JP2008153366A - 接合装置による接合方法 - Google Patents

接合装置による接合方法 Download PDF

Info

Publication number
JP2008153366A
JP2008153366A JP2006338582A JP2006338582A JP2008153366A JP 2008153366 A JP2008153366 A JP 2008153366A JP 2006338582 A JP2006338582 A JP 2006338582A JP 2006338582 A JP2006338582 A JP 2006338582A JP 2008153366 A JP2008153366 A JP 2008153366A
Authority
JP
Japan
Prior art keywords
pressure head
laser
electrode
joining
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006338582A
Other languages
English (en)
Inventor
Eisaku Kojima
栄作 児島
Takehiko Wada
竹彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2006338582A priority Critical patent/JP2008153366A/ja
Publication of JP2008153366A publication Critical patent/JP2008153366A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】高速かつ安全に高精細な実装を可能とする接合装置による接合方法を提供する。
【解決手段】レーザ発振器からの照射により、レーザミラーにより反射されてバックアップガラス55を介してアレイ基板(ガラス基板)1を通過し、直接ACF10にレーザがピンポイントで照射される。このレーザ照射によりACFが溶着してTCP2とアレイ基板1とが接合される。また、加圧ヘッド30には、圧縮空気供給部80から圧縮空気が供給される噴射孔が設けられる。噴射孔を介して圧縮空気が供給されてチップ等が冷却される。
【選択図】図4

Description

本発明は、液晶表示パネルと駆動回路基板とを接合するのに適した接合装置による接合方法に関するものである。
近年、パーソナルコンピュータ、その他各種モニタ用の画像表示装置として、液晶表示装置が急速に普及してきている。
この種の液晶表示装置は、一般に液晶表示パネルの背面に照明用の面状光源であるバックライトを配設することにより、所定の広がりを有する液晶面を全体として均一な明るさに照射することで、液晶面に形成された画像を可視像化するように構成されている。
液晶表示装置は、液晶材料を2枚のガラス基板の間に封入して構成した液晶表示パネルと、液晶表示パネル上に実装された液晶材料を駆動するためのプリント回路基板と、液晶表示パネルの背面に液晶表示パネル保持フレームを介して配置されるバックライト・ユニットと、これらを覆う外枠フレームとを備えている。
液晶表示装置の中でTFT(Thin Film Transistor:薄膜トランジスタ)液晶表示装置の場合、液晶表示パネルを構成するガラス基板のうちの一方のガラス基板はアレイ基板を構成し、他の一方のガラス基板はカラーフィルタ基板を構成する。
ガラス基板には、液晶材料の駆動素子であるTFT、表示電極、信号線の他にプリント回路基板と電気的に接続するための引出電極などが形成されておりガラス基板上にTFTが規則的に配列されているためにアレイ基板とも称されている。
カラーフィルタ基板には、カラーフィルタの他にコモン電極、ブラックマトリックス、配向膜などが形成されている。
プリント回路基板は、アレイ基板に形成された引出電極とTAB(Tape Automated Bonding)テープキャリア(以下、単にTABとも称する)を介して接続(実装)されるのが一般的である。あるいはTAB技術によりテープフィルムにLSIチップを接続したパッケージ(すなわちテープキャリアパッケージ(以下、TCPとも称する))を実装することも行なわれている。また、TAB技術に限らず同一のパッケージ技術としてCOF(Chip on film/FPC)やSOF(System on Film)も挙げることができる。
そして、TABの入力リード導体はプリント回路基板の対応する導体に接続されることになる。一方、TABの出力リード導体はアレイ基板の対応する引出電極に接続される。その接続の際、すなわちTABの入力リード導体とプリント回路基板の対応する導体との接続の際には、たとえば、はんだやACF(Anisotropic Conductive Film:異方性導電膜)あるいはACP(Anisotropic Conductive Paste:異方性導電ペースト)が用いられている。あるいは、NCP(Non Conductive Particle/Paste)などの工法や材料が用いられている。TABの出力リード導体とアレイ基板の対応する引出電極との接続の際にも同様にACFあるいはACP、NCP等が用いられている。さらに、これらの接続のみならずTCP上のLSIチップとフィルムとを接続する技術としてもACF、あるいはACP、NCP等が用いられている。
TABを用いる実装の他に、COG(Chip On Glass)と呼ばれる実装技術がある。このCOGは、アレイ基板上にICシリコンチップ(以下、シリコンチップ)をACFあるいはACP、NCP等により接合する技術である。なお、以下においてはACFあるいはACP、NCP等を単にACFとも称することとする。
ACFは、接着剤としての樹脂中に導電材料からなる粒子を分散させたものであり、熱可塑性樹脂を接着剤とする熱可塑型ACFと熱硬化型樹脂を接着剤とする熱硬化型ACFの2種類が存在する。熱可塑型ACFおよび熱硬化型ACFによる接合の手法は、加熱および加圧を伴う熱加圧を行なう点で一致しており、特開2002−249751号公報においては、ヒータツールおよび近赤外線ランプを照射して熱圧着する方式が開示されている。
また、別の方式としては、特開2001−345505号公報においては、はんだに赤外線を照射することにより溶融し、たとえば光半導体素子と光実装基板とを接合する方式が開示されている。
特開2002−249751号公報 特開2001−345505号公報
しかしながら、いずれの接合方式においても、加熱接合する際の温度は、比較的高温となる。たとえばACFを硬化するために必要な温度を180度とするとヒータツールの加熱温度は230℃〜250℃程度にする必要がある。また、はんだを溶融するためには300〜400℃程度の高温加熱が必要である。
したがって、加熱接合するに際して、ACFのみならずチップ等またその周辺機材にもその加熱に従う温度が伝導することになる。たとえば、液晶表示装置であれば偏向板を接着している部分への熱伝導が懸念される。
チップ等の温度について、高温状態が比較的長く続けば内部回路に影響を与える可能性がある。また、たとえば加圧ヘッド等にチップからの熱が伝導した場合、温度が高いまま基板の取り出しや搬送等を行なうと、応力がかかった状態でACFが硬化するおそれがあることから、加圧ヘッド等の周辺機材の温度がある程度下がらないと、次の接合等を実行することができないという問題がある。
本発明は、上記のような問題を解決するためになされたものであって、高速かつ安全に高精細な実装を可能とする接合装置による接合方法を提供することを目的とする。
本発明にかかる接合装置による接合方法は、被接合体としてガラス基板上に配列された複数の電極からなる引出電極と、当該ガラス基板と熱膨張率および/または熱収縮率が異なる部材上に引出電極と配置を対応させて配列された複数の電極からなる接続電極とを、熱反応性樹脂からなる接着剤中に導電性粒子が分散された異方性導電性材料を間に挟み込んで、それぞれ電気的にかつ形状上一体に接合する接合装置による接合方法であって、接合装置は、レーザ光を照射するレーザ光源と、ガラス基板を支持する支持台と、気体を部材に向けて噴射するための噴射孔を有する、部材を支持台に向けて加圧するための加圧ヘッドとを備える。異方性導電性材料を間に挟み込んだ状態で、支持台に支持されたガラス基板に向かって部材を加圧ヘッドにより加圧し、引出電極と接続電極とを電気的に接続する加圧ステップと、加圧されて引出電極と接続電極とを電気的に接続された状態で、異方性導電性材料に含まれる熱反応性樹脂からなる接着剤中にレーザ光を照射して引出電極と接続電極とをさらに形状上一体に接合するレーザ光照射ステップと、レーザ光の照射後に噴射孔から冷却気体を部材に噴射する冷却ステップとを有する。
好ましくは、加圧ステップは、噴射孔から噴射する気体の圧力によって部材を非接触で加圧する。
好ましくは、加圧ヘッドは、部材との接触面を有し、加圧ステップは、接触面を通じて部材を加圧する。
特に、加圧ヘッドは、部材を真空吸着するための真空吸着孔を有し、加圧ステップは、部材を真空吸着した状態で行なわれる。
好ましくは、加圧ヘッドの部材と接触する接触面は、噴射孔と連結され、部材と接触した場合に外部との間で気体の流出が可能な溝が形成され、冷却ステップは、加圧ヘッドと部材とが密着された状態で行なわれる。
特に、加圧ヘッドの噴射孔と真空吸着孔とは共通の孔とされ、接合装置は、噴射孔へ供給する噴射気体の経路と、真空吸着孔に通じる真空の経路とを切り替える切り替え部をさらに備える。
本発明にかかる別の接合装置による接合方法は、電気的な経路を形成するために被接合体としてガラス基板上に配列された複数の電極からなる第1の部材の引出電極と、当該ガラス基板と熱膨張率および/または熱収縮率が異なる部材上に引出電極と配置を対応させて配列された複数の電極からなる第2の部材の接続電極とを、それぞれ電気的にかつ形状上一体に接合する接合装置による接合方法であって、接合装置は、レーザ光を照射するレーザ光源と、ガラス基板を支持する支持台と、気体を部材に向けて噴射するための噴射孔を有する、部材を支持台に向けて加圧するための加圧ヘッドとを備える。支持台に支持されたガラス基板に向かって部材を加圧ヘッドにより加圧し、引出電極と接続電極とを近接または接触した状態で保持する加圧ステップと、加圧されて引出電極と接続電極とが近接または接触した状態で、レーザ光を引出電極および接続電極の少なくとも一方に照射し、金属電極相互の原子拡散現象により引出電極と接続電極とを接合するレーザ光照射ステップと、レーザ光の照射後に噴射孔から冷却気体を部材に噴射する冷却ステップとを有する。
好ましくは、レーザ光照射ステップは、第1の部材の引出電極の温度および第2の部材の接続電極の温度がそれぞれ融点を越えないように照射され、金属電極相互の原子の固相拡散現象により引出電極と接続電極とを接合する。
本発明に係る接合装置による接合方法は、加圧ヘッドにおいて、ガラス基板と部材とを接合するに際して、気体供給部から気体を供給する噴射孔が設けられているためレーザ照射により部材等の温度が高温となった場合であっても早期に冷却することが可能であり、高速かつ安全に高精細な実装が可能となる。
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰返さない。
(実施の形態1)
図1は、本発明の実施の形態1に従う液晶表示装置を説明する概略ブロック図である。
図1を参照して、本発明の実施の形態1に従う液晶表示装置は、液晶表示パネル(以下、LCDとも称する)1と、LCD1の周辺に配設された周辺回路との接続配線が設けられたインターフェイス部4と、LCD上に実装された液晶材料を駆動するためのプリント回路基板3と、プリント回路基板3と液晶表示パネルLCD1との間に設けられ、液晶表示パネルの構成素子を駆動するためのドライバIC5を含むTCP2と、プリント回路基板3とインターフェイス部4とを電気的に接続するためのフレキシブル基板(以下、FPCとも称する)6とを備える。
以下においては、本発明の実施の形態に従う接合装置について、液晶表示パネルLCDとプリント回路基板3との接続に用いられるドライブIC5を含むTCPの接合方式、具体的には、電極同士が電気的にかつ形状上一体に接合される方式について主に説明する。
図2は、本発明の実施の形態1に従うTCPを説明する概念図である。
図2を参照して、本発明の実施の形態に従うTCPは、ドライバIC5を含み、ドライバIC5から複数の入力および出力リード導体が設けられた構成となっている。
図3は、ACF10を説明する図である。
図3(a)は、ACF10の構造を説明する図である。
図3(a)を参照して、ACF10は、エポキシ系またはアクリル系の接着剤であるバインダ10中に無数のミクロパーティクル(導電性粒子)11が含まれた構成となっている。
図3(b)は、ACF10に加熱および加圧を加えたときの導電経路が形成される場合を説明する図である。
図3(b)を参照して、ACF10に加熱および加圧を加えるすなわちミクロパーティクル11に加熱および加圧が加えられると、内部のニッケル(Ni)メッキ12によりコーティングされた樹脂コア13に反発力が生じることになる。これにより、この無数のミクロパーティクルが互いに結合してこのミクロパーティクルにニッケルメッキ12の外側にコーティングされた金メッキ11を介してたとえば上部電極14と下部電極15との間に導電経路が形成されることになる。これにより、接合の際において、接合部分において導電経路を形成することが可能となる。
図3(c)は、2層構造のACFを説明する図である。
ここでは、2層構造のACFが示されており、バインダとミクロパーティクルとがそれぞれ別々の領域すなわちバインダ領域10aおよびミクロパーティクル領域11aとに分離して形成されている。当該構成においても、上述したのと同様に導電経路を形成することが可能となる。なお、2層構造のACFを用いることにより加熱および加圧を加えたときのずれを抑制することが可能となっている。
図4は、本発明の実施の形態1に従う接合装置100を説明する概念図である。
図4を参照して、本発明の実施の形態1に従う接合装置100は、ACF10に対して単色光であるレーザを照射するレーザ照射部15と、LCDであるアレイ基板(ガラス基板)1を支持するための支持台16と、支持台16に向かって加圧するための加圧ヘッド30と、シリンダ20と、レーザ照射部15と、バックアップガラス55と、接合装置100全体を制御する制御部70と、対象物を真空吸着するための真空吸着部75と、圧縮空気を供給する圧縮空気供給部80とを備える。そして、シリンダ20とアレイ基板1との間にTCP2およびACF10が挿入される。
レーザ照射部15は、ACF10に対して所定波長のレーザを照射する。具体的には、他の波長と比較して相対的にガラスに対して透過率が高く、ACFに対して吸収率が高い波長を選択するものとする。
シリンダ20は、TCP2とアレイ基板1との接合において加圧ヘッド30の高さを調整して加圧を制御するものである。
真空吸着部75は、制御部70の指示に基づいて加圧ヘッドに設けられた真空吸着孔から対象物である本例においてはTCP2を真空チャックする。これにより、ACF10との接着の際の加圧により生じる可能性のあるアライメントずれを防止し、精度の高いアライメントが可能となる。
圧縮空気供給部80は、後述するが制御部70の指示に基づいて加圧ヘッドに設けられた噴射孔に圧縮空気を供給する。なお、本例においては、噴射孔として加圧ヘッドの側方部位から加圧ヘッドの先端部位の接触面まで貫通した状態が示されている。なお、噴射孔は、加圧ヘッドの先端部位の接触面から圧縮空気を供給可能な孔であれば良く、形状および構造は自由に設計可能である。
また、ここでは、一例として2つの噴射孔が設けられていて、それぞれに対して圧縮空気供給部80から圧縮空気を供給可能な状態として設けられている場合が示されているが、特に2つに限られず、1つでも良いし、それ以上設けることも当然に可能である。
また、図4においては、一例として加圧ヘッドを介して2つの真空吸着孔と真空吸着部75とが接続されている場合が示されているが、これに限られず1つでも良いし、さらに複数の真空吸着孔を用いて真空チャックを行なうことも当然に可能である。
図5は、本発明の実施の形態1に従うレーザ照射部15を説明する概略ブロック図である。
図5を参照して、本発明の実施の形態1に従うレーザ照射部15は、レーザ発振器200と、ビームエキスパンダ105と、ダイクロック110と、スリット115と、ビームサンプラー120と、レーザミラー125と、ビームエキスパンダ130と、レーザラインジェネレータ135と、アライメントレーザポインタ140と、パワーメータ145とを備える。
レーザ発振器200は、一例として波長λ=1064nm近傍のレーザを出射するYAGレーザ等の固体レーザを用いることができる。レーザ発振器200から出射されたレーザは、ビームエキスパンダ105により所定幅の平行光線へと偏向される。そして、ダイクロック110を通過した後、スリット115によりスリット幅の光線に絞られる。スリット115通過後、ビームサンプラー120により一部の光線が反射されてパワーメータ145に入射される。パワーメータ145は、入射された光線の受光強度を検出して、レーザ発振器200から所望の光強度のレーザが出射されているかどうかを判断し、図示しないがレーザ発振器200等を制御する制御部70を介してレーザ発振器200の出力を調整する。スリット115を通過したレーザは、レーザミラー125により反射されてビームエキスパンダ130に入射される。ビームエキスパンダ130は、入射されたレーザを集光して、ACF10に対して照射する。
アライメントレーザポインタ140は、アライメント調整のためのレーザを発振するレーザ発振器であり、たとえば可視光である波長が選択される。たとえば、本例においては、690nmのレーザが用いられる。このアライメントレーザポインタ140から出射されたレーザは、レーザラインジェネレータ135により整形されてダイクロック110を介してレーザ発振器200から出射されたレーザと同様にACF10に照射される。このレーザは、アライメント調整すなわち位置合わせのためのレーザであり、このレーザを用いて位置決め制御が行なわれる。なお、上記のレーザ照射部15においては、レーザの反射用素子としてレーザミラー125を用いた場合を説明したが、これに限られず、たとえば、レーザミラー125の代わりにレーザの反射角度の微調整が可能ないわゆるガルバノミラーあるいはポリゴンミラー等を用いることも当然に可能である。また、反射用素子を用いることなく直接レーザを照射することも可能である。
図6は、本発明の実施の形態1に従うレーザ照射部15#を説明する概略ブロック図である。
図6を参照して、ここでは、ガルバノミラーを用いたレーザ照射部15#が示されている。具体的には、レーザ照射部15#は、レーザ発振器100と、ガルバノミラー91,92と、ガルバノミラー91,92を矢印方向へ旋回させるガルバノメータスキャナ93,94と、ガルバノミラー91から到来するレーザ光を収束して、対象物に所定のスポット径をもって照射するfθレンズとを含む。ガルバノミラー91は、ガルバノメータスキャナ93の旋回に応答してガルバノミラー92から到来するレーザ光をX方向へ指向させる。ガルバノミラー92は、ガルバノメータスキャナ94の旋回に応答してレーザ発振器100から到来するレーザ光をY方向へ指向させる。なお、ここでは、図4で説明したアライメントレーザポインタ140、パワーメータ145、CCD150の構成については、図示していないが、図4と同様にレーザ光の光路にダイクロックあるいはサンプラーを配置することにより同様の構成とすることも当然に可能である。
図7は、本発明の実施の形態1に従う接合装置によるアレイ基板(ガラス基板)とTCPの接合を説明する図である。
図7に示されるように、アレイ基板(ガラス基板)1の引出電極と対応するTCP2の接続電極とを対向させて、対応するそれぞれの電極の位置合わせが行なわれ、そして、アレイ基板1の引出電極とTCP2の接続電極との間に入れられたACF10を挟みこむために加圧ヘッド30により後述するが支持台16に向かってアレイ基板1とTCP2とに加圧する。そして、レーザ発振器200からのレーザ照射により、レーザミラー125によりレーザが反射される。反射されたレーザは、バックアップガラス55を介してアレイ基板(ガラス基板)1を通過して、直接ACF10にピンポイントで照射される。レーザの照射もしくは照射後により生じる後述するACFの硬化後にシリンダ20を用いた加圧ヘッド30による加圧を開放する。
ここで、電極の位置合わせは、図示していないがバックアップガラス55側から、バックアップガラス55とアレイ基板1とを通してCCDカメラ(単にカメラとも称する)で撮影し、カメラで撮影した撮像画像をたとえば制御部70等において画像処理することにより実行することが可能である。本例においては、たとえばバックアップガラス55側からカメラで撮影した場合、アレイ基板(ガラス基板)1とTCP2とを同時に撮像できるので電極の位置合わせは容易となるが、たとえばアレイ基板1およびTCP2等に設けられた基準マーク等を用いて電極の位置合わせを実行することも可能であり、バックアップガラス55側からのカメラの撮影に限らず、TCP2の上側からのカメラの撮影によっても位置合わせが可能である。
また、このレーザ照射部15は、いわゆるレーザマーカであり、レーザ照射としては、試料載置テーブルである支持台16上に位置決めされた所定の位置に任意の軌跡を描いてレーザ光を照射することが可能である。
一般的に、通常のレーザマーカはCADデータを用いて所定の位置に照射することができる。そのため、たとえば液晶表示パネルLCDのCADデータをそのまま用いて照射箇所の位置決め制御を行なうことができる。レーザ光の照射軌跡としては薄膜が十分に加熱するようにエネルギを局部的に集中できるものが望ましい。なお、レーザ光の照射光量および/または照射軌跡を適宜に制御することにより接着強度を適切に調整することが可能であり、たとえば、いわゆるワブリング方式あるいは塗りつぶし方式を採用することも可能である。ワブリング方式による照射軌跡は照射スポットの中心を旋回させながら進めていくものである。一方、塗りつぶし方式とは多数の平行線により照射予定領域を埋め尽くすものである。当該技術については、一般的なものであるため本願明細書においてはその詳細な説明は省略する。なお、レーザ照射として、アレイ基板1の引出電極と対応するTCP2の接続電極とに照射されないようにすなわち直接ACF10にピンポイントで照射されるようにレーザ光の照射する位置を移動させることも可能であるが、アレイ基板1の引出電極と対応するTCP2の接続電極との一部あるいは全部を含むようにレーザ光を照射することも可能である。
また、レーザ発振器200において、いわゆるQスイッチ210を用いることにより、Q値の非常に高いパルスビームを発振することが可能となる。すなわち、高エネルギー密度のレーザを照射することにより短時間での接着(実装)が可能となる。なお、本例においては、一例としてパルスビームを用いたレーザ照射を実行する場合について説明するがこれに限らずたとえば所定のエネルギー量を連続的に照射し続ける連続波ビーム(CWビーム)を照射することも当然に可能である。
なお、図7においては、図示していないがビームサンプラーおよびパワーメータ等を用いてレーザのパワー検出が実行される場合も示している。
図8は、本発明の実施の形態1に従うレーザ照射によりACFが反応する時間を説明する図である。ここでは、縦軸を反応率とし、横軸を反応時間としている。なお、ここでは、1064nm程度の波長レーザを出射する新複屈折結晶体(YVO4)を用いた固体レーザで実験を行なった場合の反応時間が示されている。
Figure 2008153366
ここで、DSC反応熱は、いわゆる示差走査熱量測定に従って計測された反応熱を示している。示差操作熱量測定は、試料及び基準試料を一定速度で温度変化させる際に加えるエネルギ−差を測定し、試料の熱分析たとえば反応熱等を計測する効果的な手法である。
上記の式に基づいて反応熱から反応率を算出すると、図8に示されるように約70〜80msec程度でACFをほぼ完全に硬化させることが可能となる。なお、レーザを照射しすぎるとACFにアブレーションが生じたりあるいは焦げが生じたりすることにより、ACF内部のエポキシ結合の数が増えて反応熱が増大するため上式に基づく反応率においては、完全に硬化後、見かけ上負の反応率となっている。なお、図8に示される実線は上記の算出結果に基づいて想定される推定曲線である。
従来の方式では、熱伝導等によりACFをほぼ完全に硬化させるために概ね10〜20秒程度必要としていたが本願方式によりその10分の1以下の時間でACFを硬化させることができ、極めて高効率でACFを用いた実装が可能となる。
図9は、本発明の実施の形態1に従う接合装置によりTCPを接合した場合の実装時間を説明する図である。
ここでは、レーザ出力(Watt)、周波数(kHz)、パルスエネルギー(mJoule/Pulse)、1チップの予測実装時間(msec)および代表的なレーザ例が示されている。なお、チップ底面積は20mm2とする。また、硬化に必要なエネルギー実測値は、200mJoule/mm2である。なお、レーザとしてここでは、代表的にYVO4レーザ、ファイバーレーザ、YAGレーザ等が示されている。ここで示されるように高出力のレーザパワーを照射することにより短時間で実装することが可能である。1チップ当りの実装時間は一秒程度以内相当である実験結果が得られており、本願発明に従う接合装置を用いることにより、極めて高速な実装が可能であることがわかる。
図10は、本発明の実施の形態1に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。
図10を参照して、実装を開始して、まず加圧ヘッドをヘッド初期位置からヘッド接合位置まで位置を調整して加圧を開始する。その際、真空吸着部75により真空吸着孔を介して真空吸着が行なわれTCP2は加圧ヘッドの接触面に密着した状態で接合が行なわれる。そして、レーザ照射を実行する。ここでは、レーザ照射として1秒程度(1秒〜2秒の間)照射した場合が示されている。なお、加圧としては、2MPaの圧力が加えられている場合が一例として示されている。また、加圧中は、TCP2と加圧ヘッド30とが密着した状態であるので真空吸着を行なわないで加圧することも可能である。本例においては、加圧中に真空吸着を行ないながら加圧することによりTCP2の平面度を維持しつつ加圧することが可能となるため圧力が平均化されて均一な加圧が可能となり実装精度をより向上させることが可能である。
ここで、ACFを硬化するためにレーザ照射した結果、ACFからの伝導熱によりチップ1およびTCP2ならびに加圧ヘッド30の温度も同様に上昇することになる。すなわち、ここでは、一例としてチップ1およびTCP2ならびに加圧ヘッドの温度は180℃程度にまで上昇することになる。レーザ照射を終了すると、チップ1およびTCP2ならびに加圧ヘッド30の温度は自然放熱により徐々に下降することになるが、下降に時間がかかることになる。この点で、比較的高温状態が維持されるならチップ1およびTCP2等の内部回路に不良が生じる等の可能性があり、また、加圧ヘッドに関しては、仮に温度が高いまま次のアレイ基板とTCPとの実装を実行した場合、加圧ヘッドの熱により熱膨張を引き起こし、実装むらを引き起こす可能性がある。
したがって、ACFの硬化が完了すれば早期にチップ1およびTCP2ならびに加圧ヘッド30(以下、チップ等とも称する)の温度を低下させることが望ましい。
本発明の実施の形態1においては、ACFの硬化が完了した後、加圧ヘッド30の先端部の接触面に設けられた噴射孔を介して圧縮空気供給部80から圧縮空気を供給する。その際、レーザ照射の終了とともに真空吸着部75により真空吸着孔を介して行なっていた真空吸着を終了する。そして、加圧ヘッド30の位置を調整して加圧ヘッド30とTCP2との間に空隙を生じさせる。図10においては、レーザ照射後、加圧ヘッドの位置がヘッド接合位置からヘッド調整まで位置を調整して加圧ヘッド30からの加圧が開放された場合が示されている。そして、上述したように加圧ヘッド30の先端部の接触面に設けられた噴射孔を介して圧縮空気供給部80から圧縮空気を供給することによりTCP2の表面部分等に圧縮空気が供給され温度が低下することになる。なお、加圧ヘッド30からの直接の加圧は開放されるが圧縮空気供給部80からの圧縮空気が供給されるため圧縮空気の供給によりある程度の加圧を維持した状態で冷却を行なうことが可能である。
したがって、比較的早期にチップ1およびTCP2の温度を低下させることができ安全な実装を実行できる。また、同様に加圧ヘッド30の先端部の熱も圧縮空気により吸熱されることになるため加圧ヘッド30の温度も低下することになる。これにより、1つの実装が完了して、次の実装に移るまでの時間を短縮して、高速な接合装置を実現することが可能である。
(実施の形態1の変形例1)
図11は、本発明の実施の形態1の変形例1に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。
図11を参照して、実装を開始して、まず加圧ヘッドをヘッド初期位置からヘッド接合位置まで位置を調整して加圧を開始する。その際、真空吸着部75により真空吸着孔を介して真空吸着が行なわれTCP2は加圧ヘッドの接触面に密着した状態で接合が行なわれる。そして、レーザ照射を実行する。ここでは、レーザ照射として1秒程度(1秒〜2秒の間)照射した場合が示されている。
ここで、上述したようにACFを硬化するためにレーザ照射した結果、ACFからの伝導熱によりチップ1およびTCP2ならびに加圧ヘッド30の温度も同様に上昇することになる。ここまでは、上記の実施の形態1で説明した図10で説明した方式と同様である。
次に、図10においては、ACFが硬化した後レーザ照射を終了すると同様のタイミングで真空吸着を終了して、そして、加圧ヘッド30を少し浮かせて、次に圧縮空気供給部80から圧縮空気を供給してチップ1等を冷却する方式について説明した。
本発明の実施の形態1の変形例1に従う方式においては、ACFが硬化した後も加圧を継続するとともに冷却も実行する方式について説明する。
具体的には、真空吸着部75により真空吸着孔を介してチップ等に対して真空吸着を実行するとともに、噴射孔を介して圧縮空気供給部80から圧縮空気を供給する。
図11においては、図10と比較して2秒程度(1秒〜3秒の間)加圧し続けるとともに、圧縮空気供給部80から圧縮空気を供給して冷却を実行する場合が示されている。すなわち、本発明の実施の形態1の変形例に従う方式により圧縮空気を供給してチップ等の温度が十分に下がってから加圧を開放することとしている。
この点で、加圧ヘッドの温度が高い場合に加圧を解除すると、加圧しているTCPの温度も高いため解除した際の開放力に基づいてTCPの位置ずれが生じる可能性も考えられる。
したがって、チップ等の温度が十分に下がってから加圧を開放することにより、より安全な実装を実行できる。また、上述したように加圧ヘッド30の先端部の熱も圧縮空気により吸熱されることになるため加圧ヘッド30の温度も低下することになる。これにより、1つの実装が完了して、次の実装に移るまでの時間を短縮して、高速な接合装置を実現することが可能である。
なお、加圧ヘッド30の先端部の接触面において設けられた真空吸着孔によりチップ等が加圧ヘッドの先端部の接触面に密着している場合においても、微小な空隙は生じており、圧縮空気を噴射孔から供給可能であるが、加圧ヘッド30に設けられた噴射孔から気体の流出経路が十分に得られない場合には、たとえば加圧ヘッド30に噴射孔と連結された溝を設けることも可能である。
図12は、本発明の実施の形態1の変形例1に従う加圧ヘッド30#を説明する概略図である。
図12を参照して、ここでは、加圧ヘッド30#の先端部に溝34が設けられ、溝34と噴射孔32cとが連結されている場合が示されている。当該構成により、たとえば加圧ヘッド30#の先端部の接触面が真空吸着孔(図示せず)を介する真空吸着によりチップ等と密着した状態であっても溝34を介して外部に対して気体の流出が十分に可能であり溝34を流れる圧縮空気によりチップ等を冷却することが可能である。
なお、当該溝は、1つに限られず複数設けることも可能であり、加圧ヘッドの先端部がチップ等と密着した状態においても噴射孔から外部との間で気体の流出経路を確保できるものであれば、特に形状、構造に限定されるものではない。
(実施の形態1の変形例2)
上記においては、真空吸着孔を用いた真空吸着によりチップ等を加圧ヘッド30に密着させて加圧ヘッド30を用いて加圧する方式について説明したが、加圧可能な別の方式について説明する。具体的には、加圧ヘッド30とチップ等は非接触状態で加圧する方式について説明する。
図13は、本発明の実施の形態1の変形例2に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。
したがって、かかる場合に噴射孔から高圧の圧縮空気を供給すれば加圧ヘッド30による加圧を与えることなく、噴射孔から供給される圧縮空気によりチップ等に加圧を与えることが可能である。
図13を参照して、実装を開始して、まず加圧ヘッドをヘッド初期位置からヘッド接合位置まで真空吸着を実行しながら位置を調整する。そして、真空吸着を終了する。この際に、TCP2と加圧ヘッドとの間に微小な空隙が生じるものとする。すなわち、全体としてTCP2と加圧ヘッドとの間は非接触状態であるものとする。そして、噴射孔を介して高圧の圧縮空気を供給することにより、TCP2に対して加圧が実行される。そして、レーザ照射を実行する。ここでは、ACFに対するレーザ照射中に圧縮空気がチップ等に供給されることになるためチップ等に対して冷却効果が働くことになるが、レーザ照射によるACFの発熱作用は冷却効果に対して十分に大きいため、ACFの上昇温度にはほとんど影響を与えないものと考えられる。
ACFへのレーザ照射とともに圧縮空気を供給することによりACF以外のチップ等を冷却させることができるためACFからの伝導熱によるチップ等の温度の上昇をさらに抑制することが可能である。また、加圧ヘッド30とTCP2とが非接触状態であるためTCP2と加圧ヘッド30とが接触している場合における加圧ヘッド30への伝導熱による影響も抑制することが可能である。
なお、上記においては、真空吸着部75により真空吸着孔を介して行なっていた真空吸着を終了することにより、加圧ヘッド30とTCP2との間に微小な空隙が生じる場合すなわち全体として非接触状態となる場合について説明したが、一部接触している状態である場合であっても全体として接触していなければ非接触状態であるものとする。また、加圧ヘッド30とTCP2との間に空隙を生じさせて完全に非接触状態とするために加圧ヘッドの位置を調整することも可能である。
(実施の形態1の変形例3)
図14は、本発明の実施の形態1の変形例3に従う接合装置110を説明する概念図である。
図14を参照して、本発明の実施の形態1の変形例2に従う接合装置110は、図4で説明した接合装置100と比較して、圧縮空気供給部80と真空吸着部75と噴射孔との連結を切り替えるための切り替え部76を設けた点と、加圧ヘッド30に設けられた噴射孔の個数とが異なる。
本発明の実施の形態1の変形例2に従う接合装置110は、加圧ヘッド30に設けられた真空吸着孔あるいは噴射孔(以下、総称して共有孔とも称する)を圧縮空気供給部75と真空吸着部75とで共有する構成である。
切り替え部76は、共有孔と連結され、制御部70からの指示に応答して共有孔と圧縮空気供給部80あるいは真空吸着部75と接続される。その他の点については、同様であるのでその詳細な説明は繰り返さない。
本発明の実施の形態1の変形例2に従う接合装置110においては、たとえば図10で説明したように真空吸着後、圧縮空気を供給してチップ等を冷却する方式において、真空吸着から圧縮空気を供給する際、制御部70からの指示により切り替え部76において、真空吸着部75と共有孔との接続を圧縮空気供給部80と共有孔との接続に切り替えることにより実現可能である。
当該構成により、たとえば通常設けられている真空吸着孔を圧縮空気を供給する噴射孔としても用いることが可能であるため新たな噴射孔を設けるプロセスを必要とせず、簡易な方式でチップ等を冷却することが可能である。
なお、上記の実施の形態1においては、アレイ基板(ガラス基板)とTCPとの実装を実行する接合装置について主に説明したがこれに限られず、他の実装たとえばCOGの実装技術やTAB/COF等の部品製造技術においても同様に適用可能である。また、ACFの代わりに導電性粒子を含まない熱反応性樹脂の接着剤を用いても、アレイ基板とTCP等とに圧力を加え、挟み込んだ状態で接着剤を硬化させるので、向かい合う電極同士が接触し、導通した状態で接合が可能となる。
(実施の形態2)
上記の実施の形態1においては、ガラス基板1とTCP2との接合に際してACF10を用いる接合装置について説明したが、本実施の形態2においては、ACF等の薄膜の接合材料を用いずに接合する接合装置について説明する。
図15は、本発明の実施の形態2に従う接合装置120を説明する概念図である。
図15を参照して、本発明の実施の形態2に従う接合装置120は、図4で説明した接合装置100と比較して、ACF10をガラス基板1とTCP2との間に挿入しない点が異なる。その他の点については、図4で説明したのと同様であるのでその詳細な説明は繰り返さない。
図16は、本発明の実施の形態2に従う接合装置によるアレイ基板(ガラス基板)とTCPの接合を説明する図である。
図16を参照して、図7で説明した方式と異なる点は、ACFを介さずにレーザ発振器100からの照射によりアレイ基板1とTCP2との金属電極の境界領域付近に直接レーザをピンポイントで照射することにより接合する。
以下においては、本発明の実施の形態に従うTCP2のバンプ(金属電極)と、LCDのアレイ配線(金属電極)との接合方式について説明する。
まず1つめの方式としては、レーザ照射により金属電極の一部を溶融して接合する方式(溶融拡散方式)について説明する。
図17は、本発明の実施の形態2に従うTCP2のバンプ(金属電極)と、LCDのアレイ配線(金属電極)との接合方式を説明する図である。なお、ここでは、TCP2のバンプとLCDのアレイ配線について1組の接合について以下において説明するが、図16に示されるようにTCP2とLCD1には、それぞれバンプおよびアレイ配線が複数組設けられており、対応するバンプとアレイ配線とが互いに近接又は接触した状態で接合されるようにパターン位置が形成されているものとする。また、各組において、対応するバンプおよびアレイ配線のパターン位置が略一致した状態でレーザ照射が実行されるものとする。
図17(a)を参照して、上側に凸型のTCP2のバンプ(金属電極)、下側に凸型のアレイ配線(金属電極)が示されている。
そして、図16で示したようにバックアップガラス55を介してアレイ基板(ガラス基板)1を透過し、レーザ光をアレイ配線に照射する。その際、アレイ配線(金属電極)が溶融温度を越えるまでレーザ光を照射する。そうすると、レーザ光からのエネルギーによりアレイ配線の金属電極は加熱されてアレイ配線の金属電極の表面付近が溶融し、金属電極同士が近接状態である場合においても表面張力等の影響により上側の金属電極と接触状態となる。そして、接触状態となった場合、互いの金属電極において、各々の金属電極を構成する金属原子が接触状態となった金属電極に移動するいわゆる原子拡散現象が起きる。
この原子拡散現象が生じれば互いの金属原子が混ざり合い合金が形成され、図17(b)に示されるようにTCP2のバンプとLCDのアレイ配線とが接合される。なお、この方式においては、TCP2のバンプ位置とLCDのアレイ配線との位置は保持された状態で金属電極同士の接合が行なわれる。
なお、ここでは、一例としてバンプおよびアレイ配線を形成する金属として金(Au)およびアルミニウム(Al)等が用いられるものとする。金(Al)と、アルミニウム(Al)の融点は、約900度、約660度であり金(Au)の方がアルミニウム(Al)よりも融点が高い。
また、本発明の実施の形態2においては、実施の形態1と異なり加圧ヘッド30は、TCP2のバンプとLCD1のアレイ配線とが近接あるいは接触した状態で保持するものとする。加圧ヘッド30により押圧し続けた場合には、溶融しているアレイ配線(金属電極)の形状が物理的に著しく変化する可能性があるからである。これにより隣接するアレイ配線と接触してショートするあるいは電気的経路の断線となる可能性もあるため本方式においては、過剰な押圧を印加せずにアレイ配線と近接したTCP2のバンプ位置を保持することによりアレイ配線の形状を著しく変形させないようにしている。
なお、複数のアレイ配線および複数のバンプが配列されている場合、アレイ配線間あるいはバンプ間のばらつきを考慮して、その間隔のばらつき程度の距離を押し込む程度の加圧を行なうことも可能である。
上記においては、TCP2のバンプを形成する金属と、LCD1のアレイ配線を形成する金属の材質が異なり、バンプを形成する金属の溶融温度がLCDのアレイ配線を形成する金属の溶融温度よりも高い場合について説明した。
一方、TCP2のバンプを形成する金属と、LCD1のアレイ配線を形成する金属の材質が同じ場合、すなわち、バンプを形成する金属の溶融温度とLCDのアレイ配線を形成する金属の溶融温度が同じ場合についても上記と同様の方式を採用することが可能であるが、同じ材質の場合、一方の金属電極のみならず両方の金属電極にレーザを照射することも可能である。また、上記においては、材質に従ってLCD1のアレイ配線を溶融する構成について説明したが、TCP2のバンプを形成する金属を溶融するようにすることも可能である。
上記においては、レーザ照射により金属電極の一部を溶融して接合する方式(溶融拡散方式)について説明したが、次に、金属電極の一部を溶融せずに接合する方式(固相拡散方式)について説明する。
図18は、本発明の実施の形態2に従うTCP2のバンプ(金属電極)と、LCDのアレイ配線(金属電極)との別の接合方式を説明する図である。
図18(a)を参照して、上側に凸型のTCP2のバンプ(金属電極)、下側に凸型のアレイ配線(金属電極)が示されており、上述したように互いに酸化膜を介して接触した状態であるものとする。したがって、TCP2のバンプとアレイ配線とは酸化膜により導通状態ではないものとする。
本例の方式としては、アレイ配線(金属電極)を照射するとともに、加圧ヘッド30によりTCP2のバンプを押圧する。
まず、図16で示したようにバックアップガラス55を介してレーザ光をアレイ配線に照射する。その際、アレイ配線(金属電極)が溶融温度を越えない溶融温度付近までレーザ光を照射する。そうすると、レーザ光からのエネルギーによりアレイ配線(金属電極)は加熱されるが、溶融温度まで達しないようにレーザ光が照射されるためアレイ配線の金属電極は溶融しない。一方、上述したように金属電極の表面に付着した酸化膜の一部はアレイ配線が溶融温度付近まで加熱されるに従い、アレイ配線(金属電極)内部に溶け込む逆拡散現象が生じる。
また、加圧ヘッド30によりTCP2のバンプが押圧されるためアレイ配線およびバンプの表面に付着した酸化膜の膜厚が薄くなり結果的にバンプとアレイ配線の少なくとも一部の金属同士が直接接触することになる。そうすると、アレイ配線(金属電極)内部のエネルギーの増大した金属原子は、金属同士が直接接触した部分を介してバンプ(金属電極)の金属原子と原子拡散現象を引き起こす。これにより、図18(b)に示されるように上述したように互いの金属原子が混ざり合い合金が形成されて、バンプとアレイ配線とが接合されることになる。なお、固相拡散方式の場合には、金属電極は溶融して接合される方式ではないためたとえば上述したように隣接するアレイ配線と接触してショートするあるいは電気的経路の断線となる可能性がないため金属電極同士を安全に接合することが可能となる。また、アレイ配線の材質と加熱温度との関係によっては、上記の酸化膜について逆拡散現象が生じない場合も考えられるが、この場合には、TCP2のバンプを押圧することによりアレイ配線(金属電極)の表面に付着した酸化膜を機械的に破って金属を露出させて、上述したように金属同士が直接接触した部分を介して上述した金属原子の原子拡散現象を引き起こすようにすることも可能である。
上述したように、本発明に従う接合方式は、金属電極を所定波長のレーザでレーザ照射することにより原子拡散現象により互いの金属電極の金属原子をピンポイントで反応させて金属電極同士を接合する。したがって、ACF等の薄膜材料を用いて金属電極を接合する必要は無く、金属電極同士の接合時間を短縮することができ、高速かつ高精細な実装が可能となる。
本実施の形態2においても加圧ヘッドを用いてTCP2のバンプとLCD1のアレイ配線とを挟み込んで近接あるいは接触した状態となるように保持する。あるいは、加圧ヘッドを用いてTCP2のバンプとLCD1のアレイ配線とを挟み込んで、加圧してTCP2のバンプとLCD1のアレイ配線とを密着させるため実施の形態1で説明したのと同様に、レーザ照射に伴ないチップ等の温度は上昇することになる。レーザ照射を終了すると、チップ等の温度は徐々に下降することになるが、自然放熱であるため下降に時間がかかる。
本実施の形態2に従う接合装置においても、実施の形態1およびその変形例に従う方式に従って金属電極が接合した後あるいは金属電極が接合と並行して噴射孔を介してチップ等を冷却することが可能である。具体的には、圧縮空気供給部80により圧縮空気を加圧ヘッドの先端部の接触面に設けられた噴射孔に供給する。
当該構成により、実施の形態1およびその変形例で説明したのと同様にチップ等の熱は、圧縮空気により吸熱されることになり、チップ等の温度は急激に下降することになる。
したがって、比較的早期にチップ1およびTCP2の温度を低下させることができ安全な実装を実行できる。また、同様に加圧ヘッド30の先端部の熱も圧縮空気により吸熱されることになるため加圧ヘッド30の温度も低下することになる。これにより、1つの実装が完了して、次の実装に移るまでの時間を短縮して、高速な接合装置を実現することが可能である。
なお、図12で説明した加圧ヘッドを用いて圧縮空気を供給してチップ等の温度を低下させるようにすることも当然に可能である。また、圧縮空気に限られず、レーザの照射によって上昇したチップあるいは基板もしくは加圧ヘッドの温度よりも低い温度の冷却用気体を用いることも可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態1に従う液晶表示装置を説明する概略ブロック図である。 本発明の実施の形態1に従うTCPを説明する概念図である。 ACFを説明する図である。 本発明の実施の形態1に従う接合装置100を説明する概念図である。 本発明の実施の形態1に従うレーザ照射部15を説明する概略ブロック図である。 本発明の実施の形態1に従うレーザ照射部15#を説明する概略ブロック図である。 本発明の実施の形態1に従う接合装置によるアレイ基板とTCPの接合を説明する図である。 本発明の実施の形態1に従うレーザ照射によりACFが反応する時間を説明する図である。 本発明の実施の形態1に従う接合装置によりTCPを接合した場合の実装時間を説明する図である。 本発明の実施の形態1に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。 本発明の実施の形態1の変形例1に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。 本発明の実施の形態1の変形例1に従う加圧ヘッド30#を説明する概略図である。 本発明の実施の形態1の変形例2に従うアレイ基板とTCPとの実装を実行するタイミングチャート図である。 本発明の実施の形態1の変形例3に従う接合装置110を説明する概念図である。 本発明の実施の形態2に従う接合装置120を説明する概念図である。 本発明の実施の形態2に従う接合装置によるアレイ基板(ガラス基板)とTCPの接合を説明する図である。 本発明の実施の形態2に従うTCP2のバンプ(金属電極)と、LCDのアレイ配線(金属電極)との接合方式を説明する図である。 本発明の実施の形態2に従うTCP2のバンプ(金属電極)と、LCDのアレイ配線(金属電極)との別の接合方式を説明する図である。
符号の説明
1 LCD、2 TCP、3 プリント回路基板、4 インターフェイス部、5 ドライバIC、6 FPC、15,40 レーザ照射部、16 支持台、20 シリンダ、30,30# 加圧ヘッド、31a,31b 真空吸着孔,32a,32b,32c 噴射孔、34 溝、45 測定部、55 バックアップガラス、60 カメラ、70 制御部、75 真空吸着部、76 切り替え部、80 圧縮空気供給部、100,110,120 接合装置、105,130 ビームエキスパンダ、115 スリット、120 ビームサンプラー、140 アライメントレーザポインタ、145 パワーメータ、180,200 レーザ発振器、210 Qスイッチ。

Claims (8)

  1. 被接合体としてガラス基板上に配列された複数の電極からなる引出電極と、当該ガラス基板と熱膨張率および/または熱収縮率が異なる部材上に前記引出電極と配置を対応させて配列された複数の電極からなる接続電極とを、熱反応性樹脂からなる接着剤中に導電性粒子が分散された異方性導電性材料を間に挟み込んで、それぞれ電気的にかつ形状上一体に接合する接合装置による接合方法であって、
    前記接合装置は、
    レーザ光を照射するレーザ光源と、
    前記ガラス基板を支持する支持台と、
    気体を前記部材に向けて噴射するための噴射孔を有する、前記部材を前記支持台に向けて加圧するための加圧ヘッドとを備え、
    前記異方性導電性材料を間に挟み込んだ状態で、前記支持台に支持された前記ガラス基板に向かって前記部材を前記加圧ヘッドにより加圧し、前記引出電極と前記接続電極とを電気的に接続する加圧ステップと、
    加圧されて前記引出電極と前記接続電極とを電気的に接続された状態で、前記異方性導電性材料に含まれる熱反応性樹脂からなる接着剤中にレーザ光を照射して前記引出電極と前記接続電極とをさらに形状上一体に接合するレーザ光照射ステップと、
    前記レーザ光の照射後に前記噴射孔から冷却気体を前記部材に噴射する冷却ステップとを有する、接合装置による接合方法。
  2. 前記加圧ステップは、前記噴射孔から噴射する気体の圧力によって前記部材を非接触で加圧する、請求項1記載の接合装置による接合方法。
  3. 前記加圧ヘッドは、前記部材との接触面を有し、
    前記加圧ステップは、前記接触面を通じて前記部材を加圧する、請求項1記載の接合装置による接合方法。
  4. 前記加圧ヘッドは、前記部材を真空吸着するための真空吸着孔を有し、
    前記加圧ステップは、前記部材を真空吸着した状態で行なわれる、請求項3記載の接合装置による接合方法。
  5. 前記加圧ヘッドの前記部材と接触する接触面は、前記噴射孔と連結され、前記部材と接触した場合に外部との間で気体の流出が可能な溝が形成され、
    前記冷却ステップは、前記加圧ヘッドと前記部材とが密着された状態で行なわれる、請求項1記載の接合装置による接合方法。
  6. 前記加圧ヘッドの前記噴射孔と前記真空吸着孔とは共通の孔とされ、
    前記接合装置は、前記噴射孔へ供給する噴射気体の経路と、前記真空吸着孔に通じる真空の経路とを切り替える切り替え部をさらに備える、請求項4記載の接合装置による接合方法。
  7. 電気的な経路を形成するために被接合体としてガラス基板上に配列された複数の電極からなる第1の部材の引出電極と、当該ガラス基板と熱膨張率および/または熱収縮率が異なる部材上に前記引出電極と配置を対応させて配列された複数の電極からなる第2の部材の接続電極とを、それぞれ電気的にかつ形状上一体に接合する接合装置による接合方法であって、
    前記接合装置は、
    レーザ光を照射するレーザ光源と、
    前記ガラス基板を支持する支持台と、
    気体を前記部材に向けて噴射するための噴射孔を有する、前記部材を前記支持台に向けて加圧するための加圧ヘッドとを備え、
    前記支持台に支持された前記ガラス基板に向かって前記部材を前記加圧ヘッドにより加圧し、前記引出電極と前記接続電極とを近接または接触した状態で保持する加圧ステップと、
    加圧されて前記引出電極と前記接続電極とが近接または接触した状態で、レーザ光を前記引出電極および前記接続電極の少なくとも一方に照射し、金属電極相互の原子拡散現象により前記引出電極と前記接続電極とを接合するレーザ光照射ステップと、
    前記レーザ光の照射後に前記噴射孔から冷却気体を前記部材に噴射する冷却ステップとを有する、接合装置による接合方法。
  8. 前記レーザ光照射ステップは、前記第1の部材の引出電極の温度および前記第2の部材の接続電極の温度がそれぞれ融点を越えないように照射され、金属電極相互の原子の固相拡散現象により前記引出電極と前記接続電極とを接合する、請求項7記載の接合装置による接合方法。
JP2006338582A 2006-12-15 2006-12-15 接合装置による接合方法 Withdrawn JP2008153366A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338582A JP2008153366A (ja) 2006-12-15 2006-12-15 接合装置による接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338582A JP2008153366A (ja) 2006-12-15 2006-12-15 接合装置による接合方法

Publications (1)

Publication Number Publication Date
JP2008153366A true JP2008153366A (ja) 2008-07-03

Family

ID=39655247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338582A Withdrawn JP2008153366A (ja) 2006-12-15 2006-12-15 接合装置による接合方法

Country Status (1)

Country Link
JP (1) JP2008153366A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199680A1 (ja) * 2016-05-19 2017-11-23 株式会社デンソー 電子部品、電子装置、電子部品の製造方法および電子装置の製造方法
KR101882233B1 (ko) * 2017-08-11 2018-07-27 주식회사 제이스텍 레이져 본딩시 플렉시블 디스플레이의 편광필름의 열변형 제거장치
CN110326096A (zh) * 2017-07-17 2019-10-11 镭射希股份有限公司 激光回流焊装置
US10886248B2 (en) 2018-01-10 2021-01-05 Samsung Electronics Co., Ltd. Laser bonding apparatus, method of bonding semiconductor devices, and method of manufacturing semiconductor package
CN112248491A (zh) * 2020-10-12 2021-01-22 东北电力大学 一种微流控芯片的复合加工装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199680A1 (ja) * 2016-05-19 2017-11-23 株式会社デンソー 電子部品、電子装置、電子部品の製造方法および電子装置の製造方法
JP2017208489A (ja) * 2016-05-19 2017-11-24 株式会社デンソー 電子部品、電子装置、電子部品の製造方法および電子装置の製造方法
CN110326096A (zh) * 2017-07-17 2019-10-11 镭射希股份有限公司 激光回流焊装置
JP2019534547A (ja) * 2017-07-17 2019-11-28 レーザーセル カンパニー リミテッド レーザーリフロー装置
JP2020057790A (ja) * 2017-07-17 2020-04-09 レーザーセル カンパニー リミテッド レーザーリフロー装置
US11213913B2 (en) 2017-07-17 2022-01-04 Laserssel Co., Ltd. Laser reflow apparatus
JP7188767B2 (ja) 2017-07-17 2022-12-13 レーザーセル カンパニー リミテッド レーザーリフロー装置
CN110326096B (zh) * 2017-07-17 2023-09-15 镭射希股份有限公司 激光回流焊装置
KR101882233B1 (ko) * 2017-08-11 2018-07-27 주식회사 제이스텍 레이져 본딩시 플렉시블 디스플레이의 편광필름의 열변형 제거장치
US10886248B2 (en) 2018-01-10 2021-01-05 Samsung Electronics Co., Ltd. Laser bonding apparatus, method of bonding semiconductor devices, and method of manufacturing semiconductor package
CN112248491A (zh) * 2020-10-12 2021-01-22 东北电力大学 一种微流控芯片的复合加工装置
CN112248491B (zh) * 2020-10-12 2022-04-22 东北电力大学 一种微流控芯片的复合加工装置

Similar Documents

Publication Publication Date Title
US20060191631A1 (en) Bonding apparatus
US6284086B1 (en) Apparatus and method for attaching a microelectronic device to a carrier using a photo initiated anisotropic conductive adhesive
JP4880561B2 (ja) フリップチップ実装装置
JP2008153399A (ja) 接合装置および接合装置による接合方法
KR20070019811A (ko) 플립 칩 본딩 방법 및 이를 채택한 플립 칩 본딩 장치
US5948286A (en) Diffusion bonding of lead interconnections using precise laser-thermosonic energy
US20080047663A1 (en) Apparatus and method for bonding anisotropic conductive film using laser beam
KR101143838B1 (ko) 플립 칩 본딩 방법
JP2006253665A (ja) 接合方法および接合装置
JP2008153366A (ja) 接合装置による接合方法
EP0845807A2 (en) Method for producing electronic circuit device, jig for making solder residue uniform, jig for transferring solder paste, and apparatus for producing electronic circuit device
KR100867587B1 (ko) 레이저를 이용한 이방전도성필름의 본딩 제어 장치
US20070215584A1 (en) Method and apparatus for bonding electronic elements to substrate using laser beam
JP2006237451A (ja) レーザを用いた異方導電性フィルムのボンディング装置およびその方法
JP2007049040A (ja) 接合方法
JP2008205003A (ja) 実装方法、実装体および基板
JP2000294602A (ja) フリップチップボンダー
KR20080101329A (ko) 반도체칩 접합장치
KR100549796B1 (ko) 레이저를 이용한 이방전도성필름 본딩 장치 및 방법
KR100879005B1 (ko) 레이저 본딩장치 및 레이저 본딩방법
JP4331069B2 (ja) 電子部品のリペア装置
JP2008227409A (ja) 接合装置および接合方法
JPH05206220A (ja) テープキャリアパッケージと回路基板との接続方法
CN100447971C (zh) 半导体装置的安装方法、半导体装置及其安装结构
JP2770803B2 (ja) 電子部品搭載装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302