよいでしょうか。)、N−t−ブトキシカルボニル−4,4,−ジアミノジフェニルメタン、N,N’−ジ−t−ブトキシカルボニルヘキサメチレンジアミン、N,N,N’N’−テトラ−t−ブトキシカルボニルヘキサメチレンジアミンN,N’−ジ−t−ブトキシカルボニル−1,7一ジアミノへブタン、N,N’−ジ−t−ブトキシカルボニル−1,8−ジアミノオクタン、N,N’−ジ−t−ブトキシカルボニル−1,9−ジアミノノナン、N,N,−ジ−t−ブトキシカルボニル−1,10−ジアミノデカン、N,N,−ジ−t−ブトキシカルボニル−1,12−ジアミノドデカン、N,N,−ジ−t−ブトキシカルボニル−4,4’−ジアミノジフェニルメタン、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−メチルベンズイミダソール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、などが挙げられる。
上記の酸拡散抑制剤として挙げられたウレア化合物としては、具体的には、たとえば、尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア、などが挙げられる。
上記の酸拡散抑制剤として挙げられた含窒素複素環化合物としては、具体的には、たとえば、イミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミグゾール、ベンズイミダゾール、2−フェニルベンズイミダゾール、ピリジン、2−メチルピリジン、4−メチルピリジン、2−エチルピリジン、4−エチルピリジン、2−フェニルピリジン、4−フェニルピリジン、2−メチル−4−フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4−ヒドロキシキノリン、8−オキシキノリン、アクリジン、ピベラジン、1−(2−ヒドロキシエチル)ピベラジン、ピラジン、ピラソール、ビリダジン、キノザリン、プリン、ピロリジン、ピベリジン、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1,4−ジメチピベラジン、1,4−ジアザビシクロ[2.2.2]オクタン、などが挙げられる。
上記の酸拡散抑制剤は、単独または2種以上を混合して使用することができる。上記の酸拡散抑制剤の配合量としては、光酸発生剤100重量部に対して0.1〜1000重量部が好ましい。上記の酸拡散抑制剤のより好ましい配合量は、光酸発生剤100重量部に対して0.5〜10重量部である。なお、上記の酸拡散抑制剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができる。
レジスト組成物に含まれる界面活性剤としては、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、フッ素系界面活性剤、シリコン系界面活性剤、などが挙げられる。なお、レジスト組成物に含まれる界面活性剤としては、塗布性、ストリエーション、現像性などを改良する作用を示す成分であれば特に制限はなく、公知のものの中から目的に応じて適宜選択することができる。
レジスト組成物に含まれる界面活性剤として挙げられたポリオキシエチレンアルキルエーテルとしては、具体的には、たとえば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、などが挙げられる。レジスト組成物に含まれる界面活性剤挙げられたポリオキシエチレンアルキルアリルエーテルとしては、たとえば、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル、などが挙げられる。
レジスト組成物に含まれる界面活性剤として挙げられたソルビタン脂肪酸エステルとしては、具体的には、たとえば、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルヒ゛タンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート、などが挙げられる。レジスト組成物に含まれる界面活性剤として挙げられたポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤としては、具体的には、たとえば、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルヒ゛タンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート、などが挙げられる。
レジスト組成物に含まれる界面活性剤として挙げられたフッ素系界面活性剤としては、具体的には、たとえば、エフトップEF301、EF303、EF352(新秋田化成(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS−382、SC101、SX102、SC103、SC104、SC105、SC106(旭硝子(株)製)、などが挙げられる。
レジスト組成物に含まれる界面活性剤として挙げられたシリコン系界面活性剤としては、たとえば、オルガノシロキサンボリマーKP341(信越化学工業(株)製)、などが挙げられる。上述した各種の界面活性剤は、単独または2種以上を混合して使用することができる。上述した各種の界面活性剤の配合量としては、たとえば、ハイパーブランチポリマー100重量部に対して0.0001〜5重量部が好ましい。上述した各種の界面活性剤の、より好ましい配合量は、ハイパーブランチポリマー100重量部に対して0.0002〜2重量部である。なお、上述した各種の界面活性剤の配合量としては、特に制限はなく、目的に応じて適宜選択することができる。
レジスト組成物に含まれるその他の成分としては、たとえば、増感剤、溶解制御剤、酸解離性基を有する添加剤、アルカリ可溶性樹脂、染料、顔料、接着助剤、消泡剤、安定剤、ハレーション防止剤、などが挙げられる。レジスト組成物に含まれるその他の成分として挙げられた増感剤としては、具体的には、たとえば、アセトフェノン類、ベンゾフェノン類、ナフタレン類、ビアセチル、エオシン、ローズベンガル、ビレン類、アントラセン類、フェノチアジン類、などが挙げられる。上記の増感剤としては、放射線のエネルギーを吸収して、そのエネルギーを光酸発生剤に伝達し、それにより酸の生成量を増加する作用を示し、レジスト組成物のみかけの感度を向上させる効果を有するものであれば特に制限はない。上記の増感剤は、単独または2種以上を混合して使用することができる。
レジスト組成物に含まれるその他の成分として挙げられた溶解制御剤としては、具体的には、たとえば、ポリケトン、ポリスピロケタール、などが挙げられる。レジスト組成物に含まれるその他の成分として挙げられた溶解制御剤は、レジストとしたときの溶解コントラストおよび溶解速度をより適切に制御するものであれば特に制限はない。レジスト組成物に含まれるその他の成分として挙げられた溶解制御剤は、単独または2種以上を混合して使用することができる。
レジスト組成物に含まれるその他の成分として挙げられた酸解離性基を有する添加剤としては、具体的には、たとえば、1−アダマンタンカルボン酸t−ブチル、1−アダマンタンカルボン酸t−ブトキシカルボニルメチル、1,3−アダマンタンジカルボン酸ジ−t−ブチル、1−アダマンタン酢酸t−ブチル、1−アダマンタン酢酸t−ブトキシカルボニルメチル、1,3−アダマンタンジ酢酸ジ−t−ブチル、デオキシコール酸t−ブチル、デオキシコール酸t−ブトキシカルボニルメチル、デオキシコール酸2−フェトキシエチル、デオキシコール酸2−シクロヘキシルオキシエチル、デオキシコール酸3−オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル、リトコール酸t−ブチル、リトコール酸t−ブトキシカルボニルメチル、リトコール酸2−エトキシエチル、リトコール酸2−シクロヘキシルオキシエチル、リトコール酸3−オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル、などが挙げられる。上記各種の酸解離性基を有する添加剤は、単独または2種以上を混合して使用することができる。なお、上記各種の酸解離性基を有する添加剤は、ドライエッチング耐性、パターン形状、基板との接着性などをさらに改善するものであれば特に制限はない。
レジスト組成物に含まれるその他の成分として挙げられたアルカリ可溶性樹脂としては、具体的には、たとえば、ポリ(4−ヒドロキシスチレン)、部分水素添加ポリ(4−ヒドロキシスチレン)、ポリ(3−ヒドロキシスチレン)、ポリ(3−ヒドロキシスチレン)、4−ヒドロキシスチレン/3−ヒドロキシスチレン共重合体、4−ヒドロキシスチレン/スチレン共重合体、ノボラック樹脂、ポリビニルアルコール、ポリアクリル酸などが挙げられる。
アルカリ可溶性樹脂の重量平均分子量(Mw)は、通常、1000〜1000000であることが好ましく、2000〜100000であることがより好ましい。上記のアルカリ可溶性樹脂は、単独または2種以上を混合して使用することができる。なお、レジスト組成物に含まれるその他の成分として挙げられたアルカリ可溶性樹脂としては、レジスト組成物のアルカリ可溶性を向上させるものであれば特に制限はない。
レジスト組成物に含まれるその他の成分として挙げられた染料あるいは顔料は、露光部の潜像を可視化させる。露光部の潜像を可視化させることによって、露光時のハレーションの影響を緩和することができる。また、レジスト組成物に含まれるその他の成分として挙げられた接着助剤は、レジスト組成物と基板との接着性を改善することができる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤としては、具体的には、たとえば、ケトン、環状ケトン、プロピレングリコールモノアルキルエーテルアセテート、2−ヒドロキシプロピオン酸アルキル、3−アルコキシプロピオン酸アルキル、その他の溶剤などが挙げられる。レジスト組成物に含まれるその他の成分として挙げられた溶剤は、たとえば、レジスト組成物に含まれるその他の成分などを溶解することができる限り特に制限はなく、レジスト組成物に安全に使用可能なものの中から適宜選択することができる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれるケトンとしては、具体的には、たとえば、メチルイソブチルケトン、メチルエチルケトン、2−ブタノン、2−ペンタノン、3−メチル−2−ブタノン、2−ヘキサノン、4−メチル−2−ペンタノン、3−メチル−2−ペンタノン、3,3−ジメチル−2−ブタノン、2−へブタノン、2−オクタノン、などが挙げられる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれる環状ケトンとしては、具体的には、たとえば、シクロヘキサノン、シクロペンタノン、3−メチルシクロペンタノン、2−メチルシクロヘキサノン、2,6−ジメチルシクロヘキサノン、イソホロン、などが挙げられる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれるプロピレングリコールモノアルキルエーテルアセテートとしては、具体的には、たとえば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ−n−プロピルエーテルアセテート、プロピレングリコールモノ−i−プロピルエーテルアセテート、プロピレングリコールモノ−n−ブチルエーテルアセテート、プロピレングリコールモノ−i−ブチルエーテルアセテート、プロピレングリコールモノ−SeC−ブチルエーテルアセテート、プロピレングリコールモノ−t−ブチルエーテルアセテート、などが挙げられる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれる2−ヒドロキシプロピオン酸アルキルとしては、具体的には、たとえば、2−ヒドロキシプロピオン酸メチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシプロピオン酸n−プロピル、2−ヒドロキシプロピオン酸i−プロピル、2−ヒドロキシプロピオン酸n−ブチル、2−ヒドロキシプロピオン酸i−ブチル、2−ヒドロキシアロビオン酸sec−ブチル、2−ヒドロキシプロピオン酸t−ブチル、などが挙げられる。
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれる3−アルコキシプロピオン酸アルキルとしては、たとえば、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、などが挙げられる
レジスト組成物に含まれるその他の成分として挙げられた溶剤に含まれるその他の溶剤としては、たとえば、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ−n−プロピルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチル酪酸メチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−メチル−3−メトキシブチルプロピオネート、3−メチル−3−メトキシブチルプチレート、酢酸エチル、酢酸n−プロピル、酢酸n−ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルピン酸エチル、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンジルエチルエーテル、ジ−n−ヘキシルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、γ−プチロラクトン、トルエン、キシレン、カブロン酸、カプリル酸、オクタン、デカン、1−オクタノール、1−ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゆう酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレンなどを挙げることができる。上記の溶剤は、単独または2種以上を混合して使用することができる。
上述したように、実施の形態のハイパーブランチポリマーの合成方法によれば、共に、酸で処理することで実現される、金属除去および脱保護の反応を一度にまとめておこなうことができるので、従来のハイパーブランチポリマーの合成方法と比較して、ハイパーブランチポリマーの合成に際しての操作および工程数の低減を図ることができる。
また、実施の形態のコアシェル型のハイパーブランチポリマーを含むレジスト組成物は、パターン状に露光された後、現像をおこなってパタニング処理することができる。当該レジスト組成物は、表面平滑性がナノオーダーで求められる電子線、遠紫外線(DUV)、および極紫外線(EUV)光源に対応し得、半導体集積回路製造用の微細パターンを形成することができる。これによって、上述した合成方法にしたがって合成されたコアシェル型のハイパーブランチポリマーを含むレジスト組成物は、波長の短い光を照射する光源を用いて製造される半導体集積回路を用いる各種分野において好適に用いることができる。
また、実施の形態のコアシェル型のハイパーブランチポリマーを含むレジスト組成物を用いて製造される半導体集積回路においては、製造に際して露光および加熱し、アルカリ現像液に溶解させた後、水洗などによって洗浄した場合に、露光面に溶け残りが殆ど無く、ほぼ垂直なエッジを得ることができる。
以下に、この発明およびこの発明にかかる実施の形態について、以下に示した実施例を用いてさらに具体的に説明する。なお、この発明およびこの発明にかかる実施の形態は、以下に示した実施例によって、何等限定的に解釈されるものではない。
(重量平均分子量(Mw))
はじめに、実施例のハイパーブランチポリマーのコア部の重量平均分子量(Mw)について説明する。実施例のハイパーブランチポリマーのコア部の重量平均分子量(Mw)は、0.05質量%のテトラヒドロフラン溶液を調製し、東ソー株式会社製GPC HLC−8020型装置、カラムをTSKgel HXL−M(東ソー株式会社製)2本を連結、温度40℃でGPC(Gel Permeation Chromatography)測定をおこなって求めた。GPC測定に際しての移動溶媒としては、テトラヒドロフランを使用した。GPC測定に際しての標準物質としては、スチレンを使用した。
(ハイパーブランチポリマーの分岐度(Br))
つぎに、実施例のハイパーブランチポリマーの分岐度(Br)について説明する。実施例のハイパーブランチポリマーの分岐度(Br)は、生成物の1H−NMRを測定し、以下のようにして求めた。即ち、4.6ppmに現われる−CH2Cl部位のプロトンの積分比H1°と、4.8ppmに現われる−CHCl部位のプロトンの積分比H2°と、を用いて、下記数式(A)にしたがった演算をおこなうことによって算出した。なお、−CH2Cl部位と−CHCl部位との両方で重合が進行し、分岐が高まると、ハイパーブランチポリマーの分岐度(Br)の値は0.5に近づく。
