JP2008159865A - イオン性化合物 - Google Patents
イオン性化合物 Download PDFInfo
- Publication number
- JP2008159865A JP2008159865A JP2006347413A JP2006347413A JP2008159865A JP 2008159865 A JP2008159865 A JP 2008159865A JP 2006347413 A JP2006347413 A JP 2006347413A JP 2006347413 A JP2006347413 A JP 2006347413A JP 2008159865 A JP2008159865 A JP 2008159865A
- Authority
- JP
- Japan
- Prior art keywords
- group
- general formula
- electrolyte
- ionic
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C(C(*)=C1*)=C(*)[N+]1(*)[O-] Chemical compound *C(C(*)=C1*)=C(*)[N+]1(*)[O-] 0.000 description 5
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
- Fuel Cell (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Conductive Materials (AREA)
Abstract
Description
また、有機極性溶媒としてのγ−ブチロラクトンに、溶質としてペンタアルキルグアニジン類のカルボン酸塩を溶解してなる電解コンデンサ駆動用電解液が開示されている(例えば、特許文献2参照。)。しかしながら、三級アンモニウム塩系電解液は、四級アンモニウム塩系電解液に比較して、電気伝導率が充分ではないことから、電解質としての信頼性が高く、さらに電気伝導率の高い電解液を開発する工夫の余地があった。
すなわち本発明は、下記一般式(1);
以下に本発明を詳述する。
上記一般式(1)において、Xは、B、C、N、O、Al、Si、P、As及びSeからなる群より選択される少なくとも1種の元素を表すが、C、N又はOが好ましい。より好ましくは、C又はNである。上記Xとして更に好ましくは、後述するようにCである。M1及びM2は、同一又は異なって、連結基を表すが、それぞれ独立に、−S−、−O−、−SO2−及び−CO−からなる群より選択される少なくとも1種の連結基であることが好適である。より好ましくは、−SO2−、−CO−である。また、Qは、1価の元素又は有機基を表すが、水素元素;ハロゲン元素;アルキル基、アリル基、アシル基、その置換誘導体;CpF(2p+1−q)Hq、OCpF(2p+1−q)Hq、SO2CpF(2p+1−q)Hq、CO2CpF(2p+1−q)Hq、SO3C6F5−rHr、NO2(式中、1≦p≦6、0<q≦13、0<r≦5である)からなる群より選ばれる少なくとも1種の1価の元素又は有機基であることが好適である。より好ましくは、フッ素元素、塩素元素、CpF(2p+1−q)Hq、SO2CpF(2p+1−q)Hqである。更に、aは、1以上の整数であり、b、c、d及びeは、0以上の整数であるが、a、d及びeは、元素Xの価数によって決まることになり、例えば、Xが酸素元素の場合、a=1、d=0、e=0となり、Xが窒素元素の場合、(1)a=2、d=0、e=0、(2)a=1、d=1、e=0、又は、(3)a=1、d=0、e=1のいずれかとなる。また、b及びcは0であることが好適である。すなわち、シアノ基が直接Xに結合する形態が好ましく、この場合、M1及びM2で表される基を有さないことになる。
上記一般式(1)で表されるアニオンとしてはまた、一般式(1)においてeが0である下記一般式(5)で表されるアニオンが好ましい。より好ましくは、トリシアノメチドアニオン、ジシアノアミドアニオン、チオイソシアネートアニオン、シアノオキシアニオンであり、更に好ましくは、ジシアノアミドアニオン、トリシアノメチドアニオンであり、フッ素を含まず、電極等の耐腐食性に優れるため好ましい。特に好ましくは、トリシアノメチドアニオンである。また、下記一般式(6)や(7)で表されるもの等も好ましいアニオンである。
上記1価の元素、官能基又は有機基としてより好ましくは、水素元素、フッ素元素、シアノ基、スルホン基、炭素数1〜8の炭化水素基、酸素もしくは窒素元素を含有する炭素数1〜8の炭化水素基、炭素数1〜8の炭化フッ素基であり、更に好ましくは、炭素数1〜8の炭化水素基、酸素もしくは窒素元素を含有する炭素数1〜8の飽和炭化水素基である。また、窒素元素を含有する場合、その窒素元素は水素元素を有しない(窒素元素に水素元素が結合又は配位していない)ものが好ましい。
上記カチオンとしては、上記一般式(2)を満たすものであれば特に限定されないが、中でも、Lが窒素元素である形態、オニウムカチオンである形態がより好ましい。
すなわち、下記一般式(1);
(I)下記一般式;
(II)下記一般式;
(III)下記一般式;
上記一般式中、R4〜R14は、同一若しくは異なって、1価の元素、官能基又は有機基であり、互いに結合していてもよく、O、N、S、Pカチオン上のRは、1価の元素、官能基又は有機基であればいずれも好適に用いることができるが、水素元素以外であることが好ましい。
(IV)Rの1つ以上が水素元素で、C1〜C8のアルキル基である鎖状オニウムカチオン。このようなオニウムカチオンの中でも、より好ましくは、上記一般式(2)におけるLが窒素原子であるものである。
上記Lが窒素原子であるオニウムカチオンとしては、下記一般式;
上記オニウムカチオンを有する有機化合物としては、例えば、ハロゲンアニオン(フルオロアニオン、クロロアニオン、ブロモアニオン、ヨードアニオン)、4フッ化ホウ酸アニオン、6フッ化リン酸アニオン、4フッ化アルミン酸アニオン、6フッ化ヒ酸アニオン、下記一般式(8)で表されるスルホニルイミドアニオン、下記一般式(9)で表されるスルホニルメチドアニオン、有機カルボン酸(酢酸、トリフルオロ酢酸、フタル酸、マレイン酸、安息香酸等のアニオン)の他、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、ヘキサフルオロニオブ酸イオン、ヘキサフルオロタンタル酸イオン等の含フッ素無機イオン;フタル酸水素イオン、マレイン酸水素イオン、サリチル酸イオン、安息香酸イオン、アジピン酸イオン等のカルボン酸イオン;ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸等のスルホン酸イオン;ホウ酸イオン、リン酸イオン等の無機オキソ酸イオン;ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、トリス(トリフルオロメタンスルホニル)メチドイオン、パーフルオロアルキルフルオロボレートイオン、パーフルオロアルキルフルオロホスフェートイオン、ボロジカテコレート、ボロジグリコレート、ボロジサリチレート、ボロテトラキス(トリフルオロアセテート)、ビス(オキサラト)ボレート等の四配位ホウ酸イオン等のアニオンと、オニウムカチオンとを有する有機化合物が好適である。
上記アニオンを必須とするイオン性物質の場合には、上記一般式(1)で表されるアニオンのアルカリ金属塩及び/又はアルカリ土類金属塩であることが好ましい。例えば、リチウム塩の形態として用いることができる。その他のアルカリ金属塩及び/又はアルカリ土類金属塩としては、例えば、リチウム塩を用いることができ、このようなリチウム塩としては、LiC(CN)3、LiSi(CN)3、LiB(CN)4、LiAl(CN)4、LiP(CN)2、LiP(CN)6、LiAs(CN)6、LiOCN、LiSCN等が好適である。
上記重合体としては、例えば、ポリアクリロニトリル、ポリ(メタ)アクリル酸エステル類、ポリ塩化ビニル、ポリフッ化ビニリデン等のポリビニル系重合体;ポリオキシメチレン:ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテル系重合体;ナイロン6、ナイロン66等のポリアミド系重合体;ポリエチレンテレフタレート等のポリエステル系重合体;ポリスチレン、ポリフォスファゼン類、ポリシロキサン、ポリシラン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリカーボネート系重合体、アイオネン系重合体の1種又は2種以上が好適である。
上記イオン性化合物を高分子固体電解質とする場合、重合体の存在量としては、イオン性化合物100質量%に対して、下限値が0.1質量%、上限値が5000質量%であることが好ましい。0.1質量%未満であると、固体化の効果を充分に得られないおそれがあり、5000質量%を超えると、イオン伝導度が低下するおそれがある。より好ましい下限値は1質量%、上限値は1000質量%である。
上記イオン性化合物は、揮発分が低減されものであり、かつ、例えば−55℃の低温においても凍ることがなく、イオン伝導度に優れるものであり、例えば、このようなイオン性化合物を電解液として用いた場合に優れた電気特性を発揮することができる。
上記添加剤の含有量は特に限定されないが、例えば、イオン性化合物100質量%に対して、0.1〜20質量%の範囲であることが好ましい。より好ましくは、0.5〜10質量%の範囲である。
なお、上記不純物とは、水を含まないものであり、例えば、イオン性化合物を製造する際や輸送する際に混入するものが挙げられる。具体的には、上述の一般式(1)で表されるアニオンを必須とするイオン性化合物を製造する場合を例にすると、例えば、ハロゲン化合物を用いて該イオン性化合物を誘導して得たときには、ハロゲン化合物が不純物として混入する可能性があり、また、銀塩を用いて該イオン性化合物を誘導して得たときには、銀塩が不純物として混入する可能性がある。また、製造原料や副生成物等が不純物として混入する可能性もある。
本発明においては、イオン性化合物における不純物含量を上記のように設定することにより、例えば、ハロゲン化合物が電気化学デバイスにおける電極を被毒して性能を低下させることを充分に抑制したり、銀イオンや鉄イオン等がイオン伝導性に影響して性能を低下させることを充分に抑制したりすることが可能となる。なお、不純物含有量の測定は、下記の測定方法により行うことが好ましい。
(1)ICP(銀イオン、鉄イオン等陽イオン類測定)
機器:ICP発光分光分析装置SPS4000(セイコー電子工業社製)
方法:サンプル0.3gをイオン交換水で10倍に希釈し、その溶液を測定
(2)イオンクロマト(硝酸イオン、臭素イオン、塩素イオン、硫酸イオン等陰イオン類測定)
機器:イオンクロマトグラフシステムDX−500(日本ダイオネクス社製)
分離モード:イオン交換
検出器:電気伝導度検出器CD−20
カラム:AS4A−SC
方法:サンプル0.3gをイオン交換水で100倍に希釈し、その溶液を測定
なお、水分含有量の測定は、下記の測定方法により行うことが好ましい。
(水分測定方法)
サンプル調製においては、露点−80℃以下のグローボックス中で測定サンプル0.25g、脱水アセトニトリル0.75gを混合し、グローボックス中で充分乾燥したテルモシリンジ(商品名、2.5ml)で混合溶液0.5gを採取することにより行う。その後、カールフィッシャー水分計AQ−7(商品名、平沼産業社製)にて水分測定を行う。
上記電解質は、電解液用材料又は電解質用材料の意味であって、(1)電解液を構成する溶媒及び/又は(2)電解質の材料(イオン伝導体用材料)として、また、(3)固体電解質の材料(電解質用材料)として電気化学デバイスのイオン伝導体に好適に用いることができるものである。例えば、(1)の場合は、本発明の電解質とともに、溶媒中でイオン伝導性を示す物質を含有させることによって、電解液(又は固体電解質)を構成することになる。(2)の場合は、本発明の電解質を溶媒中に含有させることによって、電解質の材料を構成することになる。(3)の場合は、本発明の電解質をそのまま又は他の成分を含有させて固体電解質とすることになる。
上記マトリックス材料は、有機溶媒を必須とする電解質であることが好ましい。このような有機溶媒としては、上述の有機溶媒と同様のものが好適である。
上記イオン伝導体としては、電解質と有機溶媒又は重合体との混合物が好適である。有機溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、重合体を用いれば、高分子固体電解質と呼ばれるものとなる。高分子固体電解質には可塑剤として有機溶媒を含有するものも含まれる。本発明の電解質は、このようなイオン伝導体において、電解液における電解質や有機溶媒の代替として、また、高分子固体電解質として好適に適用することができ、本発明の電解質をイオン伝導体の材料として用いてなる電気化学デバイスでは、これらのうちの少なくとも1つが、本発明の電解質により構成されることになる。これらの中でも、電解液における有機溶媒の代替、又は、高分子固体電解質として用いることが好ましい。
(1)リチウム二次電池
リチウム二次電池は、正極、負極、正極と負極との間に介在するセパレータ及び本発明の電解質を用いてなるイオン伝導体を基本構成要素として構成されるものである。この場合、本発明の電解質にはイオン伝導性を示す物質としてリチウム塩が含有されていることになる。このようなリチウム二次電池としては、水電解質以外のリチウム二次電池である非水電解質リチウム二次電池であることが好ましい。リチウム二次電池の一形態の断面模式図を図1に示す。このリチウム二次電池は、後述する負極活物質としてコークスを用い、正極活物質としてCoを含有する化合物を用いたものであるが、このようなリチウム二次電池おいて、充電時には、負極においてC6Li→6C+Li+e−の反応が起こり、負極表面で発生した電子(e−)は、電解液中をイオン伝導して正極表面に移動し、正極表面では、CoO2+Li+e−→LiCoO2の反応が起こり、負極から正極へ電流が流れることになる。放電時には、充電時の逆反応が起こり、正極から負極へ電流が流れることになる。このように、イオンによる化学反応により電気を蓄えたり、供給したりすることとなる。
上記負極活物質としては、金属リチウム、リチウムイオンを吸蔵・放出することが可能な材料等が好適である。上記リチウムイオンを吸蔵・放出することが可能な材料としては、金属リチウム;熱分解炭素;ピッチコークス、ニードルコークス、石油コークス等のコークス;グラファイト;ガラス状炭素;フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したものである有機高分子化合物焼成体;炭素繊維;活性炭素等の炭素材料;ポリアセチレン、ポリピロール、ポリアセン等のポリマー;Li4/3Ti5/3O4、TiS2等のリチウム含有遷移金属酸化物又は遷移金属硫化物;アルカリ金属と合金化するAl、Pb、Sn、Bi、Si等の金属;アルカリ金属を格子間に挿入することのできる、AlSb、Mg2Si、NiSi2等の立方晶系の金属間化合物や、Li3−fGfN(G:遷移金属)等のリチウム窒素化合物等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、アルカリ金属イオンを吸蔵・放出できる金属リチウムや炭素材料がより好ましい。
上記正極活物質としては、金属Li、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1−yO2、LixCoyJ1−yOz、LixNi1−yJyOz、LixMn2O4、LixMn2−yJyO4;MnO2、VgOh、CrgOh(g及びhは、1以上の整数)等のリチウムを含まない酸化物等が好適である。これらは1種又は2種以上を用いることができる。
上記Jは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBから選ばれた少なくとも1種の元素を表す。また、xは、0≦x≦1.2であり、yは、0≦y≦0.9であり、zは、2.0≦z≦2.3であり、xは、電池の充放電により増減することとなる。また、正極活物質としては、遷移金属カルコゲン化物、リチウムを含んでいてもよいバナジウム酸化物やニオブ酸化物、共役系ポリマーからなる有機導電性物質、シェブレル相化合物等を用いてもよい。正極活物質粒子の平均粒径としては、1〜30μmであることが好ましい。
上記正極用集電体としては、用いる正極活物質の充放電電位において化学変化を起こさない電子伝導体であればよく、ステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂、アルミニウムやステンレス鋼の表面に炭素、チタン等を付着又は被膜させたもの等が好適である。これらは1種又は2種以上を用いることができる。これらの中でも、アルミニウム又はアルミニウムを含む合金が好ましい。また、これらの正極用集電体の表面を酸化して用いることもできる。更に、集電体表面に凹凸を付けることが望ましい。正極用集電体の形状及び厚さとしては、上述した負極集電体と同様である。
またセパレータの表面は、予めコロナ放電処理、プラズマ放電処理、その他界面活性剤を用いた湿式処理により、その疎水性が低減するように改質しておくことが好ましい。これによりセパレータの表面及び空孔内部の濡れ性が向上し、電池の内部抵抗の増加を極力抑制することが可能となる。
上記リチウム二次電池の形状としては、コイン形、ボタン形、シート形、積層形、円筒形、偏平形、角形、電気自動車等に用いる台形等が挙げられる。
電解コンデンサとしては、上記電解液を用いることが好適であるが、中でも、上述した電解コンデンサの駆動用電解液を用いてなる電解コンデンサが好ましく、このような形態は、本発明の好ましい形態の一つである。
電解コンデンサは、陽極箔、陰極箔、陽極箔と陰極箔との間に挟まれたセパレータである電解紙及びリード線より構成されるコンデンサ素子と、本発明の電解質を用いてなるイオン伝導体と、有底筒状の外装ケースと、外装ケースを密封する封口体とを基本構成要素として構成されているものである。コンデンサ素子の一形態の斜視図を図2(a)に示す。本発明における電解コンデンサは、コンデンサ素子に上記電解質材料を用いてなるイオン伝導体である電解液を含浸し、該コンデンサ素子を有底筒状の外装ケースに収納し、外装ケースの開口部に封口体を装着するとともに、外装ケースの端部に絞り加工を施して外装ケースを密封することにより得ることができるものである。このような電解コンデンサとしては、アルミニウム電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサが好適である。アルミニウム電解コンデンサの一形態の断面模式図を図2(b)に示す。このようなアルミニウム電解コンデンサとしては、電解エッチング又は蒸着により細かな凹凸を作って粗面化したアルミニウム箔の表面に陽極酸化によって形成した薄い酸化皮膜(酸化アルミニウム)を誘電体とするものが好適である。
またアルミニウム電解コンデンサの要部切断断面を図2(c)に示す。図2(c)は、粗面化処理及び酸化皮膜形成処理をした陽極箔1と陰極箔2とをセパレータ3を介して巻回したコンデンサ素子6を形成し、このコンデンサ素子は駆動用電解液(以下、電解液と称す)に含浸した後、有底筒状の外装ケース8に収納する。陽極及び陰極引き出しリード4、5を弾性封口体7に形成した貫通孔に挿入して引き出し、外装ケースの開口部には、弾性封口体7を装着し、絞り加工により密閉した構造をしている。
本発明のイオン性化合物を供した電解液を用いたアルミニウム電解コンデンサの構造は、新たに提案されているアルミニウム電解コンデンサの構造においても用いてもよく、例えば、エッチング処理及び酸化皮膜形成処理をした陽極箔と陰極箔とをセパレータを介して積層した構造よりなるアルミニウム電解コンデンサ等が挙げられる。
上記陰極箔としては、化学的又は電気化学的にエッチングして拡面処理したアルミニウム箔の一部又は全部に、窒化チタン、窒化ジルコニウム、窒化タンタル及び窒化ニオブから選ばれる1種以上の金属窒化物、及び/又は、チタン、ジルコニウム、タンタル及びニオブから選ばれる1種以上の金属より構成される皮膜を形成したアルミニウム箔を用いることができる。
上記皮膜の形成方法としては、蒸着法、メッキ法、塗布法等を挙げることができ、皮膜を形成する部分としては、陰極箔の全面に被覆してもよいし、必要に応じて陰極箔の一部、例えば陰極箔の一面のみに金属窒化物又は金属を被覆してもよい。
上記封口体は、リード線をそれぞれ導出する貫通孔を備え、例えば、ブチルゴム等の弾性ゴムより構成されるものであることが好適であり、ブチルゴムとしては、例えば、イソブチレンとイソプレンとの共重合体からなる生ゴムに補強剤(カーボンブラック等)、増量剤(クレイ、タルク、炭酸カルシウム等)、加工助剤(ステアリン酸、酸化亜鉛等)、加硫剤等を添加して混練した後、圧延、成型したゴム弾性体を用いることができる。加硫剤としては、アルキルフェノールホルマリン樹脂;過酸化物(ジクミルペルオキシド、1,1−ジ−(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキサン等);キノイド(p−キノンジオキシム、p,p′−ジベンゾイルキノンジオキシム等);イオウ等を用いることができる。なお、封口体の表面をテフロン(登録商標)等の樹脂でコーティングしたり、ベークライト等の板を貼り付けたりすると、溶媒蒸気の透過性が低減するので更に好ましい。
上記セパレータとしては、通常マニラ紙やクラフト紙等の紙が用いられるが、ガラス繊維、ポリプロピレン、ポリエチレン等の不織布を用いることもできる。
電気二重層キャパシタは、負極、正極及び本発明の電解質を用いてなるイオン伝導体を基本構成要素として構成されているものであり、好ましい形態としては、対向配置した正極及び負極からなる電極素子に、イオン伝導体である電解液を含ませたものである。このような電気二重層キャパシタの一形態の断面模式図及び電極表面の拡大模式図を図6に示す。
上記電極活物質としては、活性炭以外にも上述の高比表面積を有する炭素材料を用いてもよく、例えば、カーボンナノチューブやプラズマCVDにより作製したダイヤモンド等を用いてもよい。
上記電気二重層キャパシタの形状としては、コイン型、巻回型、角型、アルミラミネート型等が挙げられ、いずれの形状としてもよい。
温度計、窒素ガス導入管、還流冷却管、攪拌装置、及び、滴下漏斗を備えたフラスコに硝酸銀41.2g(0.24mol)、イオン交換水250mlを加え攪拌し、硝酸銀を完全に溶解させた。次いで滴下漏斗にカリウムトリシアノメチド(以下、KTCMと記す)26.1g(0.20mol)の30%水溶液を入れ、硝酸銀溶液に対し室温、1時間で滴下した。得られた白色固体を濾別し、イオン交換水300mlで洗浄した。この洗浄工程を5回繰り返した。
次いで白色固体にイオン交換水300mlを加え、セパラブルフラスコに入れ攪拌することでスラリー状にし、ここに滴下漏斗に入れたトリエチルアンモニウムブロミド27.3g(0.15mol)50%水溶液を室温で1時間かけて滴下した。更に室温で1時間攪拌した後、得られた反応液をメンブレンフィルター(親水タイプ、孔径0.2μm)でろ過を行った。得られた水溶液をエバポレーターで濃縮することで、トリエチルアンモニウムトリシアノメチド(以下、TEATCMと記す)27.0g(0.14mol)を得た。収率は94%であった。
イオン交換水で十分に洗浄したイオン交換樹脂(製品名:アンバーライトIR120−H(120ml)をカラム管に充填し、ここにKTCM19.3g(0.15mol)0.2mol/l水溶液を4時間かけて通液させた。得られた水溶液をビーカーに入れ、そこへトリエチルアミン30.2g(0.30mol)の50%メタノール溶液を室温で加えた。30分攪拌した後、得られた水溶液をエバポレーターで濃縮することでTEATCM28.5g(0.15mol)を得た。収率は99%であった。
実施例2におけるトリエチルアミンをピリジンに変更した以外、同様の方法を用いてピリジニウムトリシアノメチドを得た。収率は93%であった。
実施例2におけるトリエチルアミンをメチルピロリジンに変更した以外は、同様の方法を用いて1−メチルピロリジウムトリシアノメチドを得た。収率は95%であった。
実施例2におけるトリエチルアミンをN,N−ジメチルヘキシルアミンに変更した以外は、同様の方法を用いてN,N−ジメチルヘキシルアンモニウムトリシアノメチドを得た。収率は93%であった。
実施例2におけるトリエチルアミンを4−アザ−1−アゾニア−[2,2,2]−ビシクロオクタンに変更した以外、同様の方法を用いて4−アザ−1−アゾニア−[2,2,2]−ビシクロオクタントリシアノメチドを得た。収率は92%であった。
実施例1におけるトリエチルアンモニウムブロミドを8−アザ−1−アゾニアビシクロ[5,4,0]ウンデ−7−センブロミドに変更した以外、同様の方法を用いて8−アザ−1−アゾニアビシクロ[5,4,0]ウンデ−7−セントリシアノメチドを得た。収率は90%であった。
実施例1におけるトリエチルアンモニウムブロミドを5−アザ−1−アゾニアビシクロ[4,3,0]ノン−5−ネンブロミドに変更した以外、同様の方法を用いて5−アザ−1−アゾニアビシクロ[4,3,0]ノン−5−ネントリシアノメチドを得た。収率は88%であった。
実施例2におけるトリエチルアミンをN,N,N´,N´−テトラメチルグアニジンに変更した以外、同様の方法を用いてN,N,N´,N´−テトラメチルグアニジニウムトリシアノメチドを得た。収率は91%であった。
実施例2におけるトリエチルアミンをジメチルフェニルアミンに変更した以外、同様の方法を用いてジメチルフェニルアンモニウムトリシアノメチドを得た。収率は95%であった。
実施例2におけるトリエチルアミンをN−メチルイミダゾールに変更した以外、同様の方法を用いてN−メチルイミダゾリウムトリシアノメチドを得た。収率は98%であった。
実施例2におけるトリエチルアミンをトリメチルアミンに変更した以外、同様の方法を用いてトリメチルアンモニウムトリシアノメチドを得た。収率は97%であった。
実施例2におけるトリエチルアミンをジメチルエチルアミンに変更した以外、同様の方法を用いてジメチルエチルアンモニウムトリシアノメチドを得た。収率は97%であった。
実施例2におけるトリエチルアミンを3,5,7−トリアザ−1−アゾニア−トリシクロ[3,3,1,1]デカンに変更した以外、同様の方法を用いて3,5,7−ドリアザ−1−アゾニア−トリシクロ[3,3,1,1]デカントリシアノメチドを得た。収率は97%であった。
実施例1におけるカリウムトリシアノメチドをナトリウムジシアノアミドに変更した以外、同様の方法を用いてトリエチルアンモニウムジシアノアミドを得た。収率は88%であった。
実施例2〜15の25℃におけるイオン伝導度、1H−NMR及び13C−NMRのスペクトルデータを表1に示す。また比較例1としてトリエチルアンモニウムフタレート及び比較例2としてテトラエチルアンモニウムフタレートの25℃におけるイオン伝導度を表1に示す。なお、イオン伝導度、1H−NMR及び13C−NMRの測定条件は、以下のとおりである。
測定装置:インピーダンスアナライザーSI1260(ソーラトロン社製)
方法:SUS電極、複素インピーダンス法
(1H−NMR測定条件)
溶媒:DMSO
温度:室温
装置:GEMINI−200BB gemini2000
パルスシークエンス:
リラクゼーションディレイ:1.254秒
パルス:45.4度
取り込み時間:2.741秒
スペクトル範囲:3000.3Hz
積算回数:16回
観測 H1,199.9329029MHz
データプロセッシング
データポイント数 32768
測定時間 1分
溶媒:DMSO
温度:室温
装置:GEMINI−200BB gemini2000
パルスシークエンス:
リラクゼーションディレイ:1.000秒
パルス:44.6度
取り込み時間:1.498秒
スペクトル範囲:12500.0Hz
積算回数:13712回
観測 C13, 50.2732453MHz
デカップル H1,199.9339080MHz
power 41dB
continuously on
WALTZ−16 modulated
データプロセッシング
線幅:1.0Hz
データポイント数 65536
測定時間 9.5時間
以下、本発明の実施例として、前記実施例2及び12で示した物質を供したアルミニウム電解コンデンサに用いる電解液を表2及び表3に示す配合で調製し、30℃における比抵抗を測定した。比抵抗の測定条件は、以下のとおりである。結果を表2及び表3に示す。
(比抵抗)
装置:HIOKI 3522 LCR HiTESTER
測定周波数:1kHz
測定温度:30℃
本発明におけるイオン性化合物を用いた電解液の実施例は、同じ溶質濃度である比較例4で示される四級アンモニウム塩電解液と実施例20及び29と比べて、溶質が3級塩であるにもかかわらず、充分な低比抵抗化を実現している。
表2及び表3において、溶媒にエチレングリコールを用いた実施例36は、比較例3及び4と較べて低比抵抗化がなされている。
また表2及び表3において、ニトロ化合物を添加剤として含有した場合である実施例37〜41は、急激な比抵抗上昇はみられず、比較例3及び4と較べて低比抵抗化がなされている。
表2及び表3において、リン化合物を添加剤として含有した場合である実施例42〜44は、急激な比抵抗上昇はみられず、比較例3及び4と較べて低比抵抗化がなされている。
エッチング処理及び酸化皮膜形成処理をした陽極箔と陰極箔とをマニラ麻系のセパレータを介して巻回したコンデンサ素子を形成し、このコンデンサ素子は前記電解液に含浸した後、アルミニウムよりなる有底筒状の外装ケースに収納する。化成皮膜を形成した陽極引き出しリードと陰極引き出しリードとをブチルゴムからなる弾性封口体に形成した貫通孔に押入して引き出し、外装ケースの開口部には、ブチルゴムからなる弾性封口体を装着し、絞り加工により密閉して、アルミニウム電解コンデンサを作製した。
表2及び表3の電解液(実施例18〜22、27〜31及び比較例3、4)を使用して、コンデンサ素子の仕様6.3V−1000μF(φ10×12.5mmL)のアルミニウム電解コンデンサを各20個作製した。
実施例18〜22、27〜31及び比較例3、4について、20℃、100kHzにおけるインピーダンス値、及び、20℃、100kHzにおける等価直列抵抗値を、HEWLETT PACKARD 4284A PRECISION LCR METER(Hewlett−Packard Company製)にて測定した。結果を表4に示す。
測定装置:Agilent 4263B LCR METER(Agilent Technologies, Inc製)
(水分測定方法)
サンプル調製においては、露点−80℃以下のグローボックス中で測定サンプル0.25g、脱水アセトニトリル0.75gを混合し、グローボックス中で充分乾燥したテルモシリンジ(商品名、2.5ml)で混合溶液0.5gを採取することにより行う。その後、カールフィッシャー水分計AQ−7(商品名、平沼産業社製)にて水分測定を行う。
なお、本発明は、実施例に限定されるものではなく、先に記載した各種化合物を単独又は複数溶解した電解液を用いて、いずれの材料、構造からなる電解コンデンサにも適用することができ、また、いずれの構造の電解コンデンサにおいても実施例と同等の効果を得ることができる。
2 陰極箔
3 セパレータ
4 陽極引き出しリード
5 陰極引き出しリード
6 コンデンサ素子
7 弾性封口体
8 外装ケース
9 封口体
10 加締め(又は溶接)
11 陽極タブ端子
12 陰極タブ端子
13 陽極端子
14 陰極端子
15 陽極内部端子
16 陰極内部端子
17 素子固定剤
18 リード端子
19 絶縁板
Claims (9)
- 下記一般式(1);
- 下記一般式(1);
- 前記一般式(1)におけるXは、C又はNであることを特徴とする請求項1又は2記載のイオン性化合物。
- 請求項1〜3のいずれかに記載のイオン性化合物を含有することを特徴とする電解質材料。
- 前記電解質材料は、マトリックス材料を含むことを特徴とする請求項4記載の電解質材料。
- 下記一般式(1);
- 下記一般式(1);
- 前記一般式(1)におけるXは、C又はNであることを特徴とする請求項6又は7記載の電解コンデンサの駆動用電解液。
- 請求項6〜8のいずれかに記載の電解コンデンサの駆動用電解液を用いてなることを特徴とする電解コンデンサ。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347413A JP4187113B2 (ja) | 2006-12-25 | 2006-12-25 | イオン性化合物 |
KR1020087030735A KR101375675B1 (ko) | 2006-07-27 | 2007-07-19 | 이온성 화합물 |
CN2007800276151A CN101489994B (zh) | 2006-07-27 | 2007-07-19 | 离子性化合物 |
EP07790995A EP2048131A4 (en) | 2006-07-27 | 2007-07-19 | IONIC COMPOUND |
PCT/JP2007/064241 WO2008013095A1 (fr) | 2006-07-27 | 2007-07-19 | Composé ionique |
US11/829,212 US8273263B2 (en) | 2006-07-27 | 2007-07-27 | Ionic compound |
TW096127634A TWI441804B (zh) | 2006-07-27 | 2007-07-27 | Ionic compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006347413A JP4187113B2 (ja) | 2006-12-25 | 2006-12-25 | イオン性化合物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008159865A true JP2008159865A (ja) | 2008-07-10 |
JP4187113B2 JP4187113B2 (ja) | 2008-11-26 |
Family
ID=39660449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006347413A Expired - Fee Related JP4187113B2 (ja) | 2006-07-27 | 2006-12-25 | イオン性化合物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4187113B2 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010034106A (ja) * | 2008-07-25 | 2010-02-12 | Nichicon Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
JP2012253397A (ja) * | 2012-09-28 | 2012-12-20 | Nichicon Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
JP2013139425A (ja) * | 2011-12-05 | 2013-07-18 | Nippon Synthetic Chem Ind Co Ltd:The | イオン液体、電解質及びリチウム二次電池 |
WO2014083951A1 (ja) * | 2012-11-28 | 2014-06-05 | 住友電気工業株式会社 | 溶融塩電池およびその製造方法 |
JP2014522397A (ja) * | 2011-05-31 | 2014-09-04 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | ヒドリド−トリシアノ−ボラートアニオンを含む化合物 |
JP2014241254A (ja) * | 2013-06-12 | 2014-12-25 | トヨタ自動車株式会社 | 金属空気電池 |
WO2016098508A1 (ja) * | 2014-12-16 | 2016-06-23 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
WO2016098509A1 (ja) * | 2014-12-16 | 2016-06-23 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JPWO2016052542A1 (ja) * | 2014-09-30 | 2017-07-13 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
CN114207896A (zh) * | 2019-08-07 | 2022-03-18 | Tdk株式会社 | 固体电解质、固体电解质层以及固体电解质电池 |
-
2006
- 2006-12-25 JP JP2006347413A patent/JP4187113B2/ja not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010034106A (ja) * | 2008-07-25 | 2010-02-12 | Nichicon Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
US9409925B2 (en) | 2011-05-31 | 2016-08-09 | Merck Patent Gmbh | Compounds containing hydrido-tricyano-borate anions |
JP2014522397A (ja) * | 2011-05-31 | 2014-09-04 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | ヒドリド−トリシアノ−ボラートアニオンを含む化合物 |
US9518068B2 (en) | 2011-05-31 | 2016-12-13 | Merck Patent Gmbh | Compounds containing hydrido-tricyano-borate anions |
JP2013139425A (ja) * | 2011-12-05 | 2013-07-18 | Nippon Synthetic Chem Ind Co Ltd:The | イオン液体、電解質及びリチウム二次電池 |
JP2012253397A (ja) * | 2012-09-28 | 2012-12-20 | Nichicon Corp | 電解コンデンサ駆動用電解液およびそれを用いた電解コンデンサ |
WO2014083951A1 (ja) * | 2012-11-28 | 2014-06-05 | 住友電気工業株式会社 | 溶融塩電池およびその製造方法 |
JP2014241254A (ja) * | 2013-06-12 | 2014-12-25 | トヨタ自動車株式会社 | 金属空気電池 |
JPWO2016052542A1 (ja) * | 2014-09-30 | 2017-07-13 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
JP2020194782A (ja) * | 2014-09-30 | 2020-12-03 | 三菱ケミカル株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
WO2016098509A1 (ja) * | 2014-12-16 | 2016-06-23 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JPWO2016098509A1 (ja) * | 2014-12-16 | 2017-09-28 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
US10326167B2 (en) | 2014-12-16 | 2019-06-18 | Murata Manufacturing Inc. | Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
US10553895B2 (en) | 2014-12-16 | 2020-02-04 | Murata Manufacturing Co., Ltd. | Secondary battery-use electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
WO2016098508A1 (ja) * | 2014-12-16 | 2016-06-23 | ソニー株式会社 | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
CN114207896A (zh) * | 2019-08-07 | 2022-03-18 | Tdk株式会社 | 固体电解质、固体电解质层以及固体电解质电池 |
CN114207896B (zh) * | 2019-08-07 | 2023-08-29 | Tdk株式会社 | 固体电解质、固体电解质层以及固体电解质电池 |
Also Published As
Publication number | Publication date |
---|---|
JP4187113B2 (ja) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5366460B2 (ja) | イオン性化合物 | |
JP5066334B2 (ja) | イオン性化合物 | |
US8273263B2 (en) | Ionic compound | |
JP4187113B2 (ja) | イオン性化合物 | |
JP4940285B2 (ja) | 電解液材料 | |
EP2565886A1 (en) | Material for electrolytic solution, ionic material-containing composition and use thereof | |
KR100714135B1 (ko) | 전해액용 재료 및 이의 용도 | |
JP5025092B2 (ja) | 電解液材料 | |
JP2006202646A (ja) | イオン性液体組成物、イオン伝導性材料及び電解液材料 | |
JP2007197370A (ja) | 電解質組成物 | |
JP4439797B2 (ja) | イオン伝導体用材料 | |
WO2007055392A1 (en) | Ionic compound | |
JP2007157584A (ja) | 電解質材料 | |
JP4883903B2 (ja) | 電解液材料 | |
JP2006173014A (ja) | イオン性物質含有組成物、イオン伝導性材料及びその用途 | |
JP4271971B2 (ja) | イオン性化合物 | |
JP4732764B2 (ja) | イオン性化合物の製造方法 | |
JP4249495B2 (ja) | イオン伝導性材料 | |
JP2004123653A (ja) | イオン性物質の製造方法 | |
JP2004281223A (ja) | イオン伝導性材料及びイオン性物質 | |
JP2004123652A (ja) | イオン性物質の製造方法 | |
JP2007134184A (ja) | イオン性組成物 | |
JP2004227909A (ja) | イオン性物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4187113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |