JP2008155227A - Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium - Google Patents

Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium Download PDF

Info

Publication number
JP2008155227A
JP2008155227A JP2006344709A JP2006344709A JP2008155227A JP 2008155227 A JP2008155227 A JP 2008155227A JP 2006344709 A JP2006344709 A JP 2006344709A JP 2006344709 A JP2006344709 A JP 2006344709A JP 2008155227 A JP2008155227 A JP 2008155227A
Authority
JP
Japan
Prior art keywords
fatigue
analysis
molding
distribution
hydroform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006344709A
Other languages
Japanese (ja)
Inventor
Yuichi Yoshida
裕一 吉田
Koichi Sato
浩一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006344709A priority Critical patent/JP2008155227A/en
Publication of JP2008155227A publication Critical patent/JP2008155227A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce hydroforming conditions which are optimum to take the variation of thickness and strain into consideration which are generated during forming and to satisfy a desired fatigue life. <P>SOLUTION: The hydroforming conditions are determined by performing repeated calculation of a prescribed number of times of the following step by changing at least one or more among the internal pressure, the amount of shaft pushing and the coefficient of friction of the hydroforming conditions, the step being, after performing hydroforming analysis on the basis of internal pressure, the amount of shaft pushing, the coefficient of friction, etc. as hydroforming conditions, calculating the thickness distribution of formed goods and strain distribution after forming and setting up members on the basis of the formed goods on a computer, the fatigue life of members is calculated by performing elastic analysis on the basis of the thickness distribution, the shapes of the members and fatigue load as the elastic analysis conditions, the stress distribution after forming, the stress distribution after elastic deformation of the members and strain distribution after the elastic deformation are calculated and by performing fatigue analysis on the basis of the strain distribution after forming, stress distribution after the elastic deformation and the fatigue load as fatigue analysis conditions, to calculate the fatigue life of the member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハイドロフォームにより成形した自動車用の排気系部品、サスペンション系部品、ボディ系部品等の部材、構造体において、自動車走行時に発生する繰返し負荷に対して疲労寿命を予測計算し、疲労寿命の最大値又は目標疲労寿命を与える最適なハイドロフォーム成形条件を設計するための疲労設計方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体に関する。   The present invention predicts and calculates the fatigue life for repeated loads that occur when a vehicle is running in a vehicle, such as exhaust system parts, suspension system parts, body system parts, etc. The present invention relates to a fatigue design method, an apparatus, a computer program, and a computer-readable recording medium for designing an optimum hydroforming molding condition that gives a maximum value or a target fatigue life.

自動車を始めとする車両開発において、軽量化、開発期間短縮、試作車両の削減の課題に対応するため、近年コンピュータを用いた数値解析による各性能の予測が設計現場で頻繁に行われている。車両の疲労強度評価についても、限界設計をすべく車両に用いられる部品、部材、構造体の疲労寿命を簡便且つ正確に予測できる手法の開発ニーズは益々高まっている。   In the development of vehicles such as automobiles, in order to respond to the problems of weight reduction, development time reduction, and reduction of prototype vehicles, in recent years, prediction of each performance by numerical analysis using a computer is frequently performed at the design site. Regarding the evaluation of vehicle fatigue strength, there is an increasing need for the development of a method that can easily and accurately predict the fatigue life of parts, members, and structures used in a vehicle for limit design.

この分野では、従来より、有限要素法による所定の疲労荷重条件下での静的応力解析が広く用いられている。その解析結果を用いて疲労寿命を推定する場合には、まず、初期形状を定めた後、予め部材に用いられた材料や接合部の疲労試験データ(SN線図、EN線図)を入手すると共に、その線図と応力解析値又は歪み解析値を照らし合わせて寿命を予測計算し、計算された疲労寿命が目標値となるように部材形状や材質、接合方法等を変更する方法が採られている。   Conventionally, static stress analysis under a predetermined fatigue load condition by a finite element method has been widely used in this field. When estimating the fatigue life using the analysis results, first, after determining the initial shape, obtain fatigue test data (SN diagram, EN diagram) of materials and joints used in advance. In addition, the life expectancy is predicted by comparing the diagram with the stress analysis value or strain analysis value, and the member shape, material, joining method, etc. are changed so that the calculated fatigue life becomes the target value. ing.

解析による評価が目標値を達成した後、試作、実験によって検証を行い、設計仕様を決定する。これらの部材は、鋼材又はその他材料の薄板、管又は棒を塑性加工し、必要に応じて接合することによって製作される。塑性加工は、プレス、ハイドロフォーム又は押し出し等の成形方法が用いられる。また、接合は、スポット溶接、アーク溶接、レーザ溶接又はリベット接合等の方法が用いられる。最近では、有限要素法で求めた応力計算結果ファイルと予め部材に用いられた材料や接合部の疲労試験データを自動的に参照し、各部位の寿命を計算する疲労解析ソフトが市販されている。   After the evaluation by analysis achieves the target value, verification is made by trial manufacture and experiment to determine the design specification. These members are manufactured by plastic working thin plates, pipes or bars of steel or other materials and joining them as necessary. For the plastic working, a forming method such as pressing, hydroforming or extrusion is used. For joining, methods such as spot welding, arc welding, laser welding or rivet joining are used. Recently, fatigue analysis software that automatically refers to the stress calculation result file obtained by the finite element method and the fatigue test data of the materials and joints used in the member in advance and calculates the life of each part is commercially available. .

塑性加工の中でも、ハイドロフォーム成形加工技術は、部品数削減によるコスト削減や軽量化等の手段の一つとして自動車分野で特に注目を浴びており、実車への適用部品は年々増加している。   Among plastic processing, hydroforming molding technology is attracting particular attention in the automobile field as one of means for reducing costs and weight by reducing the number of parts, and the number of parts applied to actual vehicles is increasing year by year.

図8は一般的なハイドロフォーム成形を説明するための図である。また、図9はハイドロフォーム成形での加工経路を示す図である。ハイドロフォーム成形法は、金属管である素管1を金型2に入れ、当該金型2を型締めした後、素管1に内圧と管軸方向の押し込み力(本明細書では管軸方向の押し込み力を「軸押し量」と称す)を負荷することにより所定形状に成形する方法である。ハイドロフォーム加工では内圧と軸押し量の組み合わせによって成形形状、さらには品質が決定され、加工不良の例としては、成形途中で管が破裂するバーストのほか、しわの発生や所定のコーナーRまで成形できない等がある。   FIG. 8 is a view for explaining general hydroforming. Moreover, FIG. 9 is a figure which shows the process path | route in hydroforming. In the hydroform forming method, a metal pipe 1 that is a metal pipe is placed in a mold 2, the mold 2 is clamped, and then the inner pressure and the pushing force in the pipe axis direction (in this specification, the pipe axis direction) This is a method of forming a predetermined shape by applying an indentation force (referred to as “shaft pushing amount”). In hydroforming, the shape and quality are determined by the combination of the internal pressure and the amount of axial push. Examples of processing failures include bursts that cause the tube to rupture during molding, as well as formation of wrinkles and predetermined corners R. There are things that cannot be done.

鋼材等の金属を材料とする場合、部材成形時の成形加工によって板厚の変化や、塑性歪みが発生し、それらの板厚変化や塑性歪みは部材の疲労強度に大きく影響することが知られている。従来の疲労寿命予測方法では成形加工時の影響が考慮されておらず、また、目標とする疲労寿命を満足する成形加工条件を得るための部材疲労設計最適化アルゴリズムも適用されていないため、正確且つ迅速に部材の疲労設計ができないのが実情である。   When metals such as steel are used, it is known that changes in sheet thickness and plastic strain occur due to the forming process during member forming, and these plate thickness changes and plastic strain greatly affect the fatigue strength of the member. ing. The conventional fatigue life prediction method does not take into account the effects during molding, and the member fatigue design optimization algorithm for obtaining molding conditions that satisfy the target fatigue life is not applied. Moreover, the fact is that the fatigue design of members cannot be performed quickly.

特許文献1には、複数個の部材からなる溶接構造物の疲労強度を解析する手法において、溶接された2つの部材の形状及び溶接方法に基づき、溶接線の部位について、溶接線に平行な方向に対する疲労強度線図及び溶接線に垂直な方向に対する疲労強度線図をそれぞれ選定し、この溶接構造物の応力解析結果から前記溶接線に垂直な方向及び平行な方向の応力を求め、これらの応力を前記疲労強度線図とそれぞれ比較することにより疲労強度を評価する溶接構造物の疲労強度解析方法が開示されている。   In Patent Document 1, in a method for analyzing the fatigue strength of a welded structure composed of a plurality of members, a direction parallel to the weld line with respect to the position of the weld line based on the shape of the two welded members and the welding method. The fatigue strength diagram for the weld and the fatigue strength diagram for the direction perpendicular to the weld line are selected, respectively, and the stress in the direction perpendicular to and parallel to the weld line is obtained from the stress analysis result of the welded structure. A fatigue strength analysis method for a welded structure is disclosed in which the fatigue strength is evaluated by comparing each with the fatigue strength diagram.

しかしながら、特許文献1に開示された方法では、部材成形時に付与される歪み、成形後の板厚分布は考慮されておらず、また、最適化アルゴリズムも適用されていないため、正確且つ迅速に疲労寿命予測ができない問題がある。   However, the method disclosed in Patent Document 1 does not take into account the strain applied at the time of molding the member, the thickness distribution after molding, and the optimization algorithm is not applied. There is a problem that life cannot be predicted.

また、特許文献2には、溶接部の溶接形状(仕上げ処理)に対応した応力集中率を継ぎ手形式毎に予め実験等により把握し、フロント構造物の疲労寿命推定データ(SN線図)と共に、記憶装置に記憶し、FEM解析により溶接部の応力を算出し、この応力値に溶接形状に対応した応力集中率を乗じてビード止端部のピーク応力を算出し、このピーク応力をSN線図にあてはめ、溶接形状に応じた疲労寿命を推定する疲労寿命評価システムが開示されている。   Further, in Patent Document 2, the stress concentration rate corresponding to the welded shape (finishing process) of the welded portion is grasped by experiments in advance for each joint type, along with fatigue life estimation data (SN diagram) of the front structure, The stress in the weld is calculated by FEM analysis, and the peak stress at the bead toe is calculated by multiplying this stress value by the stress concentration rate corresponding to the weld shape. Therefore, a fatigue life evaluation system that estimates the fatigue life according to the weld shape is disclosed.

また、特許文献3には、平板を組み合わせたスポット溶接構造物に対して有限要素法解析用シェルモデルを作成し、作成した有限要素法解析用シェルモデルを用いて有限要素法線形弾性解析を行ってスポット溶接部中央のナゲット部の分担荷重、そのナゲット部を中心として描いた直径Dの円周上のたわみと放射方向の傾斜とを算出し、算出した分担荷重、円周上のたわみ及び放射方向の傾斜とに基づいて前記ナゲット部における公称構造応力を弾性学の円板曲げ理論を用いて求め、この公称構造応力よりスポット溶接構造物の疲労寿命を予測する手法が開示されている。   In Patent Document 3, a finite element method analysis shell model is created for a spot welded structure combining flat plates, and a finite element method linear elastic analysis is performed using the created finite element method analysis shell model. Calculate the shared load of the nugget part at the center of the spot welded part, the deflection on the circumference of the diameter D drawn around the nugget part and the inclination in the radial direction, the calculated shared load, the deflection on the circumference and the radiation A method is disclosed in which the nominal structural stress in the nugget portion is obtained based on the inclination of the direction using the elastic disk bending theory, and the fatigue life of the spot welded structure is predicted from the nominal structural stress.

しかしながら、特許文献2及び特許文献3に開示された方法では、部材成形時に付与される歪み、成形後の板厚分布は考慮されておらず、また、最適化アルゴリズムも適用されていないため、目標とする疲労寿命を満足する成形加工条件を得られず、正確且つ迅速に部材の疲労設計ができない問題がある。   However, the methods disclosed in Patent Document 2 and Patent Document 3 do not take into account the strain applied at the time of molding the member, the plate thickness distribution after molding, and the optimization algorithm is not applied. Thus, there is a problem that the molding process conditions satisfying the fatigue life cannot be obtained, and the fatigue design of the member cannot be performed accurately and quickly.

また、特許文献4には、コンピュータを利用して自動車用部品等の鉄鋼製品の設計を行うため、使用する材料パラメータをあらかじめ記憶するステップと、少なくとも鉄鋼製品の材料規格、板厚、形状を記憶するステップと、前記鉄鋼製品の成形性、剛性、強度を評価するステップと、前記成形性、剛性、強度の少なくともいずれか1つの要求仕様を満足しない場合には、前記鉄鋼製品の材料規格、板厚、形状の少なくともいずれか1つの修正を行うステップと、前記成形性、剛性、強度を再評価するステップとを含む設計方法及び設計システムが開示されている。即ち、特許文献4に開示された方法は、成形CAE(Computer Aided Engineering)によって鉄鋼製品の成形性を評価した後、剛性CAE、強度CAEを個別に行い、剛性、強度に関する要求仕様を満足するまで前記鉄鋼製品の材料規格、板厚、形状を修正するものとなっている。   Further, in Patent Document 4, in order to design steel products such as automobile parts using a computer, a step of storing material parameters to be used in advance and at least a material standard, plate thickness, and shape of the steel product are stored. A step of evaluating the formability, rigidity, and strength of the steel product, and if not satisfying at least one of the required specifications of the formability, rigidity, and strength, A design method and a design system including a step of correcting at least one of thickness and shape and a step of reevaluating the formability, rigidity, and strength are disclosed. That is, in the method disclosed in Patent Document 4, after evaluating the formability of a steel product by forming CAE (Computer Aided Engineering), rigidity CAE and strength CAE are individually performed until the required specifications regarding rigidity and strength are satisfied. The material standard, plate thickness, and shape of the steel product are corrected.

しかしながら、特許文献4に開示された方法では、成形CAEにおいて割れ等の不具合が生じた場合、成形条件を変更して再評価するステップの記述はあるが、最終的な要求特性(剛性、強度)を満たした最適な成形加工条件を提示する方法については記載が無い。   However, in the method disclosed in Patent Document 4, there is a description of a step of re-evaluating by changing the molding conditions when a defect such as a crack occurs in the molding CAE, but the final required characteristics (rigidity, strength) There is no description about a method for presenting the optimum molding process conditions satisfying the above.

特開2001−116664号公報JP 2001-116664 A 特開2003−149091号公報JP 2003-149091 A 特開2003−149130号公報JP 2003-149130 A 特開2002−297670号公報JP 2002-297670 A

本発明は、上記のような点に鑑みてなされたものであり、部材、部品、構造体の疲労強度に大きく影響する、成形時に発生する板厚の変化や歪みを考慮すると共に、所望の疲労寿命を満足するために最適なハイドロフォーム成形加工条件を提示できるようにすることを目的とする。   The present invention has been made in view of the above points, and takes into account changes in plate thickness and distortion that occur during molding, which greatly affect the fatigue strength of members, parts, and structures, and provides desired fatigue. The objective is to be able to present the optimum hydroforming process conditions to satisfy the service life.

かかる課題を解決するため、本発明の要旨は以下のとおりである。
(1).ハイドロフォーム成形条件として加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚に基づいてコンピュータがハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出し、コンピュータ上で前記成形品を元に部材を組み上げた後、弾性解析条件として前記板厚分布、部材形状、及び疲労荷重に基づいてコンピュータが弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出し、疲労解析条件として前記成形後歪み分布、前記弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重に基づいてコンピュータが疲労解析を行い、部材の疲労寿命を算出する工程を、前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、コンピュータが所定回数繰り返し計算を行い、前記疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を求めることを特徴とする疲労耐久性に優れた部材の疲労設計方法。
(2).ハイドロフォーム成形条件として加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚を入力するハイドロフォーム成形条件入力手段と、
前記ハイドロフォーム成形条件入力手段に入力された前記ハイドロフォーム成形条件に基づいてハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出するハイドロフォーム成形解析手段と、
前記ハイドロフォーム成形解析手段により算出した前記板厚分布、部材形状、及び疲労荷重を入力する弾性解析条件入力手段と、
前記弾性解析条件入力手段に入力された前記弾性解析条件に基づいて弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出する弾性解析手段と、
前記ハイドロフォーム成形解析手段により算出した前記成形後歪み分布、前記弾性解析手段により算出した部材の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重を入力する疲労解析条件入力手段と、
前記疲労解析条件入力手段に入力された前記疲労解析条件に基づいて疲労解析を行い、部材の疲労寿命を算出する疲労解析手段と、
前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、前記ハイドロフォーム成形条件入力手段から前記疲労解析手段に至る計算を所定回数自動的に実行する繰り返し計算制御手段と、
疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を出力する最適成形条件出力手段とを有することを特徴とする疲労耐久性に優れた部材の疲労設計装置。
(3).ハイドロフォーム成形条件として入力された加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚に基づいてハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出するハイドロフォーム成形解析手段と、
弾性解析条件として、前記ハイドロフォーム成形解析手段により算出した前記板厚分布、部材形状、及び疲労荷重に基づいて弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出する弾性解析手段と、
疲労解析条件として、前記ハイドロフォーム成形解析手段により算出した前記成形後歪み分布、前記弾性解析手段により算出した部材の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重に基づいて疲労解析を行い、部材の疲労寿命を算出する疲労解析手段と、
前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、前記ハイドロフォーム成形条件入力手段から前記疲労解析手段に至る計算を所定回数自動的に実行する繰り返し計算制御手段と、
疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を出力する最適成形条件出力手段とを有することを特徴とする疲労耐久性に優れた部材の疲労設計装置。
(4).(2)又は(3)に記載の疲労設計装置の各手段としてコンピュータを機能させることを特徴とするコンピュータプログラム。
(5).(4)に記載のコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体。
本発明において、設計パラメータはハイドロフォーム成形条件であり、内圧、軸押し量、摩擦係数の少なくとも1種以上である。
なお、本発明で「成形品」とは成形後の中間製品をいい、「成形品」を組み上げたものを「部材」、即ち最終製品と定義する。
In order to solve this problem, the gist of the present invention is as follows.
(1). Computer based on hydroform molding conditions based on material shape before processing, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness Hydroform molding analysis is performed to calculate the thickness distribution and post-molding strain distribution of the molded product, and after assembling the members based on the molded product on the computer, the plate thickness distribution, member shape, and The computer performs elastic analysis based on the fatigue load, calculates the post-elastic deformation stress distribution and post-elastic deformation distribution of the member, and the post-molding strain distribution, post-elastic deformation stress distribution and post-elastic deformation strain as fatigue analysis conditions. The computer performs a fatigue analysis based on the distribution and the fatigue load, and calculates the fatigue life of the member. Excellent fatigue durability, characterized in that, by changing at least one of the friction coefficients, a computer repeatedly calculates a predetermined number of times to obtain hydroforming molding conditions that give the maximum fatigue life or the target fatigue life Fatigue design method for members.
(2). Hydroform that inputs material shape before molding, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness as hydroform molding conditions Molding condition input means;
Hydroform molding analysis means for performing hydroform molding analysis based on the hydroform molding conditions input to the hydroform molding condition input means, and calculating a plate thickness distribution and a post-molding strain distribution of the molded product;
Elastic analysis condition input means for inputting the plate thickness distribution, member shape, and fatigue load calculated by the hydroform molding analysis means,
An elastic analysis means for performing an elastic analysis based on the elastic analysis conditions input to the elastic analysis condition input means, and calculating a post-elastic deformation stress distribution and a post-elastic deformation strain distribution of the member;
Fatigue analysis condition input means for inputting the post-molding strain distribution calculated by the hydroform molding analysis means, the post-elastic deformation stress distribution and post-elastic deformation strain distribution of the member calculated by the elastic analysis means, and a fatigue load;
Fatigue analysis means for performing fatigue analysis based on the fatigue analysis conditions input to the fatigue analysis condition input means, and calculating a fatigue life of the member;
Iterative calculation control for automatically executing a predetermined number of calculations from the hydroform molding condition input means to the fatigue analysis means by changing at least one of the internal pressure, axial push amount, and friction coefficient of the hydroform molding conditions Means,
An apparatus for designing a fatigue of a member having excellent fatigue durability, comprising: an optimum molding condition output means for outputting a hydroforming molding condition that gives a maximum fatigue life or a target fatigue life.
(3). Based on material shape, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness input as hydroform molding conditions Hydroform molding analysis means for calculating the thickness distribution and post-molding strain distribution of the molded product,
Elasticity analysis is performed based on the plate thickness distribution, member shape, and fatigue load calculated by the hydroform molding analysis means as the elastic analysis condition, and the elasticity distribution for calculating the stress distribution after elastic deformation and the strain distribution after elastic deformation of the member is calculated. Analysis means;
As fatigue analysis conditions, fatigue analysis is performed based on the strain distribution after molding calculated by the hydroforming molding analysis means, the stress distribution after elastic deformation and the strain distribution after elastic deformation of the member calculated by the elastic analysis means, and the fatigue load. And a fatigue analysis means for calculating a fatigue life of the member,
Iterative calculation control for automatically executing a predetermined number of calculations from the hydroform molding condition input means to the fatigue analysis means by changing at least one of the internal pressure, axial push amount, and friction coefficient of the hydroform molding conditions Means,
An apparatus for designing a fatigue of a member having excellent fatigue durability, comprising: an optimum molding condition output means for outputting a hydroforming molding condition that gives a maximum fatigue life or a target fatigue life.
(4). A computer program that causes a computer to function as each means of the fatigue design apparatus according to (2) or (3).
(5). A computer-readable recording medium on which the computer program according to (4) is recorded.
In the present invention, the design parameter is hydroforming molding conditions, and is at least one of internal pressure, axial push amount, and friction coefficient.
In the present invention, the “molded product” refers to an intermediate product after molding, and an assembly of the “molded product” is defined as a “member”, that is, a final product.

本発明によれば、成形時に発生する塑性歪み及び板厚の変化を考慮しつつ、部材の実使用環境に則した疲労荷重条件での疲労寿命を所望の値にするためのハイドロフォーム成形条件を正確且つ迅速に求め、最適な部材を設計することが可能となる。   According to the present invention, the hydroforming molding conditions for setting the fatigue life under a fatigue load condition in accordance with the actual use environment of the member to a desired value while taking into account the plastic strain and the change in the plate thickness that occur during molding. It is possible to obtain an optimum member accurately and quickly.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1に、本発明を適用した疲労設計手法を説明するためのフローチャートを示す。
まず、ハイドロフォーム成形条件として加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚の各条件入力データ101を設定し、これを入力データとしてハイドロフォーム成形解析102を行う。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a flowchart for explaining a fatigue design method to which the present invention is applied.
First, the hydroform molding conditions are: material shape before processing, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness. Input data 101 is set, and hydroforming molding analysis 102 is performed using this as input data.

次に、上記ハイドロフォーム成形条件101に基づいてコンピュータがハイドロフォーム成形解析102を行い、成形品の板厚分布及び成形後歪み分布を算出して、ハイドロフォーム成形解析の出力データ103として出力する。   Next, the computer performs hydroform molding analysis 102 based on the hydroform molding conditions 101, calculates the thickness distribution and post-molding strain distribution of the molded product, and outputs the result as output data 103 of the hydroform molding analysis.

次に、ハイドロフォーム成形解析出力データ103の中の板厚分布、前記成形品を元に組み上げた部材形状、及び疲労荷重を弾性解析条件入力データ104として設定し、その条件104に基づいてコンピュータが部材の弾性解析105を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出して、弾性解析出力データ106として出力する。   Next, the plate thickness distribution in the hydroform molding analysis output data 103, the member shape assembled based on the molded product, and the fatigue load are set as the elastic analysis condition input data 104, and the computer is based on the condition 104. The elastic analysis 105 of the member is performed, the stress distribution after elastic deformation and the strain distribution after elastic deformation of the member are calculated, and output as elastic analysis output data 106.

次に、ハイドロフォーム成形解析出力データ103の中の成形後歪み分布、弾性解析出力データ106の中の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重を疲労解析条件入力データ107として設定し、その条件107に基づいてコンピュータが疲労解析108を行い、部材の疲労寿命を算出して、疲労解析出力データ109として出力する。そして、その疲労寿命が目標疲労寿命を満足するか、或いは、最大値であるか否かを評価の工程110を実施する。   Next, the post-molding strain distribution in the hydroform molding analysis output data 103, the post-elastic deformation stress distribution and the post-elastic strain distribution in the elastic analysis output data 106, and the fatigue load are set as fatigue analysis condition input data 107. Then, the computer performs fatigue analysis 108 based on the condition 107, calculates the fatigue life of the member, and outputs it as fatigue analysis output data 109. Then, an evaluation step 110 is performed to determine whether the fatigue life satisfies the target fatigue life or is the maximum value.

次に、部材の疲労寿命が所望の値になっていない場合、前記ハイドロフォーム成形条件101の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、コンピュータが再度前記101〜109までの工程を、所定回数繰返して計算を行う。   Next, when the fatigue life of the member does not reach a desired value, at least one of the internal pressure, the shaft pressing amount, and the friction coefficient of the hydroform molding condition 101 is changed, and the computer again performs the above 101 to 109. The above process is repeated a predetermined number of times for calculation.

次に、101〜109までの工程を繰返して部材の疲労寿命が所望の値に達した時点でフローを終了する。これにより、疲労寿命の最大値又は目標疲労寿命を与える最適なハイドロフォーム成形条件111を求めることができる。   Next, the steps from 101 to 109 are repeated, and the flow is terminated when the fatigue life of the member reaches a desired value. Thereby, the optimum hydroforming molding condition 111 that gives the maximum fatigue life or the target fatigue life can be obtained.

ハイドロフォーム成形解析、静的弾性解析、疲労(寿命)解析については市販の有限要素法等の解析プログラムや自製のプログラムを用いればよい。ハイドロフォーム成形解析用のプログラムでは、有限要素法を用いたPAM-STAMP、LS-DYNA、ABAQUS等の市販のソルバーがある。また、弾性解析用のプログラムでは、NASTRAN、MARC、ABAQUS等の有限要素法を用いた市販のソルバーがある。また、疲労解析用のプログラムは、MSC.Fatigue、FEMFAT、FE-Fatigue等の市販ソフトがある。   For hydroforming molding analysis, static elasticity analysis, and fatigue (lifetime) analysis, an analysis program such as a commercially available finite element method or a self-made program may be used. As a program for hydroforming molding analysis, there are commercially available solvers such as PAM-STAMP, LS-DYNA, and ABAQUS using the finite element method. In addition, there are commercially available solvers that use finite element methods such as NASTRAN, MARC, and ABAQUS for elastic analysis programs. In addition, there are commercially available software such as MSC.Fatigue, FEMFAT, and FE-Fatigue for fatigue analysis programs.

また、ハイドロフォーム成形解析結果から疲労解析へのデータの受け渡し、解析条件の変更も市販或いは自製のプログラムを用いればよい。解析条件を自動的に変更し、最適な結果を得るために繰返し計算を行う最適化ツールは、iSIGHT、OPTIMUS、AMDESS等の市販の最適化ソフトが用意されており、図1に示す繰返し計算を自動化できる。   In addition, a commercially available program or a self-made program may be used to transfer data from the hydroform molding analysis result to fatigue analysis and to change analysis conditions. Commercial optimization software such as iSIGHT, OPTIMUS, and AMDESS is available as an optimization tool that automatically changes analysis conditions and performs iterative calculations to obtain optimal results. Can be automated.

なお、入力データ101、104、107は、都度外部の入力手段から入力しても良いし、プログラムの中で自動的にデータを取り込んでも良い。   Note that the input data 101, 104, and 107 may be input from an external input unit each time, or may be automatically captured in a program.

図2には、ハイドロフォーム成形品を組み上げた部材の例を示す。本例のハイドロフォームを組み上げた部材(ハイドロフォーム成形部材)は、長方形断面に拡管されたハイドロフォーム成形品3に金属管4を溶接したものであり、ハイドロフォーム成形品3の両側に溶接部5を有する。   In FIG. 2, the example of the member which assembled the hydrofoam molded article is shown. The member (hydroform molded member) assembled with the hydroform of this example is obtained by welding a metal tube 4 to a hydroform molded product 3 expanded in a rectangular cross section, and welded portions 5 on both sides of the hydroform molded product 3. Have

また、図3に、ハイドロフォーム成形解析プログラム102で実行されるハイドロフォーム成形解析の一例を示す。素管1及び工具である金型2の形状データから有限要素メッシュモデルを作成し、ハイドロフォーム成形条件に基づいて成形解析を行い、内圧負荷と軸押し終了時点での成形品の板厚分布及び成形後歪み分布を求める。   FIG. 3 shows an example of hydroform molding analysis executed by the hydroform molding analysis program 102. A finite element mesh model is created from the shape data of the base tube 1 and the mold 2 which is a tool, and a molding analysis is performed based on hydroforming molding conditions. Obtain the strain distribution after molding.

ハイドロフォーム成形解析で求めた成形品の板厚分布及び成形後歪み分布がマッピングされた成形品を用いて、コンピュータ上で部材に組み上げる。その組み上げられた部材の形状、板厚分布のデータに所定の拘束条件及び荷重条件のデータを加え、弾性解析プログラム105で弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を求める。   Using the molded product in which the plate thickness distribution and the post-molding strain distribution of the molded product obtained by the hydroform molding analysis are mapped, the components are assembled on a computer. Data on the shape and plate thickness distribution of the assembled member is added with data on predetermined restraint conditions and load conditions, and an elastic analysis is performed by the elastic analysis program 105 to obtain a stress distribution after elastic deformation and a strain distribution after elastic deformation of the member. Ask.

次に、疲労解析プログラム108の中で行われる成形後歪み分布を考慮した疲労寿命計算の一例を示す。ハイドロフォーム成形解析により得た成形後歪み分布は、部材の予歪み分布として設定し、その値に基づき基準となるSN線図、EN線図を、疲労寿命計算を行うため選択する。ここで、EN線図とは、歪み値と繰返し数の関係を示す疲労寿命線図を指す。SN線図、EN線図は市販のデータや公知文献のデータを使用しても良く、設計に用いる鋼材と同等の鋼材を用いて、予め疲労試験を行って作成したデータを用いても良い。予歪みをうけた金属材料は、一般的に高サイクル領域では疲労強度が上昇することが知られている。   Next, an example of the fatigue life calculation taking into account the post-molding strain distribution performed in the fatigue analysis program 108 is shown. The post-molding strain distribution obtained by the hydroforming molding analysis is set as a pre-strain distribution of the member, and based on the value, the reference SN diagram and EN diagram are selected for fatigue life calculation. Here, the EN diagram indicates a fatigue life diagram showing the relationship between the strain value and the number of repetitions. For the SN diagram and EN diagram, commercially available data or data of known literature may be used, or data created by conducting a fatigue test in advance using a steel material equivalent to the steel material used for the design may be used. It is known that a pre-strained metal material generally has an increased fatigue strength in a high cycle region.

図4は、ある鋼材の予歪みの影響を示すSN線図で、予めハイドロフォーム成形により所定の歪みを付与した成形品を用意し、その成形品より疲労試験片を切り出して、疲労試験を行い、本図を求めることができる。例えば、部材の有限要素メッシュモデルのある節点(ノード)位置で30%の予歪みを受け、尚且つ、疲労荷重が負荷されることにより、その節点位置で300MPaの応力が発生する場合、図中の点線矢印が示すように30%の予歪みのSNラインを選択し、その節点の予測疲労寿命(繰返し数)は63万回と算出することができる。同様の算出方法により、部材の有限要素メッシュモデルの全節点において疲労寿命を算出し、その算出結果の中で最小の値が部材の予測疲労寿命となる。   Fig. 4 is an SN diagram showing the effect of pre-strain on a certain steel material. Prepare a molded product with a predetermined strain applied in advance by hydroforming, cut out a fatigue test piece from the molded product, and conduct a fatigue test. This figure can be obtained. For example, in the figure, when a stress of 300 MPa is generated at a node position due to a 30% pre-strain at a node position in the finite element mesh model of the member and a fatigue load is applied. As indicated by the dotted line arrow, an SN line with a pre-strain of 30% is selected, and the predicted fatigue life (number of repetitions) at that node can be calculated as 630,000 times. By the same calculation method, the fatigue life is calculated at all nodes of the finite element mesh model of the member, and the smallest value among the calculated results is the predicted fatigue life of the member.

以上が本発明を適用した方法又は装置に関する説明である。図5は、本発明の疲労設計装置として機能しうるコンピュータシステムの構成例を示す図である。同図において、1200はコンピュータPCである。PC1200は、CPU1201を備え、ROM1202又はハードディスク(HD)1211に記録された、或いはフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行し、システムバス1204に接続される各デバイスを総括的に制御する。PC1200のCPU1201、ROM1202又はハードディスク(HD)1211に記録されたプログラムにより、本発明の各機能手段が実現される。   This completes the description of the method or apparatus to which the present invention is applied. FIG. 5 is a diagram showing a configuration example of a computer system that can function as the fatigue design apparatus of the present invention. In the figure, reference numeral 1200 denotes a computer PC. The PC 1200 includes a CPU 1201, executes device control software recorded in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk drive (FD) 1212, and collects all devices connected to the system bus 1204. To control. Each functional unit of the present invention is realized by a program recorded in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200.

1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209から入力される信号をシステム本体内に入力する制御を行う。1206は表示コントローラ(CRTC)であり、表示装置(CRT)1210上の表示制御を行う。1207はディスクコントローラ(DKC)であり、ブートプログラム(起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラム)、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記録するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。1208はネットワークインタフェースカード(NIC)であり、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或いは他のPCと双方向のデータのやり取りを行う。   Reference numeral 1203 denotes a RAM which functions as a main memory, work area, and the like for the CPU 1201. Reference numeral 1205 denotes a keyboard controller (KBC), which controls to input a signal input from the keyboard (KB) 1209 into the system main body. Reference numeral 1206 denotes a display controller (CRTC) which performs display control on the display device (CRT) 1210. A disk controller (DKC) 1207 is a hard disk that records a boot program (startup program: a program for starting execution (operation) of hardware and software of a personal computer), a plurality of applications, editing files, user files, a network management program, and the like. Controls access to the (HD) 1211 and the flexible disk (FD) 1212. Reference numeral 1208 denotes a network interface card (NIC) that performs bidirectional data exchange with a network printer, another network device, or another PC via the LAN 1220.

なお、本発明の疲労設計装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。   The fatigue design device of the present invention may be applied to a system composed of a plurality of devices or an apparatus composed of a single device.

また、本発明の目的は前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記録媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が記録媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。この場合、記録媒体から読出しされたプログラムコード自体が前述した実施形態の機能を実現することとなり、そのプログラムコードを記録した記録媒体は本発明を構成することになる。プログラムコードを供給するための記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   Another object of the present invention is to supply a recording medium in which a program code of software realizing the functions of the above-described embodiments is recorded to a system or apparatus, and the computer (CPU or MPU) of the system or apparatus stores the recording medium in the recording medium. Needless to say, this can also be achieved by reading and executing the programmed program code. In this case, the program code itself read from the recording medium realizes the functions of the above-described embodiments, and the recording medium on which the program code is recorded constitutes the present invention. As a recording medium for supplying the program code, for example, a flexible disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, ROM, or the like can be used.

以上、本発明を種々の実施形態とともに説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。   As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.

(実施例)
以下に、本発明の実施例を示す。
1.設計対象
本発明の実施例として、図6に示すように、中央部をハイドロフォーム成形で長方形断面に拡管したハイドロフォーム成形品3の両端部に金属管4を溶接した部材(ハイドロフォーム成形部材)を設計対象とし、最適ハイドロフォーム成形条件を設計する。ハイドロフォーム成形部材は管端が固定用端板6により支持されており、長方形断面中央部に荷重負荷用治具7により疲労荷重が繰り返し負荷され、その疲労寿命(繰返し数)が最大となる最適な成形条件として、内圧を求める。繰返し疲労荷重は、完全両振りの荷重であり、20kNである。
(Example)
Examples of the present invention are shown below.
1. Design object As an embodiment of the present invention, as shown in FIG. 6, a member (hydroform molded member) in which a metal tube 4 is welded to both ends of a hydroformed molded product 3 having a central portion expanded into a rectangular cross section by hydroforming. Design the optimum hydroforming molding conditions. The hydroforming molded member is supported by the end plate 6 for fixing the pipe end. The fatigue load is repeatedly applied to the center of the rectangular cross section by the load-loading jig 7, and the fatigue life (number of repetitions) is maximized. As an appropriate molding condition, the internal pressure is obtained. The repeated fatigue load is a complete double swing load of 20 kN.

ハイドロフォーム成形部材は、全長640mm、中央部長方形断面部高さ95mm、長方形断面部幅63mm、長方形部の長さ200mm、長方形部から金属管4までの移行部の水平方向長さ(片側)80mmである。また、両端に溶接される金属管4の外径は63.5mmで、肉厚は2.3mm、長さは140mmである。工具形状については、ハイドロフォーム成形部材の形状寸法より、パンチ金型、ダイ金型の形状寸法を設定した。ハイドロフォーム成形に用いた加工前の材料形状、即ち、素管の形状は、外径63.5mm、肉厚2.3mm、長さ400mmである。   The hydroforming molded member has a total length of 640 mm, a central rectangular section height of 95 mm, a rectangular sectional section width of 63 mm, a rectangular section length of 200 mm, and a horizontal length (one side) of the transition section from the rectangular section to the metal tube 4 of 80 mm. It is. The outer diameter of the metal tube 4 welded to both ends is 63.5 mm, the wall thickness is 2.3 mm, and the length is 140 mm. About the tool shape, the shape dimension of the punch die and the die mold was set from the shape dimension of the hydroform molded member. The material shape before processing used for hydroforming, that is, the shape of the raw tube, is 63.5 mm in outer diameter, 2.3 mm in wall thickness, and 400 mm in length.

ハイドロフォーム成形条件は、軸押し量30mm、初期のハイドロフォーム内圧20MPa、摩擦係数0.14、材料の引張強さ470MPa、材料降伏強さ400MPa、応力歪み関係は下式で算出される値である。ここで、σは真応力であり、εは真ひずみである。
σ=750×(ε+0.0006)0.17
Hydroform molding conditions are: axial push amount 30 mm, initial hydrofoam internal pressure 20 MPa, friction coefficient 0.14, material tensile strength 470 MPa, material yield strength 400 MPa, and stress-strain relationship is a value calculated by the following equation. . Here, σ is the true stress and ε is the true strain.
σ = 750 × (ε + 0.0006) 0.17

2.ハイドロフォーム成形解析
上記のハイドロフォーム成形条件を入力して、市販の有限要素法プログラムLS-DYNAを用いてハイドロフォーム成形品3の成形解析を行い、成形品の形状、板厚分布、成形後歪み分布を算出した。
2. Hydroform Molding Analysis Enter the above hydroform molding conditions and perform molding analysis of Hydroform Molded Product 3 using the commercially available finite element method program LS-DYNA to determine the shape, thickness distribution, and molding of the molded product. Post-strain distribution was calculated.

3.弾性解析
コンピュータ上でハイドロフォーム成形品3、両端に溶接される金属管4を取り付け、ハイドロフォーム成形部材として組み上げた後、弾性解析条件としてハイドロフォーム成形品3の板厚分布と、部材形状、及び疲労荷重20kNに基づいて、市販の有限要素法プログラムNASTRANを用いて弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出した。
3. Elastic analysis After the hydroform molded product 3 and metal pipes 4 welded to both ends are attached on a computer and assembled as a hydroform molded member, the plate thickness distribution of the hydroform molded product 3, the member shape, and Based on the fatigue load of 20 kN, an elastic analysis was performed using a commercially available finite element method program NASTRAN, and the post-elastic deformation stress distribution and post-elastic deformation strain distribution of the member were calculated.

4.疲労解析
疲労解析条件として、ハイドロフォーム成形解析で算出したハイドロフォーム成形品3の成形後歪み分布、弾性解析で算出したハイドロフォーム成形部材の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重20kNに基づいて、市販の疲労解析プログラムFE-Fatigueを用いて、ハット型断面部材のねじり疲労荷重下における疲労寿命(繰り返し数)を算出した。なお、部材に使用された材料の疲労強度データ(SN線図)については、図4に示すSN線図を用いた。
4). Fatigue analysis As fatigue analysis conditions, strain distribution after molding of hydroformed molded product 3 calculated by hydroforming molding analysis, stress distribution after elastic deformation and strain distribution after elastic deformation of hydroformed molded member calculated by elastic analysis, and fatigue load Based on 20 kN, the fatigue life (number of repetitions) of the hat-shaped cross-section member under a torsional fatigue load was calculated using a commercially available fatigue analysis program FE-Fatigue. In addition, about the fatigue strength data (SN diagram) of the material used for the member, the SN diagram shown in FIG. 4 was used.

5.ハイドロフォーム成形条件の変更
最適化ツールについては、市販のプログラムiSIGHTを使用し、ハイドロフォーム成形条件の内圧を20〜80MPaの範囲で変更し、図1の101〜110までの工程をコンピュータが30回繰返し計算を行い、疲労寿命が最大値となる最適ハイドロフォーム成形条件を探索した。
5. Change of hydroforming molding conditions For the optimization tool, the commercially available program iSIGHT was used, the internal pressure of hydroforming molding conditions was changed in the range of 20-80 MPa, and the steps from 101 to 110 in FIG. Repeated calculations were performed to find the optimal hydroforming conditions that maximize the fatigue life.

6.結果
疲労寿命とハイドロフォーム内圧の関係は、内圧が小さすぎると中央部の断面形状が小さく十分な断面剛性が得られず、疲労寿命が低下した。一方、内圧が過大になると部材中央部の板厚減少が大きくなり、局所的な応力が増加するため、疲労寿命が低下する傾向であった。さらに、内圧を増加させるとハイドロフォーム成形時にバーストが生じ、成形ができなくなる場合があった。
6). Results Regarding the relationship between the fatigue life and the hydrofoam internal pressure, if the internal pressure is too small, the cross-sectional shape of the central portion is small and sufficient cross-sectional rigidity cannot be obtained, resulting in a decrease in fatigue life. On the other hand, when the internal pressure is excessive, the plate thickness decrease in the central part of the member increases, and the local stress increases, so that the fatigue life tends to decrease. Furthermore, if the internal pressure is increased, bursts may occur during hydroforming molding, and molding may not be possible.

図7に部材の弾性解析後応力分布の代表例を示す。比較的低い内圧では、十分な長方形断面が成形されず断面剛性が低いため、発生応力が高い(図7(a)を参照)。内圧を徐々に上げていくと、長方形断面が成形されはじめ断面剛性が向上し、発生応力が低減される(図7(b)を参照)。さらに内圧を上昇させていくと、拡管による板厚減少により発生応力が再び上昇する(図7(c)を参照)。   FIG. 7 shows a representative example of the stress distribution after elastic analysis of the member. At a relatively low internal pressure, a sufficient rectangular cross section is not formed and the cross section rigidity is low, so that the generated stress is high (see FIG. 7A). When the internal pressure is gradually increased, a rectangular cross section starts to be formed, the cross section rigidity is improved, and the generated stress is reduced (see FIG. 7B). When the internal pressure is further increased, the generated stress increases again due to the reduction of the plate thickness due to the pipe expansion (see FIG. 7C).

本発明による疲労設計手法に従い繰返し計算を行い、最適ハイドロフォーム成形条件を探索した結果、内圧が55MPaで、最大疲労寿命(繰返し数)が150万回であることを見出すことができた。この条件でハイドロフォーム成形を行った成形品を元に部材を製作し、繰返し疲労荷重が完全両振り荷重20kN、繰返し周波数3Hzの試験条件で、最大荷重100kNの油圧サーボ式疲労試験機を用いて疲労試験をしたところ、繰返し数が200万回になった時点で中央部の長方形断面の角部に初期亀裂の発生が確認され、目標を超える疲労寿命が得られた。   As a result of iterative calculation according to the fatigue design method of the present invention and searching for the optimum hydroform molding conditions, it was found that the internal pressure was 55 MPa and the maximum fatigue life (number of repetitions) was 1.5 million. A member is manufactured based on a molded product that has been subjected to hydroform molding under these conditions, using a hydraulic servo type fatigue tester with a repeated fatigue load of 20 kN with a full swing load and a repetition frequency of 3 Hz, with a maximum load of 100 kN. When a fatigue test was performed, the occurrence of initial cracks was confirmed at the corners of the rectangular cross section at the center when the number of repetitions reached 2 million times, and a fatigue life exceeding the target was obtained.

本発明を適用した疲労設計手法を説明するためのフローチャートである。It is a flowchart for demonstrating the fatigue design method to which this invention is applied. ハイドロフォーム成形品を組み上げた部材の例を示す図である。It is a figure which shows the example of the member which assembled the hydroform molded article. ハイドロフォーム成形解析の一例を示す図である。It is a figure which shows an example of a hydroform shaping | molding analysis. ある鋼材の予歪みの影響を示すSN線図である。It is a SN diagram which shows the influence of the pre-strain of a certain steel material. 本発明の疲労設計装置として機能しうるコンピュータシステムの構成例を示す図である。It is a figure which shows the structural example of the computer system which can function as a fatigue design apparatus of this invention. 実施例でのハイドロフォーム成形部材を示す図である。It is a figure which shows the hydrofoam shaping | molding member in an Example. 実施例での部材の弾性解析後応力分布の例を示す図である。It is a figure which shows the example of the stress distribution after the elastic analysis of the member in an Example. ハイドロフォーム成形を説明するための図である。It is a figure for demonstrating hydroform molding. ハイドロフォーム成形における軸押し量と内圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the amount of axial pushing and internal pressure in hydroforming molding.

符号の説明Explanation of symbols

1 素管
2 金型
3 ハイドロフォーム成形品
4 金属管
5 溶接部
6 固定用端板
7 荷重負荷用治具
DESCRIPTION OF SYMBOLS 1 Base pipe 2 Mold 3 Hydroform molded article 4 Metal pipe 5 Welded part 6 Fixing end plate 7 Load loading jig

Claims (5)

ハイドロフォーム成形条件として加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚に基づいてコンピュータがハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出し、コンピュータ上で前記成形品を元に部材を組み上げた後、弾性解析条件として前記板厚分布、部材形状、及び疲労荷重に基づいてコンピュータが弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出し、疲労解析条件として前記成形後歪み分布、前記弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重に基づいてコンピュータが疲労解析を行い、部材の疲労寿命を算出する工程を、前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、コンピュータが所定回数繰り返し計算を行い、前記疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を求めることを特徴とする疲労耐久性に優れた部材の疲労設計方法。   Computer based on hydroform molding conditions based on material shape before processing, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness Hydroform molding analysis is performed to calculate the thickness distribution and post-molding strain distribution of the molded product, and after assembling the members based on the molded product on the computer, the plate thickness distribution, member shape, and The computer performs elastic analysis based on the fatigue load, calculates the post-elastic deformation stress distribution and post-elastic deformation distribution of the member, and the post-molding strain distribution, post-elastic deformation stress distribution and post-elastic deformation strain as fatigue analysis conditions. The computer performs a fatigue analysis based on the distribution and the fatigue load, and calculates the fatigue life of the member. Excellent fatigue durability, characterized in that, by changing at least one of the friction coefficients, a computer repeatedly calculates a predetermined number of times to obtain hydroforming molding conditions that give the maximum fatigue life or the target fatigue life Fatigue design method for members. ハイドロフォーム成形条件として加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚を入力するハイドロフォーム成形条件入力手段と、
前記ハイドロフォーム成形条件入力手段に入力された前記ハイドロフォーム成形条件に基づいてハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出するハイドロフォーム成形解析手段と、
前記ハイドロフォーム成形解析手段により算出した前記板厚分布、部材形状、及び疲労荷重を入力する弾性解析条件入力手段と、
前記弾性解析条件入力手段に入力された前記弾性解析条件に基づいて弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出する弾性解析手段と、
前記ハイドロフォーム成形解析手段により算出した前記成形後歪み分布、前記弾性解析手段により算出した部材の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重を入力する疲労解析条件入力手段と、
前記疲労解析条件入力手段に入力された前記疲労解析条件に基づいて疲労解析を行い、部材の疲労寿命を算出する疲労解析手段と、
前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、前記ハイドロフォーム成形条件入力手段から前記疲労解析手段に至る計算を所定回数自動的に実行する繰り返し計算制御手段と、
疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を出力する最適成形条件出力手段とを有することを特徴とする疲労耐久性に優れた部材の疲労設計装置。
Hydroform that inputs material shape before molding, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness as hydroform molding conditions Molding condition input means;
Hydroform molding analysis means for performing hydroform molding analysis based on the hydroform molding conditions input to the hydroform molding condition input means, and calculating a plate thickness distribution and a post-molding strain distribution of the molded product;
Elastic analysis condition input means for inputting the plate thickness distribution, member shape, and fatigue load calculated by the hydroform molding analysis means,
An elastic analysis means for performing an elastic analysis based on the elastic analysis conditions input to the elastic analysis condition input means, and calculating a post-elastic deformation stress distribution and a post-elastic deformation strain distribution of the member;
Fatigue analysis condition input means for inputting the post-molding strain distribution calculated by the hydroform molding analysis means, the post-elastic deformation stress distribution and post-elastic deformation strain distribution of the member calculated by the elastic analysis means, and a fatigue load;
Fatigue analysis means for performing fatigue analysis based on the fatigue analysis conditions input to the fatigue analysis condition input means, and calculating a fatigue life of the member;
Iterative calculation control for automatically executing a predetermined number of calculations from the hydroform molding condition input means to the fatigue analysis means by changing at least one of the internal pressure, axial push amount, and friction coefficient of the hydroform molding conditions Means,
An apparatus for designing a fatigue of a member having excellent fatigue durability, comprising: an optimum molding condition output means for outputting a hydroforming molding condition that gives a maximum fatigue life or a target fatigue life.
ハイドロフォーム成形条件として入力された加工前の材料形状、成形品形状、工具形状、内圧、軸押し量、摩擦係数、材料の引張り強さ、降伏強さ、応力−歪み関係、及び板厚に基づいてハイドロフォーム成形解析を行い、成形品の板厚分布及び成形後歪み分布を算出するハイドロフォーム成形解析手段と、
弾性解析条件として、前記ハイドロフォーム成形解析手段により算出した前記板厚分布、部材形状、及び疲労荷重に基づいて弾性解析を行い、部材の弾性変形後応力分布及び弾性変形後歪み分布を算出する弾性解析手段と、
疲労解析条件として、前記ハイドロフォーム成形解析手段により算出した前記成形後歪み分布、前記弾性解析手段により算出した部材の弾性変形後応力分布及び弾性変形後歪み分布、並びに疲労荷重に基づいて疲労解析を行い、部材の疲労寿命を算出する疲労解析手段と、
前記ハイドロフォーム成形条件の内圧、軸押し量、摩擦係数のうち少なくとも1種以上を変えて、前記ハイドロフォーム成形条件入力手段から前記疲労解析手段に至る計算を所定回数自動的に実行する繰り返し計算制御手段と、
疲労寿命の最大値又は目標疲労寿命を与えるハイドロフォーム成形条件を出力する最適成形条件出力手段とを有することを特徴とする疲労耐久性に優れた部材の疲労設計装置。
Based on material shape, shape of molded product, tool shape, internal pressure, axial push amount, friction coefficient, material tensile strength, yield strength, stress-strain relationship, and plate thickness input as hydroform molding conditions Hydroform molding analysis means for calculating the thickness distribution and post-molding strain distribution of the molded product,
Elasticity analysis is performed based on the plate thickness distribution, member shape, and fatigue load calculated by the hydroform molding analysis means as the elastic analysis condition, and the elasticity distribution for calculating the stress distribution after elastic deformation and the strain distribution after elastic deformation of the member is calculated. Analysis means;
As fatigue analysis conditions, fatigue analysis is performed based on the strain distribution after molding calculated by the hydroforming molding analysis means, the stress distribution after elastic deformation and the strain distribution after elastic deformation of the member calculated by the elastic analysis means, and the fatigue load. And a fatigue analysis means for calculating a fatigue life of the member,
Iterative calculation control for automatically executing a predetermined number of calculations from the hydroform molding condition input means to the fatigue analysis means by changing at least one of the internal pressure, axial push amount, and friction coefficient of the hydroform molding conditions Means,
An apparatus for designing a fatigue of a member having excellent fatigue durability, comprising: an optimum molding condition output means for outputting a hydroforming molding condition that gives a maximum fatigue life or a target fatigue life.
請求項2又は3に記載の疲労設計装置の各手段としてコンピュータを機能させることを特徴とするコンピュータプログラム。   A computer program for causing a computer to function as each means of the fatigue design device according to claim 2. 請求項4に記載のコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体。   The computer-readable recording medium which recorded the computer program of Claim 4.
JP2006344709A 2006-12-21 2006-12-21 Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium Withdrawn JP2008155227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344709A JP2008155227A (en) 2006-12-21 2006-12-21 Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344709A JP2008155227A (en) 2006-12-21 2006-12-21 Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium

Publications (1)

Publication Number Publication Date
JP2008155227A true JP2008155227A (en) 2008-07-10

Family

ID=39656720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344709A Withdrawn JP2008155227A (en) 2006-12-21 2006-12-21 Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium

Country Status (1)

Country Link
JP (1) JP2008155227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103853899A (en) * 2013-05-22 2014-06-11 中国能建集团装备有限公司南京技术中心 Fatigue life calculation method for shaft parts
CN109766634A (en) * 2019-01-11 2019-05-17 徐州徐工矿业机械有限公司 A kind of mining positive research and development method of large-scale steel-casting digitlization
CN109948216A (en) * 2019-03-12 2019-06-28 华东理工大学 The Notched specimen low-cycle fatigue prediction technique of total strain energy density revision

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103853899A (en) * 2013-05-22 2014-06-11 中国能建集团装备有限公司南京技术中心 Fatigue life calculation method for shaft parts
CN109766634A (en) * 2019-01-11 2019-05-17 徐州徐工矿业机械有限公司 A kind of mining positive research and development method of large-scale steel-casting digitlization
CN109948216A (en) * 2019-03-12 2019-06-28 华东理工大学 The Notched specimen low-cycle fatigue prediction technique of total strain energy density revision
CN109948216B (en) * 2019-03-12 2023-01-03 华东理工大学 Total strain energy density corrected notched part low-cycle fatigue prediction method

Similar Documents

Publication Publication Date Title
KR101070163B1 (en) Method and device for designing member, and computer-readable recording medium recording a computer program
JP4000941B2 (en) Die shape optimization support system and optimization support program in plastic working
Oudjene et al. On the parametrical study of clinch joining of metallic sheets using the Taguchi method
JP4716171B2 (en) Die design support program and method for press working
JP6330967B2 (en) Fracture prediction method, break prediction device, program and recording medium, and fracture determination criterion calculation method
JP5582010B2 (en) Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model
JP2011101900A (en) Deformation estimating method, program and recording medium
KR20150040790A (en) System and method for prediction of snap-through buckling of formed steel sheet panels
JP6897413B2 (en) Formability evaluation method, program and recording medium
JP2008155227A (en) Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium
CN109117569B (en) Collision finite element model modeling method with octagonal spot welding heat affected zone structure
JP6582811B2 (en) Resistance spot welding nugget diameter prediction method, computer program, and computer-readable recording medium recording the program
JP4352658B2 (en) Springback analysis method for press-formed products
JP5241991B2 (en) Deformation estimation method, program, and recording medium
JP2005266892A (en) Mold designing support system and method, and program for supporting mold designing
JP2005266894A (en) Mold design support system and method, and program for supporting mold designing
JP2004042098A (en) Forming simulation analysis method
JP2006326606A (en) Method for predicting service life of metal die
JP2008161896A (en) Welding condition setting method, apparatus and computer program
He et al. Effect of FEM choices in the modelling of incremental forming of aluminium sheets
US20220318461A1 (en) Method and Device for Predicting and/or Reducing the Deformation of a Multipart Assembly
JP2007093286A (en) Method for analyzing spot welding fracture
Wang et al. Springback analysis and strategy for multi-stage thin-walled parts with complex geometries
JP2008149356A (en) Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium
JP7422040B2 (en) Forging simulation method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302