(コア/シェル比)
つぎに、実施例のコアシェル型のハイパーブランチポリマーにおけるコア/シェル比について説明する。実施例のコアシェル型のハイパーブランチポリマーにおけるコア/シェル比は、生成物の1H−NMRを測定し、以下のようにして求めた。すなわち、1.4ppmに現われるt−ブチル部位のプロトンの積分比と、7.2ppmに現われる芳香族部位のプロトンの積分比を用いて算出した。
(超純水)
つぎに、実施例の超純水について説明する。実施例において用いた超純水は、アドバンテック東洋(株)製GSR−200にて製造されている。この超純水の25℃における金属含有量は1ppb以下であり、比抵抗値は18MΩ・cmであった。
実施例のハイパーブランチポリマーの合成に際しては、Krzysztof Matyjaszewski, Macromolecules. , 29,1079(1996)およびJean M.J.Frecht,J.Poly.Sci.,36、955(1998)に掲載されている合成方法を参考にし、以下のようにして合成をおこなった。
(微量金属分析)
コアシェル型ハイパーブランチポリマー中の金属含量の測定は、ICP質量分析装置(日立製作所製 P-6000型MIP-MS)、又はパーキンエルマー社製フレームレス原子吸光法によりおこなった。
(実施例1)
(ハイパーブランチポリマーのコア部の合成)
つぎに、実施例1のハイパーブランチポリマーのコア部の合成について説明する。実施例1のハイパーブランチポリマーのコア部の合成に際しては、攪拌機および冷却管を取り付けた2Lの4つ口反応容器に、2.2’−ビピリジル46.0g、塩化銅(I)15.0gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン400mLを加えてから、クロロメチルスチレン90.0gを5分間で滴下し、反応容器内を含む反応系全体の温度を125℃一定に保ちながら加熱攪拌した。滴下時間を含めた反応時間は、27分とした。
上述した加熱撹拌による反応終了後、反応終了後の反応系を濾過して不溶物を除去した。濾過後、濾過後の濾液に、超純水を用いて調製した3質量%シュウ酸水溶液500mLを加えて、20分攪拌した。撹拌した後、撹拌した後の溶液から水層を取り除いた。水層を取り除いた後の溶液に超純水を用いて調製した3質量%シュウ酸水溶液を加えて攪拌し、撹拌した後の溶液から水層を取り除く操作を、4回繰り返すことで、反応触媒である銅を取り除いた。
そして、銅が取り除かれた溶液にメタノール700mLを加えて固形分を再沈させ、再沈によって得られた固形分にTHF(テトラヒドロキシフラン):メタノール=2:8の混合溶媒を500mL加えて、固形分を洗浄した。洗浄後、洗浄後の溶液からデカンテーションによって溶媒を取り除いた。メタノールを加えて固形分を再沈させ、再沈によって得られた固形分にTHF:メタノール=2:8の混合溶媒を加えて固形分を洗浄する操作を、2回繰り返した。
その後、洗浄された固形分を乾燥させた。この結果、精製物として、実施例1のハイパーブランチポリマーのコア部(以下、「ハイパーブランチコアポリマー」という。)64.8gを得た。得られたハイパーブランチコアポリマーの収率は72%であった。また、得られたハイパーブランチコアポリマーの重量平均分子量(Mw)は2000であり、分岐度(Br)は0.5であった。
(ハイパーブランチポリマーのシェル部の合成)
つぎに、実施例1のハイパーブランチポリマーのシェル部の合成について説明する。実施例1のハイパーブランチポリマーのシェル部の合成に際しては、まず、攪拌機および冷却管を取り付けた1Lの4つ口反応容器に、上述した実施例1のハイパーブランチコアポリマー10g、2.2’−ビピリジル5.1g、塩化銅(I)1.6gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン250mLを加えてから、アクリル酸tertブチルエステル48mLをシリンジで注入し、120℃で5時間加熱攪拌した。
上述した加熱撹拌による重合反応終了後、重合反応終了後の反応系を濾過して不溶物を除去した。濾過後、濾過後の濾液に、3質量%シュウ酸水溶液を加えて、20分攪拌した。撹拌した後、撹拌した後の溶液から水層を取り除いた。水層を取り除いた後の溶液に超純水を用いて調製した3質量%シュウ酸水溶液を加えて攪拌し、撹拌した後の溶液から水層を取り除く操作を、4回繰り返すことで、反応触媒である銅を取り除いた。
つづいて、銅を取り除いた後に得られた淡黄色の溶液における溶媒を留去し、溶媒が留去された溶液にメタノール700mLを加えて固形分を再沈させた。その後、再沈によって得られた固形分をTHF50mLに溶解させた後、メタノール500mLを加えて固形分を再沈殿させる操作を、2回繰り返してから、0.1Paの真空条件下において、25℃で3時間乾燥させた。
この結果、精製物として、コアシェル型のハイパーブランチポリマーである淡黄色の固体を17.1g得た。得られた淡黄色の固体の収率は76%であった。また、得られたコアシェル型のハイパーブランチポリマーのモル比率を、1H−NMRによって計算した。この結果、コアシェル型のハイパーブランチポリマーにおけるコア/シェル比は、モル比で4/6であった。
(金属洗浄および脱保護)
つぎに、実施例1の金属洗浄および脱保護について説明する。実施例1の金属洗浄および脱保護に際しては、上述したシェル部が形成されたコアシェル型のハイパーブランチポリマー10gをメチルイソブチルケトン100gに溶解した溶液に、超純水を用いて調製した5質量%シュウ酸水溶液50gと10質量%硫酸水溶液50gとを合わせて、90℃で2時間激しく攪拌した。撹拌した後、撹拌した後の溶液から有機層を取り出し、取り出された有機層に、再び、超純水を用いて調製した3質量%シュウ酸水溶液50gと1質量%硫酸水溶液50gとを合わせ、30分間激しく攪拌する操作を、3回繰り返した。
その後、撹拌した後の溶液から有機層を取り出し、超純水100gと合わせて、室温において、30分激しく攪拌し、有機層を取り出す操作を、3回繰り返した。そして、最終的に得られた有機層から溶媒を留去して乾燥させ、実施例1のコアシェル型のハイパーブランチポリマー6gを得た。実施例1のコアシェル型のハイパーブランチポリマーの収率は66%であった。
また、実施例1のコアシェル型のハイパーブランチポリマーにおける酸分解性基と酸基との比率は、酸分解性基/酸基=70/30であった。溶媒が除去された有機層(共重合体)における含有金属量を計測した。この結果、溶媒が除去された有機層における銅、ナトリウム、鉄、アルミニウムの含有量は、10ppb以下であった。
(実施例2)
(ハイパーブランチポリマーのコア部の合成)
つぎに、実施例2のハイパーブランチポリマーのコア部の合成について説明する。実施例2のハイパーブランチポリマーのコア部の合成に際しては、まず、攪拌機および冷却管を取り付けた2Lの4つ口反応容器に、トリブチルアミン54.6g、塩化鉄(II)18.7gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン430mLを加えてから、クロロメチルスチレン90.0gを5分間で滴下し、反応容器内を含む反応系全体の温度を125℃一定に保ちながら加熱攪拌した。滴下時間を含めた反応時間は、27分とした。
上述した加熱撹拌による反応終了後、反応終了後の反応系に、超純水を用いて調製した3質量%シュウ酸水溶液500mLを加えて、20分攪拌した。撹拌した後、撹拌した後の溶液から水層を取り除いた。水層を取り除いた後の溶液に超純水を用いて調製した3質量%シュウ酸水溶液を加えて攪拌し、撹拌した後の溶液から水層を取り除く操作を、4回繰り返すことで、反応触媒である鉄を取り除いた。
そして、鉄が取り除かれた溶液にメタノール700mLを加えて固形分を再沈させ、再沈によって得られた固形分にTHF:メタノール=2:8の混合溶媒を1200mL加えて、固形分を洗浄した。洗浄後、洗浄後の溶液からデカンテーションによって溶媒を取り除いた。得られた固形分に、THF:メタノール=2:8の混合溶媒500mLを加えて固形分を洗浄した後、デカンテーションによって溶媒を取り除いた。
その後、洗浄された固形分を乾燥させた。この結果、精製物として、実施例2のハイパーブランチポリマーのコア部(以下、「ハイパーブランチコアポリマー」という。)72gを得た。得られたハイパーブランチコアポリマーの収率は80%であった。また、得られたハイパーブランチコアポリマーの重量平均分子量(Mw)は2000であり、分岐度(Br)は0.5であった。
(ハイパーブランチポリマーのシェル部の合成)
つぎに、実施例2のハイパーブランチポリマーのシェル部の合成について説明する。実施例2のハイパーブランチポリマーのシェル部の合成に際しては、まず、攪拌機および冷却管を取り付けた1Lの4つ口反応容器に、上述した実施例2のハイパーブランチコアポリマー10g、トリブチルアミン6.1g、塩化鉄(II)2.1gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン260mLを加えてから、アクリル酸tertブチルエステル48mLをシリンジで注入し、120℃で5時間加熱攪拌した。
上述した加熱撹拌による重合反応終了後、重合反応終了後の反応系に、3質量%シュウ酸水溶液を加えて、20分攪拌した。撹拌した後、撹拌した後の溶液から水層を取り除いた。水層を取り除いた後の溶液に超純水を用いて調製した3質量%シュウ酸水溶液を加えて攪拌し、撹拌した後の溶液から水層を取り除く操作を、4回繰り返すことで、反応触媒である鉄を取り除いた。
つづいて、鉄を取り除いた溶液に、メタノール700mLを加えて固形分を再沈させた。その後、再沈によって得られた固形分をTHF50mLに溶解させた後、メタノール500mLを加えて固形分を再沈殿させる操作を、2回繰り返してから、0.1Paの真空条件下において、25℃で3時間乾燥させた。
この結果、精製物として、コアシェル型のハイパーブランチポリマーである淡黄色の固体を22g得た。得られた淡黄色の固体の収率は74%であった。また、得られたコアシェル型のハイパーブランチポリマーのモル比率を、1H−NMRによって計算した。この結果、コアシェル型のハイパーブランチポリマーにおけるコア/シェル比は、モル比で3/7であった。
(金属洗浄および脱保護)
つぎに、実施例2の金属洗浄および脱保護について説明する。実施例2の金属洗浄および脱保護に際しては、上述したシェル部が形成されたコアシェル型のハイパーブランチポリマー10gを、メチルイソブチルケトン100gに溶解した溶液に、超純水を用いて調製した5質量%塩酸水溶液100gを合わせて、80℃で2時間激しく攪拌した。撹拌した後、撹拌した後の溶液から有機層を取り出し、取り出された有機層に、再び、3質量%シュウ酸水溶液50gと1質量%塩酸水溶液50gとを合わせ、室温で30分間激しく攪拌する操作を、4回繰り返した。
その後、撹拌した後の溶液から有機層を取り出し、超純水100gと合わせて、室温において、30分激しく攪拌し、有機層を取り出す操作を、3回繰り返した。そして、最終的に得られた有機層から溶媒を留去して乾燥させ、実施例2のコアシェル型のハイパーブランチポリマーの固体6gを得た。実施例2のコアシェル型のハイパーブランチポリマーの収率は66%であった。
また、実施例2のコアシェル型のハイパーブランチポリマーにおける酸分解性基と酸基との比率は、酸分解性基/酸基=70/30であった。溶媒が除去された有機層(共重合体)における含有金属量を計測した。この結果、溶媒が除去された有機層における銅、ナトリウム、鉄、アルミニウムの含有量は、10ppb以下であった。
(参考例1)
(4−ビニル安息香酸−tert−ブチルエステルの合成)
つぎに、参考例1の4−ビニル安息香酸−tert−ブチルエステルの合成について説明する。参考例1においては、Synthesis,833−834(1982)を参考にして、以下に示す合成方法にしたがって、4−ビニル安息香酸−tert−ブチルエステルを合成をした。
参考例1の4−ビニル安息香酸−tert−ブチルエステルの合成に際しては、まず、滴下ロートを取り付けた1Lの反応容器に、アルゴンガス雰囲気下で、4−ビニルベンゾイックアシッド91g、1,1'-カルボジイミダゾール99.5g、4−tertブチルピロカテコール、脱水ジメチルホルムアミド500gを加えて、反応容器内を含む反応系全体を30℃に保った状態で1時間攪拌した。攪拌した後、攪拌した後の反応系に、1.8ジアザビシクロ[5.4.0]−7−ウンデセン93gと脱水2−メチル−2−プロパノール91gとを加えて4時間攪拌した。
上述した攪拌による反応終了後、反応終了後の反応系に、ジエチルエーテル300mLと10%炭酸カリウム水溶液とを加えて、目的物である4−ビニル安息香酸−tert−ブチルエステルをエーテル層に抽出した。抽出した後、抽出によって得られたジエチルエーテル層を減圧乾燥することによって、淡黄色の液体を得た。1H−NMRよって目的物である4−ビニル安息香酸−tert−ブチルエステルが得られていることを確認した。参考例1の4−ビニル安息香酸−tert−ブチルエステルの収率は、88%であった。
(実施例3)
(ハイパーブランチポリマーのコア部の合成)
つぎに、実施例3のハイパーブランチポリマーのコア部の合成について説明する。実施例3のハイパーブランチポリマーのコア部の合成に際しては、まず、攪拌機および冷却管を取り付けた2Lの4つ口反応容器に、ペンタメチルジエチレントリアミン25.5g、塩化銅(I)14.6gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン460mLを加えてから、クロロメチルスチレン90.0gを5分間で滴下し、反応容器内を含む反応系全体の温度を125℃一定に保ちながら加熱攪拌した。滴下時間を含めた反応時間は、27分とした。
上述した加熱撹拌による反応終了後、反応終了後の反応系を濾過して不溶物を除去した。濾過後、濾過後の濾液に、超純水を用いて調整した3質量%シュウ酸水溶液500mLを加えて20分攪拌し、攪拌した後に、攪拌した後の溶液から水層を取り除いた。水層を取り除いた溶液に超純水を用いて調整した3質量%シュウ酸水溶液を加えて攪拌し、攪拌した後の溶液から水層を取り除く操作を4回繰り返すことで、反応触媒である銅を取り除いた。
つづいて、銅を取り除いた溶液に、メタノール700mLを加えて固形分を再沈させた。その後、再沈によって得られた固形分に、THF:メタノール=2:8の混合溶媒を1200mL加えて、固形分を洗浄した。洗浄した後、デカンテーションによって溶媒を取り除いた。溶媒が取り除かれた固形分にメタノールを加えて再び固形分を再沈させ、再沈によって得られた固形分にTHF:メタノール=2:8の混合溶媒を加えて、固形分を洗浄した。洗浄した後、デカンテーションによって溶媒を取り除く操作を、2回繰り返してから、固形分を乾燥させた。
この結果、精製物として、実施例2のハイパーブランチポリマーのコア部(以下、「ハイパーブランチコアポリマー」という。)を得た。得られたハイパーブランチコアポリマーの収率は72%であった。また、得られたハイパーブランチコアポリマーの重量平均分子量(Mw)は2000であり、分岐度(Br)は0.5であった。
(ハイパーブランチポリマーのシェル部の合成)
つぎに、実施例3のハイパーブランチポリマーのシェル部の合成について説明する。実施例3のハイパーブランチポリマーのシェル部の合成に際しては、まず、攪拌機および冷却管を取り付けた1Lの4つ口反応容器に、上述した実施例3のハイパーブランチコアポリマー10g、ペンタメチルジエチレントリアミン2.8g、塩化銅(I)1.6gを量り取り、反応容器を含む反応系全体を真空化して、十分に脱気した。つづいて、アルゴンガス雰囲気下で、反応溶媒のクロロベンゼン400mLを加えてから、上述した参考例1で合成した4−ビニル安息香酸−tert−ブチルエステル40gをシリンジで注入し、120℃で3時間加熱攪拌した。
上述した加熱撹拌による重合反応終了後、重合反応終了後の反応系を濾過して不溶物を除去した。濾過後、濾過後の濾液に、3質量%シュウ酸水溶液を加えて、20分攪拌した。撹拌した後、撹拌した後の溶液から水層を取り除いた。水層を取り除いた後の溶液に超純水を用いて調製した3質量%シュウ酸水溶液を加えて攪拌し、撹拌した後の溶液から水層を取り除く操作を、4回繰り返すことで、反応触媒である銅を取り除いた。
つづいて、銅を取り除いた後に得られた溶液に、メタノール700mLを加えて固形分を再沈させた。その後、再沈によって得られた固形分をTHF50mLに溶解させた後、メタノール500mLを加えて固形分を再沈殿させる操作を、2回繰り返してから、0.1Paの真空条件下において、25℃で3時間乾燥させた。
この結果、精製物として、コアシェル型のハイパーブランチポリマーである淡黄色の固体を20g得た。得られた淡黄色の固体の収率は48%であった。また、得られたコアシェル型のハイパーブランチポリマーのモル比率を、1H−NMRによって計算した。この結果、コアシェル型のハイパーブランチポリマーにおけるコア/シェル比は、モル比で3/7であった。
(金属洗浄および脱保護)
つぎに、実施例3の金属洗浄および脱保護について説明する。実施例3の金属洗浄および脱保護に際しては、上述したシェル部が形成されたコアシェル型のハイパーブランチポリマー10gを、メチルイソブチルケトン100gに溶解した溶液に、超純水を用いて調製した5質量%クエン酸水溶液50gと10質量%硫酸水溶液50gとを合わせて、90℃で3時間激しく攪拌した。撹拌した後、撹拌した後の溶液から有機層を取り出し、取り出された有機層に、再び、3質量%クエン酸水溶液50gと1質量%塩酸水溶液50gとを合わせ、室温で30分間激しく攪拌する操作を、4回繰り返した。
その後、撹拌した後の溶液から有機層を取り出し、5質量%クエン酸水溶液50gと1質量%硫酸水溶液50gと合わせて、室温において、30分激しく攪拌し、有機層を取り出す操作を、4回繰り返した。さらに、取り出された有機層に、超純水100gを合わせて、室温において、30分激しく攪拌し、有機層を取り出す操作を、3回繰り返した。
そして、最終的に得られた有機層から溶媒を留去して乾燥させ、実施例3のコアシェル型のハイパーブランチポリマーの固体6gを得た。実施例3のコアシェル型のハイパーブランチポリマーの収率は69%であった。
また、実施例3のコアシェル型のハイパーブランチポリマーにおける酸分解性基と酸基との比率は、酸分解性基/酸基=50/50であった。溶媒が除去された有機層(共重合体)における含有金属量を計測した。この結果、溶媒が除去された有機層における銅、ナトリウム、鉄、アルミニウムの含有量は、10ppb以下であった。
(比較例1)
つぎに、比較例1のハイパーブランチポリマーの合成について説明する。比較例1のハイパーブランチポリマーの合成に際しては、上述した実施例1と同様にコアポリマーを合成し、引き続いてシェル部を導入した。
(金属洗浄および脱保護)
つぎに、比較例1の金属洗浄および脱保護について説明する。比較例1の金属洗浄および脱保護に際しては、上述したシェル部が形成されたコアシェル型のハイパーブランチポリマー10gを、メチルイソブチルケトン100gに溶解した溶液に、超純水を用いて調製した5質量%クエン酸水溶液50gと10質量%硫酸水溶液50gとを合わせて、室温で3時間激しく攪拌した。撹拌した後、撹拌した後の溶液から有機層を取り出し、取り出された有機層に、再び、3質量%クエン酸水溶液50gと1質量%塩酸水溶液50gとを合わせ、室温で30分間激しく攪拌する操作を、5回繰り返した。
その後、撹拌した後の溶液から有機層を取り出し、取り出された有機層に超純水100gを合わせて、室温において、30分激しく攪拌し、有機層を取り出す操作を、3回繰り返した。そして、最終的に得られた有機層から溶媒を留去して乾燥させ、比較例1のコアシェル型のハイパーブランチポリマーの固体8gを得た。比較例1のコアシェル型のハイパーブランチポリマーの収率は80%であった。
また、実施例3のコアシェル型のハイパーブランチポリマーにおける酸分解性基と酸基との比率は、酸分解性基/酸基=99/1であった。溶媒が除去された有機層(共重合体)における含有金属量を計測した。この結果、溶媒が除去された有機層における銅、ナトリウム、鉄、アルミニウムの含有量は、10ppb以下であった。
(レジスト組成物の調製)
つぎに、実施例のレジスト組成物の調製について説明する。実施例においては、上述した実施例1〜4および比較例1(頂いたデータ上では「比較例1-2」となっておりました。追加する比較例がございましたらご連絡ください。)で得られたそれぞれのコアシェル型のハイパーブランチポリマーを4.0質量%と、光酸発生剤としてトリフェニルスルホニウムトリフルオロメタンスルホネートを0.16質量%と、を含有するプロピレングリコールモノメチルアセテート(PEGMEA)溶液を作成し、細孔径0.45μmのフィルターで濾過して、実施例のレジスト組成物を調製した。
上述のようにして調整したレジスト組成物をシリコンウエハ上にスピンコートし、レジスト組成物がスピンコートされたシリコンウエハに対して90℃にて1分間の熱処理をおこなって溶媒を蒸発させた。この結果、シリコンウエハ上に厚さ100nmの薄膜を作成した。
(紫外線照射感度)
つぎに、実施例のレジスト組成物の紫外線照射感度について説明する。実施例のレジスト組成物の紫外線照射感度は、以下の方法によって測定した。実施例のレジスト組成物の紫外線照射感度の測定に際しては、光源として、放電管式紫外線照射装置(アトー株式会社製、DF−245型ドナフィックス)を用いた。
前述した光源を用いて、シリコンウエハ上に成膜した薄膜における縦10mm×横3mmの長方形の部分に、波長245nmの紫外線を照射することによって、各薄膜を露光した。露光に際しては、エネルギー量を0mJ/cm2〜50mJ/cm2まで変化させた。露光後、シリコンウエハに対して、100℃にて4分間の熱処理をおこない、熱処理後のシリコンウエハを、テトラメチルアンモニウムヒドロキサイド(TMAH)2.4質量%水溶液中に25℃にて2分間浸漬させて現像した。
現像後、各シリコンウエハ水洗し、乾燥させ、乾燥後の膜厚を測定して、現像後の膜厚がゼロになる照射エネルギー値(感度)を測った。膜厚の測定は、薄膜測定装置(Filmetrics株式会社製薄膜測定装置F20)を用いておこなった。測定の結果を表1に示した。表1に示したように、金属洗浄と同時に脱保護をおこなうためには、加熱条件下に置くことが重要であることがわかる。
Figure 2008163150

Claims (5)

  1. 金属触媒の存在下におけるモノマーのリビングラジカル重合を経てハイパーブランチポリマーを合成するハイパーブランチポリマーの合成方法であって、
    前記リビングラジカル重合によって生成されたハイパーブランチポリマーをコア部とし、当該コア部に酸分解性基を導入することによりシェル部を形成するシェル部形成工程と、
    酸性物質を用いて、前記シェル部形成工程後の反応系の中に存在する金属の除去と、前記シェル部形成工程において合成されたハイパーブランチポリマーのシェル部を形成する酸分解性基の一部を分解することによる酸基の形成とをおこなう精製工程と、
    を同一工程内で40〜120℃で行うことを含むことを特徴とするハイパーブランチポリマーの合成方法。
  2. 請求項1に記載のハイパーブランチポリマーの合成方法にしたがって製造されたことを特徴とするハイパーブランチポリマー。
  3. 請求項2に記載のハイパーブランチポリマーを包含することを特徴とするレジスト組成物。
  4. 請求項3に記載のレジスト組成物によってパターンを形成されることを特徴とする半導体集積回路。
  5. 請求項4に記載のレジスト組成物を用いてパターンを形成する工程を含むことを特徴とする半導体集積回路の製造方法。
JP2006353218A 2006-12-27 2006-12-27 ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法 Pending JP2008163150A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353218A JP2008163150A (ja) 2006-12-27 2006-12-27 ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353218A JP2008163150A (ja) 2006-12-27 2006-12-27 ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法

Publications (1)

Publication Number Publication Date
JP2008163150A true JP2008163150A (ja) 2008-07-17

Family

ID=39693058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353218A Pending JP2008163150A (ja) 2006-12-27 2006-12-27 ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法

Country Status (1)

Country Link
JP (1) JP2008163150A (ja)

Similar Documents

Publication Publication Date Title
JP4190538B2 (ja) ハイパーブランチポリマー、ハイパーブランチポリマーの製造方法、およびレジスト組成物
JPWO2007020734A1 (ja) ナノ平滑性とエッチング耐性を有するフォトレジストポリマーならびにレジスト組成物
JP2007241121A (ja) 極端紫外線用レジスト組成物
JP2008163056A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008179770A (ja) コアシェル型ハイパーブランチポリマーの合成方法、コアシェル型ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008163242A (ja) コアシェル型ハイパーブランチポリマーの合成方法
JP2008184513A (ja) ハイパーブランチポリマーの合成方法
JP2008163245A (ja) スターポリマーの合成方法
JP2008163243A (ja) スターポリマーの合成方法
JP2007206537A (ja) 溶解性を向上させたレジスト組成物の製造方法
JP2009144059A (ja) コアシェル型ハイパーブランチポリマー、レジスト組成物、半導体装置の製造方法および半導体装置
JP2008179764A (ja) ハイパーブランチポリマーの合成方法
JP2008163244A (ja) コアシェル型ハイパーブランチポリマーの合成方法
JP2008163152A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008179760A (ja) ハイパーブランチポリマーの合成方法
JP4327196B2 (ja) レジスト組成物
JP2008163104A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008163150A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JPWO2008081894A1 (ja) コアシェル型ハイパーブランチポリマーの合成方法
JP4190563B2 (ja) ハイパーブランチポリマーの製造方法
JP2008179767A (ja) ハイパーブランチポリマーの合成方法
JP2009091506A (ja) コアシェル型ハイパーブランチポリマー、レジスト組成物およびコアシェル型ハイパーブランチポリマーの製造方法
JP2008179769A (ja) コアシェル型ハイパーブランチポリマーの合成方法、コアシェル型ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008179772A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法
JP2008163149A (ja) ハイパーブランチポリマーの合成方法、ハイパーブランチポリマー、レジスト組成物、半導体集積回路、および半導体集積回路の製造方法