JP5582010B2 - Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model - Google Patents
Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model Download PDFInfo
- Publication number
- JP5582010B2 JP5582010B2 JP2010275786A JP2010275786A JP5582010B2 JP 5582010 B2 JP5582010 B2 JP 5582010B2 JP 2010275786 A JP2010275786 A JP 2010275786A JP 2010275786 A JP2010275786 A JP 2010275786A JP 5582010 B2 JP5582010 B2 JP 5582010B2
- Authority
- JP
- Japan
- Prior art keywords
- panel
- model
- indenter
- load
- panel shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims description 66
- 238000011156 evaluation Methods 0.000 title claims description 46
- 238000000034 method Methods 0.000 claims description 71
- 238000006073 displacement reaction Methods 0.000 claims description 29
- 238000004364 calculation method Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000003825 pressing Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 230000001953 sensory effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000013500 data storage Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000009191 jumping Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 240000004050 Pentaglottis sempervirens Species 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、金属材料の張り剛性有限要素法(FEM)解析において、評価圧子のモデル化方法に関するもので、特にドア、フードなど自動車パネル部品の張り剛性実測における荷重変位曲線、飛び移り現象を有限要素法解析において高精度に再現する有限要素法用張り剛性評価圧子モデル、その圧子モデルを使用した張り剛性解析装置及び解析方法に関する。 The present invention relates to a method for modeling an evaluation indenter in a tension stiffness finite element method (FEM) analysis of a metal material. In particular, the present invention relates to a load displacement curve and a jumping phenomenon in the actual measurement of the tension stiffness of automobile panel parts such as doors and hoods. The present invention relates to a tension stiffness evaluation indenter model for the finite element method that is reproduced with high accuracy in element method analysis, a tension stiffness analysis apparatus and an analysis method using the indenter model.
近年、特に自動車など車両の軽量化を実現するため、ドアやフードなど自動車アウター部品においても薄肉軽量化のニーズが高まっている。しかしながら、パネル部品の薄肉化は部品剛性の低下を招き、人が触れたときにパネルが容易に変形したり,パネルがベコベコと音を立てるなどの現象が発生したりし易くなる。これにより、自動車の品質感が大きく損なわれることから、自動車メーカーにとって張り剛性の確保と部品軽量化の両立が大きな課題となっている。 In recent years, in order to reduce the weight of vehicles such as automobiles, there has been a growing need for thinner and lighter automobile outer parts such as doors and hoods. However, the thinning of the panel parts leads to a reduction in the rigidity of the parts, and the panel is easily deformed when touched by a person, and a phenomenon such as the panel making a noise is likely to occur. As a result, the sense of quality of the automobile is greatly impaired. Therefore, it is a major challenge for automobile manufacturers to ensure the tension rigidity and reduce the weight of the parts.
外板部品の張り剛性を事前にCAE(Computer Aided Engineering)で予測し、部品設計に反映する手法は、各自動車メーカーで検討されており、次期車において薄肉化が可能か否か、判断するツールとして活用されている。しかし、ある基準値に対する合否判定という定量的な判断が要求される場合、その計算精度についてはまだ十分とは言えない場合が多い。そのため、実車での検証段階になってから、張り剛性不足が明らかになり、急遽樹脂製の補強材を追加したり、材料変更、部品追加等の対策を余儀なくされたりする場合がある。そのようなトライアンドエラーの低減に対し、張り剛性のCAE予測精度の向上は必要であり、以下に示すような検討がされてきた。 A method for predicting whether the outer plate parts are rigid with CAE (Computer Aided Engineering) in advance and reflecting them in the component design is being examined by each automobile manufacturer. It is utilized as. However, when a quantitative determination of pass / fail determination for a certain reference value is required, the calculation accuracy is often not sufficient. For this reason, after the actual vehicle is in the verification stage, the lack of stiffness becomes apparent, and there are cases where measures such as suddenly adding a resin-made reinforcing material, changing the material, or adding parts are forced. In order to reduce such trial and error, it is necessary to improve the CAE prediction accuracy of the tension stiffness, and the following studies have been made.
特許文献1においては、パネルのある点における最大曲率と最小曲率の和が一定となるような曲面の構造設計方法について記載されているが、インナー等の補強部品を組んだ場合、張り剛性の挙動が変わることが考えられる。また、CAEによる解析手法ではないため、任意の場所における荷重変位曲線を算出することは出来ないため、張り剛性の基準値に対する合否判定は不可能である。 Patent Document 1 describes a structure design method of a curved surface in which the sum of the maximum curvature and the minimum curvature at a certain point of the panel is constant. However, when a reinforcing part such as an inner is assembled, the behavior of the tension stiffness May change. In addition, since it is not an analysis method using CAE, it is impossible to calculate a load displacement curve at an arbitrary place, so it is impossible to determine whether or not the tension stiffness reference value is acceptable.
また、特許文献2には、アルミ合金製ルーフパネルにおいて、張り剛性と素材の板厚、ヤング率、曲率半径の関係を導き出したものであり、単純な2方向曲率をもつ部品たとえばルーフやフードにのみ適用が可能と考えられる。ドア、フェンダー、バックドアなどの複雑な曲面を持つ部品に対してはこの方法の適用は困難である。また、この方法も、インナー等の補強部品を組んだ場合、張り剛性の挙動が変わることが考えられる。そのため、実車段階における性能を予測するものではない。 Further, Patent Document 2 derives the relationship between tension rigidity, material thickness, Young's modulus, and radius of curvature in an aluminum alloy roof panel. For parts having a simple bi-directional curvature, such as roofs and hoods. Only applicable. This method is difficult to apply to parts with complicated curved surfaces such as doors, fenders, and back doors. In this method, when reinforcing parts such as an inner are assembled, the behavior of the tension rigidity can be changed. Therefore, the performance in the actual vehicle stage is not predicted.
特許文献3には、荷重負荷時のたわみ面積、測定点の板厚、曲率より、張り剛性を予測する内容であり、インナー等の補強部品との接合点(マスチック)の影響も考慮されている。ただし、点で荷重を与えるため、手押し官能評価と比較すると、点で押す場合と面押しではたわみ拡大挙動が異なることから、実態と合わない場合も考えられる。また、インナー等の補強部品自体の剛性が考慮されていないので、実測値と乖離することが考えられ、やはり、張り剛性の基準値に対する合否判定に関しての精度は不十分であると考えられた。 In Patent Document 3, the tension rigidity is predicted based on the deflection area under load, the thickness of the measurement point, and the curvature, and the influence of the joint (mastic) with the reinforcing component such as the inner is also taken into consideration. . However, since a load is applied at a point, the bending expansion behavior is different between the case of pressing at a point and the surface pressing as compared with the manual sensory evaluation, so there are cases where it does not match the actual situation. Further, since the rigidity of the reinforcing component itself such as the inner part is not taken into consideration, it may be considered that it is deviated from the actual measurement value, and the accuracy regarding the pass / fail judgment with respect to the reference value of the tension rigidity is considered to be insufficient.
上述したように、点に荷重負荷を与える解析方法は、手押しによる官能評価とは方法が異なり、張り剛性への影響因子であるたわみの拡がり方が異なることは明確である。そのため、荷重変位曲線の形状も変わり、合否判定の精度に影響を与える場合がある。また、実際の部品では飛び移り座屈現象は起こらないことが絶対条件であるが、点負荷荷重ではこの飛び移り現象を捉えにくく、実車段階での手押し官能評価により初めて起きる場合も考えられた。 As described above, it is clear that the analysis method for applying a load to a point is different from the sensory evaluation by hand pressing, and the way of spreading the deflection, which is an influential factor on the tension stiffness, is different. For this reason, the shape of the load displacement curve also changes, which may affect the accuracy of the pass / fail determination. In addition, it is an absolute condition that the actual part does not cause a jumping buckling phenomenon, but it is difficult to detect this jumping phenomenon with a point load, and it may occur for the first time by hand sensory evaluation at the actual vehicle stage.
手押し官能評価のCAEでの再現の観点では、ある領域、例えば手のひらが接触する領域の節点群に等分布荷重をかける解析は可能であるが、荷重方向が計算初期に設定した方向で進むため、パネルのたわみ拡大につれて荷重負荷方向とパネル面の垂直関係が成立しなくなることが考えられ、実態と合わない。また、荷重増分計算となるため、荷重が落ち込む現象を再現できないことから、飛び移り現象を予測しきれない問題も有する。 From the point of view of CAE reproduction of hand sensory evaluation, it is possible to analyze by applying an evenly distributed load to a node, for example, a group of nodes in contact with the palm, but the load direction proceeds in the direction set at the initial stage of calculation. As the deflection of the panel increases, the vertical relationship between the load direction and the panel surface may not be established, which does not match the actual situation. In addition, since the load increment calculation is performed, the phenomenon that the load drops cannot be reproduced, so that the jump phenomenon cannot be predicted completely.
また、圧子をソリッド要素でモデル化する場合は、荷重負荷の増大により圧子が壊滅し計算が進まなくなる場合、および、接触問題から計算が進まなくなること、計算時間が増加しやすい問題があった。
そこで、本発明は、上記従来例の課題に着目してなされたものであり、パネル部品の張り剛性解析に最適な張り剛性評価圧子モデルを提供するとともに、張り剛性を高精度に解析することができる張り剛性解析装置及び解析方法を提供することを目的としている。
In addition, when modeling the indenter with solid elements, there are problems that the indenter is destroyed due to an increase in load and the calculation does not proceed, the calculation does not proceed due to a contact problem, and the calculation time tends to increase.
Therefore, the present invention has been made paying attention to the problems of the above-described conventional example, and provides an indenter model that is optimal for stiffness analysis of panel parts and can analyze tension stiffness with high accuracy. An object of the present invention is to provide a tension stiffness analysis apparatus and an analysis method that can be used.
上記目的を達成するために、本発明の一の形態に係る有限要素法用張り剛性評価圧子モデルは、パネル部品の張り剛性を有限要素法で解析する際に、前記パネル部品の荷重負荷部に接触させる圧子モデルであって、剛体板と、該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とでモデル化し、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成することを特徴としている。
また、本発明の一の形態に係るパネル部品張り剛性解析装置は、パネル部品の形状データを作成するパネル形状データ作成部と、該パネル形状データ作成部で作成したパネル形状データをメッシュ分割して有限要素法解析を実行するパネル形状モデルを作成するパネル形状モデル作成部と、前記パネル形状データ作成部で作成したパネル形状データに対して、剛体板と該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とで構成されて、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成する張り剛性評価圧子モデルを、当該荷重負荷部に対して前記ビーム要素が面垂直方向となるように作成する圧子モデル作成部と、該圧子モデル作成部で作成した張り剛性評価圧子モデルの剛体板に前記荷重負荷部に対して面垂直方向に変位を与えて張り剛性解析を行う張り剛性解析部とを備えていることを特徴としている。
In order to achieve the above object, a tension stiffness evaluation indenter model for a finite element method according to one embodiment of the present invention is applied to a load application portion of the panel component when analyzing the stiffness of the panel component by the finite element method. An indenter model to be contacted, which is modeled by a rigid plate and three or more beam elements planted on the surface of the rigid plate facing the load-bearing portion of the panel component, and the 3 It is characterized in that a preset surface is formed at the tip of more than the number of beam elements .
In addition, the panel component tension stiffness analyzing apparatus according to one embodiment of the present invention is a panel shape data creation unit that creates panel component shape data, and meshes the panel shape data created by the panel shape data creation unit. A panel shape model creation unit for creating a panel shape model for executing a finite element method analysis, and a panel shape data created by the panel shape data creation unit to a load plate of a rigid plate and a panel component of the rigid plate. A tension stiffness evaluation indenter model that is composed of three or more planted beam elements on opposite surfaces and forms a preset surface at the tip of the three or more beam elements so that the surface can be pressed. An indenter model creating unit that creates the beam element in a direction perpendicular to the load application unit, and a stiffness evaluation indenter model created by the indenter model creating unit. Is characterized by and a tensile rigidity analysis unit for performing tensile rigidity analysis gives a displacement in the plane perpendicular to the load application part in a plate.
また、本発明の一の形態に係るパネル部品張り剛性解析方法は、パネル部品の形状データをパネル形状データ作成部で形成するパネル形状データ作成ステップと、該パネル形状データ作成ステップで作成したパネル形状データをパネル形状モデル作成部で、メッシュ分割して有限要素法解析を実行するパネル形状モデルを作成するパネル形状モデル作成ステップと、前記パネル形状データ作成ステップで作成したパネル形状データに対して、圧子モデル作成部で、剛体板と該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とで構成されて、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成する張り剛性評価圧子モデルを当該荷重負荷部に対して前記ビーム要素が面垂直方向となるように作成する圧子モデル作成ステップと、該圧子モデル作成ステップで作成した張り剛性評価圧子モデルの剛体板に、張り剛性解析部で、前記荷重負荷部に対して面垂直方向に変位を与えて張り剛性解析を行う張り剛性解析ステップとを備えていることを特徴としている。 The panel component tension stiffness analysis method according to one aspect of the present invention includes a panel shape data creation step for forming panel shape data in a panel shape data creation unit, and a panel shape created in the panel shape data creation step. The panel shape model creation unit creates a panel shape model that divides the data into meshes and executes a finite element analysis, and the panel shape data created in the panel shape data creation step The model creation unit is composed of a rigid plate and three or more beam elements planted on the surface of the rigid plate facing the load-loading portion of the panel component . It said beam elements tensile rigidity evaluation indenter model to form a surface which is preset at the tip of the beam element with respect to the load application part and a plane perpendicular The indenter model creation step created as described above, and the rigid plate of the tension stiffness evaluation indenter model created in the indenter model creation step are displaced in the plane perpendicular direction with respect to the load load portion by the tension stiffness analysis unit. And a tension stiffness analysis step for performing a tension stiffness analysis.
本発明の張り剛性評価圧子モデル、これを使用したパネル部品張り剛性解析装置及び張り剛性解析方法によれば、手押しによる官能評価を再現でき、荷重が落ち込む飛び移り現象を再現し、さらに計算の安定性も高いCAE張り剛性予測が可能である。
この結果、実際にパネル部品を作製することなく、CAE上で張り剛性評価が可能になるため、部品試作後のトライアンドエラーにかかる工数の大幅な低減が可能となるという効果が得られる。
According to the tension stiffness evaluation indenter model of the present invention, the panel component tension stiffness analysis apparatus and the tension stiffness analysis method using the same, it is possible to reproduce the sensory evaluation by pushing, reproduce the jumping phenomenon in which the load falls, and further stabilize the calculation. CAE tension rigidity prediction is also possible.
As a result, since it is possible to evaluate the tension rigidity on the CAE without actually producing a panel component, it is possible to significantly reduce the number of man-hours required for trial and error after component prototyping.
以下、本発明の一実施形態を図面に基づいて説明する。
図1は、本発明のシステム構成図であって、パネル形状データ作成部としてのCAD装置1と有限要素法解析装置2とでCAEを構成している。
CAD装置1は、本発明の対象とする自動車のドアやフードなどの有限要素法で張り剛性を解析する対象となる薄肉パネル部品の例えば面データと呼ばれるデジタルデータの形状データを作成し、作成した薄肉パネル部品のパネル形状データを有限要素法解析装置2に供給する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of the present invention, and a CAD device 1 as a panel shape data creation unit and a finite element method analysis device 2 constitute a CAE.
The CAD device 1 creates, for example, shape data of digital data called surface data of a thin panel component to be analyzed for tension rigidity by a finite element method such as a door or a hood of an automobile targeted by the present invention. Panel shape data of thin panel parts is supplied to the finite element method analysis apparatus 2.
この有限要素法解析装置2は、例えばマイクロコンピュータ等の演算処理装置を含んで構成されている。また、有限要素法解析装置2は、CAD装置1で形成した薄肉パネル部品のパネル形状データをパネル形状モデルとして格納するパネル形状データ格納部3と、このパネル形状データ格納部3に格納されたパネル形状データをメッシュ分割して有限要素法解析を実行するパネル形状モデル4を作成するパネル形状モデル作成部5と、このパネル形状モデル作成部5で作成したパネル形状モデルに対する張り剛性評価圧子モデル6を作成し、パネル形状モデル4への荷重負荷計算を行う圧子モデル作成部7と、この圧子モデル作成部7で作成した張り剛性評価圧子モデル6にパネル形状モデルの荷重負荷部に対して面垂直方向に変位を与えて張り剛性解析を行う張り剛性解析部8と、この張り剛性解析部8での解析結果を表示する表示部9と、データを入力するデータ入力部10とを備えている。 The finite element method analysis apparatus 2 includes an arithmetic processing unit such as a microcomputer. The finite element method analysis apparatus 2 includes a panel shape data storage unit 3 that stores panel shape data of thin panel parts formed by the CAD device 1 as a panel shape model, and a panel stored in the panel shape data storage unit 3. A panel shape model creating unit 5 for creating a panel shape model 4 for dividing the shape data into meshes and executing a finite element method analysis, and a tension stiffness evaluation indenter model 6 for the panel shape model created by the panel shape model creating unit 5 An indenter model creating unit 7 that calculates the load load on the panel shape model 4 and a tension stiffness evaluation indenter model 6 created by the indenter model creating unit 7 in a direction perpendicular to the load load portion of the panel shape model A tension stiffness analysis unit 8 that performs a tension stiffness analysis by applying displacement to the display unit, a display unit 9 that displays an analysis result in the tension stiffness analysis unit 8, And a data input unit 10 for inputting the over data.
ここで、パネル形状モデル作成部5で作成するメッシュサイズは特に限定されないが、計算時間の適正化およびデータの精度の観点から、5〜10mmが好適である。
一方、有限要素法用張り剛性評価圧子モデル6の評価を行うために、以下の試験を行った。
先ず、従来例の実際のパネル部品を使用して圧子形状を評価する。すなわち、図8に示すように、板厚0.7mmの引張強さTS340MPa級のBH鋼板(焼付け硬化型鋼板)を353mm角のカマボコ形状(曲率半径R1200mm)の金型でプレス成形したモデルパネル21を測定対象とし、このモデルパネル21の凸面側中央部を、手のひらで押す場合と、圧子で押す場合との双方について、押し込んだ際の荷重をロードセル22で検出し、モデルパネル21の変位量を変位計23で検出し、検出結果を記録装置24で記録した。ここで、使用圧子としては、図9(a)に示すように、円柱部25の先端に取り付けた50Rの円板状の鋼製圧子26と、図9(b)に示すように、円柱部27の先端に円板部28を形成し、この円板部28の下面に手押し面積と同一の接触面積を持つ軟質ゴム製圧子29(45mmφ×16mmh)とを使用した。
Here, the mesh size created by the panel shape model creation unit 5 is not particularly limited, but 5 to 10 mm is preferable from the viewpoint of optimization of calculation time and data accuracy.
On the other hand, in order to evaluate the tension stiffness evaluation indenter model 6 for the finite element method, the following test was performed.
First, an indenter shape is evaluated using the actual panel part of a prior art example. That is, as shown in FIG. 8, a model panel 21 obtained by press-molding a BH steel plate (baking hardening type steel plate) with a tensile strength of TS340 MPa class having a thickness of 0.7 mm with a 353 mm square mold (curvature radius R1200 mm). Is measured, and the load at the time of pressing is detected by the load cell 22 for both the case of pressing the center of the convex surface of the model panel 21 with the palm and the case of pressing with the indenter, and the amount of displacement of the model panel 21 is determined. The displacement was detected by the displacement meter 23 and the detection result was recorded by the recording device 24. Here, as the working indenter, as shown in FIG. 9 (a), a 50R disc-shaped steel indenter 26 attached to the tip of the cylindrical portion 25, and as shown in FIG. 9 (b), the cylindrical portion A disc portion 28 was formed at the tip of 27, and a soft rubber indenter 29 (45 mmφ × 16 mmh) having the same contact area as the hand pushing area was used on the lower surface of the disc portion 28.
鋼製圧子26の場合には、モデルパネル21に対して点接触となり、通常の有限要素法張り剛性解析の場合と同等となるが、変位・荷重曲線は図10に示すように、実線図示の手押し(官能評価)による特性曲線L0に対して破線図示の特性曲線L1で示すように変位が小さい領域で大きな乖離が生じている。これは、手押しによる荷重負荷が面当たりで行われているためであり、荷重負荷面積を実態に合わせた解析が必要になることを示している。 In the case of the steel indenter 26, point contact is made with the model panel 21, which is the same as in the case of a normal finite element method tension stiffness analysis, but the displacement / load curve is shown by a solid line as shown in FIG. A large deviation occurs in a region where the displacement is small as shown by a characteristic curve L1 shown by a broken line with respect to the characteristic curve L0 by hand pressing (sensory evaluation). This is because the load load by hand pressing is performed per surface, indicating that an analysis in accordance with the actual load load area is required.
これに対して、軟質ゴム製圧子29では、変位・荷重曲線が図11に示すように、実線図示の手押し(官能評価)による特性曲線L0に対して点線図示の特性曲線L2で示すように略等しくなり、手押しの結果を再現している。
上記結果から、実際の張り剛性評価を示す手押し評価を精度良く再現する有限要素法用張り剛性評価圧子モデルとして軟質ゴム製圧子29を適用することが好ましいことがわかる。
On the other hand, in the soft rubber indenter 29, the displacement / load curve is substantially as shown by the characteristic curve L2 shown by the dotted line with respect to the characteristic curve L0 by the manual push (sensory evaluation) shown by the solid line, as shown in FIG. It is equal and reproduces the result of hand pushing.
From the above results, it can be seen that it is preferable to apply the soft rubber indenter 29 as the tension stiffness evaluation indenter model for the finite element method that accurately reproduces the hand-push evaluation indicating the actual stiffness evaluation.
ところで、軟質ゴム製圧子29を有限要素法用張り剛性評価圧子モデル化する際、従来は図12及び図13に示すように、単純にソリッド要素により分割する方法が使用される。ソリッド要素には、実測で使用される圧子材質を再現する弾性係数を与える。この際の弾性挙動は線形、非線形を問わない。
ドアパネルモデルにおける有限要素法張り剛性解析処理で、圧子最上面の節点全てにモデルパネルの面に対し垂直方向の変位を与えることで、変位の増加とともにパネルのたわみが拡大し、そのときの反力(荷重)を算出する。
By the way, when the soft rubber indenter 29 is modeled as a tension rigidity evaluation indenter model for the finite element method, conventionally, as shown in FIGS. 12 and 13, a method of simply dividing into solid elements is used. The solid element is given an elastic coefficient that reproduces the indenter material used in the actual measurement. The elastic behavior at this time may be linear or non-linear.
By applying a finite element method stiffness analysis process in the door panel model to all the nodes on the top surface of the indenter in a direction perpendicular to the surface of the model panel, the deflection of the panel increases as the displacement increases, and the reaction force at that time (Load) is calculated.
材料データとしては、板厚0.75mmの降伏強度YP244MPa、引張り強さTS340MPa、EI42%のBH(焼付け硬化型)鋼板を2%引張後、170℃×20分熱処理し、引張試験を行って測定した図6に示す真応力−真塑性ひずみ線図を使用した。
ここで、2%ひずみ付与は、プレス成形により導入されるひずみを、熱処理は塗装焼付け時の熱処理をそれぞれ想定しており、最終的な部品の特性を模擬するために行った。このときのパネルのたわみ分布は図14に示すようになり、荷重と荷重変位曲線の関係は、図15で●印の特性線で示す結果が得られた。
As the material data, a 0.75mm yield strength YP244MPa, tensile strength TS340MPa, EI 42% BH (baking hardening type) steel sheet was pulled 2%, heat treated at 170 ° C for 20 minutes, and measured by conducting a tensile test. The true stress-true plastic strain diagram shown in FIG. 6 was used.
Here, 2% strain was applied to the strain introduced by press molding, and the heat treatment was assumed to be a heat treatment during paint baking, and was performed to simulate the characteristics of the final part. The deflection distribution of the panel at this time is as shown in FIG. 14, and the relationship between the load and the load displacement curve is the result indicated by the characteristic line marked with ● in FIG.
ただし、ゴムの材質が軟質(弾性係数が小)になるほどすなわち手のひらの弾性係数に近づけるほどソリッド要素の変形が顕著になり、図14に示すように、荷重60Nを超えたときに、圧子が破壊するなどの現象が発生し、図15でも●印の特性線で示すように、計算が途中で停止してしまい収束しない場合があった。
このように、計算停止することなく、パネル部品の張り剛性を有限要素法解析により求める圧子モデルとしては、ソリッド要素よりも剛体板とビーム要素とを用いることが良いことがわかる。
However, as the rubber material becomes softer (the elastic modulus is smaller), that is, closer to the elastic modulus of the palm, the deformation of the solid element becomes more prominent, and the indenter breaks when the load exceeds 60 N as shown in FIG. As shown by the characteristic line marked with ● in FIG. 15, the calculation stopped in the middle and did not converge in some cases.
Thus, it can be seen that it is better to use a rigid plate and a beam element rather than a solid element as an indenter model for obtaining the stiffness of panel parts by finite element method analysis without stopping the calculation.
また、圧子モデル作成部7で作成される有限要素法用張り剛性評価圧子モデル6は、図2及び図3に示すように、パネル形状モデル4の荷重負荷部に対して平行に対向する例えば円形の剛体板11と、この剛体板11のパネル部品の荷重負荷部に対向する面から荷重負荷部に対して面垂直方向に延長する複数のビーム要素12とで構成されている。各ビーム要素12の長さについては制限されず、任意の長さに設定することができる。また、ビーム要素12とパネル部品との結合は、パネル部品のメッシュの節点、メッシュ要素の何れと結合してもよいが、モデル構築の時間などの効率を考慮するとメッシュの節点及びメッシュ要素の何れかに統一することが望ましい。 In addition, the finite element method tension stiffness evaluation indenter model 6 created by the indenter model creation unit 7 is, for example, a circular shape facing the load-loading part of the panel shape model 4 in parallel as shown in FIGS. The rigid plate 11 and a plurality of beam elements 12 extending in a direction perpendicular to the load load portion from the surface of the rigid plate 11 facing the load load portion of the panel component. The length of each beam element 12 is not limited and can be set to an arbitrary length. Further, the beam element 12 and the panel part may be combined with any of the mesh node and the mesh element of the panel part. However, considering the efficiency such as the model construction time, any of the mesh node and the mesh element may be used. It is desirable to unite crab.
また、張り剛性解析部8では、先ず、パネル形状モデル4及び有限要素法用張り剛性評価圧子モデル6に対して材料データを決定する。ここで、パネル形状モデル4の材料データとしては板厚、応力歪み線図、降伏強度が挙げられ、これらの材料データをデータ入力部10から入力する。また、有限要素法用張り剛性評価圧子モデル6についてはビーム要素の材料としてヤング率を設定する。剛体板については、変形しないものとして、設定されている。さらに、張り剛性解析部8ではパネル形状モデル4及び圧子モデル6の材料データの決定が完了すると、有限要素法用張り剛性評価圧子モデル6の剛体板11に、パネル形状モデル4の荷重負荷部に対して面垂直方向へ変位を与えて反力(荷重)を算出する有限要素法の張り剛性解析を行い、反力(荷重)と変位を算出する。ここで、有限要素法の張り剛性解析は、基本的には静的陰解法で解くが、飛び移り現象が激しい場合には動的陽解法を適用して解くことができる。 The tension stiffness analysis unit 8 first determines material data for the panel shape model 4 and the tension stiffness evaluation indenter model 6 for the finite element method. Here, the material data of the panel shape model 4 includes a plate thickness, a stress strain diagram, and a yield strength. These material data are input from the data input unit 10. For the tension stiffness evaluation indenter model 6 for the finite element method, Young's modulus is set as the material of the beam element. The rigid plate is set so as not to be deformed. Further, when the determination of the material data of the panel shape model 4 and the indenter model 6 is completed in the tension stiffness analysis unit 8, the stiffness plate 11 of the tension stiffness evaluation indenter model 6 for the finite element method is used as the load loading unit of the panel shape model 4. On the other hand, a tension rigidity analysis is performed by a finite element method in which a reaction force (load) is calculated by giving a displacement in a direction perpendicular to the surface, and a reaction force (load) and a displacement are calculated. Here, the tension stiffness analysis of the finite element method is basically solved by the static implicit method, but when the jump phenomenon is severe, it can be solved by applying the dynamic explicit method.
この有限要素法解析装置2では、図4に示す解析処理を実行する。
先ず、ステップS1で、CAD装置1からパネル形状データを読込んでハードディスク、フラッシュメモリ等のパネル形状データ格納部に記憶し、記憶されたパネル形状データをメッシュ分割して有限要素法解析を実行するパネル形状モデル4を作成する。
次いで、ステップS2に移行して、剛体板11と複数のビーム要素12とで構成されるメッシュ化された有限要素法用張り剛性評価圧子モデル6を作成する。
The finite element method analysis apparatus 2 executes the analysis process shown in FIG.
First, in step S1, panel shape data is read from the CAD device 1 and stored in a panel shape data storage unit such as a hard disk or flash memory, and the stored panel shape data is divided into meshes to execute a finite element method analysis. A shape model 4 is created.
Next, the process proceeds to step S <b> 2, and a meshed tension stiffness evaluation indenter model 6 for the finite element method composed of the rigid plate 11 and the plurality of beam elements 12 is created.
次いで、ステップS3に移行して、作成したパネル形状モデル4及び有限要素法用張り剛性評価圧子モデル6の材料データを設定する。
次いで、ステップS4に移行して、有限要素法用張り剛性評価圧子モデル6の剛体板11の中心部にパネル形状モデル4の荷重負荷部に対して面垂直方向に変位を与え、この変位を増加させながら反力(荷重)を算出することを繰り返して、反力(荷重)と変位とを演算し、張り剛性解析処理を終了する。計算データは演算結果として表示部9に表示することができる。
Next, the process proceeds to step S3, where the material data of the created panel shape model 4 and finite element method tension stiffness evaluation indenter model 6 are set.
Next, the process proceeds to step S4, where the central portion of the rigid plate 11 of the tension stiffness evaluation indenter model 6 for the finite element method is displaced in the direction perpendicular to the load applied portion of the panel shape model 4, and this displacement is increased While calculating the reaction force (load), the reaction force (load) and the displacement are calculated, and the stiffness analysis process is completed. The calculation data can be displayed on the display unit 9 as a calculation result.
実車のフロントドア組み付け部品(アウター、インナー、補強部材を組み付けたドアパネル)において、張り剛性測定を行った。
CAD装置1で、図5((1)位置)に示すようなパネル部品のパネル形状データを作成する。
次いで、有限要素法解析装置2で図4に示す張り剛性解析処理を実行することにより、CAD装置1からパネル形状データを読込んでパネル形状データ格納部3に記憶し、記憶したパネル形状データをメッシュ分割して有限要素法解析を実行する図2に示すパネル形状モデル4を作成する(ステップS1)。
Tension stiffness measurement was performed on front door assembly parts (door panels with outer, inner, and reinforcing members).
The CAD device 1 creates panel shape data of panel parts as shown in FIG. 5 ((1) position).
Next, the stiffness analysis process shown in FIG. 4 is executed by the finite element method analysis device 2 to read the panel shape data from the CAD device 1 and store it in the panel shape data storage unit 3, and the stored panel shape data is meshed. A panel shape model 4 shown in FIG. 2 for dividing and executing the finite element method analysis is created (step S1).
次いで、同様にメッシュ分割された図3に示す剛体板11及びビーム要素12で構成される有限要素法用張り剛性評価圧子モデル6を作成し、そのビーム要素12をパネル部品のメッシュの節点、メッシュ要素の何れかに結合する(ステップS2)。
次いで、パネル形状モデル4に対して材料データを決定する。この材料データとしては、板厚0.75mmの降伏強度YP244MPa,引張強さTS340MPa,EI42%のBH鋼板(焼付け硬化型鋼板)をひずみ量2%引張り後、170℃×20分熱処理し、再度引張試験を行って測定した図6に示す真応力−真塑性歪み線図を使用した。ここで、2%ひずみ付与はプレス成形により導入されるひずみを、熱処理は塗装焼付け時の熱処理をそれぞれ想定しており、最終的な部品の特性を模擬するために行った。
また、有限要素法用張り剛性評価圧子モデル6についてもビーム要素12のヤング率:206MPaを設定する(ステップS3)。
Next, similarly, a tension stiffness evaluation indenter model 6 for the finite element method composed of the rigid plate 11 and the beam element 12 shown in FIG. 3 divided into meshes is created. Combine with any of the elements (step S2).
Next, material data is determined for the panel shape model 4. As this material data, a 0.75 mm yield strength YP244 MPa, tensile strength TS 340 MPa, EI 42% BH steel sheet (baking hardening type steel sheet) was pulled by 2% strain, heat treated at 170 ° C. for 20 minutes, and then pulled again. The true stress-true plastic strain diagram shown in FIG. 6 measured by performing the test was used. Here, 2% strain was applied to strain introduced by press forming, and heat treatment was assumed to be heat treatment during paint baking, and was performed to simulate the characteristics of the final part.
Also, the Young's modulus of the beam element 12: 206 MPa is set for the tension stiffness evaluation indenter model 6 for the finite element method (step S3).
次いで、図5に示す(1)の位置において、張り剛性解析処理を実施する。
そして、張り剛性解析処理を実行して、有限要素法用張り剛性評価圧子モデル6の剛体板11の中心部にパネル形状モデル4の荷重負荷部に対して面垂直方向に変位を与え、反力(荷重)を算出することを繰り返して、反力(荷重)と変位とを算出する(ステップS4)。このときの荷重・変位特性線は、図7で図示(○印)のように、実線図示の実測値によく一致した特性を得ることができ、変位も目標とする4.0mmまで計算することができた。このときの解析計算時間は61分40秒であった。
これに対して、ソリッドモデルを用いて解析した場合には、図7に示すように、変位量2.5mm付近で計算が停止し、また実測値を精度良く再現することはできないことがわかった。
Next, a tension stiffness analysis process is performed at the position (1) shown in FIG.
Then, the tension stiffness analysis process is executed, and the center portion of the rigid plate 11 of the tension stiffness evaluation indenter model 6 for the finite element method is displaced in the plane perpendicular direction with respect to the load loading portion of the panel shape model 4, and the reaction force By repeating (load) calculation, reaction force (load) and displacement are calculated (step S4). The load / displacement characteristic line at this time can be obtained as shown in FIG. 7 (marked with a circle), and the characteristic well matched with the actual measurement value shown in the solid line can be obtained, and the displacement is also calculated up to the target 4.0 mm. I was able to. The analysis calculation time at this time was 61 minutes and 40 seconds.
On the other hand, when the analysis was performed using the solid model, as shown in FIG. 7, it was found that the calculation stopped near the displacement amount of 2.5 mm, and the actual measurement value could not be reproduced with high accuracy. .
なお、CADデータはDassault Systemes(ダッソー システムズ)製CATIA Ver5を使用して作成した。さらにAltair Engineering(アルテア エンジニアリング)製HyperMesh Ver9を使用し、メッシュを作成し、パネル形状のメッシュサイズは10mmとした。解析はLSTC(エルエスティーシー、Livermore Software Technology Corporationの略)製LS−DYNA ver9.71を使用し、ドアが閉まる際のロック部を完全拘束して実施した。
次に、自動車のドア部品1体あたり(測定点数12点)の張り剛性測定所要日数(day)を比較した結果を、表1に示す。
CAD data was created using CATIA Ver5 manufactured by Dassault Systemes (Dassault Systèmes). Further, Hyper Mesh Ver9 manufactured by Altair Engineering was used to create a mesh, and the mesh size of the panel shape was 10 mm. The analysis was performed using LSTC (LLST, abbreviation for Livermore Technology Corporation) LS-DYNA ver 9.71, and completely locking the lock when the door was closed.
Next, Table 1 shows the result of comparing the required number of days (day) of tension stiffness measurement for each automobile door part (12 measurement points).
表1中、従来(実測)の場合には、図16に示すように、先ず、ステップS11でプレス成形用金型を作製し、次いでステップS12でプレス成形を行って実際にパネル部品を形成し、次いでステップS13で、形成したパネル部品を組付け(ヘム加工・溶接等)てからステップS14で圧子によって荷重・変位曲線を測定するか又は手押しによる官能評価判定を行うことになる。 In Table 1, in the case of conventional (actual measurement), as shown in FIG. 16, first, a press mold is prepared in step S11, and then press molding is performed in step S12 to actually form panel parts. Then, in step S13, the formed panel parts are assembled (hem processing / welding, etc.), and then in step S14, the load / displacement curve is measured by an indenter, or sensory evaluation determination is performed by hand pressing.
従来(CAE)ソリッドは、軟質ゴム製圧子によるソリッドモデルを使用した有限要素法張り剛性解析を行った場合を示し、本発明(CAE)ビームは、剛体板11及びビーム要素12で圧子モデル6を構成して有限要素法張り剛性解析を行った場合を示す。
この表1で、工程1は図4のステップS1、図16のステップS11が対応し、工程2は図4のステップS2、図16のステップS12が対応し、工程3は図4のステップS3、図16のステップS13が対応し、工程4は図4のステップS4及び図16のステップS14が対応している。
The conventional (CAE) solid shows the case where the finite element method tension rigidity analysis is performed using the solid model by the soft rubber indenter, and the present invention (CAE) beam is obtained by replacing the indenter model 6 with the rigid plate 11 and the beam element 12. The case where it is configured and the finite element method tension stiffness analysis is performed is shown.
In Table 1, step 1 corresponds to step S1 in FIG. 4 and step S11 in FIG. 16, step 2 corresponds to step S2 in FIG. 4 and step S12 in FIG. 16, and step 3 corresponds to step S3 in FIG. Step S13 in FIG. 16 corresponds, and step 4 corresponds to step S4 in FIG. 4 and step S14 in FIG.
この表1から明らかなように、実測では、全構成部品のプレス成形用に金型を作製する必要があり、多大な工数を要する。その一方で、CAEではCADデータ、有限要素法用モデルの作成のみで良いため、準備に掛かる工数は少ない。ただし、ソリッド要素モデルでは計算がうまく行かないケースがあり、解析条件の調整等で時間を要する。これらの工数の差は、繰り返しの検討を行う(部品形状を変更し、再度張り剛性評価)際にさらに顕著となる。 As apparent from Table 1, in actual measurement, it is necessary to produce a mold for press molding of all components, which requires a great number of man-hours. On the other hand, CAE requires only preparation of CAD data and a model for the finite element method, so that the number of steps required for preparation is small. However, there are cases where the calculation does not work well in the solid element model, and it takes time to adjust the analysis conditions. These differences in man-hours become even more prominent when repeated examinations are carried out (changing the part shape and evaluating the stiffness again).
以上より、本発明による方式が、計算の精度、効率の面で最も優れていることが分かる。そのため、性能検証を効率よく進めることが可能である。
また、実測を行う従来例では、検討対象となる部品形状が決定した後、外板部品を構成する部品全て(アウター、インナー、補強材等)の金型を作製し、プレス成形の後、組み付けを行う。それにより対象の組み付け部品を作製し、圧子や手押しによる評価を行うことになる。この方法では、金型作製や部品組み付けのために、多大なコストや時間を費やすこと、および、不具合が有った場合に部品形状の変更などの対策をとることが困難となってしまう。
From the above, it can be seen that the method according to the present invention is most excellent in calculation accuracy and efficiency. Therefore, it is possible to proceed with performance verification efficiently.
Moreover, in the conventional example in which actual measurement is performed, after the part shape to be examined is determined, molds for all parts (outer, inner, reinforcing material, etc.) constituting the outer plate part are produced, and after press molding, assembled I do. As a result, a target assembly part is produced and evaluated by an indenter or a hand. In this method, it becomes difficult to take a lot of cost and time for mold production and component assembly, and to take measures such as changing the component shape when there is a problem.
しかしながら、本発明の実施形態によると、有限要素法用張り剛性評価圧子モデル6を剛体板11とビーム要素12とで構成し、この有限要素法用張り剛性評価圧子モデル6を使用して有限要素法張り剛性解析を行うことにより、実際に物を造ることなく、CAEでの性能予測を高精度に実施することが可能となる。本発明を用いることにより、自動車の設計段階で性能を予測することが可能となるため、張り剛性が不足するケースがあっても、有限要素法解析装置2上で対策を立て、その効果の検証が可能となる。実車を試作する前のトライアンドエラーをバーチャルに行えるため、工期短縮およびコストダウンの効果が見込まれる。 However, according to the embodiment of the present invention, the tension stiffness evaluation indenter model 6 for the finite element method is composed of the rigid plate 11 and the beam element 12, and the tension stiffness evaluation indenter model 6 for the finite element method is used to determine the finite element. By performing the legal stiffness analysis, it is possible to perform the performance prediction with the CAE with high accuracy without actually making an object. By using the present invention, it becomes possible to predict the performance at the design stage of the automobile, so even if there is a case where the tension stiffness is insufficient, measures are taken on the finite element method analysis apparatus 2 and the effect is verified. Is possible. Since trial and error before trial production of the actual vehicle can be performed virtually, the construction period can be shortened and the cost can be reduced.
1…CAD装置、2…有限要素法解析装置、3…パネル形状データ格納部、4…パネル形状モデル、5…パネル形状モデル作成部、6…有限要素法用張り剛性評価圧子モデル、7…圧子モデル作成部、8…張り剛性解析部、9…表示部、10…データ入力部、11…剛体板、12…ビーム要素、21…モデルパネル、22…ロードセル、23…変位計、24…記録装置、25…円柱部、26…鋼製圧子、27…円柱部、28…円板部、29…軟質ゴム製圧子 DESCRIPTION OF SYMBOLS 1 ... CAD apparatus, 2 ... Finite element method analyzer, 3 ... Panel shape data storage part, 4 ... Panel shape model, 5 ... Panel shape model preparation part, 6 ... Tensile rigidity evaluation indenter model for finite element methods, 7 ... Indenter Model creation unit, 8 ... tension stiffness analysis unit, 9 ... display unit, 10 ... data input unit, 11 ... rigid plate, 12 ... beam element, 21 ... model panel, 22 ... load cell, 23 ... displacement meter, 24 ... recording device 25 ... cylindrical part, 26 ... steel indenter, 27 ... cylindrical part, 28 ... disc part, 29 ... soft rubber indenter
Claims (3)
剛体板と、該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とでモデル化し、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成することを特徴とする有限要素法用張り剛性評価圧子モデル。 When analyzing the stiffness of panel parts by the finite element method, the indenter model is brought into contact with the load part of the panel parts,
Modeled with a rigid plate and three or more beam elements planted on the surface of the rigid plate facing the load-bearing portion of the panel component, and tip portions of the three or more beam elements so that the surface can be pressed A tension stiffness evaluation indenter model for the finite element method, characterized in that a surface set in advance is formed by the finite element method.
該パネル形状データ作成部で作成したパネル形状データをメッシュ分割して有限要素法解析を実行するパネル形状モデルを作成するパネル形状モデル作成部と、
前記パネル形状データ作成部で作成したパネル形状データに対して、剛体板と該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とで構成されて、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成する張り剛性評価圧子モデルを、当該荷重負荷部に対して前記ビーム要素が面垂直方向となるように作成する圧子モデル作成部と、
該圧子モデル作成部で作成した張り剛性評価圧子モデルの剛体板に前記荷重負荷部に対して面垂直方向に変位を与えて張り剛性解析を行う張り剛性解析部と
を備えていることを特徴とするパネル部品張り剛性解析装置。 A panel shape data creation section for creating shape data of panel parts;
A panel shape model creating unit for creating a panel shape model for performing a finite element method analysis by dividing the panel shape data created by the panel shape data creating unit into a mesh;
For the panel shape data created by the panel shape data creation unit, it is composed of a rigid plate and three or more beam elements planted on the surface of the rigid plate facing the load loading portion of the panel parts , Create a tension stiffness evaluation indenter model that forms a preset surface at the tip of the three or more beam elements so that the surface can be pressed so that the beam elements are perpendicular to the surface of the load. An indenter model creation unit,
A tension stiffness analysis unit for performing a stiffness analysis by applying displacement to the rigid plate of the indenter model created by the indenter model creation unit in a direction perpendicular to the plane of the load. Panel component tension stiffness analyzer.
該パネル形状データ作成ステップで作成したパネル形状データをパネル形状モデル作成部で、メッシュ分割して有限要素法解析を実行するパネル形状モデルを作成するパネル形状モデル作成ステップと、
前記パネル形状データ作成ステップで作成したパネル形状データに対して、圧子モデル作成部で、剛体板と該剛体板のパネル部品の荷重負荷部に対向する面に、植立した3本以上のビーム要素とで構成されて、面押し可能なように前記3本以上のビーム要素の先端部で予め設定した面を形成する張り剛性評価圧子モデルを当該荷重負荷部に対して前記ビーム要素が面垂直方向となるように作成する圧子モデル作成ステップと、
該圧子モデル作成ステップで作成した張り剛性評価圧子モデルの剛体板に、張り剛性解析部で、前記荷重負荷部に対して面垂直方向に変位を与えて張り剛性解析を行う張り剛性解析ステップと
を備えていることを特徴とするパネル部品張り剛性解析方法。 A panel shape data creation step for forming panel part shape data in the panel shape data creation unit;
A panel shape model creating step for creating a panel shape model for performing the finite element method analysis by dividing the panel shape data created in the panel shape data creating step in a panel shape model creating unit;
For the panel shape data created in the panel shape data creation step, three or more beam elements planted on the surface facing the load plate of the rigid plate and the panel parts of the rigid plate in the indenter model creation unit A tension stiffness evaluation indenter model that forms a preset surface at the tip portions of the three or more beam elements so that the surface can be pressed is formed in a direction perpendicular to the surface of the beam element with respect to the load portion. An indenter model creation step to create
Tension stiffness analysis step of performing a stiffness analysis by applying a displacement in a direction perpendicular to the load load portion to the rigid plate of the indenter stiffness evaluation indenter model created in the indenter model creation step. A panel component tension rigidity analysis method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010275786A JP5582010B2 (en) | 2010-12-10 | 2010-12-10 | Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010275786A JP5582010B2 (en) | 2010-12-10 | 2010-12-10 | Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012122948A JP2012122948A (en) | 2012-06-28 |
JP5582010B2 true JP5582010B2 (en) | 2014-09-03 |
Family
ID=46504520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010275786A Active JP5582010B2 (en) | 2010-12-10 | 2010-12-10 | Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5582010B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050083A1 (en) * | 2012-09-26 | 2014-04-03 | Jfeスチール株式会社 | Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method |
JP5673636B2 (en) * | 2012-09-26 | 2015-02-18 | Jfeスチール株式会社 | Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method |
JP5673635B2 (en) * | 2012-09-26 | 2015-02-18 | Jfeスチール株式会社 | Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method |
JP7125764B2 (en) * | 2017-09-08 | 2022-08-25 | 公立大学法人大阪 | Laminate-molded article analysis method, laminate-molded article analysis apparatus, laminate-molded article manufacturing method, and laminate-molded article manufacturing apparatus |
JP6916092B2 (en) * | 2017-11-13 | 2021-08-11 | Jfeスチール株式会社 | Dent resistance prediction method for panel parts |
CN111209657B (en) * | 2019-12-30 | 2022-04-22 | 南京航空航天大学 | Solid deformation interface calculation method considering liquid surface tension |
CN111400825A (en) * | 2020-04-08 | 2020-07-10 | 重庆金康赛力斯新能源汽车设计院有限公司 | Anti-concavity performance simulation method and device, storage medium and computer equipment |
CN112651149A (en) * | 2020-11-23 | 2021-04-13 | 珠海格力电器股份有限公司 | Method and device for processing packaging data |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2962107B2 (en) * | 1993-07-23 | 1999-10-12 | 三菱自動車工業株式会社 | Reinforcement arrangement method of panel structure |
JP3786171B2 (en) * | 1999-12-16 | 2006-06-14 | ふそうエンジニアリング株式会社 | Method for arranging reinforcing material for panel structure |
JP2005085233A (en) * | 2003-09-11 | 2005-03-31 | Sharp Corp | Three-dimensional cad analysis system, analysis method, analysis program, and computer readable recording medium having the analysis program recorded thereon |
JP4568186B2 (en) * | 2005-07-22 | 2010-10-27 | ダイハツ工業株式会社 | Dent stiffness prediction method |
JP2007225519A (en) * | 2006-02-24 | 2007-09-06 | Shimadzu Corp | Material testing method |
JP2008128741A (en) * | 2006-11-17 | 2008-06-05 | Matsushita Electric Works Ltd | Method and apparatus for measuring residual stress in thin-film sample |
US8352219B2 (en) * | 2007-02-28 | 2013-01-08 | Keio University | Numerical structure-analysis calculation system |
-
2010
- 2010-12-10 JP JP2010275786A patent/JP5582010B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012122948A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582010B2 (en) | Tension stiffness evaluation indenter model, tension stiffness analysis apparatus and analysis method using the indenter model | |
JP4410833B2 (en) | Springback generation cause analysis method, apparatus, program and recording medium | |
US7672819B2 (en) | Spot weld fracture analysis method, program therefor, and analysis apparatus thereof | |
RU2507496C1 (en) | Method to detect damage, device, program and computer-readable record medium for damage detection | |
US8401827B2 (en) | Processing device and method for structure data representing a physical structure | |
JP5919782B2 (en) | Dent resistance evaluation method | |
US9773077B2 (en) | System and method for prediction of snap-through buckling of formed steel sheet panels | |
JP4621217B2 (en) | Fracture prediction method and apparatus, program, and recording medium | |
JP5941320B2 (en) | Mold shape simulation system, program and method | |
WO2010073756A1 (en) | Springback occurrence cause analyzing method, springback occurrence cause analyzing device, springback occurrence cause analyzing program, and recording medium | |
US20040172224A1 (en) | System and method for prediction of panel performance under localized loading conditions | |
Chen et al. | Efficient modelling of large deflection behaviour of restrained steel structures with realistic endplate beam/column connections in fire | |
JP4386294B2 (en) | Food Dent Performance Evaluation Method | |
Abdullah et al. | Computational modal analysis on finite element model of body-in-white structure and its correlation with experimental data | |
WO2014050083A1 (en) | Panel part evaluation method, panel part evaluation apparatus, and automotive panel part manufacturing method | |
JP3978377B2 (en) | Molding simulation analysis method | |
JP5210085B2 (en) | Deformation forecasting method | |
JP5505295B2 (en) | Surface shape design method for automotive outer plate parts with excellent dent resistance and the parts | |
JP5673636B2 (en) | Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method | |
JP5462201B2 (en) | Molding analysis method, molding analysis apparatus, program, and storage medium | |
JP6501049B1 (en) | Evaluation method and apparatus, and recording medium | |
Zhang et al. | Predicting plastic behavior of magnesium alloy tube bending with comprehensive constitutive models | |
JP5673635B2 (en) | Panel component evaluation method, panel component evaluation apparatus, and automotive panel component manufacturing method | |
JP5254109B2 (en) | Decision pushing analysis method, program, storage medium, and decision pushing analysis device | |
Pham et al. | Parameter Identification of Chaboche Model for Aluminum Alloy Sheets Based on Differential Evolution Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5582010 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |