JP2008149356A - Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium - Google Patents

Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium Download PDF

Info

Publication number
JP2008149356A
JP2008149356A JP2006341486A JP2006341486A JP2008149356A JP 2008149356 A JP2008149356 A JP 2008149356A JP 2006341486 A JP2006341486 A JP 2006341486A JP 2006341486 A JP2006341486 A JP 2006341486A JP 2008149356 A JP2008149356 A JP 2008149356A
Authority
JP
Japan
Prior art keywords
press molding
molded product
plate thickness
analysis
dynamic stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006341486A
Other languages
Japanese (ja)
Inventor
Toshiyuki Niwa
俊之 丹羽
Hiroshi Yoshida
博司 吉田
Eiji Isogai
栄志 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006341486A priority Critical patent/JP2008149356A/en
Publication of JP2008149356A publication Critical patent/JP2008149356A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present an optimal press forming condition in order to obtain a desired natural frequency and deformation mode in a component being a final product in consideration of effects of a change in the plate thickness and hardening caused by plastic working in manufacturing a formed article. <P>SOLUTION: In a method for designing a highly rigid component, a computer performs a press forming analysis based on press forming conditions such as a shape of the formed article, amount of punch movement, loading for wrinkle pressing, friction coefficient, relation between stress and strain of material, and plate thickness, to calculate the distribution of the plate thickness of the formed article; and also performs a dynamic stiffness analysis based on conditions for a dynamic stiffness analysis such as the distribution of the plate thickness of the formed article and a component shape manufactured by assembling the formed article, to calculate the natural frequency. In the method, the computer repeats the calculation predetermined times while changing at least one or more of the press forming conditions, and outputs the maximum value of the natural frequency or the press forming condition providing a stable region as the optimal press forming condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車や電機製品等に用いられるプレス成形を組み上げて製作される部材であって、剛性の高い部材の設計方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体に関する。   The present invention relates to a method for designing a member having high rigidity, which is a member manufactured by assembling press molding used in automobiles, electrical products, and the like, a computer program, and a computer-readable recording medium.

自動車や電機製品等の振動を発生する機器では、外力に抗して機器の変形を防いだり、振動や音の伝播を防いだりするため、その機器を構成する部材に対して高い剛性が求められる。剛性の高い部材は、一般に固有振動数が高くなる。従来の機器構成部材の設計では、初期形状を定めた後、有限要素法等の方法によって動剛性解析を実施し、固有振動数や変形モードが目標値となるよう部材の形状等を変更する。解析による評価が目標値を達成した後、試作・実験によって最終確認を行い、設計を確定する。   Devices that generate vibration, such as automobiles and electrical products, are required to have high rigidity for the components that make up the device in order to prevent deformation of the device against external forces and to prevent vibration and sound propagation. . A member having high rigidity generally has a high natural frequency. In the conventional design of equipment component members, after determining an initial shape, dynamic rigidity analysis is performed by a method such as a finite element method, and the shape of the member is changed so that the natural frequency and the deformation mode become target values. After the evaluation by analysis achieves the target value, final confirmation is made by trial manufacture and experiment, and the design is confirmed.

これらの部材は、鋼材又はその他材料の薄板、管又は棒を塑性加工し成形品とした後、必要に応じて他の材料と接合することによって製作される。塑性加工は、プレス、ハイドロフォーム又は押し出し等の成形方法が用いられる。また、接合は、スポット溶接、アーク溶接、レーザ溶接又はリベット接合、ボルト接合、かしめ等の方法が用いられる。   These members are manufactured by plastically processing a thin plate, tube or rod of steel or other material to form a molded product, and then joining with other materials as necessary. For the plastic working, a forming method such as pressing, hydroforming or extrusion is used. For the joining, methods such as spot welding, arc welding, laser welding or rivet joining, bolt joining, and caulking are used.

従来、図7に示すように、プレス成形解析から衝突解析に至る連成解析という手法が公知である。図7において、10は加工前の材料、11はプレス成形解析の結果、12はプレス成形解析の結果を衝突解析の入力データに変換したもの、13は衝突解析の結果を表わす。特許文献1には、プレス部品の最終部品形状データを元に、追加した形状データを作成した上で成形解析を行い、得られた解析結果を元に耐衝突性能等の特性解析を連成的に行うシミュレーション方法が開示されている。しかしながら、特許文献1には、最適な部品形状、成形条件を提示する方法については記載されていない。   Conventionally, as shown in FIG. 7, a technique called coupled analysis from press forming analysis to collision analysis is known. In FIG. 7, 10 is a material before processing, 11 is a result of press forming analysis, 12 is a result of converting the result of press forming analysis into input data of collision analysis, and 13 is a result of collision analysis. In Patent Document 1, forming analysis is performed after the added shape data is created based on the final part shape data of the pressed part, and characteristic analysis such as collision resistance performance is coupled based on the obtained analysis result. A simulation method is disclosed. However, Patent Document 1 does not describe a method for presenting an optimal part shape and molding conditions.

また、特許文献2には、コンピュータを利用して自動車用部品等の鉄鋼製品の設計を行うため、使用する材料パラメータをあらかじめ記憶するステップと、少なくとも鉄鋼製品の材料規格、板厚、形状を記憶するステップと、前記鉄鋼製品の成形性、剛性、強度を評価するステップと、前記成形性、剛性、強度の少なくともいずれか1つの要求仕様を満足しない場合には、前記鉄鋼製品の材料規格、板厚、形状の少なくともいずれか1つの修正を行うステップと、前記成形性、剛性、強度を再評価するステップとを含む設計方法および設計システムが開示されている。即ち、特許文献2に開示された方法は、成形CAE(Computer Aided Engineering)によって鉄鋼製品の成形性を評価した後、剛性CAE、強度CAEを個別に行い、剛性、強度に関する要求仕様を満足するまで前記鉄鋼製品の材料規格、板厚、形状を修正するシステムになっている。しかしながら、成形CAEにおいて割れ等の不具合が生じた場合、成形条件を変更して再評価するステップの記述はあるが、最終的な要求特性(剛性、強度)を満たすための最適な成形加工条件を提示する方法については記載が無い。   Further, in Patent Document 2, in order to design steel products such as automobile parts using a computer, a step of storing material parameters to be used in advance and at least a material standard, plate thickness, and shape of the steel product are stored. A step of evaluating the formability, rigidity, and strength of the steel product, and if not satisfying at least one of the required specifications of the formability, rigidity, and strength, A design method and a design system including a step of correcting at least one of thickness and shape and a step of reevaluating the formability, rigidity, and strength are disclosed. That is, in the method disclosed in Patent Document 2, after evaluating the formability of a steel product by forming CAE (Computer Aided Engineering), rigidity CAE and strength CAE are individually performed until the required specifications regarding rigidity and strength are satisfied. It is a system for correcting the material standard, plate thickness, and shape of the steel product. However, if a defect such as cracking occurs in the molding CAE, there is a description of the step of changing the molding conditions and re-evaluating, but the optimum molding processing conditions to satisfy the final required characteristics (rigidity, strength) are described. There is no description about the method of presentation.

特開2004−50253号公報JP 2004-50253 A 特開2002−297670号公報JP 2002-297670 A

鋼材等の金属を材料とする場合、成形品製作時の塑性加工によって板厚の変化や、塑性ひずみによる加工硬化が発生し、板厚変化や加工硬化のない場合に比して成形品が外力や振動を受けた際の固有振動数や変形モードが変化することが知られている。現状、これらの成形品を元に最終製品に組み上げた後の部材において有限要素法等の動剛性解析時に、板厚変化や加工硬化を考慮していないため、解析の評価値によって設計をしても、試作・実験では所望の固有振動数や変形モードを得られない。また、成形品製作時の塑性加工条件のばらつきにより、板厚変化や加工硬化にもばらつきが発生し、最終的に部材の固有振動数や変形モードがばらついてしまう。   When a metal such as steel is used as a material, changes in the plate thickness due to plastic working during the production of the molded product or work hardening due to plastic strain occur, and the molded product has an external force compared to when there is no plate thickness change or work hardening. It is known that the natural frequency and deformation mode change when subjected to vibration. At present, when the dynamic rigidity analysis such as the finite element method is not taken into account in the member after assembling these molded products into the final product, it is designed with the evaluation value of the analysis because the plate thickness change and work hardening are not considered. However, the desired natural frequency and deformation mode cannot be obtained in trial production and experiment. In addition, due to variations in plastic working conditions at the time of manufacturing a molded product, variations in plate thickness change and work hardening also occur, and eventually the natural frequency and deformation mode of the member vary.

本発明は、成形品製作時の塑性加工による板厚変化や加工硬化の影響を考慮しつつ、最終製品である部材において所望の固有振動数や変形モードを得るために、最適なプレス成形条件を提示できるようにすることを目的とする。設計パラメータとしては、成形品の材料・板厚・形状・加工条件・溶接条件等である。   In the present invention, optimum press molding conditions are set in order to obtain a desired natural frequency and deformation mode in a member that is a final product, while taking into consideration the influence of plate thickness change and work hardening due to plastic working during the production of a molded product. The purpose is to be able to present. Design parameters include the material, plate thickness, shape, processing conditions, welding conditions, etc. of the molded product.

かかる課題を解決するため、本発明の要旨は以下のとおりである。
(1)プレス成形条件として成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてコンピュータがプレス成形解析を行い、成形品の板厚分布を算出し、動剛性解析条件として成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいてコンピュータが動剛性解析を行い、固有振動数を算出する工程を、前記プレス成形条件のうち少なくとも1種以上を変えて、コンピュータが所定回数繰り返し計算を行い、前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力することを特徴とする剛性の高い部材の設計方法。
(2)成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚をプレス成形条件として入力するプレス成形条件入力手段と、
前記プレス成形条件入力手段に入力された成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、成形品の板厚分布を算出するプレス成形解析手段と、
前記プレス成形解析手段により算出した成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状を動剛性解析条件として入力する動剛性解析条件入力手段と、
前記動剛性解析条件入力手段に入力されたプレス成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいて動剛性解析を行い、固有振動数を算出する動剛性解析手段と、
前記プレス成形条件のうち少なくとも1種以上を変えて、前記プレス成形条件入力手段、前記プレス成形解析手段、前記動剛性解析条件入力手段、及び前記動剛性解析手段での計算を所定回数自動的に実行させる繰り返し計算制御手段と、
前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力する最適プレス成形条件出力手段とを有することを特徴とする剛性の高い部材の設計装置。
(3)プレス成形条件として成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、成形品の板厚分布を算出し、動剛性解析条件として成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいて動剛性解析を行い、固有振動数を算出する工程を、前記プレス成形条件のうち少なくとも1種以上を変えて、所定回数繰り返し計算を行い、前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力する処理をコンピュータに実行させることを特徴とするコンピュータプログラム。
(4)前記(3)のコンピュータプログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。
なお、本発明において、「成形品」とは成形後の中間製品をいい、「成形品」を組み上げたものを「部材」、即ち最終製品と定義する。
In order to solve this problem, the gist of the present invention is as follows.
(1) As the press molding conditions, the computer performs press molding analysis based on the molded product shape, punch travel, wrinkle press load, friction coefficient, material stress-strain relationship, and plate thickness, and the thickness distribution of the molded product is determined. Calculating the natural frequency based on the plate thickness distribution of the molded product and the shape of the member manufactured by assembling the molded product, and calculating the natural frequency as the dynamic stiffness analysis condition. At least one or more of the conditions are changed, the computer repeatedly performs a predetermined number of calculations, and the press molding condition that gives the maximum value or stable region of the natural frequency is output as the optimum press molding condition. Design method for high parts.
(2) Press molding condition input means for inputting a molded product shape, punch movement amount, wrinkle press load, friction coefficient, material stress-strain relationship, and plate thickness as press molding conditions;
Performs press molding analysis based on the molded product shape, punch movement amount, wrinkle presser load, friction coefficient, material stress-strain relationship, and plate thickness input to the press molding condition input means, and plate thickness distribution of the molded product Press forming analysis means for calculating
Dynamic stiffness analysis condition input means for inputting the plate thickness distribution of the molded product calculated by the press molding analysis means and a member shape manufactured by assembling the molded product as dynamic stiffness analysis conditions;
Dynamic stiffness analysis means for performing dynamic stiffness analysis based on the plate thickness distribution of the press-formed product input to the dynamic stiffness analysis condition input means and the shape of a member manufactured by assembling the molded product and calculating the natural frequency When,
By changing at least one of the press molding conditions, the calculation by the press molding condition input means, the press molding analysis means, the dynamic stiffness analysis condition input means, and the dynamic stiffness analysis means is automatically performed a predetermined number of times. Repetitive calculation control means to be executed;
An apparatus for designing a highly rigid member, comprising: an optimum press molding condition output unit that outputs a press molding condition that gives a maximum value or a stable region of the natural frequency as an optimum press molding condition.
(3) Press molding analysis is performed based on the molded product shape, punch travel, wrinkle press load, friction coefficient, material stress-strain relationship, and plate thickness as the press molding conditions, and the plate thickness distribution of the molded product is calculated. Performing the dynamic stiffness analysis based on the thickness distribution of the molded product as a dynamic stiffness analysis condition and the shape of a member manufactured by assembling the molded product, and calculating the natural frequency at least of the press molding conditions A computer program that causes a computer to execute a process of repeatedly calculating a predetermined number of times by changing one or more types, and outputting a press molding condition that gives a maximum value or a stable region of the natural frequency as an optimum press molding condition .
(4) A computer-readable recording medium on which the computer program of (3) is recorded.
In the present invention, the “molded product” refers to an intermediate product after molding, and an assembly of the “molded product” is defined as a “member”, that is, a final product.

本発明によれば、成形品製作時の板厚変化や加工硬化の影響を考慮しつつ、外力や振動が作用した場合の固有振動数を所望の値とし、かつ成形品製作時の加工条件のばらつきがあった場合でも固有振動数が大きく変動しない部材を得るために最適なプレス成形条件を設計することが可能となる。   According to the present invention, the natural frequency when an external force or vibration is applied is set to a desired value while considering the influence of the plate thickness change and work hardening at the time of manufacturing the molded product, and the processing conditions at the time of manufacturing the molded product Even when there is a variation, it is possible to design optimum press molding conditions in order to obtain a member whose natural frequency does not vary greatly.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1には、本発明を適用した剛性の高い部材の設計方法を説明するためのフローチャートを示す。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a flowchart for explaining a method for designing a highly rigid member to which the present invention is applied.

(1).プレス成形条件として成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚の各条件を設定し、これを成形解析入力データ1とする。   (1). As the press molding conditions, the molded product shape, punch movement amount, wrinkle presser load, friction coefficient, material stress-strain relationship, and plate thickness are set as molding analysis input data 1.

(2).上記成形解析入力データ1に基づいて、コンピュータが成形解析プログラム2によりプレス成形解析を行い、成形解析出力データ3として成形品の板厚分布を算出して出力し、これを入力変換プログラム4により動剛性解析入力データ5に変換する。   (2). Based on the molding analysis input data 1, the computer performs press molding analysis by the molding analysis program 2, calculates and outputs the plate thickness distribution of the molded product as molding analysis output data 3, and this is converted by the input conversion program 4. Convert to stiffness analysis input data 5.

(3).動剛性解析条件として成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいて、コンピュータが動剛性解析プログラム6により動剛性解析を行い、動剛性解析出力データ7として固有振動数を算出して出力し、工程8において剛性性能を満足するかどうかを評価する。この場合に、コンピュータ上で成形品を元に部材を組み上げる。   (3). Based on the plate thickness distribution of the molded product as a dynamic stiffness analysis condition and the shape of a member manufactured by assembling the molded product, the computer performs a dynamic stiffness analysis by the dynamic stiffness analysis program 6 and is inherent as dynamic stiffness analysis output data 7 The frequency is calculated and output, and whether or not the rigidity performance is satisfied in step 8 is evaluated. In this case, members are assembled on the computer based on the molded product.

(4).剛性性能が所望の値となっていない場合、又は前記1〜7までの工程が所定回数に満たない場合、前記プレス成形条件(成形解析入力データ)1のうち少なくとも1種以上を変えて、コンピュータが再度1〜7までの工程を所定回数繰り返し計算を行う。   (4). When the rigidity performance is not a desired value, or when the steps 1 to 7 are less than the predetermined number of times, at least one of the press molding conditions (molding analysis input data) 1 is changed, and the computer Will repeat the steps from 1 to 7 a predetermined number of times.

(5).1〜7までの工程を繰り返し計算を行うとともに工程8で評価を行い、剛性性能が所望の値になった時点で最適なプレス成形条件9を出力し、フローを終了する。これにより、固有振動数の最大値又は安定領域を与える最適なプレス成形条件(加工条件)9を得ることができる。   (5). The steps 1 to 7 are repeatedly calculated and evaluated in step 8, and when the rigidity performance reaches a desired value, the optimum press molding condition 9 is output, and the flow ends. Thereby, the optimal press molding conditions (processing conditions) 9 which give the maximum value or stable region of a natural frequency can be obtained.

なお、成形解析・動剛性解析は、市販の有限要素法等による解析プログラムや自製のプログラムでもよい。また、成形解析→動剛性解析のデータ変換、剛性性能評価及び形状・加工条件変更も市販又は自製のプログラムで行う。   The molding analysis / dynamic stiffness analysis may be a commercially available analysis program such as a finite element method or a self-made program. In addition, data conversion from molding analysis to dynamic stiffness analysis, stiffness performance evaluation, and shape / machining condition change are also performed by a commercially available program or a self-made program.

図2は、本発明の設計装置として機能するコンピュータシステムの構成例を示すブロック線図である。同図において、1200はコンピュータPCである。PC1200は、CPU1201を備え、ROM1202又はハードディスク(HD)1211に記憶された、或いはフレキシブルディスクドライブ(FD)1212より供給されるデバイス制御ソフトウェアを実行し、システムバス1204に接続される各デバイスを総括的に制御する。PC1200のCPU1201、ROM1202又はハードディスク(HD)1211に記憶されたプログラムにより、本実施形態の各機能手段が構成される。   FIG. 2 is a block diagram showing a configuration example of a computer system that functions as the design apparatus of the present invention. In the figure, reference numeral 1200 denotes a computer PC. The PC 1200 includes a CPU 1201, executes device control software stored in the ROM 1202 or the hard disk (HD) 1211, or supplied from the flexible disk drive (FD) 1212, and collects all devices connected to the system bus 1204. To control. Each functional unit of the present embodiment is configured by a program stored in the CPU 1201 of the PC 1200, the ROM 1202, or the hard disk (HD) 1211.

1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209から入力される信号をシステム本体内に入力する制御を行う。1206は表示コントローラ(CRTC)であり、表示装置(CRT)1210上の表示制御を行う。1207はディスクコントローラ(DKC)であり、ブートプログラム(起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラム)、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。1208はネットワークインタフェースカード(NIC)であり、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或いは他のPCと双方向のデータのやり取りを行う。   Reference numeral 1203 denotes a RAM which functions as a main memory, work area, and the like for the CPU 1201. Reference numeral 1205 denotes a keyboard controller (KBC), which controls to input a signal input from the keyboard (KB) 1209 into the system main body. Reference numeral 1206 denotes a display controller (CRTC) which performs display control on the display device (CRT) 1210. A disk controller (DKC) 1207 is a hard disk that stores a boot program (startup program: a program for starting execution (operation) of hardware and software of a personal computer), a plurality of applications, editing files, user files, a network management program, and the like. Controls access to the (HD) 1211 and the flexible disk (FD) 1212. Reference numeral 1208 denotes a network interface card (NIC) that performs bidirectional data exchange with a network printer, another network device, or another PC via the LAN 1220.

なお、本発明の溶接条件設定装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。   Note that the welding condition setting device of the present invention may be applied to a system composed of a plurality of devices or an apparatus composed of a single device.

また、本発明の目的は前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が記録媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。この場合、記録媒体から読出しされたプログラムコード自体が前述した実施形態の機能を実現することとなり、そのプログラムコードを記録した記録媒体は本発明を構成することになる。プログラムコードを供給するための記録媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   Another object of the present invention is to supply a storage medium storing software program codes for realizing the functions of the above-described embodiments to a system or apparatus, and store the computer (CPU or MPU) of the system or apparatus in the recording medium. Needless to say, this can also be achieved by reading and executing the programmed program code. In this case, the program code itself read from the recording medium realizes the functions of the above-described embodiments, and the recording medium on which the program code is recorded constitutes the present invention. As a recording medium for supplying the program code, for example, a flexible disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, nonvolatile memory card, ROM, or the like can be used.

(実施例)
以下に、本発明の実施例を示す。
1.設計対象
本実施例として、図4に示すように、ハット型断面部材に当て板をスポット溶接した部材の最適成形条件を設計する。ハット型断面部材は、プレスによって成形する。部材は無拘束とし、このときの固有振動数が最大となるようプレス加工条件(しわ押え荷重=BHF)を最適化する。
(Example)
Examples of the present invention are shown below.
1. Design Object As this embodiment, as shown in FIG. 4, optimum molding conditions for a member in which a contact plate is spot-welded to a hat-shaped cross-sectional member are designed. The hat-shaped cross-sectional member is formed by pressing. The member is unconstrained, and the pressing process condition (wrinkle presser load = BHF) is optimized so that the natural frequency at this time is maximized.

ハット型断面部材の寸法は、長さ300mm、断面幅50mm、断面高さ50mm、フランジ幅10mm、板厚1.42mmである。また、当て板の寸法は、長さ300mm、幅90mm、板厚1.165mmである。材料は、ハット型断面部材及び当て板ともに引っ張り強さ590MPa級の高張力鋼板であり、応力−ひずみ関係は図5に示すとおりである。   The dimensions of the hat-shaped cross-sectional member are a length of 300 mm, a cross-sectional width of 50 mm, a cross-sectional height of 50 mm, a flange width of 10 mm, and a plate thickness of 1.42 mm. The dimensions of the contact plate are 300 mm in length, 90 mm in width, and 1.165 mm in plate thickness. The material is a high-tensile steel plate with a tensile strength of 590 MPa for both the hat-shaped cross-section member and the backing plate, and the stress-strain relationship is as shown in FIG.

その他のプレス成形条件として、パンチ移動量=50mm、初期のしわ押え荷重(BHF)は40kN、摩擦係数=0.15である。   As other press molding conditions, the punch movement amount = 50 mm, the initial wrinkle press load (BHF) is 40 kN, and the friction coefficient = 0.15.

2.成形解析
上記プレス成形条件を入力して、市販の有限要素解析プログラムHyper Formを使用した。プレス成形解析を行い、図3に示す成形品の板厚分布を算出した。
2. Molding analysis The press molding conditions were input and a commercially available finite element analysis program Hyper Form was used. Press molding analysis was performed to calculate the thickness distribution of the molded product shown in FIG.

3.データ変換
成形解析による成形品の板厚分布の解析結果から動剛性解析への入力データの変換はFORTRANプログラムを自製・使用して、動剛性解析条件として成形品の板厚分布、部材形状を入力した。
3. Data conversion Input data from the analysis result of molded product thickness distribution by molding analysis to dynamic stiffness analysis is created and used by FORTRAN program, and the thickness distribution and member shape of molded product are input as dynamic stiffness analysis conditions. did.

4.動剛性解析
市販の有限要素解析プログラムNastranを使用して動剛性解析を行った。後述のプレス成形条件を変えたときも含めて、図4に示すように、1次から5次までの固有振動数を算出した。
4). Dynamic stiffness analysis Dynamic stiffness analysis was performed using a commercially available finite element analysis program Nastran. The natural frequencies from the first to the fifth order were calculated as shown in FIG. 4 including the case where the press molding conditions described later were changed.

5.剛性性能評価・加工条件変更
市販の最適化ツールiSIGHTを使用した。固有振動数が最大かつ安定となるよう、上記プレス成形条件のうちしわ押え荷重を4〜200kNの範囲で変更し、図1の1〜7までの工程をコンピュータが50回繰り返し計算を行い、固有振動数の最大値又は安定領域を与える最適プレス成形条件を探索した。
5. Rigid performance evaluation / processing condition change A commercially available optimization tool iSIGHT was used. The wrinkle presser load is changed in the range of 4 to 200 kN in the above press forming conditions so that the natural frequency becomes maximum and stable, and the process from 1 to 7 in FIG. The optimum press forming condition that gives the maximum value or stable region of the frequency was searched.

6.結果
図6に結果を示す。グラフは、横軸がしわ押え荷重、縦軸が各次数の固有振動数の二乗和の平方根である。本特性図より、固有振動数が最大となる点14は、しわ押え荷重=4kNのときで、固有振動数は697Hzである。しかし、この条件では、しわ押え荷重が装置制約下限であり、工業生産の観点から最適設計点として採用は難しい。また、しわ押え荷重がばらついた場合、固有振動数も影響を受ける。
6). Results FIG. 6 shows the results. In the graph, the horizontal axis represents the wrinkle presser load, and the vertical axis represents the square root of the square sum of the natural frequencies of each order. From this characteristic diagram, the point 14 where the natural frequency is maximum is when the wrinkle presser load = 4 kN, and the natural frequency is 697 Hz. However, under this condition, the wrinkle presser load is the lower limit of the device restriction, and it is difficult to adopt it as the optimum design point from the viewpoint of industrial production. In addition, when the wrinkle presser load varies, the natural frequency is also affected.

このときには、固有振動数が高位安定となる範囲15として、しわ押え荷重=50〜70kNの範囲があり、この中間点を最適設計点として採用すればよい。   At this time, as the range 15 in which the natural frequency is highly stable, there is a range of wrinkle presser load = 50 to 70 kN, and this intermediate point may be adopted as the optimum design point.

つまり、最適なプレス成形条件として、しわ押え荷重=60±10kNとした条件でプレス成形を行ったハット型断面部材に当て板をスポット溶接した部材を作成し、無拘束及びハンマリングによる試験条件で、動剛性試験をしたところ、1次から5次までの固有振動数の二乗和の平方根において697Hzであることが確認され、目標(690Hz以上)を超える動剛性が得られた。   That is, as an optimum press molding condition, a member in which a contact plate is spot-welded to a hat-shaped cross-section member that has been press-molded under the condition that the wrinkle press load is 60 ± 10 kN is created, When the dynamic stiffness test was conducted, it was confirmed that the square root of the square sum of the natural frequencies from the first to the fifth order was 697 Hz, and a dynamic stiffness exceeding the target (690 Hz or more) was obtained.

本発明を適用した剛性の高い部材の設計方法を説明するためのフローチャートである。It is a flowchart for demonstrating the design method of a highly rigid member to which this invention is applied. 本発明の剛性の高い部材の設計装置として機能するコンピュータシステムの構成例を示す図である。It is a figure which shows the structural example of the computer system which functions as a design apparatus of the highly rigid member of this invention. 実施例での成形品の板厚分布を示す図である。It is a figure which shows the plate | board thickness distribution of the molded article in an Example. 実施例での動剛性解析を説明するための図である。It is a figure for demonstrating the dynamic rigidity analysis in an Example. 実施例での材料の応力−ひずみ関係を示す特性図である。It is a characteristic view which shows the stress-strain relationship of the material in an Example. 実施例での結果を示す図であり、横軸がしわ押え荷重、縦軸が各次数の固有振動数の二乗和の平方根である特性図である。It is a figure which shows the result in an Example, and a horizontal axis | shaft is a wrinkle presser load, and a vertical axis | shaft is a characteristic figure which is the square root of the square sum of the natural frequency of each order. 従来の成形・動剛性の連成解析を説明するための図である。It is a figure for demonstrating the conventional coupled analysis of shaping | molding and dynamic rigidity.

符号の説明Explanation of symbols

1 部材形状、加工条件などの成形解析入力データ
2 成形解析を行うプログラム
3 成形解析により得られた板厚分布
4 成形解析の出力データを動剛性解析の入力データに変換するプログラム
5 部材形状、成形による板厚分布などの動剛性解析入力データ
6 動剛性解析を行うプログラム
7 動剛性解析による得られた固有振動数などの剛性性能
8 剛性性能を評価し、成形解析入力データを変更する最適化プログラム
9 最適設計システムにより得られた最適な加工条件
10 加工前の材料
11 成形解析の結果
12 成形解析の結果を衝突解析の入力データに変換したもの
13 衝突解析の結果
14 固有振動数が最大となる点
15 固有振動数が高位安定となる範囲
1. Forming analysis input data such as member shape and processing conditions 2. Program for performing forming analysis 3. Plate thickness distribution obtained by forming analysis 4. Program for converting output data of forming analysis into input data for dynamic stiffness analysis 5. Member shape, forming Stiffness analysis input data 6 such as plate thickness distribution based on 7 Stiffness analysis such as natural frequency obtained by dynamic stiffness analysis 8 Optimization program to evaluate rigidity performance and change molding analysis input data 9 Optimal machining conditions obtained by the optimum design system 10 Material before machining 11 Result of molding analysis 12 Result of molding analysis converted to input data of collision analysis 13 Result of collision analysis 14 Natural frequency is maximized Point 15 Range in which natural frequency is highly stable

Claims (4)

プレス成形条件として成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてコンピュータがプレス成形解析を行い、成形品の板厚分布を算出し、動剛性解析条件として成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいてコンピュータが動剛性解析を行い、固有振動数を算出する工程を、前記プレス成形条件のうち少なくとも1種以上を変えて、コンピュータが所定回数繰り返し計算を行い、前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力することを特徴とする剛性の高い部材の設計方法。   As the press molding conditions, the computer performs press molding analysis based on the molded product shape, punch travel, wrinkle press load, friction coefficient, material stress-strain relationship, and plate thickness, and calculates the plate thickness distribution of the molded product, The computer performs dynamic stiffness analysis based on the plate thickness distribution of the molded product as a dynamic stiffness analysis condition and the shape of a member manufactured by assembling the molded product, and calculates the natural frequency. A highly rigid member characterized in that at least one kind is changed, a computer repeatedly performs a predetermined number of calculations, and a press molding condition that gives a maximum value or a stable region of the natural frequency is output as an optimal press molding condition. Design method. 成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚をプレス成形条件として入力するプレス成形条件入力手段と、
前記プレス成形条件入力手段に入力された成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、成形品の板厚分布を算出するプレス成形解析手段と、
前記プレス成形解析手段により算出した成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状を動剛性解析条件として入力する動剛性解析条件入力手段と、
前記動剛性解析条件入力手段に入力されたプレス成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいて動剛性解析を行い、固有振動数を算出する動剛性解析手段と、
前記プレス成形条件のうち少なくとも1種以上を変えて、前記プレス成形条件入力手段、前記プレス成形解析手段、前記動剛性解析条件入力手段、及び前記動剛性解析手段での計算を所定回数自動的に実行させる繰り返し計算制御手段と、
前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力する最適プレス成形条件出力手段とを有することを特徴とする剛性の高い部材の設計装置。
Press molding condition input means for inputting the molded product shape, punch movement amount, wrinkle presser load, friction coefficient, material stress-strain relationship, and plate thickness as press molding conditions;
Performs press molding analysis based on the molded product shape, punch movement amount, wrinkle presser load, friction coefficient, material stress-strain relationship, and plate thickness input to the press molding condition input means, and plate thickness distribution of the molded product Press forming analysis means for calculating
Dynamic stiffness analysis condition input means for inputting the plate thickness distribution of the molded product calculated by the press molding analysis means and a member shape manufactured by assembling the molded product as dynamic stiffness analysis conditions;
Dynamic stiffness analysis means for performing dynamic stiffness analysis based on the plate thickness distribution of the press-formed product input to the dynamic stiffness analysis condition input means and the shape of a member manufactured by assembling the molded product and calculating the natural frequency When,
By changing at least one of the press molding conditions, the calculation by the press molding condition input means, the press molding analysis means, the dynamic stiffness analysis condition input means, and the dynamic stiffness analysis means is automatically performed a predetermined number of times. Repetitive calculation control means to be executed;
An apparatus for designing a highly rigid member, comprising: an optimum press molding condition output unit that outputs a press molding condition that gives a maximum value or a stable region of the natural frequency as an optimum press molding condition.
プレス成形条件として成形品形状、パンチ移動量、しわ押え荷重、摩擦係数、材料の応力−ひずみ関係、及び板厚に基づいてプレス成形解析を行い、成形品の板厚分布を算出し、動剛性解析条件として成形品の前記板厚分布、及び成形品を組み上げて製作される部材形状に基づいて動剛性解析を行い、固有振動数を算出する工程を、前記プレス成形条件のうち少なくとも1種以上を変えて、所定回数繰り返し計算を行い、前記固有振動数の最大値又は安定領域を与えるプレス成形条件を最適プレス成形条件として出力する処理をコンピュータに実行させることを特徴とするコンピュータプログラム。   Press molding analysis is performed based on the molded product shape, punch travel, wrinkle presser load, friction coefficient, material stress-strain relationship, and plate thickness as the press molding conditions, and the plate thickness distribution of the molded product is calculated to determine the dynamic stiffness. At least one of the press molding conditions is a step of performing dynamic stiffness analysis based on the plate thickness distribution of the molded product and the shape of a member manufactured by assembling the molded product as an analysis condition, and calculating a natural frequency. A computer program that causes a computer to execute a process of repeatedly calculating a predetermined number of times and outputting a press molding condition that gives a maximum value or a stable region of the natural frequency as an optimum press molding condition. 請求項3に記載のコンピュータプログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the computer program according to claim 3 is recorded.
JP2006341486A 2006-12-19 2006-12-19 Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium Withdrawn JP2008149356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341486A JP2008149356A (en) 2006-12-19 2006-12-19 Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341486A JP2008149356A (en) 2006-12-19 2006-12-19 Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium

Publications (1)

Publication Number Publication Date
JP2008149356A true JP2008149356A (en) 2008-07-03

Family

ID=39652116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341486A Withdrawn JP2008149356A (en) 2006-12-19 2006-12-19 Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium

Country Status (1)

Country Link
JP (1) JP2008149356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146279A1 (en) * 2012-03-30 2013-10-03 新日鐵住金株式会社 Analysis device, analysis method, and computer program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146279A1 (en) * 2012-03-30 2013-10-03 新日鐵住金株式会社 Analysis device, analysis method, and computer program
JP5403194B1 (en) * 2012-03-30 2014-01-29 新日鐵住金株式会社 Analysis device, analysis method, and computer program
CN104106067A (en) * 2012-03-30 2014-10-15 新日铁住金株式会社 Analysis device, analysis method, and computer program
CN104106067B (en) * 2012-03-30 2016-11-09 新日铁住金株式会社 Resolver and analytic method
US10262086B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumitomo Metal Corporation Analyzing apparatus, analyzing method, and computer program

Similar Documents

Publication Publication Date Title
US7957918B2 (en) Member designing method and apparatus
Chen et al. Simulation of springback variation in forming of advanced high strength steels
JP4410833B2 (en) Springback generation cause analysis method, apparatus, program and recording medium
KR101368108B1 (en) Springback occurrence cause analyzing method, springback occurrence cause analyzing device, computer readable recording medium for recording springback occurrence cause analyzing program
Hambli BLANKSOFT: a code for sheet metal blanking processes optimization
JP7243816B2 (en) Bending angle prediction method, bending angle prediction device, program and recording medium
JP5098800B2 (en) Method for analyzing collision characteristics or rigidity of thin plate structure, analysis processing apparatus, analysis processing program, and recording medium
JP4418452B2 (en) Springback occurrence cause identifying method, apparatus thereof, and program thereof
JP2000107818A (en) Method for judging rupture in simulation of plastic working
JP4418451B2 (en) Springback countermeasure position specifying method, apparatus, and program thereof
JP4344375B2 (en) Springback occurrence cause identifying method, apparatus thereof, and program thereof
Swidergal et al. Experimental and numerical investigation of blankholder’s vibration in a forming tool: a coupled MBS-FEM approach
JP2008149356A (en) Method and apparatus for designing highly rigid component, computer program, and computer readable recording medium
Gan et al. Practical methods for the design of sheet formed components
JP2008155227A (en) Method and device for fatigue design of member excellent in fatigue durability, computer program and computer readable recording medium
JP6303815B2 (en) Forging crack prediction method, forging crack prediction program, and recording medium
JP5107595B2 (en) Simulation analysis method and mold design method
Hambli et al. Finite element prediction of blanking tool cost caused by wear
RU2401712C2 (en) Method of designing parts, parts designing device, computer software and computer reader of data carrier
JP4308239B2 (en) Springback influence display method, apparatus thereof, and program thereof
JP4418449B2 (en) Springback occurrence cause identifying method, apparatus thereof, and program thereof
JP2009265712A (en) Characteristic analyzing method by analysis using inverse method
Eshtayeh et al. Numerical investigation of springback in mechanical clinching process
JP7484862B2 (en) Mold design method, mold manufacturing method, and program
Gantar et al. An industrial example of FE supported development of a new product

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302