JP2008158278A - 素子駆動手段及び光路偏向素子 - Google Patents

素子駆動手段及び光路偏向素子 Download PDF

Info

Publication number
JP2008158278A
JP2008158278A JP2006347270A JP2006347270A JP2008158278A JP 2008158278 A JP2008158278 A JP 2008158278A JP 2006347270 A JP2006347270 A JP 2006347270A JP 2006347270 A JP2006347270 A JP 2006347270A JP 2008158278 A JP2008158278 A JP 2008158278A
Authority
JP
Japan
Prior art keywords
voltage
optical path
resistance film
control
path deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006347270A
Other languages
English (en)
Inventor
Toshiharu Murai
俊晴 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006347270A priority Critical patent/JP2008158278A/ja
Publication of JP2008158278A publication Critical patent/JP2008158278A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】光路偏向素子の歩留まりを向上させるとともに駆動回路規模の増大を抑え、小型で低コストの素子駆動手段を提供する。
【解決手段】基板2,3の表面に形成された抵抗膜5に電圧を印加する駆動手段10は、電圧制御回路11a〜11eで光路偏向素子1のライン電極列4のうち、両端のライン電極E1,E5と、ライン電極E1,E5の間を等間隔で分割した中間のライン電極E2,E3,E4に供給する電圧を分割して制御して、基板2,3と平行な水平電界を形成する抵抗膜5全体の抵抗値が大きくなっても電圧制御回路11a〜11eそれぞれの分割駆動領域での時定数の増大を抑制して、抵抗膜5の抵抗値の許容範囲を広げて歩留まりを向上させるとともに駆動手段10自身を構成する素子数の増加も抑制する。
【選択図】 図1

Description

この発明は、光の光路を変える光路偏向素子を駆動する素子駆動手段とそれを使用した光路偏向素子に関するものである。
液晶を使用して入射光を偏向させて出射する光路偏向素子を使用した画像表示装置が特許文献1や特許文献2あるいは特許文献3に開示されている。この画像表示装置は、液晶などの画像表示素子と画像表示素子の画像を拡大表示する光学系との間に光路偏向素子を配置する。この光路偏向素子が光路を縦横各2方向の計4方向に画素を半ピッチシフトさせる場合、1画面(フレーム)の表示内容を縦横方向に1画素おきに抽出した副画像(サブフレーム)を生成し、光路偏向素子による光路シフト動作に同期して、4つのサブフレームを画像表示素子に順次表示させることにより、より少ない画素数の表示素子で高精細の表示を実現することができる。すなわち、画像表示素子の画素数に光路偏向素子の光路シフトのレベル数を乗じた画素数の画像表示を行うことができる。
この光路をシフトする光路偏向素子として、特許文献1に示された光路偏向素子は、ホメオトロピック配向させたキラルスメクティックC液晶に横電界を印加して液晶の傾斜角を変化させ、それに伴う複屈折変化により入射する偏光光の光路を偏向させている。
また、特許文献2に示された光路偏向素子は、1対の基板の間に設けられ、ホメオトロピック配向させたキラルスメクティックC液晶の液晶層に1対のライン電極に電圧を印加して液晶層の面方向と平行方向に均一な電界を発生させている。
特許文献3に示された光路偏向素子は、1対の基板に平行に配列された複数のライン電極を設け、各ライン電極の一端を抵抗体に接続し、この抵抗体に対してライン電極の配列方向に電圧を印加して電位勾配を発生させ、各ライン電極の電位を電位勾配に応じて異ならせて隣り合うライン電極間に電圧を印加して液晶層の面方向と平行方向に電界を発生させている。
この特許文献3に示された光路偏向素子は、抵抗体の抵抗値が適当な範囲内になるように制御しなければならない。すなわち、抵抗体の抵抗値が低すぎると抵抗体の発熱が増大し、冷却機構が必要になって装置が複雑化、高コスト化する。一方、抵抗値が高すぎると液晶との間や抵抗体自身の持つ寄生容量との関係による時定数が大きくなって電界の応答速度が低下し、十分な光路シフト性能が得られず画像品質が劣化してしまう。しかしながら抵抗体を例えば一般的なスパッタリングなどの方法で成膜する場合、抵抗値を所定範囲内に制御するのは容易ではなく、十分な歩留まりを得るのが難しいという問題がある。
また、前記光路偏向素子は、1フレーム分の表示画像を一斉にシフトする一括方式であったため、画像を表示する画像表示素子についても一斉に表示画像が更新される面順次走査型あるいはそれに近い性能が求められていた。しかしながら多くの画像表示素子は1フレーム分の画像を1ライン毎に順次更新していく線順次走査型であるため適用することができず、画像表示素子や画像表示装置全体の低コスト化の阻害要因となっていた。
このような問題を解消するため、光路偏向素子は複数のライン電極の配列方向において、一方の端から他方の端に向けて電位勾配が正の領域と負の領域とを形成するように電圧を印加し得る光路偏向素子が特許文献4に開示されている。この光路偏向素子は画像更新速度がそれほど高速でない線順次走査型の画像表示素子でもその画像更新に合わせて光路偏向素子に形成される電位勾配を正の領域と負の領域に制御することにより、画像更新に対応して異なる方向の光路シフトを実現して適切な画像表示を実現できる。
この特許文献4に示された光路偏向素子を図14(a)の正面図と(b)の平面図と(c)の側面図を参照して説明する。光路偏向素子100は1対のガラス基板2,3と、基板2に形成された透明なライン電極列4と、基板2のライン状電極列4を設けた面と基板3の一方の面に設けられ、液晶を垂直に配向させるための配向膜6と、配向膜6を対向させて基板2,3を一定間隔を置いて貼り合わせたスペーサ7及び配向膜6の間にキラルスメクティックC相よりなる強誘電液晶が充填された液晶層8を有する。この光路偏向素子100のライン電極列4を構成する互いに平行に配置されたライン電極E11〜E18により電圧印加手段を構成している。各ライン電極E11〜E18は駆動手段101に接続され、駆動手段101により各ライン電極E11〜E18に印加する電圧は液晶層8の任意の領域に形成される基板面に対して平行な電界方向が、他の領域と異なるように制御される。
この駆動手段101から各ライン電極E11〜E18に対して印加する電圧を図15の模式図を参照して説明する。図15において、縦軸は印加電圧であり、Vlは最低電圧、Vhは最高電圧を示し、横軸はライン電極E11〜E18の配置を示し、A〜Dは電位勾配を示す。そして駆動手段101はライン電極E11〜E18への印加電圧を電位勾配A〜Dに示す特性で任意に切り替えることにより光路偏向素子100内で領域ごとに異なる電位勾配を形成し、光路シフトSの方向を段階的に制御して、図14(c)に示すように、入射光を第1出射光と第2出射光にシフトさせる。
図16は駆動手段101の構成を示した回路構成図である。この図16では簡略化のために、駆動手段101から電圧を印加されるライン電極数を5個、すなわちライン電極E11〜E15とした場合について示し、V0〜V4はライン電極E11〜E15に印加される電圧の基となる電圧であり、V0とV4はそれぞれ図15におけるVlとVhに対応する。TR00〜TR04はコントローラ102からの制御信号によって電圧V0〜V4のいずれか一つを選択して端部に位置するライン電極E11に供給するスイッチング手段、TR40〜TR44はコントローラ102からの制御信号によって電圧V0〜V4のいずれか一つを選択して端部に位置するライン電極E15に供給するスイッチング手段、TR10とTR14と、TR20とTR24と、TR30とTR34はそれぞれコントローラ102からの制御信号によって電圧V0〜V4のいずれか一つを選択して中間部に位置するライン電極E12,E13,E14に供給するスイッチング手段である。抵抗R1〜R4はスイッチング手段を通して電圧が印加されない状態にあるライン電極に対して電圧を供給するものである。
特開2003−98502号公報 特開2003−98504号公報 特開2004−286938号公報 特開2004−101704号公報
前記光路偏向素子においては、印加電圧が極めて高電圧になり、一方でスイッチング手段に用いられるスイッチング素子の耐電圧が印加電圧に遠くおよばないような場合がある。このような場合、駆動手段101に示されている個々のスイッチング素子は、実際には複数のスイッチング素子を少なくとも印加電圧のレベルまでの耐電圧が得られるように直列に接続された構成になる。すなわち、実際には極めて多くのスイッチング素子が必要となって装置が大型化し、さらには高コストになるという問題がある。
例えば1つ光路偏向素子を4分割し、素子両端及び各分割境界に位置するライン電極にそれぞれ、零,1kV,2kV,3kV,4kVが選択的に印加され、このスイッチング素子の耐電圧が300Vである場合、少なくとも光路偏向素子の両端に位置するライン電極への電圧供給を制御するスイッチング素子の合計は110個、分割境界に位置する3つのライン電極への印加電圧を制御するスイッチング素子の合計は84個となり、総計で194個のスイッチング素子が必要となる。
この発明は、このような短所を解消し、光路偏向素子の歩留まりを向上させるとともに駆動回路規模の増大を抑え、小型で低コストの素子駆動手段とそれを使用した光路偏向素子を提供することを目的としたものである。
この発明の素子駆動手段は、1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、電圧生成手段と制御手段及び複数の電圧制御手段を有し、前記電圧生成手段は、所定の値の直流電圧を生成し、前記制御手段は、前記光路偏向素子に発生する正の電位勾配と負の電位勾配を、一定時間毎に交互に切り替えながら形成すべき制御信号を生成し、前記複数の電圧制御手段は、前記電圧生成手段で生成した電圧を、前記制御手段からの制御信号に応じて制御し、所定の電圧値を生成して前記光路偏向素子の複数の電圧印加手段のそれぞれに出力することを特徴とする。
この発明の第2の素子駆動手段は、1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、電圧生成手段と制御手段及び複数の電圧制御手段を有し、前記電圧生成手段は、所定の値の直流電圧を生成し、
前記制御手段は、前記光路偏向素子に発生させる正の電位勾配と負の電位勾配を、前記複数の電圧印加手段で分割した領域毎に順次切り替えながらを形成すべき制御信号を生成し、前記複数の電圧制御手段は、前記電圧生成手段で生成した電圧を、前記制御手段からの制御信号に応じて制御し、所定の電圧値を生成して前記光路偏向素子の複数の電圧印加手段のそれぞれに出力することを特徴とする。
この発明の第3の素子駆動手段は、1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、制御手段と複数のフローティング型電圧出力手段とを有し、前記制御手段は、前記光路偏向素子に発生する正の電位勾配と負の電位勾配を、前記複数の電圧印加手段で分割した領域毎に順次切り替えながら形成すべき制御信号を生成し、前記複数の電圧出力手段は、電圧生成手段と極性切替手段を有し、前記電圧生成手段は、所定の値の直流電圧を生成し、前記極性切替手段は、前記電圧生成手段で生成した電圧の極性を切り替えて、前記光路偏向素子の分割した各領域を形成する一対の電圧印加手段のそれぞれに出力することを特徴とする。
前記電圧生成手段は、1次側に印加された交流電圧を昇圧して2次側から出力する変圧手段と、該変圧手段で昇圧された2次側交流電圧を平滑化して所定電圧を生成する整流手段と、該整流手段で生成された所定の電圧の値を検出する検出手段と、該検出手段で検出された電圧に応じて前記1次側に印加される交流電圧の値を制御する安定化制御手段を有する。
また、前記検出手段は、前記変圧手段の1次側と2次側が直流的に分離されていることが望ましい。
この発明の光路偏向素子は、前記素子駆動手段を有し、1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内にキラルスメクティックC相を形成する液晶層とを有し、前記複数の電圧印加手段に前記素子駆動手段から電圧を出力して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成して前記基板に垂直に入射される入射光の向きを変えて出射することを特徴とする。
この発明は、基板の表面に形成された抵抗膜に電圧を印加する複数の電圧印加手段に供給する電圧を素子駆動手段の複数の電圧制御手段で分割して制御することにより、基板と平行な水平電界を形成する抵抗膜全体の抵抗値が大きくなっても複数の電圧印加手段それぞれの分割駆動領域での時定数の増大を抑制でき、抵抗膜の抵抗値の許容範囲を広げることができ、歩留まりが向上するとともに、素子駆動手段自身を構成する素子数の増加も抑制でき、低コスト化を実現することができる。
また、基板の表面に形成された抵抗膜に電圧を印加する複数の電圧印加手段に供給する電圧を複数の電圧制御手段で分割して制御するとき、素子駆動手段の複数の電圧制御手段は光路偏向素子に発生する正の電位勾配と負の電位勾配を、前記複数の電圧印加手段で区分けした領域毎に順次切り替えるように複数の電圧印加手段に供給する電圧を可変することにより、素子駆動手段自身を構成する素子数の増加をより低減することができる。
さらに、互いに直流分離された複数のフローティング型電圧出力手段から光路変換素子の複数の電圧印加手段の互いに隣接あるいは所定間隔毎の一対の電圧印加手段に電圧の極性を切り替えて出力することにより、素子駆動手段を構成する素子数がさらに抑制して、より低コスト化を実現することができる。
また、電圧生成手段は、変圧手段によって1次側に印加された交流電圧を昇圧して得られた2次側交流電圧を平滑化して所定電圧を生成するようにしたので、交流電圧の周波数を上げることによって変圧手段を大幅に小型化でき、小型で低コストの素子駆動手段を得ることができる。
この変圧手段の2次側交流電圧を平滑化して得られた出力電圧値を検出し、それを1次側にフィードバックして所望の値に制御することにより、一定の出力電圧を常に電圧印加手段に印加することができ、安定した素子駆動性能を得ることができる。
また、2次側の出力電圧値を検出して1次側にフィードバックする検出手段は、変圧手段の1次側と2次側を直流的に分離することにより、複数のフローティング型電圧出力手段を多段に接続する場合でも1次側のグランド・レベルを共通にすることができ、回路構成を簡略化して低コストで且つ高精度の出力電圧を得ることできる。
また、1対の基板の表面に形成された抵抗膜と、抵抗膜に電圧を印加する複数の電圧印加手段と、1対の基板を対向して配置した間隔内にキラルスメクティックC相を形成する液晶層とを有する光路偏向素子の複数の電圧印加手段に供給する電圧を素子駆動手段で分割して制御基板面に対して略平行な水平電界を形成して基板に垂直に入射される入射光の向きを変えて出射することにより、高速応答の光路偏向手段を低コストに実現することができる。
図1はこの発明の光路偏向素子と駆動手段の構成を示し、(a)は正面図、(b)は(a)のA−A断面図である。光路偏向素子1は、1対のガラス等の透明基板2,3と、基板2の一方の面に平行に形成された透明な複数のライン電極列4と、ライン電極列4の端部表面に沿って帯状に設けられた抵抗膜5と、基板2のライン電極列4を設けた面と基板3の一方の面に設けられ、液晶を垂直に配向させるための配向膜6と、配向膜6を対向させて基板2,3を一定間隔を置いて貼り合わせたスペーサ7及び配向膜6の間にキラルスメクティックC相よりなる強誘電液晶が充填された液晶層8を有する。
ライン電極列4のうち、両端のライン電極E1,E5と、ライン電極E1,E5の間を等間隔で分割した中間のライン電極E2,E3,E4には、駆動手段10の電圧制御回路11a〜11dから所望の電圧V1〜V5が供給されて抵抗膜5に通電することにより液晶層8に基板2,3と平行な水平電界を形成する。この液晶層8に形成された水平電界によって液晶層8に入射された光は電界方向に対応した方向にシフトされて出射される。この光のシフト量は印加される電圧値や液晶層8の厚さなどによって制御される。
駆動手段10の電圧生成回路12は、所定の値の直流電圧Vhを生成する。電圧制御回路11a〜11dは電圧生成回路12で生成した電圧Vhを制御回路13からの制御信号に応じて制御し、所定の電圧値V1〜V5を生成する。制御回路13は光路偏向素子1に正の電位勾配と負の電位勾配を時間的に交互に切り替えながら形成すべく制御信号を生成して電圧制御回路11a〜11eを制御する。
この駆動手段10で光路偏向素子1のライン電極E1〜E5に供給する電圧を制御するときの処理を図2のタイムチャートと図3の電位分布特性図を参照して説明する。
制御回路13は、ライン電極E1〜E5に供給される電圧V1〜V5を1周期T0ごとに切り替える制御信号C11,C12を生成して電圧制御回路11aに送り、制御信号C2〜C4を電圧制御回路11b〜11dに送り、制御信号C51,C52を電圧制御回路11eに送る。電圧制御回路11aは制御信号C11が電圧Vcmで、制御信号C12の電圧が零のとき、ライン電極E1にV1=Vhの電圧を印加する。同時に、制御信号C2〜C4の電圧がそれぞれ3Vcm/4とVcm/2及びVcm/4となり、それに基いて対応する電圧制御回路11b〜11dはそれぞれ対応するライン電極E2〜E4にV2=3Vh/4とV3=Vh/2及びV4=Vh/4の電圧を印加する。電圧制御回路11eは制御信号C51の電圧が零で、制御信号C52の電圧がVcmとなってライン電極E5にV5=0を供給する。したがって光路偏向素子1にはライン電極E1からライン電極E5に向けて抵抗膜5を通して流れる電流によって図3に示す電位勾配Aが形成される。
また、電圧制御回路11aは制御信号C11の電圧が零で、制御信号C12の電圧がVcmのとき、ライン電極E1にV1=0の電圧を印加する。同時に、制御信号C2〜C4の電圧がそれぞれVcm/4とVcm/3及び3Vcm/4となり、それに基いて対応する電圧制御回路11b〜11dはそれぞれ対応するライン電極E2〜E4にV2=Vh/4とV3=Vh/2及びV4=3Vh/4の電圧を印加する。電圧制御回路11eは制御信号C51が電圧Vcmで、制御信号C52の電圧が零となってライン電極E5にV5=Vhを供給する。したがって光路偏向素子1には、ライン電極E1からライン電極E5に向けて抵抗膜5を通して流れる電流によって図3に示す電位勾配Bが形成される。
この電圧V1,V5を出力する電圧制御回路11a,11eは図4(a)の構成図に示すように、電圧制御素子として直列に接続されたフォトカプラPQ11,PQ12〜PQ1n及びフォトカプラPQ21,PQ22〜PQ2nを有し、それぞれ制御回路13から入力される制御信号Cx1及びCx2(x=1又は5)によって制御される1次側のLED駆動電流に応じて2次側のフォトトランジスタのコレクタ−エミッタ間電流を変化させて所望の電圧V1,V5をライン電極E1,E5に供給する。すなわちライン電極E1又はライン電極E5に高電圧Vhを印加する場合には制御信号Cx1の電圧値を最大値VcmにしてフォトカプラPQ11,PQ12〜PQ1nの1次側のLEDに十分大きな電流を流してフォトカプラPQ11,PQ12〜PQ1nをスイッチング素子として動作させ、電圧生成回路12から出力される電圧Vhをそのまま電圧V1,V5として出力する。このとき制御信号Cx2の電圧は零としてフォトカプラPQ21,PQ22〜PQ2nは遮断される。一方、ライン電極E1又はライン電極E5に0Vを印加する場合には制御信号Cx2の電圧値を最大値VcmにしてフォトカプラPQ21,PQ22〜PQ2nの1次側のLEDに十分大きな電流を流してフォトカプラPQ21,PQ22〜PQ2nをスイッチング素子として動作させ、電圧V1又は電圧V5を0Vにする。このとき制御信号Cx1の電圧は零としてフォトカプラPQ11,PQ12〜PQ1nは遮断される。
電圧制御回路11b〜11dは、図4(b)の構成図に示すように、電圧制御素子として直列に接続されたフォトカプラPQ31,PQ32〜PQ3nを有し、それぞれ制御回路13から入力される制御信号Cx(x=2あるいは3又は4)を図2に示す適当な電圧値に設定してフォトカプラPQ31,PQ32〜PQ3nの1次側のLEDに流す電流を制御して所望の電圧V2〜V4を対応しるライン電極E2〜E4に供給する。
このように駆動手段10は電圧制御回路11a〜11eで光路偏向素子1のライン電極E1〜E5に供給する電圧を分割して制御することにより、基板2,3と平行な水平電界を形成する抵抗膜5全体の抵抗値が大きくなっても電圧制御回路11a〜11eそれぞれの分割駆動領域での時定数の増大を抑制でき、抵抗膜5の抵抗値の許容範囲を広げることができ、歩留まりが向上するとともに、駆動手段10自身を構成する素子数の増加も抑制されて低コスト化を実現できる。
次に光路偏向素子1に電界を発生させる第2の駆動手段10aについて図5の構成図を参照して説明する。駆動手段10aの電圧制御回路11b〜11dは、電圧制御回路11a,11bと同様に、図4(a)の構成図に示すように、電圧制御素子として直列に接続されたフォトカプラPQ11,PQ12〜PQ1n及びフォトカプラPQ21,PQ22〜PQ2nを有し、それぞれ制御回路13から入力される制御信号Cx1及びCx2(x=1〜5)によって制御される1次側のLED駆動電流に応じて2次側のフォトトランジスタのコレクタ−エミッタ間電流を変化させて所望の電圧V1〜V5をライン電極E1〜E5に供給する。
この駆動手段10aで光路偏向素子1のライン電極E1〜E5に供給する電圧を制御するときの処理を図6のタイムチャートと図7の電位分布特性図を参照して説明する。
制御回路13は、1周期T0のうちでライン電極E1〜E5に供給される電圧V1〜V5を所定時間T1ごとに切り替える制御信号Cx1,Cx2(x=1〜5)を生成して電圧制御回路11a〜11eに送る。まず、制御回路13は、あるT1時間に電圧制御回路11aと電圧制御回路1eに送る制御信号C11と制御信号C52を最大電圧Vcmとし、その他の制御信号の電圧を零にする。このとき電圧制御回路11aからライン電極E1に電圧生成回路12から送られる電圧Vhが供給され、電圧制御回路11eからライン電極E5に0Vが供給され、電圧制御回路11b〜11dはオフ状態になっている。したがって光路偏向素子1には、ライン電極E1からライン電極E5に向けて抵抗5を通して流れる電流によって図7のAに示すような電位勾配が形成される。
次のT1時間では制御信号C21を最大電圧Vcmとし、制御信号C12を電圧Vcm/4とし、制御信号C52を電圧3Vcm/4とし、その他の制御信号の電圧を零にする。このとき電圧制御回路11bからライン電極E2に電圧Vhが供給され、ライン電極E1には電圧3Vh/4が供給され、ライン電極E5には電圧Vh/4が供給されて、光路偏向素子1にはライン電極E2からライン電極E1及びライン電極E5に向けて抵抗膜5を通して流れる電流によって図7のBに示すような電位勾配が形成される。
また、次のT1時間には制御信号C31を最大電圧Vcmとし、制御信号C12と制御信号C52を電圧Vcm/2とし、その他の制御信号の電圧を零にする。このとき電圧制御回路11cからライン電極E3に電圧Vhが供給され、ライン電極E1とライン電極R5には電圧Vh/2が供給され、電圧制御回路11bと電圧制御回路11dはオフ状態になる。したがって光路変換素子1のライン電極E3からライン電極E1及びライン電極E5に向けて抵抗膜5を通して流れる電流によって図7のCに示すような電位勾配が形成される。
次のT1時間には制御信号C41を最大電圧Vcmとし、制御信号C12を電圧3Vcm/4とし、制御信号C52を電圧Vcm/4とし、その他の制御信号の電圧を零にする。このとき電圧制御回路11dからライン電極E4に電圧Vhが供給され、ライン電極E1には電圧Vh/4が供給され、ライン電極R5には電圧3Vh/4が供給され、電圧制御回路11bと電圧制御回路11cはオフ状態になる。したがって光路変換素子1のライン電極E4からライン電極E1及びライン電極E5に向けて抵抗膜5を通して流れる電流によって図7のDに示すような電位勾配が形成される。
次のT1時間には制御信号C12と制御信号C51を最大電圧Vcmとし、その他の制御信号の電圧を零にする。このとき電圧制御回路11eからライン電極E5に電圧Vhが供給され、ライン電極E1には0Vが供給され、電圧制御回路11b〜電圧制御回路11dはオフ状態になる。したがって光路変換素子1のライン電極E5からライン電極E1に向けて抵抗膜5を通して流れる電流によって図7のEに示すような電位勾配が形成される。
次のT1時間には制御信号C12と制御信号C51を最大電圧Vcmとし、その他の制御信号の電圧を零にする。このとき電圧制御回路11eからライン電極E5に電圧Vhが供給され、ライン電極E1には0Vが供給され、電圧制御回路11b〜電圧制御回路11dはオフ状態になる。したがって光路変換素子1のライン電極E5からライン電極E1に向けて抵抗膜5を通して流れる電流によって図7のEに示すような電位勾配が形成される。
制御回路13は、次のT1時間では制御信号C22を最大電圧Vcmとし、制御信号C11を電圧Vcm/4とし、制御信号C51を電圧3Vcm/4とし、その他の制御信号の電圧を零にする。このとき電圧制御回路11bからライン電極E2に0Vが供給され、電圧制御回路11aからライン電極E1に電圧Vh/4が供給され、電圧制御回路11eからライン電極E5に電圧3Vh/4が供給され、電圧制御回路11c,11dは引き続きオフ状態にある。したがって光路偏向素子1のライン電極E1及びライン電極E5からライン電極E2に向けて抵抗膜5を通して流れる電流によって図7のFに示すような電位勾配が形成される。
次のT1時間では制御信号C32を最大電圧Vcmとし、制御信号C11と制御信号を電圧Vcm/2とし、その他の制御信号の電圧を零にする。このとき電圧制御回路11cからライン電極E3に0Vが供給され、電圧制御回路11aからライン電極E1に電圧Vh/2が供給され、電圧制御回路11eからライン電極E5に電圧Vh/2が供給され、電圧制御回路11b,11dはオフ状態になる。したがって光路偏向素子1のライン電極E1及びライン電極E5からライン電極E3に向けて抵抗膜5を通して流れる電流によって図7のGに示すような電位勾配が形成される。
次のT1時間では制御信号C42を最大電圧Vcmとし、制御信号C11を電圧3Vcm/4とし、制御信号C51を電圧Vcm/4としてその他の制御信号の電圧を零にする。このとき電圧制御回路11dからライン電極E4に0Vが供給され、電圧制御回路11aからライン電極E1に電圧3Vh/4が供給され、電圧制御回路11eからライン電極E5に電圧Vh/4が供給され、電圧制御回路11b,11cはオフ状態になる。したがって光路偏向素子1のライン電極E1及びライン電極E5からライン電極E4に向けて抵抗膜5を通して流れる電流によって図7のHに示すような電位勾配が形成される。
このようにして光路偏向素子1に発生する電位勾配を、1周期期間T0において、図7に示すように、AからB,C,D,E,G,Hのように順次切り替えることができる。また、図4に示す個々のフォトカプラが前記従来のスイッチング素子に対応し、4分割された光路偏向素子1の両端及び各分割境界に位置するライン電極E1〜ライン電極E5にそれぞれ、0Vと1kVと2kVと3kV及び4kVの電圧が選択的に印加され、電圧制御素子の耐圧も300Vである場合、必要な電圧制御素子の合計は140個となり、従来技術の194個に対して大幅に削減することができ、低コスト化を実現できる。
次に光路偏向素子1に電界を発生させる第3の駆動手段10bについて説明する。駆動手段10bは、図8の構成図に示すように、フローティング型の電圧出力回路14a〜14dを有し、電圧出力回路14a〜14dは、それぞれ絶対値がVsの電圧を制御回路13aからの制御信号C10〜C40に基いて極性を切り替え、対応するライン電極間に印加する。制御回路13aは、光路偏向素子1に正の電位勾配と負の電位勾配を、領域を順次切り替えながら形成するような制御信号C10〜C40を生成して電圧出力回路14a〜14dを制御する。
この駆動手段10bで光路偏向素子1のライン電極E1〜E5に供給する電圧を制御するときの処理を図9のタイムチャートを参照して説明する。図9においてVxy(x=1〜4、y=x+1)はライン電極Exに対するライン電極Ex+1への印加電圧の電位差を示しており、Vsまたは−Vsの値をとる。すなわち電圧出力回路14aは、入力する制御信号C10の電圧がVcmのとき、ライン電極E1に対してライン電極E2に負の電圧を供給し、制御信号C10の電圧が零のとき、正の電圧を供給する。電圧出力回路14bは、入力する制御信号C20の電圧がVcmのとき、ライン電極E2に対してライン電極E3に負の電圧を供給し、制御信号C20の電圧が零のとき、正の電圧を供給し、電圧出力回路14cは、入力する制御信号C30の電圧がVcmのとき、ライン電極E3に対してライン電極E4に負の電圧を供給し、制御信号C30の電圧が零のとき、正の電圧を供給し、電圧出力回路14dは、入力する制御信号C40の電圧がVcmのとき、ライン電極E4に対してライン電極E5に負の電圧を供給し、制御信号C40の電圧が零のとき正の電圧を供給する。この制御信号C10〜C40を制御回路13aで順次切り替えることにより、光路偏向素子1に生成する電位勾配を、図7に示すように、AからB,C,D,E,G,Hのように順次切り替えることができる。
この電圧出力回路14a〜14dは、図10の構成図に示すように、スイッチング回路S00,S10,S11,S01と電圧生成回路12aを有する。このスイッチング回路S00,S10,S11,S01は例えば図4(a)に示すように構成されている。そしてスイッチング素子S00とスイッチング素子S01には制御回路10bから送られる制御信号Cx0が入力し、スイッチング素子S10とスイッチング素子S11には制御信号Cx0が反転して入力する。ここで制御信号Cx0の反転信号とは、制御信号Cx0の電圧がVcmのときは0Vが、制御信号Cx0の電圧が零ときは電圧Vcmが出力されるものとする。電圧生成回路12aは(V+)−(V−)=|Vs|の電圧を生成する。
各スイッチング回路S00,S10,S11,S01は、入力される制御信号Cx0が電圧Vcmのときは電圧生成回路12aから出力される電圧Vsを通過させて対応するライン電極に出力し、制御信号Cx0の電圧が0Vのときは遮断する。したがって、制御信号Cx0が電圧Vcmのときはスイッチング回路S00とスイッチング回路S01がオンになり、ライン電極Ex+1に対してライン電極Exの電位が+Vsになるように電圧が供給され、制御信号Cx0の電圧が0Vのときはスイッチング回路S10とスイッチング回路S10がオンになり、ライン電極Ex+1に対してライン電極Exの電位が−Vsになるように電圧が供給される。
このようにして図4に示す個々のフォトカプラが前記従来のスイッチング素子に対応し、4分割された光路偏向素子1の両端及び各分割境界に位置するライン電極E1〜ライン電極E5にそれぞれ、0Vと1kVと2kVと3kV及び4kVの電圧が選択的に印加され、電圧制御素子の耐圧も300Vである場合、必要な電圧制御素子の合計は64個となり、従来技術の194個に対して大幅に削減することができ、低コスト化を実現できる。
電圧生成回路12,12aは、図11の構成図に示すように、発振器16と差動増幅器OP1とコンパレータCOM1とスイッチングトランジスタQ1とトランス17と整流回路18及び検出回路19を有する。発信器16は、図12のタイムチャートに示すように鋸歯状の周期信号Voscを出力する。コンパレータCOM1は差動増幅器OP1の出力Vcmpと発信器16から出力する周期信号Voscの電圧を比較し、Vcmp>Voscのとき高レベル、Vcmp<Voscのとき零となる信号Vpを出力する。スイッチングトランジスタQ1は信号Vpが高レベルのときトランス17の1次側を駆動する。トランス17は1次側の駆動電圧Vddを昇圧して出力する。このトランス17からの出力電圧は、ダイオードD1とコンデンサC1を有する整流回路18によって平滑化されて直流電圧に変換され、出力保護抵抗R2と検出回路19を通して高電圧Vhとして出力される。この検出回路19の抵抗R3,R4は出力電圧Vhを検出するためのものであり、検出された電圧は差動増幅器OP1に入力され、出力電圧Vhの検出電圧を基準電圧Vrefと比較し、その差電圧Vcmpとして出力する。したがって、例えば図12のタイムチャートに示すように時刻t3において出力電圧Vhが低下すると、それをうけて差動増幅器OP1の出力Vcmpが低下し、コンパレータ出力Vpの高レベル期間が増加する。その結果、整流回路18の出力電圧が増加して出力電圧Vhが一定に保たれるように制御される。すなわちPWMを用いたフィードバック制御系によって出力電圧Vhの安定化を図ることができる。
この電圧生成回路12の出力電圧Vhの検出信号を、図13の構成図に示すように、フォトカプラPQによってトランス17の1次側と2次側が直流分離するようにすると良い。このようにトランス17の1次側と2次側を直流分離することにより、図8に示すように、電圧出力回路14を多段に縦続接続する場合でも、制御系である1次側を共通のGND系で設計することが可能となり、回路の簡素化及び低コスト化を図ることができ、フローティング型の電圧生成回路に適している。
この発明の光路偏向素子と駆動手段の構成図である。 駆動手段で光路偏向素子に供給する電圧を制御する処理を示すタイムチャートである。 光路偏向素子に発生する電位の分布特性図である。 駆動手段の電圧制御回路の構成図である。 第2の駆動手段の構成図である。 第2の駆動手段で光路偏向素子に供給する電圧を制御する処理を示すタイムチャートである。 第2の駆動手段で印加した電圧により光路偏向素子に発生する電位の分布特性図である。 第3の駆動手段の構成図である。 第3の駆動手段で光路偏向素子に供給する電圧を制御する処理を示すタイムチャートである。 第3の駆動手段を構成する電圧出力回路の構成図である。 電圧生成回路の構成を示す回路図である。 電圧生成回路の各構成部の出力波形を示すタイムチャートである。 電圧生成回路の他の構成を示す回路図である。 従来の光路偏向素子の構成図である。 従来の駆動手段から各ライン電極に対して印加する電圧を示す模式図である。 従来の駆動手段の構成を示す回路図である。
符号の説明
1;光路偏向素子、2,3;基板、4;ライン電極列、5;抵抗膜、6;配向膜、
7;スペーサ、8;液晶層、10;駆動手段、11;電圧制御回路、
12;電圧生成回路、13;制御回路、14;電圧出力回路。

Claims (6)

  1. 1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、
    電圧生成手段と制御手段及び複数の電圧制御手段を有し、
    前記電圧生成手段は、所定の値の直流電圧を生成し、
    前記制御手段は、前記光路偏向素子に発生する正の電位勾配と負の電位勾配を、一定時間毎に交互に切り替えながら形成すべき制御信号を生成し、
    前記複数の電圧制御手段は、前記電圧生成手段で生成した電圧を、前記制御手段からの制御信号に応じて制御し、所定の電圧値を生成して前記光路偏向素子の複数の電圧印加手段のそれぞれに出力することを特徴とする素子駆動手段。
  2. 1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、
    電圧生成手段と制御手段及び複数の電圧制御手段を有し、
    前記電圧生成手段は、所定の値の直流電圧を生成し、
    前記制御手段は、前記光路偏向素子に発生させる正の電位勾配と負の電位勾配を、前記複数の電圧印加手段で分割した領域毎に順次切り替えながらを形成すべき制御信号を生成し、
    前記複数の電圧制御手段は、前記電圧生成手段で生成した電圧を、前記制御手段からの制御信号に応じて制御し、所定の電圧値を生成して前記光路偏向素子の複数の電圧印加手段のそれぞれに出力することを特徴とする素子駆動手段。
  3. 1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内に形成された液晶層とを有する光路偏向素子の前記複数の電圧印加手段を介して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成する素子駆動手段であって、
    制御手段と複数のフローティング型電圧出力手段とを有し、
    前記制御手段は、前記光路偏向素子に発生する正の電位勾配と負の電位勾配を、前記複数の電圧印加手段で分割した領域毎に順次切り替えながら形成すべき制御信号を生成し、
    前記複数の電圧出力手段は、電圧生成手段と極性切替手段を有し、前記電圧生成手段は、所定の値の直流電圧を生成し、前記極性切替手段は、前記電圧生成手段で生成した電圧の極性を切り替えて、前記光路偏向素子の分割した各領域を形成する一対の電圧印加手段のそれぞれに出力することを特徴とする素子駆動手段。
  4. 前記電圧生成手段は、1次側に印加された交流電圧を昇圧して2次側から出力する変圧手段と、該変圧手段で昇圧された2次側交流電圧を平滑化して所定電圧を生成する整流手段と、該整流手段で生成された所定の電圧の値を検出する検出手段と、該検出手段で検出された電圧に応じて前記1次側に印加される交流電圧の値を制御する安定化制御手段を有する請求項1乃至3のいずれかに記載の素子駆動手段。
  5. 前記検出手段は、前記変圧手段の1次側と2次側が直流的に分離されている請求項4記載の素子駆動手段。
  6. 1対の基板と、該基板の表面に形成された抵抗膜と、該抵抗膜に電気的接続され、前記抵抗膜を複数領域に分割して電圧を印加する複数の電圧印加手段と、前記1対の基板を対向して配置した間隔内にキラルスメクティックC相を形成する液晶層とを有し、請求項1乃至5のいずれかに記載の素子駆動手段から、前記複数の電圧印加手段に電圧を出力して前記抵抗体に通電して前記基板面に対して略平行な水平電界を形成して前記基板に垂直に入射される入射光の向きを変えて出射することを特徴とする光路偏向素子。
JP2006347270A 2006-12-25 2006-12-25 素子駆動手段及び光路偏向素子 Pending JP2008158278A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347270A JP2008158278A (ja) 2006-12-25 2006-12-25 素子駆動手段及び光路偏向素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347270A JP2008158278A (ja) 2006-12-25 2006-12-25 素子駆動手段及び光路偏向素子

Publications (1)

Publication Number Publication Date
JP2008158278A true JP2008158278A (ja) 2008-07-10

Family

ID=39659240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347270A Pending JP2008158278A (ja) 2006-12-25 2006-12-25 素子駆動手段及び光路偏向素子

Country Status (1)

Country Link
JP (1) JP2008158278A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176351A (ja) * 2017-12-22 2022-11-25 イー インク コーポレイション 電気光学ディスプレイ及びこれを駆動するための方法
WO2022270298A1 (ja) * 2021-06-23 2022-12-29 株式会社ジャパンディスプレイ 光学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022176351A (ja) * 2017-12-22 2022-11-25 イー インク コーポレイション 電気光学ディスプレイ及びこれを駆動するための方法
WO2022270298A1 (ja) * 2021-06-23 2022-12-29 株式会社ジャパンディスプレイ 光学装置

Similar Documents

Publication Publication Date Title
CN111210788B (zh) 显示设备
KR101396688B1 (ko) 액정표시장치 및 그 구동방법
US6281868B1 (en) Display
JP5244402B2 (ja) 液晶表示装置
JP2637811B2 (ja) 多重アドレス指定液晶ディスプレイ及び液晶ディスプレイの多重アドレス指定方法
US7764265B2 (en) Driving apparatus for display device and display device including the same and method of driving the same
CN103810969A (zh) 有机发光显示装置
JP2005234496A (ja) フリッカ補償回路
US5825344A (en) Temperature compensation of ferro-electric liquid crystal displays
JP2008158278A (ja) 素子駆動手段及び光路偏向素子
KR20110102703A (ko) 표시 패널의 구동 방법 이를 수행하기 위한 표시 장치
JP2007127785A (ja) 光源駆動装置
US20070273625A1 (en) Method and apparatus for transiting display panel
JP2009151016A (ja) 液晶表示装置
KR102247133B1 (ko) 표시장치
JP2006047848A (ja) ゲート線駆動回路
JP3947067B2 (ja) 光路シフト素子
JP4864392B2 (ja) 表示制御回路、表示制御方法、および液晶表示装置
JP4045910B2 (ja) 液晶表示装置
JP2004258125A (ja) 情報表示装置
JPS59210421A (ja) マトリツクス型液晶パネルの駆動方法
JP2007192908A (ja) 表示信号処理装置および液晶表示装置
JPH0553529A (ja) 表示装置
WO2013018647A1 (ja) 表示パネルのムラ補正方法、駆動回路、表示装置
JPH04245219A (ja) 電気光学的表示装置の駆動方法