JP2008150674A - Method for producing fine structure - Google Patents

Method for producing fine structure Download PDF

Info

Publication number
JP2008150674A
JP2008150674A JP2006340440A JP2006340440A JP2008150674A JP 2008150674 A JP2008150674 A JP 2008150674A JP 2006340440 A JP2006340440 A JP 2006340440A JP 2006340440 A JP2006340440 A JP 2006340440A JP 2008150674 A JP2008150674 A JP 2008150674A
Authority
JP
Japan
Prior art keywords
hole
electrode
anodized layer
oxidized region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006340440A
Other languages
Japanese (ja)
Other versions
JP5100103B2 (en
Inventor
Aya Imada
彩 今田
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006340440A priority Critical patent/JP5100103B2/en
Publication of JP2008150674A publication Critical patent/JP2008150674A/en
Application granted granted Critical
Publication of JP5100103B2 publication Critical patent/JP5100103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing a fine structure having pores in a nanometer scale. <P>SOLUTION: The method for producing a fine structure comprises: a stage where a projecting part in an electrode is brought into contact with the layer to be subjected to anode oxidation, thereafter, voltage is applied, and an oxidized region is formed in the contact part with the projecting part of the electrode in the layer to be subjected to anode oxidation; a stage where the layer to be subjected to anode oxidation with the oxidized region formed is subjected to anode oxidation, so as to form first pores in the oxidized region; and a stage where the layer to be subjected to anode oxidation is subjected to anode oxidation once more, so as to form second pores different from the first pores in the region other than the oxidized region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、部分酸化と陽極酸化を用いた、ナノメートルスケールの孔を有する凹凸構造からなる微細構造の製造方法に関する。   The present invention relates to a method of manufacturing a microstructure having a concavo-convex structure having nanometer-scale pores using partial oxidation and anodization.

物体の表面に微細な構造を作製する技術として、フォトリソグラフィ−、電子線露光、X線露光、ナノインプリントリソグラフィー等の手法が知られている。また近年、ナノ電極リソグラフィーが、非特許文献1および2で提案されている。   As techniques for producing a fine structure on the surface of an object, techniques such as photolithography, electron beam exposure, X-ray exposure, and nanoimprint lithography are known. In recent years, nanoelectrode lithography has been proposed in Non-Patent Documents 1 and 2.

また、上記以外の方法では、アルミニウムの陽極酸化法や分子自己組織構造を利用した、ボトムアップ手法による微細構造の製造方法が知られている。アルミニウム等の陽極酸化法において、あらかじめ被陽極酸化層の表面に規則的な凹構造を形成すると、該凹構造を開始点として孔構造を形成することが可能である。(特許文献1参照)
特開平10−121292号公報 Jpn. J. Appl. Phys.,42,L92(2003) Jpn. J. Appl. Phys.,44,p.1119(2005)
As a method other than the above, a method for producing a fine structure by a bottom-up method using an anodic oxidation method of aluminum or a molecular self-organization structure is known. In the anodic oxidation method of aluminum or the like, if a regular concave structure is formed on the surface of the anodized layer in advance, a hole structure can be formed starting from the concave structure. (See Patent Document 1)
JP-A-10-121292 Jpn. J. et al. Appl. Phys. , 42, L92 (2003) Jpn. J. et al. Appl. Phys. , 44, p. 1119 (2005)

ところで、上記した電子線描画やイオンビーム描画のような直描技術では、微細な構造になる程パターン形成に長時間を要する。そのため、安価に大量生産をする製品に対しては、X線や紫外線露光用やインプリントモールド用のマスクを直描技術などで精密に作製し、フォトリソグラフィーやナノインプリントリソグラフィーで一括して短時間にパターニングをするという手法が主流である。   By the way, in the direct drawing technique such as the electron beam drawing or the ion beam drawing described above, it takes a long time to form a pattern as the structure becomes finer. Therefore, for products that are mass-produced inexpensively, masks for X-rays, ultraviolet exposure, and imprint molds are precisely manufactured using direct drawing technology, etc., and in a short time collectively by photolithography and nanoimprint lithography. The technique of patterning is the mainstream.

しかしながら、これらのいずれの手法においても形成できる微細構造のサイズには限界がある。現在、最も微細な構造を作製することが出来る電子線露光においても、φ10nmの単一ドットを形成することはできるが、これをピッチ20nm以下に大面積に配列することは困難である。   However, the size of the fine structure that can be formed by any of these methods is limited. At present, even in electron beam exposure that can produce the finest structure, a single dot of φ10 nm can be formed, but it is difficult to arrange this in a large area with a pitch of 20 nm or less.

また、上記した従来例の陽極酸化による自己組織法や、分子自己組織構造を利用したボトムアップ手法による微細構造の形成法では、大面積な形成には適しているが、多種類の周期配列を含む構造を1基板上に形成するには、煩雑な工程が必要となる。例えば、規則的に配列した開始点として凹構造を形成し、陽極酸化を行って凹構造の部分に規則的に配列した孔構造を形成する手法においては、開始点の凹構造を形成していない領域にランダムな孔構造が形成されてしまう。そのため、幾つかの種類からなる配列構造を1つの基板上に形成するには、フォトリソグラフィ等によるマスキングと剥離を繰り返さなくてはならない。   In addition, the conventional self-organization method using anodic oxidation described above and the bottom-up method using a molecular self-organization structure are suitable for forming a large area. In order to form a structure including the same on one substrate, a complicated process is required. For example, in the method of forming a concave structure as a regularly arranged starting point and performing anodization to form a regularly arranged hole structure in the concave structure portion, the concave structure of the starting point is not formed. A random pore structure is formed in the region. Therefore, in order to form an array structure of several types on one substrate, masking and peeling by photolithography or the like must be repeated.

本発明は、この様な背景技術に鑑みてなされたものであり、従来のアルミニウム等の陽極酸化法と、ナノ電極リソグラフィ法の技術を利用して、ナノメートルスケールの孔を有する微細構造を容易に製造する方法を提供するものである。   The present invention has been made in view of such a background art, and a microstructure having nanometer-scale pores can be easily obtained by using a conventional anodic oxidation method such as aluminum and a technology of a nanoelectrode lithography method. The method of manufacturing is provided.

上記の課題を解決する微細構造の製造方法は、凸部を有する電極の凸部を被陽極酸化層に接触させた後、電圧を印加して被陽極酸化層における電極の凸部の接触部分に酸化領域を形成する工程と、前記酸化領域が形成された被陽極酸化層を陽極酸化して酸化領域に孔を形成する工程を有することを特徴とする。   In the manufacturing method of the fine structure that solves the above-mentioned problem, after the convex part of the electrode having the convex part is brought into contact with the anodized layer, a voltage is applied to the contact part of the convex part of the electrode in the anodized layer. The method includes a step of forming an oxidized region and a step of anodizing the anodized layer in which the oxidized region is formed to form a hole in the oxidized region.

また、上記の課題を解決する微細構造の製造方法は、凸部を有する電極の凸部を被陽極酸化層に接触させた後、電圧を印加して被陽極酸化層における電極の凸部の接触部分に酸化領域を形成する工程と、前記酸化領域が形成された被陽極酸化層を陽極酸化して酸化領域に第一の孔を形成する工程、前記被陽極酸化層を再度陽極酸化して前記酸化領域以外の領域に第一の孔とは異なる第二の孔を形成する工程を有することを特徴とする。   In addition, in the method for manufacturing a microstructure that solves the above-described problem, after the convex portion of the electrode having a convex portion is brought into contact with the anodized layer, a voltage is applied to contact the convex portion of the electrode in the anodized layer. A step of forming an oxidized region in a portion; a step of anodizing the anodized layer in which the oxidized region is formed to form a first hole in the oxidized region; It has the process of forming the 2nd hole different from a 1st hole in area | regions other than an oxidation area | region.

前記被陽極酸化層に孔を形成する孔開始点が設けられていることが好ましい。
前記電極の凸部を半導体層または絶縁体層を介して被陽極酸化層と接触させることが好ましい。
It is preferable that a hole starting point for forming a hole is provided in the anodized layer.
It is preferable that the convex portion of the electrode is brought into contact with the anodized layer via a semiconductor layer or an insulator layer.

前記被陽極酸化層がアルミニウムまたはアルミニウム合金からなることが好ましい。
前記第一の孔に内包物を充填した後、第二の孔を形成することが好ましい。
The anodized layer is preferably made of aluminum or an aluminum alloy.
It is preferable to form the second hole after filling the first hole with the inclusion.

本発明によれば、ナノメートルスケールの孔を有する微細構造を容易に製造する方法を提供できる。
また、本発明は、大きさが異なる孔を有する微細構造を容易に製造する方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing easily the microstructure which has a nanometer scale hole can be provided.
In addition, the present invention can provide a method for easily manufacturing a microstructure having holes of different sizes.

以下、本発明を詳細に説明する。
本発明の微細構造の製造方法は、凸部を有する電極の凸部を被陽極酸化層に接触させた後、電圧を印加して被陽極酸化層における電極の凸部の接触部分に酸化領域を形成する工程と、前記酸化領域が形成された被陽極酸化層を陽極酸化して酸化領域に第一の孔を形成する工程、前記被陽極酸化層を再度陽極酸化して前記酸化領域以外の領域に第一の孔とは異なる第二の孔を形成する工程を有することを特徴とする。
Hereinafter, the present invention will be described in detail.
In the fine structure manufacturing method of the present invention, after the convex part of the electrode having the convex part is brought into contact with the anodized layer, a voltage is applied to form an oxidized region in the contact part of the convex part of the electrode in the anodized layer. A step of forming, a step of anodizing the anodized layer in which the oxidized region is formed to form a first hole in the oxidized region, a region other than the oxidized region by anodizing the anodized layer again And a step of forming a second hole different from the first hole.

ナノメートルスケールとは、1μm未満のスケールを有することを表す。
本発明の第1の方法を、図1および図2を用いて説明する。図1は本発明の微細構造の製造方法の一実施態様を示す工程図である。図2は本発明の製造方法により得られた微細構造の一実施態様を示す平面図である。
A nanometer scale represents having a scale of less than 1 μm.
The first method of the present invention will be described with reference to FIGS. FIG. 1 is a process diagram showing one embodiment of the method for producing a microstructure of the present invention. FIG. 2 is a plan view showing one embodiment of the fine structure obtained by the manufacturing method of the present invention.

まず、図1(a)に示すような凸部15を有する電極1をNiなどの金属で形成する。基板4上に被陽極酸化層3を形成し、被陽極酸化層3と電極1を対向させ、電極凸領域2のみが被陽極酸化層3の表面と接触する状態とする。ここで、被陽極酸化層3は、例えばアルミニウムやアルミニウム合金などが好ましい。   First, the electrode 1 having the convex portions 15 as shown in FIG. 1A is formed of a metal such as Ni. The anodized layer 3 is formed on the substrate 4, the anodized layer 3 and the electrode 1 are opposed, and only the electrode convex region 2 is in contact with the surface of the anodized layer 3. Here, the anodized layer 3 is preferably made of aluminum or an aluminum alloy, for example.

この接触した状態で被陽極酸化層3を陽極として電圧を印加すると、周囲の酸素原子と被陽極酸化層が結合して、被陽極酸化層における電極の凸部の接触部分に電極による酸化領域6が形成される(図1(b))。この酸化領域の形成速度は、周囲の温度や湿度や酸素濃度などに依存する。また、被陽極酸化層に電流が流れすぎて酸化が進まない場合などには、表面に半導体層または絶縁体層を介して抵抗層を設けると良い。抵抗層の厚さは、抵抗値に応じて変えなければならないが、厚くするほど被陽極酸化層から遠ざかるため、被陽極酸化層の表面で酸化される面積が広くなる。また、酸化領域は等方的に進むため、被陽極酸化層の厚さは電極の凸部の幅と同程度であることが好ましい。   When a voltage is applied with the anodized layer 3 as an anode in this contacted state, the surrounding oxygen atoms and the anodized layer are combined, and the oxidized region 6 by the electrode is in contact with the projecting portion of the electrode in the anodized layer. Is formed (FIG. 1B). The formation rate of this oxidized region depends on the ambient temperature, humidity, oxygen concentration, and the like. In the case where oxidation does not proceed due to excessive current flowing through the anodized layer, a resistance layer may be provided on the surface with a semiconductor layer or an insulator layer interposed therebetween. The thickness of the resistance layer must be changed in accordance with the resistance value. However, the thicker the film is, the farther from the anodized layer, the wider the area oxidized on the surface of the anodized layer. Further, since the oxidized region proceeds isotropically, the thickness of the anodized layer is preferably approximately the same as the width of the convex portion of the electrode.

抵抗層の半導体層または絶縁体層としては、例えば水溶性樹脂、有機溶剤に溶解する樹脂などが好ましい。
次に、電極1を除去し、被陽極酸化層3を陽極として酸性溶液中に浸漬し、陽極酸化電圧を印加すると、酸化領域6に孔が形成される(第1の陽極酸化)。一般に、アルミニウムの陽極酸化では、次式のような関係が成り立っており、形成される孔の間隔を印加電圧によって制御することが出来る。
As the semiconductor layer or insulator layer of the resistance layer, for example, a water-soluble resin, a resin soluble in an organic solvent, or the like is preferable.
Next, when the electrode 1 is removed and the anodized layer 3 is immersed in an acidic solution using an anode and an anodic oxidation voltage is applied, a hole is formed in the oxidized region 6 (first anodic oxidation). In general, in the anodic oxidation of aluminum, the following relationship is established, and the interval between the formed holes can be controlled by an applied voltage.

Figure 2008150674
Figure 2008150674

電圧を印加すると同時にアルミニウムの表面から酸化が進み、電圧に依存したある厚さの酸化層に達すると、エッチング反応により表面から孔が形成されていく。孔の形成と共に、更に膜厚方向に酸化反応も進行する。   When a voltage is applied, oxidation proceeds from the surface of aluminum, and when an oxide layer having a certain thickness depending on the voltage is reached, holes are formed from the surface by an etching reaction. Along with the formation of the holes, the oxidation reaction further proceeds in the film thickness direction.

図1(b)のように電極による酸化領域6が形成された被陽極酸化層を第1の陽極酸化を行うと、電極による酸化領域6では非酸化領域10よりも先に孔の形成が始まる。そのため、被陽極酸化層3の厚さ(D)が孔間隔(L)に対して薄い場合は、非酸化領域10の酸化部7において第1の陽極酸化による孔形成が始まる前に、第1の陽極酸化による孔8の底部が基板に達して孔形成が終了する(図1(c))。被陽極酸化層3の厚さ(D)と孔間隔(L)は、D/T=0.5から2が好ましい。   When the first anodic oxidation is performed on the anodized layer in which the oxidized region 6 is formed by the electrodes as shown in FIG. 1B, the formation of holes starts in the oxidized region 6 by the electrodes before the non-oxidized region 10. . Therefore, when the thickness (D) of the anodized layer 3 is smaller than the hole interval (L), the first anodic oxidation hole formation in the oxidized portion 7 of the non-oxidized region 10 starts before the first The bottom of the hole 8 due to the anodic oxidation reaches the substrate and the hole formation is completed (FIG. 1C). The thickness (D) and the hole interval (L) of the anodized layer 3 are preferably D / T = 0.5 to 2.

次に、第1の陽極酸化条件とは条件を変えて、第2の陽極酸化を行う(第2の陽極酸化)。第1の陽極酸化による孔は、既に基板に到達しているため孔形成は進まず、非酸化領域10において第2の陽極酸化による孔9が形成される。第1と第2の陽極酸化条件が異なるので、第1の陽極酸化による孔8と第2の陽極酸化による孔9とは、孔の大きさが異なる。   Next, the second anodic oxidation is performed under a condition different from the first anodic oxidation condition (second anodic oxidation). Since the holes formed by the first anodic oxidation have already reached the substrate, the formation of the holes does not proceed, and the holes 9 formed by the second anodic oxidation are formed in the non-oxidized region 10. Since the first and second anodic oxidation conditions are different, the size of the hole 8 is different between the hole 8 by the first anodic oxidation and the hole 9 by the second anodic oxidation.

ここで、基板4と被陽極酸化層3の間に、陽極酸化に対し耐性があり、第2の陽極酸化時に第1の陽極酸化による孔8の底部が基板と導通しないための層をもうけると良い。例えば、チタン、ニオブ、タングステンなどが好ましい。第2の陽極酸化による孔9が基板まで到達すると、図1(d)および図2のようになり、隣あった領域に間隔の異なる孔を形成することが出来る。   Here, if a layer is provided between the substrate 4 and the anodized layer 3 so as to be resistant to anodization and the bottom of the hole 8 formed by the first anodization is not electrically connected to the substrate during the second anodization. good. For example, titanium, niobium, tungsten and the like are preferable. When the holes 9 by the second anodic oxidation reach the substrate, as shown in FIG. 1D and FIG. 2, holes with different intervals can be formed in adjacent regions.

ここで第2の陽極酸化の条件が、第1の陽極酸化条件に対し大きく異なる場合には、本発明の第1の方法を実現することは難しい。これは、第2の陽極酸化条件で形成される孔間隔が、第1の陽極酸化条件で形成される孔間隔の1/2程度以下である場合、第2の陽極酸化を行うときに第1の陽極酸化による孔の間に更に孔が形成されてしまうことがある。また、これは孔間隔のみではなく、陽極酸化浴などの条件にも依存する場合がある。   Here, when the conditions of the second anodic oxidation are greatly different from those of the first anodic oxidation, it is difficult to realize the first method of the present invention. This is because when the hole interval formed under the second anodizing condition is about ½ or less of the hole interval formed under the first anodizing condition, the first anodizing is performed. Further holes may be formed between the holes due to anodic oxidation. Moreover, this may depend not only on the pore spacing but also on conditions such as an anodizing bath.

次に、本発明の第2の方法を、図3および図4を用いて説明する。図3は本発明の微細構造の製造方法の他の実施態様を示す工程図である。図4は本発明の製造方法により得られた微細構造の他の実施態様を示す平面図である。   Next, the 2nd method of this invention is demonstrated using FIG. 3 and FIG. FIG. 3 is a process diagram showing another embodiment of the method for producing a microstructure of the present invention. FIG. 4 is a plan view showing another embodiment of the fine structure obtained by the manufacturing method of the present invention.

間隔が等しく径の異なる孔であり、且つ規則化している場合に関する例である。本発明の第1の方法と同様に、基板4上に被陽極酸化層3を設ける。次に、被陽極酸化層3の表面に、規則化するための孔開始点11を形成する。形成手法は、FIB法(Focused Ion Beam Method)や一般的なフォトリソグラフィとエッチング法の組み合わせなどで良い(図3(a))。   This is an example of a case where holes are equal in distance but different in diameter and are regularized. Similar to the first method of the present invention, the anodized layer 3 is provided on the substrate 4. Next, hole start points 11 for ordering are formed on the surface of the anodized layer 3. The formation method may be an FIB method (Focused Ion Beam Method) or a combination of general photolithography and etching methods (FIG. 3A).

第1の方法と同様に、電極凸領域2を接触させて電極による酸化部5を形成し(図3(b))、第1の陽極酸化を行う。電極による酸化領域6に第1の陽極酸化による孔8が形成され、この孔が基板に到達し且つ電極による非酸化領域10には孔が形成されない状態で、第1の陽極酸化を停止する(図3(c))。この状態は、陽極酸化条件や被陽極酸化層の膜厚を調整することで容易に得られる。図3は、電極による孔領域6の幅が孔間隔とほぼ等しくなるような条件で、第1の陽極酸化を行った例である。   Similar to the first method, the electrode convex region 2 is brought into contact with each other to form the oxidized portion 5 by the electrode (FIG. 3B), and the first anodic oxidation is performed. A first anodizing hole 8 is formed in the oxidized region 6 by the electrode, and the first anodizing is stopped in a state where the hole reaches the substrate and no hole is formed in the non-oxidized region 10 by the electrode ( FIG. 3 (c)). This state can be easily obtained by adjusting the anodizing conditions and the film thickness of the anodized layer. FIG. 3 shows an example in which the first anodic oxidation is performed under the condition that the width of the hole region 6 by the electrode is substantially equal to the hole interval.

次に、リン酸水溶液等に基板を浸漬してエッチングし、孔径を任意の大きさに広げる。そして、第1の陽極酸化と同じ条件で再度陽極酸化を行い(第2の陽極酸化)、電極による非酸化領域10に孔を形成する(図3(e))。必要であれば、再度孔径の拡大を行う。孔は開始点から形成されるため、例えば開始点10が図4(a)のような三角格子状に配列していれば、孔構造は図4(b)のような平面図に示す分布となる。   Next, the substrate is immersed in a phosphoric acid aqueous solution and etched to widen the hole diameter to an arbitrary size. Then, anodic oxidation is performed again under the same conditions as the first anodic oxidation (second anodic oxidation), and holes are formed in the non-oxidized region 10 by the electrodes (FIG. 3E). If necessary, the hole diameter is increased again. Since the holes are formed from the starting points, for example, if the starting points 10 are arranged in a triangular lattice shape as shown in FIG. 4A, the hole structure has the distribution shown in the plan view as shown in FIG. Become.

ここで、被陽極酸化層の膜厚が厚い場合には、第1の陽極酸化により、第1の陽極酸化による孔8が基板に到達する前に、電極による非酸化領域10に孔が形成されてしまう。このような場合、電極による非酸化領域に孔が形成される直前に第1の陽極酸化を停止し、何らかの処理を施した後に第2の陽極酸化を行うと、第1の陽極酸化による孔は更に深く成長することになる。   Here, when the anodized layer is thick, holes are formed in the non-oxidized region 10 by the electrodes before the holes 8 by the first anodization reach the substrate by the first anodization. End up. In such a case, if the first anodic oxidation is stopped immediately before the hole is formed in the non-oxidized region by the electrode and the second anodic oxidation is performed after performing some treatment, the hole due to the first anodic oxidation becomes It will grow even deeper.

上記のように、本発明の方法を用いると煩雑なフォトリソグラフィやエッチングをすることなく、1つの基板上の隣り合った領域に、間隔や孔径の異なる孔を形成することが可能である。   As described above, when the method of the present invention is used, holes having different intervals and hole diameters can be formed in adjacent regions on one substrate without performing complicated photolithography and etching.

以下、図面を参照して本発明の実施例を詳細に説明する。
実施例1
図1および図2により、酸化領域が広く、ランダムで孔のピッチが異なる場合の実施例を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Example 1
1 and 2 show an embodiment where the oxidized region is wide, random and the hole pitch is different.

幅200nmのライン状の凸構造が400nm間隔で配列した表面構造を有するニッケル(Ni)薄板を電極1とする。シリコン(Si)基板4上に、チタン(Ti)10nmを積層し、更に被陽極酸化層3としてアルミニウム(Al)を75nm積層し、更に抵抗層として水溶性樹脂材料を15nm塗布する。次に、電極1を抵抗層に接触させ、抵抗層の抵抗に応じた強さの電圧を印加して電極凸領域の部分のAlを酸化させる(図1(a)、(b))。   The electrode 1 is a nickel (Ni) thin plate having a surface structure in which line-shaped convex structures having a width of 200 nm are arranged at intervals of 400 nm. On the silicon (Si) substrate 4, titanium (Ti) 10 nm is laminated, aluminum (Al) is laminated 75 nm as the anodized layer 3, and a water-soluble resin material is applied 15 nm as a resistance layer. Next, the electrode 1 is brought into contact with the resistance layer, and a voltage having a strength corresponding to the resistance of the resistance layer is applied to oxidize Al in the electrode convex region (FIGS. 1A and 1B).

電極を除去し、基板を陽極として硫酸水溶液(1mol/L,3℃)に浸漬し、電圧20Vを印加して第1の陽極酸化を行う。表面の水溶性樹脂層は水溶液に浸漬したことで溶解する。電極による酸化領域6に平均間隔50nmのランダム配列した孔が形成され、孔底部が基板に到達したところで電圧印加を停止する(図1(c))。このとき、電極による非酸化領域10には、陽極酸化による酸化部7が形成され、孔はまだ形成されていない。次に、基板を陽極としてシュウ酸水溶液(0.3mol/L,16℃)に浸漬し、電圧40Vを印加して第2の陽極酸化を行う。電極による非酸化領域10に平均間隔100nmのランダム配列した孔が形成される(図1(d),図2)。第2の陽極酸化条件によって電極による酸化領域6に新たに孔が形成されることはない。   The electrode is removed, the substrate is immersed in an aqueous sulfuric acid solution (1 mol / L, 3 ° C.) using the anode, and a voltage of 20 V is applied to perform the first anodic oxidation. The water-soluble resin layer on the surface is dissolved by being immersed in the aqueous solution. Holes randomly arranged with an average interval of 50 nm are formed in the oxidized region 6 by the electrode, and voltage application is stopped when the bottom of the hole reaches the substrate (FIG. 1 (c)). At this time, the oxidized portion 7 by anodic oxidation is formed in the non-oxidized region 10 by the electrode, and no hole is formed yet. Next, the substrate is immersed in an oxalic acid aqueous solution (0.3 mol / L, 16 ° C.) as an anode, and a voltage of 40 V is applied to perform second anodic oxidation. Randomly arranged holes with an average interval of 100 nm are formed in the non-oxidized region 10 by the electrodes (FIGS. 1D and 2). A new hole is not formed in the oxidized region 6 by the electrode due to the second anodic oxidation condition.

これにより、間隔の小さな領域と大きな領域がライン状に交互に配列した孔径10nmと20nmの細孔からなる細孔構造を得ることが出来る。
実施例2
図3および図4により、酸化領域が1列で、規則的でホール径が異なる場合の実施例を示す。
Thereby, it is possible to obtain a pore structure composed of pores having pore diameters of 10 nm and 20 nm in which regions having a small interval and large regions are alternately arranged in a line.
Example 2
FIG. 3 and FIG. 4 show an embodiment in the case where the oxidation region is one row, regular and has different hole diameters.

幅100nmのライン形状の凸構造を表面に一列有するNi薄板を、電極1とする。Si基板4上にTiを厚さ10nm積層し、更に被陽極酸化層3としてAlを厚さ75nm積層する。Al表面にFIB法によりビームを照射し、深さ1nmから10nm程度で三角格子状に配列した間隔100nmの孔開始点を形成する(図4(a))。開始点の深さは精密でなくともよい。   An Ni thin plate having a line-shaped convex structure with a width of 100 nm on the surface is defined as an electrode 1. On the Si substrate 4, Ti is laminated with a thickness of 10 nm, and as the anodized layer 3, Al is laminated with a thickness of 75 nm. Beams are irradiated onto the Al surface by the FIB method to form hole start points with a depth of about 1 nm to 10 nm and an interval of 100 nm arranged in a triangular lattice pattern (FIG. 4A). The starting point depth need not be precise.

その上に、抵抗層として水溶性樹脂材料を厚さ10nm塗布する。電極1を抵抗層に接触させ、電圧を印加して電極凸領域の部分のAlを酸化させる(図3(a))。このとき、孔開始点11の位置と電極の凸構造の中心を図4(a)および図3(b)のよう一致させる。電極を除去して、基板を陽極としてシュウ酸水溶液(0.3mol/L,16℃)に浸漬し、電圧40Vを印加して第1の陽極酸化を行う。電極による酸化領域6には、孔開始点の位置に孔が規則的に形成されて基板まで達し、電極による非酸化領域には陽極酸化による酸化部7が形成される(図3(c))。これをリン酸水溶液(0.3mol/L,25℃)に60分間浸漬し、孔径を拡大する。   A water-soluble resin material having a thickness of 10 nm is applied thereon as a resistance layer. The electrode 1 is brought into contact with the resistance layer, and a voltage is applied to oxidize Al in the electrode convex region (FIG. 3A). At this time, the position of the hole start point 11 and the center of the convex structure of the electrode are matched as shown in FIGS. 4 (a) and 3 (b). The electrode is removed, the substrate is immersed in an oxalic acid aqueous solution (0.3 mol / L, 16 ° C.) using the anode, and a voltage of 40 V is applied to perform the first anodic oxidation. In the oxidized region 6 by the electrode, holes are regularly formed at the position of the hole start point and reach the substrate, and an oxidized portion 7 by anodic oxidation is formed in the non-oxidized region by the electrode (FIG. 3C). . This is immersed in a phosphoric acid aqueous solution (0.3 mol / L, 25 ° C.) for 60 minutes to enlarge the pore size.

次に、再度基板を陽極として、第1の陽極酸化条件と同じシュウ酸水溶液(0.3mol/L,16℃)に浸漬し、電圧40Vを印加して第2の陽極酸化を行う。第2の陽極酸化による孔9が、孔開始点から形成される(図3(e),図4(b))。   Next, again using the substrate as the anode, the substrate is immersed in an oxalic acid aqueous solution (0.3 mol / L, 16 ° C.) that is the same as the first anodic oxidation condition, and a voltage of 40 V is applied to perform the second anodic oxidation. The hole 9 by the second anodic oxidation is formed from the hole start point (FIG. 3 (e), FIG. 4 (b)).

これにより、100nmピッチに規則的に配列した孔径20nmの細孔の中に、孔径80nmの細孔径の大きな列が1列出来る。ここで、第1の陽極酸化による孔に、第2の陽極酸化で侵されない材料から成る樹脂などを充填してから第2の陽極酸化を行うと、一部の孔のみに内包物が包含された構造を得ることができる。このような構造は、バイオチップやフォトニック結晶など様々な応用への利用ができる。   As a result, one row with a large pore diameter of 80 nm can be formed in the pores with a pore diameter of 20 nm regularly arranged at a pitch of 100 nm. Here, when the second anodic oxidation is performed after filling the hole made by the first anodic oxidation with a resin made of a material that is not affected by the second anodic oxidation, the inclusions are included only in some of the holes. Structure can be obtained. Such a structure can be used for various applications such as biochips and photonic crystals.

実施例3
図5により、本発明の実施例1と実施例2を組み合わせた例について説明する。
実施例2と同様の基板のAl表面に孔開始点を形成する。孔開始点は2種類の長方格子配列が隣合っており、第1の領域13はユニットセルの短辺間隔が100nm、長辺間隔が150nmであり、第2の領域14はユニットセルの短辺間隔が150nm、長辺間隔が225nmとする。第2の領域は、第1の領域の一部に、短辺方向に3列分挿入された配列とする。
Example 3
An example in which the first and second embodiments of the present invention are combined will be described with reference to FIG.
A hole start point is formed on the Al surface of the substrate similar to that in Example 2. Two types of rectangular lattice arrays are adjacent to each other at the hole start point. In the first region 13, the short side interval of the unit cell is 100 nm, the long side interval is 150 nm, and the second region 14 is short of the unit cell. The side interval is 150 nm and the long side interval is 225 nm. The second area is an array in which three columns are inserted in a part of the first area in the short side direction.

幅430nmのライン形状の凸構造を表面に一列有するNi薄板を電極1とし、抵抗層に接触させ、電圧を印加して電極凸領域の周辺部分のAlを酸化させる。次に、基板を陽極としてリン酸水溶液(0.3mol/L,10℃)中に浸漬し、電圧60Vを印加して第1の陽極酸化を行う。電極による酸化領域6に孔が形成され基板に達した時点で停止する。これをリン酸水溶液(0.3mol/L,25℃)に浸漬して、孔径が孔間隔の50%になるまでエッチングをする。次に、リン酸水溶液(0.3mol/L)とシュウ酸水溶液(0.3mol/L)を1:1の割合で混ぜた混酸水溶液(20℃)に浸漬し、基板を陽極として40Vの電圧を印加し、第2の陽極酸化を行う。次に、再度リン酸水溶液(0.3mol/L,25℃)に浸漬し、第2の領域の孔径が孔間隔の50%になるまでエッチングを行う。このとき、第1の領域の孔も更にエッチングされる。   An Ni thin plate having a line-shaped convex structure with a width of 430 nm on the surface is used as the electrode 1, is brought into contact with the resistance layer, and a voltage is applied to oxidize Al in the peripheral portion of the electrode convex region. Next, the substrate is immersed in a phosphoric acid aqueous solution (0.3 mol / L, 10 ° C.) as an anode, and a voltage of 60 V is applied to perform first anodic oxidation. It stops when a hole is formed in the oxidized region 6 by the electrode and reaches the substrate. This is immersed in a phosphoric acid aqueous solution (0.3 mol / L, 25 ° C.) and etched until the pore diameter reaches 50% of the pore spacing. Next, the substrate is immersed in a mixed acid aqueous solution (20 ° C.) in which a phosphoric acid aqueous solution (0.3 mol / L) and an oxalic acid aqueous solution (0.3 mol / L) are mixed at a ratio of 1: 1, and a voltage of 40 V is set using the substrate as an anode. Is applied to perform second anodic oxidation. Next, it is immersed again in a phosphoric acid aqueous solution (0.3 mol / L, 25 ° C.), and etching is performed until the hole diameter of the second region reaches 50% of the hole interval. At this time, the holes in the first region are further etched.

孔は孔間隔の縦横比と同程度の長方形状となり、作製される構造の平面図は図5のようになる。このような構造は、磁気記録媒体に用いることが出来る。   The holes have a rectangular shape similar to the aspect ratio of the hole interval, and a plan view of the manufactured structure is as shown in FIG. Such a structure can be used for a magnetic recording medium.

本発明は、ナノメートルスケールの孔を有する微細構造を容易に製造する方法を提供できるので、パターンドメディア、フォトニック結晶やバイオチップ等に利用することができる。   Since the present invention can provide a method for easily producing a microstructure having nanometer-scale pores, it can be used for patterned media, photonic crystals, biochips, and the like.

本発明の微細構造の製造方法の一実施態様を示す工程図である。It is process drawing which shows one embodiment of the manufacturing method of the microstructure of this invention. 本発明の製造方法により得られた微細構造の一実施態様を示す平面図である。It is a top view which shows one embodiment of the fine structure obtained by the manufacturing method of this invention. 本発明の微細構造の製造方法の他の実施態様を示す工程図である。It is process drawing which shows the other embodiment of the manufacturing method of the microstructure of this invention. 本発明の製造方法により得られた微細構造の他の実施態様を示す平面図である。It is a top view which shows the other embodiment of the fine structure obtained by the manufacturing method of this invention. 本発明の製造方法により得られた微細構造の他の実施態様を示す平面図である。It is a top view which shows the other embodiment of the fine structure obtained by the manufacturing method of this invention.

符号の説明Explanation of symbols

1 電極
2 電極凸領域
3 被陽極酸化層
4 基板
5 電極による酸化部
6 電極による酸化領域
7 陽極酸化による酸化部
8 第1の陽極酸化による孔
9 第2の陽極酸化による孔
10 電極による非酸化領域
11 孔開始点
12 孔間隔
13 第1の領域
14 第2の領域
15 凸部
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrode convex area | region 3 Anodized layer 4 Substrate 5 Oxidation part by electrode 6 Oxidation area | region by electrode 7 Oxidation part by anodization 8 Hole by 1st anodic oxidation 9 Hole by 2nd anodic oxidation 10 Non-oxidation by electrode Region 11 Hole start point 12 Hole spacing 13 First region 14 Second region 15 Projection

Claims (6)

凸部を有する電極の凸部を被陽極酸化層に接触させた後、電圧を印加して被陽極酸化層における電極の凸部の接触部分に酸化領域を形成する工程と、前記酸化領域が形成された被陽極酸化層を陽極酸化して酸化領域に孔を形成する工程を有することを特徴とする微細構造の製造方法。   Forming an oxidized region at a contact portion of the projecting portion of the electrode in the anodized layer by applying a voltage after contacting the projecting portion of the electrode having the projecting portion with the anodized layer; and forming the oxidized region A method for producing a microstructure, comprising the step of anodizing the formed anodized layer to form a hole in the oxidized region. 凸部を有する電極の凸部を被陽極酸化層に接触させた後、電圧を印加して被陽極酸化層における電極の凸部の接触部分に酸化領域を形成する工程と、前記酸化領域が形成された被陽極酸化層を陽極酸化して酸化領域に第一の孔を形成する工程、前記被陽極酸化層を再度陽極酸化して前記酸化領域以外の領域に第一の孔とは異なる第二の孔を形成する工程を有することを特徴とする微細構造の製造方法。   Forming an oxidized region at a contact portion of the projecting portion of the electrode in the anodized layer by applying a voltage after contacting the projecting portion of the electrode having the projecting portion with the anodized layer; and forming the oxidized region A step of anodizing the formed anodized layer to form a first hole in the oxidized region; a second step different from the first hole in a region other than the oxidized region by anodizing the anodized layer again A method for producing a microstructure, comprising the step of forming a hole. 前記被陽極酸化層に孔を形成する孔開始点が設けられていることを特徴とする請求項1または2に記載の微細構造の製造方法。   The method for producing a microstructure according to claim 1 or 2, wherein a hole starting point for forming a hole is provided in the anodized layer. 前記電極の凸部を半導体層または絶縁体層を介して被陽極酸化層と接触させることを特徴とする請求項1乃至3のいずれかの項に記載の微細構造の製造方法。   The method for producing a microstructure according to any one of claims 1 to 3, wherein the convex portion of the electrode is brought into contact with the anodized layer via a semiconductor layer or an insulator layer. 前記被陽極酸化層がアルミニウムまたはアルミニウム合金からなることを特徴とする請求項1乃至4のいずれかの項に記載の微細構造の製造方法。   The method for manufacturing a microstructure according to any one of claims 1 to 4, wherein the anodized layer is made of aluminum or an aluminum alloy. 前記第一の孔に内包物を充填した後、第二の孔を形成する請求項2に記載の微細構造の製造方法。   The method for producing a microstructure according to claim 2, wherein the second hole is formed after filling the first hole with the inclusion.
JP2006340440A 2006-12-18 2006-12-18 Microstructure manufacturing method Expired - Fee Related JP5100103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340440A JP5100103B2 (en) 2006-12-18 2006-12-18 Microstructure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340440A JP5100103B2 (en) 2006-12-18 2006-12-18 Microstructure manufacturing method

Publications (2)

Publication Number Publication Date
JP2008150674A true JP2008150674A (en) 2008-07-03
JP5100103B2 JP5100103B2 (en) 2012-12-19

Family

ID=39653162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340440A Expired - Fee Related JP5100103B2 (en) 2006-12-18 2006-12-18 Microstructure manufacturing method

Country Status (1)

Country Link
JP (1) JP5100103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087997A (en) * 2014-06-16 2014-10-08 北京工业大学 Method for preparing regular small-aperture anodized aluminum template through mixed acid variable pressure two-stage oxidation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087997A (en) * 2014-06-16 2014-10-08 北京工业大学 Method for preparing regular small-aperture anodized aluminum template through mixed acid variable pressure two-stage oxidation

Also Published As

Publication number Publication date
JP5100103B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP3387897B2 (en) Structure manufacturing method, structure manufactured by the manufacturing method, and structure device using the structure
JP3848303B2 (en) Structure, functional structure, and method of manufacturing magnetic recording medium
JP2005008909A (en) Structure manufacturing method
JP4630774B2 (en) Manufacturing method of structure
JP2010041023A (en) Manufacture of graphene nano-device
JP4681939B2 (en) Method for producing nanostructure
JP5851165B2 (en) Method for forming microstructure and method for producing porous alumina composite
KR101399982B1 (en) Highly ordered anodic aluminum oxide template and method of manufacturing the same
JP5365903B2 (en) Aluminum alloy-formed substrate and manufacturing method thereof
JP5094208B2 (en) Manufacturing method of structure
KR101165396B1 (en) Forming method of nano structure using the metal nano ring pattern
JP5100103B2 (en) Microstructure manufacturing method
JP2003113497A (en) Porous structure and manufacturing method therefor
JP4641442B2 (en) Method for producing porous body
KR100973522B1 (en) Manufacturing method for ruthenium nano-structures by anodic aluminum oxide and atomic layer deposition
US6986838B2 (en) Nanomachined and micromachined electrodes for electrochemical devices
JP2003342791A (en) Structure having hole and method for producing the same
KR101103484B1 (en) Method for fabricating roll stamp
JP2010285662A (en) Fine structure and method for producing the same
JP5739107B2 (en) Method for producing porous structural material
JP4603834B2 (en) STRUCTURE, ITS MANUFACTURING METHOD, AND POROUS BODY
JP2004001191A (en) Irregularity structure and its manufacturing method and functional device
JP4560356B2 (en) Method for producing porous body and structure
JP4125151B2 (en) Manufacturing method of structure
JP2008275972A (en) Plasmon waveguide and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees