JP2008147474A - Electrode connection method and electrode connection structure - Google Patents

Electrode connection method and electrode connection structure Download PDF

Info

Publication number
JP2008147474A
JP2008147474A JP2006334027A JP2006334027A JP2008147474A JP 2008147474 A JP2008147474 A JP 2008147474A JP 2006334027 A JP2006334027 A JP 2006334027A JP 2006334027 A JP2006334027 A JP 2006334027A JP 2008147474 A JP2008147474 A JP 2008147474A
Authority
JP
Japan
Prior art keywords
insulating adhesive
adhesive resin
electrode
electrodes
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334027A
Other languages
Japanese (ja)
Other versions
JP4762873B2 (en
Inventor
Shozo Ochi
正三 越智
Eishin Nishikawa
英信 西川
Osamu Uchida
内田  修
Yuhei Yamashita
裕平 山下
Kentaro Nishiwaki
健太郎 西脇
Shigeaki Sakatani
茂昭 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006334027A priority Critical patent/JP4762873B2/en
Publication of JP2008147474A publication Critical patent/JP2008147474A/en
Application granted granted Critical
Publication of JP4762873B2 publication Critical patent/JP4762873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode connection method and electrode connection structure that control the occurrence of short circuit failures as well as the occurrence of migration failures. <P>SOLUTION: A heat-curable first insulating adhesive resin 2 not including conductive particles is disposed at an edge part 51A of a facing area 51 between a first circuit organizer 4 having multiple first electrodes 4A and a second circuit organizer 5 having multiple second electrodes 5A, a heat-curable second insulating adhesive resin in which conductive particles 3 are diffused is disposed to the inner side from the edge part 51A of the facing area, and the first and second insulating adhesive resins are pressurized and heated through the first or second circuit organizer, thus electrically connecting the respective first electrodes 4A and respective second electrodes 5A through the conductive particles 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回路形成体の電極に他の回路形成体の電極を、導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する電極接合方法及び電極接合構造体に関する。   The present invention relates to an electrode bonding method and an electrode bonding structure in which an electrode of another circuit forming body is bonded to an electrode of a circuit forming body using an insulating adhesive resin in which conductive particles are dispersed.

従来、ガラス基板やフレキシブル基板等の回路形成体の電極に、他のガラス基板やフレキシブル基板、あるいは電子部品等の回路形成体の電極を電気的に接合する技術として、導電性粒子が分散された絶縁性接着剤樹脂、例えば異方性導電性シートを用いる技術が知られている。この技術は、接合対象となる電極間に異方性導電性シートを配置し、回路形成体を介して異方性導電性シートを圧着ツールで加圧するとともに加熱することで、上記絶縁性接着剤樹脂を溶融させて、導電性粒子を介して電極間を導通させる技術である。   Conventionally, conductive particles have been dispersed as a technique for electrically bonding an electrode of a circuit forming body such as another glass substrate or flexible substrate or an electronic component to an electrode of a circuit forming body such as a glass substrate or a flexible substrate. A technique using an insulating adhesive resin such as an anisotropic conductive sheet is known. This technique arranges an anisotropic conductive sheet between electrodes to be joined, presses the anisotropic conductive sheet with a crimping tool through a circuit forming body, and heats the insulating adhesive. In this technique, a resin is melted and electrical conduction is established between the electrodes via conductive particles.

この異方性導電性シートを用いる電極接合技術は、様々な形態の電極接合に適応可能であり、例えば、ガラス基板とフレキシブル基板との電極接合(FOG)、ガラス基板とICチップ部品との電極接合(COG)、フレキシブル基板とICチップ部品との電極接合(COF)、プリント配線基板とICチップ部品との電極接合、フレキシブル基板とフレキシブル基板との電極接合、フレキシブル基板とプリント配線基板との電極接合等、幅広く適用されている。   This electrode bonding technique using an anisotropic conductive sheet can be applied to various types of electrode bonding, for example, electrode bonding (FOG) between a glass substrate and a flexible substrate, and an electrode between a glass substrate and an IC chip component. Bonding (COG), electrode bonding (COF) between flexible substrate and IC chip component, electrode bonding between printed wiring substrate and IC chip component, electrode bonding between flexible substrate and flexible substrate, electrode between flexible substrate and printed wiring substrate Widely used for bonding, etc.

近年、例えばガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術においては、電極間に高電圧が印加されるときの信頼性の確保とともに、電子機器の高密度化に伴って隣接配線電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、その隣接配線電極間のピッチは、従来求められていた200μm〜100μmから、100μm〜50μm以下まで狭ピッチ化することが求められている。また、例えばガラス基板とICチップ部品との電極接合やフレキシブル基板とICチップ部品との電極接合等の、ICチップ部品をフェイスダウン方式で接合する技術においても、同様に、多機能化に伴いバンプ電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、それらの隣接配線電極間のピッチは、従来求められていた120μm〜80μmから、80μm〜40μm以下まで狭ピッチ化することが求められている。   In recent years, for example, in flat panel bonding technology represented by electrode bonding between a glass substrate and a flexible substrate, along with ensuring the reliability when a high voltage is applied between the electrodes, along with the increase in the density of electronic devices There is a demand for further narrowing (miniaturization) between adjacent wiring electrodes. Specifically, the pitch between adjacent wiring electrodes is required to be narrowed from 200 μm to 100 μm, which has been conventionally required, to 100 μm to 50 μm or less. Similarly, in the technology for bonding IC chip components in a face-down manner, such as electrode bonding between a glass substrate and an IC chip component, or electrode bonding between a flexible substrate and an IC chip component, bumps are also developed along with the increase in functionality. There is a demand for further narrowing (miniaturization) between electrodes. Specifically, the pitch between the adjacent wiring electrodes is required to be narrowed from 120 μm to 80 μm, which has been conventionally required, to 80 μm to 40 μm or less.

上記のレベルまで隣接配線電極間の狭ピッチ化が進むと、異方性導電性シートを用いる電極接合技術においては、ショート不良やマイグレーション不良等の不具合を生じる可能性が高くなる。   When the pitch between adjacent wiring electrodes is reduced to the above level, in the electrode joining technique using the anisotropic conductive sheet, there is a high possibility that defects such as a short circuit failure and a migration failure occur.

ショート不良は、図9Aに示すように、異方性導電性シート101が、例えば第1の電極104Aを有するガラス基板104と、第1の電極104Aと対向するように形成された第2の電極105Aを有するフレキシブル基板105との対向領域100Xに配置された状態で、圧着ツール106により加圧及び加熱されることにより、図9B及び図9Cに示すように、異方性導電性シート101の絶縁性接着剤樹脂102が溶融して対向領域100Xの縁部の外側領域100Yに流動し、この流動に伴って異方性導電性シート101に分散された導電性粒子103が外側領域100Yに流動して凝集することによって起こるものである。
隣接配線電極間100P(図9C及び図9D参照)が狭ピッチ化(例えば100μm〜50μm以下)すると、隣接する電極と電極との間に電極接合に関与しない導電性粒子103が溜まることができる量が少なくなり、より多くの導電性粒子103が上記外側領域100Yに押し出されて上記外側領域100Yで凝集することになるため、ショート不良が起きやすくなる。
As shown in FIG. 9A, the short circuit failure is caused by the anisotropic conductive sheet 101, for example, the glass substrate 104 having the first electrode 104A and the second electrode formed so as to face the first electrode 104A. In the state of being arranged in the region 100X facing the flexible substrate 105 having 105A, it is pressurized and heated by the crimping tool 106, thereby insulating the anisotropic conductive sheet 101 as shown in FIGS. 9B and 9C. The conductive adhesive resin 102 melts and flows to the outer region 100Y at the edge of the opposing region 100X, and with this flow, the conductive particles 103 dispersed in the anisotropic conductive sheet 101 flow to the outer region 100Y. Is caused by aggregation.
When the pitch between the adjacent wiring electrodes 100P (see FIGS. 9C and 9D) is reduced (for example, 100 μm to 50 μm or less), the amount of the conductive particles 103 that are not involved in electrode bonding can be accumulated between the adjacent electrodes. And more conductive particles 103 are pushed out to the outer region 100Y and agglomerate in the outer region 100Y, so that a short circuit is likely to occur.

一方、マイグレーション不良は、圧着ツール106による加圧及び加熱時に、絶縁性接着剤樹脂102の流動速度が速過ぎたり遅過ぎたりすることなどにより、ガラス基板104及びフレキシブル基板105と絶縁性接着剤樹脂102とが密着不足になったり、絶縁性接着剤樹脂102中にボイドが発生したりすることによって起こるものである。隣接配線電極間100Pが狭ピッチになると、隣接する電極と電極との間に絶縁性接着剤樹脂102が溜まることができる量が少なくなり、またこのとき、絶縁性接着剤樹脂102は圧縮されながら流動するために、絶縁性接着剤樹脂102の流動が速くなって加圧不足の部分が生じ、マイグレーション不良が起きやすくなる。   On the other hand, the migration failure is caused by the insulating adhesive resin being in contact with the glass substrate 104 and the flexible substrate 105 due to the flow rate of the insulating adhesive resin 102 being too fast or too slow when being pressed and heated by the crimping tool 106. This is caused by insufficient adhesion to 102 or voids generated in the insulating adhesive resin 102. When the pitch between the adjacent wiring electrodes 100P becomes narrow, the amount of the insulating adhesive resin 102 that can be accumulated between the adjacent electrodes decreases, and at this time, the insulating adhesive resin 102 is being compressed. Since it flows, the flow of the insulating adhesive resin 102 is accelerated, and a portion of insufficient pressurization is generated, and migration failure is likely to occur.

上記ショート不良を解決する技術としては、例えば特許文献1(特開平06−349339号公報)や特許文献2(特開平05−013119号公報)に開示された技術が知られている。特許文献1の技術は、絶縁性接着剤樹脂に導電性粒子が分散された異方性導電性シートに、更に絶縁性粒子を分散させることで、ショート不良を防ぐものである。また、特許文献2の技術は、異方性導電性シートの上に絶縁性粒子を分散した絶縁層を形成することで、ショート不良を防ぐものである。
特開平06−349339号公報 特開平05−013119号公報
As techniques for solving the short circuit defect, for example, techniques disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 06-349339) and Patent Document 2 (Japanese Patent Laid-Open No. 05-013119) are known. The technique of Patent Document 1 prevents short-circuit defects by further dispersing insulating particles in an anisotropic conductive sheet in which conductive particles are dispersed in an insulating adhesive resin. Moreover, the technique of patent document 2 prevents a short circuit defect by forming the insulating layer which disperse | distributed insulating particle | grains on the anisotropic conductive sheet.
Japanese Patent Laid-Open No. 06-349339 JP 05-013119 A

しかしながら、特許文献1及び特許文献2の技術では、絶縁性接着剤樹脂中に導電性粒子に加えて、更に絶縁性粒子が存在することとなるために粒子密度が高くなる。これにより、絶縁性接着剤樹脂の流動性が悪くなり、回路形成体と絶縁性接着剤樹脂との密着性が低下するといった問題がある。また、絶縁性粒子が導電性粒子と回路形成体の電極との接触を阻害して、必要な導通が確保できない可能性もある。   However, in the techniques of Patent Document 1 and Patent Document 2, in addition to the conductive particles, insulating particles are further present in the insulating adhesive resin, so that the particle density is increased. Thereby, the fluidity | liquidity of insulating adhesive resin worsens and there exists a problem that the adhesiveness of a circuit formation body and insulating adhesive resin falls. In addition, the insulating particles may interfere with the contact between the conductive particles and the electrodes of the circuit forming body, and the necessary conduction may not be ensured.

従って、本発明の目的は、上記問題を解決することにあって、回路形成体の電極に他の回路形成体の電極を、導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する電極接合において、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えた電極接合方法及び電極接合構造体を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problem, and join an electrode of another circuit forming body to an electrode of the circuit forming body using an insulating adhesive resin in which conductive particles are dispersed. An object of the present invention is to provide an electrode bonding method and an electrode bonding structure that suppress the occurrence of short-circuit defects and the occurrence of migration defects in electrode bonding.

上記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、複数の第1の電極を有する第1の回路形成体と、上記複数の第1の電極に対向するように形成された複数の第2の電極を有する第2の回路成形体との対向領域の縁部に、導電性粒子を含まない熱硬化性の第1の絶縁性接着剤樹脂を配置するとともに、上記対向領域の上記縁部より内側に、導電性粒子が分散された熱硬化性の第2の絶縁性接着剤樹脂を配置し、
上記第1又は第2の回路形成体を介して上記第1及び第2の絶縁性接着剤樹脂を加圧加熱して、上記それぞれの第1の電極と上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合する、電極接合方法を提供する。
In order to achieve the above object, the present invention is configured as follows.
According to the first aspect of the present invention, a first circuit forming body having a plurality of first electrodes and a plurality of second electrodes formed to face the plurality of first electrodes. The thermosetting first insulating adhesive resin that does not contain conductive particles is disposed at the edge of the area facing the circuit molded body 2 and the inside of the edge of the facing area is electrically conductive. Arranging a thermosetting second insulating adhesive resin in which particles are dispersed;
The first and second insulating adhesive resins are pressurized and heated through the first or second circuit formation body, and the first electrode and the second electrode are connected to each other. Provided is an electrode bonding method for electrically bonding via conductive particles.

本発明の第2態様によれば、上記加圧加熱により、上記それぞれの第1の電極と上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合するとき、第1の絶縁性接着剤樹脂を第2の絶縁性接着剤樹脂よりも先に溶融させて硬化させる、第1態様に記載の電極接合方法を提供する。   According to the second aspect of the present invention, when the respective first electrodes and the respective second electrodes are electrically joined via the conductive particles by the pressure heating, The electrode bonding method according to the first aspect, wherein the insulating adhesive resin is melted and cured prior to the second insulating adhesive resin.

本発明の第3態様によれば、上記第2の絶縁性接着剤樹脂が硬化し始めるとき、上記第1の絶縁性接着剤樹脂の溶融粘度は、上記第2の絶縁性接着剤樹脂の溶融粘度よりも高い、第2態様に記載の電極接合方法を提供する。
ここで、「溶融粘度」とは、加圧加熱された絶縁性接着剤樹脂の軟化状態での粘度をいう。
According to the third aspect of the present invention, when the second insulating adhesive resin starts to cure, the melt viscosity of the first insulating adhesive resin is equal to the melting temperature of the second insulating adhesive resin. The electrode joining method according to the second aspect, which is higher than the viscosity, is provided.
Here, the “melt viscosity” refers to the viscosity in a softened state of the insulating adhesive resin heated under pressure.

本発明の第4態様によれば、上記加圧加熱のための圧力及び熱のエネルギーを供給する圧着ツールと上記第1又は第2の回路形成体との間において、上記第1の絶縁性接着剤樹脂の配置領域に相当する領域に第1の保護シートを配置するとともに、上記第2の絶縁性接着剤樹脂の配置領域に相当する領域に上記第1の保護シートとは異なる第2の保護シートを配置した状態で、上記圧着ツールにより上記加圧加熱して、上記圧着ツールから上記第1の保護シートを介して上記第1の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーが、上記圧着ツールから上記第2の保護シートを介して上記第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーよりも高くなるようにしている、第1〜3態様のいずれか1つに記載の電極接合方法を提供する。   According to the fourth aspect of the present invention, the first insulative bonding is performed between the crimping tool for supplying pressure and heat energy for pressure heating and the first or second circuit forming body. A first protective sheet is disposed in a region corresponding to the region where the adhesive resin is disposed, and a second protection different from the first protective sheet is disposed in a region corresponding to the region where the second insulating adhesive resin is disposed. The pressure or heat energy supplied from the pressure bonding tool to the first insulating adhesive resin through the first protective sheet after being heated under pressure by the pressure bonding tool in a state where the sheet is disposed. Any one of the first to third embodiments is configured to be higher than the pressure or heat energy supplied from the crimping tool to the second insulating adhesive resin through the second protective sheet. Or one of the It provides a joining method.

本発明の第5態様によれば、上記第1の保護シートと上記第2の保護シートの熱伝導率を異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、第4態様に記載の電極接合方法を提供する。   According to the fifth aspect of the present invention, by changing the thermal conductivity of the first protective sheet and the second protective sheet, from the pressure tool to the first and second insulating adhesive resins. The electrode bonding method according to the fourth aspect, wherein the supplied pressure or heat energy is varied.

本発明の第6態様によれば、上記第1の保護シートと上記第2の保護シートの厚みを異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、第4態様に記載の電極接合方法を提供する。   According to the sixth aspect of the present invention, the thicknesses of the first protective sheet and the second protective sheet are made different so that the pressure tool supplies the first and second insulating adhesive resins. The electrode joining method according to the fourth aspect, wherein the pressure or heat energy is different.

本発明の第7態様によれば、上記第1の保護シートと上記第2の保護シートの弾性率を異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、第4態様に記載の電極接合方法を提供する。   According to the seventh aspect of the present invention, the first protective sheet and the second protective sheet are supplied to the first and second insulating adhesive resins from the pressure tool by differentiating the elastic modulus. The electrode bonding method according to the fourth aspect, wherein the pressure or heat energy is made different.

本発明の第8態様によれば、上記第1の回路形成体の上記第1の電極又は上記第2の回路形成体の上記第2の電極が銀で形成されている、第1〜7態様のいずれか1つに記載の電極接合方法を提供する。   According to an eighth aspect of the present invention, the first to seventh aspects, wherein the first electrode of the first circuit forming body or the second electrode of the second circuit forming body is formed of silver. The electrode joining method as described in any one of these is provided.

本発明の第9態様によれば、複数の第1の電極を有する第1の回路形成体と、
上記第1の回路形成体の複数の上記第1の電極にそれぞれ対向して配置された複数の第2の電極を有する第2の回路形成体と、
上記第1の回路形成体と上記第2の回路形成体との対向領域に配置されて両者を接合する絶縁性接着剤樹脂と、
上記絶縁性接着剤樹脂中において、上記対向領域の縁部の内側領域よりも上記対向領域の上記縁部の外側領域が低い体積密度になるように分散され、上記第1の回路形成体の上記それぞれの第1の電極と、それらに対向する上記第2の回路形成体の上記それぞれの第2の電極とを電気的に接続する導電性粒子と、
を備える、電極接合構造体を提供する。
According to a ninth aspect of the present invention, a first circuit formation having a plurality of first electrodes;
A second circuit forming body having a plurality of second electrodes disposed respectively facing the plurality of first electrodes of the first circuit forming body;
An insulating adhesive resin that is disposed in an opposing region of the first circuit forming body and the second circuit forming body to join the two;
In the insulating adhesive resin, the outer region of the edge of the facing region is dispersed so as to have a lower volume density than the inner region of the edge of the facing region, and the first circuit forming body is Conductive particles electrically connecting each first electrode and each second electrode of the second circuit formation opposite to the first electrode;
An electrode joint structure is provided.

本発明の第10態様によれば、上記縁部の外側領域における上記導電性粒子の体積密度は、上記縁部の内側領域における上記導電性粒子の体積密度の50%以下である、第9態様に記載の電極接合構造体を提供する。   According to a tenth aspect of the present invention, in the ninth aspect, the volume density of the conductive particles in the outer region of the edge is 50% or less of the volume density of the conductive particles in the inner region of the edge. The electrode junction structure described in 1. is provided.

本発明の第11態様によれば、上記導電性粒子は、上記絶縁性接着剤樹脂の上記対向領域の上記縁部の内側領域にのみ分散されている、第9態様に記載の電極接合構造体を提供する。   According to an eleventh aspect of the present invention, in the electrode bonding structure according to the ninth aspect, the conductive particles are dispersed only in an inner region of the edge portion of the facing region of the insulating adhesive resin. I will provide a.

本発明の第12態様によれば、上記第1の回路形成体の上記第1の電極又は上記第2の回路形成体の上記第2の電極が銀で形成されている、第9〜11態様に記載の電極接合構造体を提供する。   According to a twelfth aspect of the present invention, in the ninth to eleventh aspects, the first electrode of the first circuit formation body or the second electrode of the second circuit formation body is formed of silver. The electrode junction structure described in 1. is provided.

本発明の電極接合方法によれば、対向領域の縁部に導電性粒子を含まない熱硬化性の第1の絶縁性接着剤樹脂を配置するとともに、対向領域の縁部より内側に導電性粒子が分散された熱硬化性の第2の絶縁性接着剤樹脂を配置した状態で、第1及び第2の絶縁性接着剤樹脂を加圧加熱して、それぞれの第1の電極とそれぞれの第2の電極とを導電性粒子を介して電気的に接合するようにしている。これにより、加圧加熱後の絶縁性接着剤樹脂中における対向領域の縁部の外側領域では、導電性粒子の体積密度が低くなり、導電性粒子の凝集が抑制される。したがって、ショート不良の発生が抑えられる。
また、第1及び第2の絶縁性接着剤樹脂中には、導電性粒子と第1及び第2の回路形成体との接触を阻害する部材(例えば絶縁性粒子)が含まれていないので、電極間の導通も確保できる。また、第1及び第2の絶縁性接着剤樹脂中の粒子密度が高くならないので、絶縁性接着剤樹脂の流動性は悪くならず、回路形成体と絶縁性接着剤樹脂との密着性は低下しない。したがって、マイグレーション不良の発生も抑えられる。
したがって、本発明の電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。
According to the electrode bonding method of the present invention, the thermosetting first insulating adhesive resin that does not contain conductive particles is disposed at the edge of the counter area, and the conductive particles are disposed inside the edge of the counter area. In a state where the thermosetting second insulating adhesive resin in which is dispersed is disposed, the first and second insulating adhesive resins are pressurized and heated, and each first electrode and each first electrode The two electrodes are electrically joined through conductive particles. Thereby, in the outer area | region of the edge part of the opposing area | region in insulating adhesive resin after pressure heating, the volume density of electroconductive particle becomes low and aggregation of electroconductive particle is suppressed. Therefore, the occurrence of short circuit defects can be suppressed.
In addition, since the first and second insulating adhesive resins do not include a member (for example, insulating particles) that hinders contact between the conductive particles and the first and second circuit forming bodies, Conductivity between electrodes can be secured. In addition, since the particle density in the first and second insulating adhesive resins does not increase, the fluidity of the insulating adhesive resin does not deteriorate, and the adhesion between the circuit forming body and the insulating adhesive resin decreases. do not do. Therefore, occurrence of migration failure can be suppressed.
Therefore, according to the electrode bonding method of the present invention, the occurrence of short-circuit defects and the occurrence of migration defects are suppressed to ensure connection reliability at a high voltage and to reduce the pitch (for example, 0.1 mm or less). Can respond.

本発明の電極接合構造体によれば、導電性粒子が絶縁性接着剤樹脂中において対向領域の縁部の内側領域よりも縁部の外側領域が低い体積密度になるように分散されているので、導電性粒子の凝集が抑制され、ショート不良の発生が抑えられる。また、対向領域の縁部の内側領域には、導電性粒子と第1及び第2の回路形成体との接触を阻害する部材(例えば絶縁性粒子)が含まれていないので、電極間の導通が確保できるとともに、粒子密度が高くならないので、第1及び第2の回路形成体と絶縁性接着剤樹脂との密着性は低下せず、マイグレーション不良の発生も抑えられる。したがって、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。   According to the electrode joint structure of the present invention, the conductive particles are dispersed in the insulating adhesive resin so that the outer region of the edge portion has a lower volume density than the inner region of the edge portion of the opposing region. In addition, aggregation of the conductive particles is suppressed, and occurrence of short circuit is suppressed. In addition, the inner region at the edge of the opposing region does not include a member (for example, insulating particles) that obstructs the contact between the conductive particles and the first and second circuit forming bodies. Since the particle density does not increase, the adhesion between the first and second circuit formed bodies and the insulating adhesive resin does not decrease, and the occurrence of migration failure can be suppressed. Therefore, it is possible to ensure connection reliability at a high voltage and cope with a narrow pitch (for example, 0.1 mm or less).

本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
以下、本発明の最良の実施の形態について、図面を参照しながら説明する。
Before continuing the description of the present invention, the same parts are denoted by the same reference numerals in the accompanying drawings.
The best mode for carrying out the present invention will be described below with reference to the drawings.

《第1実施形態》
図1A〜図1Dを用いて、本発明の第1実施形態にかかる電極接合構造体の構成を説明する。図1Aは、本発明の第1実施形態にかかる電極接合構造体の構成を模式的に示す平面図であり、図1Bは、図1Aのa−a断面図であり、図1Cは、図1Aのb−b断面図であり、図1Dは、図1Aのc−c断面図である。
本発明の第1実施形態では、フラットパネルの端子部の接合構造であるガラス基板とフレキシブル基板の接合構造を例にとって説明する。
<< First Embodiment >>
The configuration of the electrode joint structure according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1D. 1A is a plan view schematically showing a configuration of an electrode joint structure according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line aa in FIG. 1A, and FIG. 1C is FIG. FIG. 1D is a cross-sectional view taken along the line cc of FIG. 1A.
In the first embodiment of the present invention, a description will be given taking as an example a bonding structure of a glass substrate and a flexible substrate, which is a bonding structure of terminal portions of a flat panel.

本発明の第1実施形態にかかる電極接合構造体は、複数の第1の電極4Aを有する第1の回路形成体の一例であるガラス基板4と、ガラス基板4の複数の第1の電極4Aにそれぞれ対向して配置された複数の第2の電極5Aを有する第2の回路形成体の一例であるフレキシブル基板5と、ガラス基板4とフレキシブル基板5との対向領域51に配置されて両者を接合する絶縁性接着剤樹脂2と、絶縁性接着剤樹脂2中において、対向領域51の縁部51Aの内側領域よりも縁部51Aの外側領域52が低い体積密度になるように分散され、ガラス基板4のそれぞれの第1の電極4Aと、それらに対向するフレキシブル基板5のそれぞれの第2の電極5Aとを接続する導電性粒子3とを備えている。   The electrode joint structure according to the first embodiment of the present invention includes a glass substrate 4 that is an example of a first circuit forming body having a plurality of first electrodes 4A, and a plurality of first electrodes 4A of the glass substrate 4. The flexible substrate 5 which is an example of a second circuit forming body having a plurality of second electrodes 5A disposed to face each other, and the glass substrate 4 and the flexible substrate 5 are disposed in a facing region 51 and both are disposed. In the insulating adhesive resin 2 to be joined and the insulating adhesive resin 2, the outer region 52 of the edge portion 51 </ b> A is dispersed so as to have a lower volume density than the inner region of the edge portion 51 </ b> A of the facing region 51. Each of the first electrodes 4 </ b> A of the substrate 4 is provided with conductive particles 3 that connect the second electrodes 5 </ b> A of the flexible substrate 5 facing the first electrodes 4 </ b> A.

ここで、「対向領域51の縁部51A」は、全体の電極間の導通にほとんど影響がない部分に位置している。例えば、ガラス基板4又はフレキシブル基板5の厚み方向(図1Bの縦方向)でガラス基板4とフレキシブル基板5とに挟まれている領域と挟まれていない領域との境界線部分に位置している。
また、「縁部51Aの内側領域」とは、縁部51Aに内側で隣接している領域であってガラス基板4又はフレキシブル基板5の厚み方向(図1Bの縦方向)でガラス基板4とフレキシブル基板5とに挟まれた領域をいう。
また、「縁部51Aの外側領域52」とは、縁部51Aに外側で隣接している領域であって、ガラス基板4又はフレキシブル基板5の厚み方向(図1Bの縦方向)でガラス基板4とフレキシブル基板5とに挟まれていない領域をいう。言い換えれば、ガラス基板4とフレキシブル基板5との間に絶縁性接着剤樹脂2を挟んだ状態で加熱及び加圧したときに、絶縁性接着剤樹脂2がガラス基板4とフレキシブル基板5との間からはみ出した領域をいう。
Here, “the edge portion 51A of the facing region 51” is located at a portion that hardly affects the conduction between the entire electrodes. For example, in the thickness direction (vertical direction of FIG. 1B) of the glass substrate 4 or the flexible substrate 5, it is located in the boundary line part of the area | region sandwiched between the glass substrate 4 and the flexible substrate 5, and the area | region not sandwiched. .
The “inner region of the edge portion 51A” is a region adjacent to the edge portion 51A on the inner side, and is flexible with the glass substrate 4 in the thickness direction of the glass substrate 4 or the flexible substrate 5 (vertical direction in FIG. 1B). An area sandwiched between the substrates 5.
The “outer region 52 of the edge portion 51A” is a region adjacent to the edge portion 51A on the outside, and the glass substrate 4 in the thickness direction of the glass substrate 4 or the flexible substrate 5 (vertical direction in FIG. 1B). And a region not sandwiched between the flexible substrate 5. In other words, when the insulating adhesive resin 2 is heated and pressurized with the insulating adhesive resin 2 sandwiched between the glass substrate 4 and the flexible substrate 5, the insulating adhesive resin 2 is interposed between the glass substrate 4 and the flexible substrate 5. An area that protrudes.

ガラス基板4の複数の第1の電極4Aは、例えば厚さ3〜15μm程度の銀で形成された銀電極で構成されている。一般に銀はマイグレーション不良を起こしやすい材質として知られている。
フレキシブル基板5の複数の第2の電極5Aは、例えば厚さ20μm程度の銅で形成された銅電極で構成されている。
The plurality of first electrodes 4A of the glass substrate 4 are configured by silver electrodes formed of silver having a thickness of about 3 to 15 μm, for example. In general, silver is known as a material that easily causes migration failure.
The plurality of second electrodes 5A of the flexible substrate 5 are configured by copper electrodes made of copper having a thickness of about 20 μm, for example.

絶縁性接着剤樹脂2は、ガラス基板4の複数の第1の電極4Aとフレキシブル基板5の複数の第2の電極5Aとを封止するように配置されている。絶縁性接着剤樹脂2は、熱硬化性樹脂で形成され、例えば、加圧されるとともに加熱されたときに低温で且つ短時間で硬化するアクリル樹脂や、耐熱性、耐吸湿性、接着性、絶縁性等の面で機能的に優れたエポキシ樹脂等で形成されている。   The insulating adhesive resin 2 is disposed so as to seal the plurality of first electrodes 4 </ b> A of the glass substrate 4 and the plurality of second electrodes 5 </ b> A of the flexible substrate 5. The insulating adhesive resin 2 is formed of a thermosetting resin, for example, an acrylic resin that is cured at a low temperature in a short time when pressed and heated, heat resistance, moisture absorption resistance, adhesiveness, It is formed of an epoxy resin that is functionally superior in terms of insulation and the like.

導電性粒子3は、例えば、ニッケル等の導電性の金属で構成された粒子である。導電性粒子3は、上記したように、絶縁性接着剤樹脂2中において、対向領域51の縁部51Aの内側領域よりも縁部51Aの外側領域52が低い体積密度になるように分散されている。ここで「低い体積密度」には、縁部51Aの内側領域と縁部51Aの外側領域52との体積密度の差が僅かである範囲は除かれる。また、縁部51Aの外側領域52における導電性粒子3の体積密度は、できるだけ低いことが好ましい。例えば、縁部51Aの外側領域52における導電性粒子3の体積密度は、縁部51Aの内側領域における導電性粒子3の体積密度の50%以下であることが好ましい。さらに好ましい、縁部51Aの外側領域52における導電性粒子3の体積密度は「0」である。すなわち、縁部51Aの外側領域52には導電性粒子3が含まれていないことが好ましい。   The conductive particles 3 are particles composed of a conductive metal such as nickel, for example. As described above, the conductive particles 3 are dispersed in the insulating adhesive resin 2 such that the outer region 52 of the edge portion 51A has a lower volume density than the inner region of the edge portion 51A of the facing region 51. Yes. Here, the “low volume density” excludes a range in which the difference in volume density between the inner region of the edge portion 51A and the outer region 52 of the edge portion 51A is slight. Further, the volume density of the conductive particles 3 in the outer region 52 of the edge portion 51A is preferably as low as possible. For example, the volume density of the conductive particles 3 in the outer region 52 of the edge portion 51A is preferably 50% or less of the volume density of the conductive particles 3 in the inner region of the edge portion 51A. More preferably, the volume density of the conductive particles 3 in the outer region 52 of the edge portion 51A is “0”. That is, it is preferable that the conductive particles 3 are not included in the outer region 52 of the edge portion 51A.

導電性粒子3の平均粒子径は、3〜15μmの範囲内で形成されることが好ましい。導電性粒子3の平均粒子径が3μm未満である場合には電極間の導通(電気的接続)を確保することが困難であり、導電性粒子3の平均粒子径が15μmを越える場合には、電極間のピッチが0.1mm以下ではショート不良が発生しやすくなる。   The average particle diameter of the conductive particles 3 is preferably formed within a range of 3 to 15 μm. When the average particle diameter of the conductive particles 3 is less than 3 μm, it is difficult to ensure conduction (electrical connection) between the electrodes, and when the average particle diameter of the conductive particles 3 exceeds 15 μm, If the pitch between the electrodes is 0.1 mm or less, short-circuit defects are likely to occur.

本発明の第1実施形態にかかる電極接合構造体は以上のように構成されている。
本発明の第1実施形態にかかる電極接合構造体によれば、導電性粒子3が絶縁性接着剤樹脂2中において対向領域51の縁部51Aの内側領域よりも縁部51Aの外側領域52が低い体積密度になるように分散されているので、導電性粒子3の凝集が抑制され、ショート不良の発生が抑えられる。また、対向領域51の縁部51Aの内側領域には導電性粒子3とガラス基板4及びフレキシブル基板5との接触を阻害する部材(例えば絶縁性粒子)が含まれていないので、電極間の導通が確保できるとともに、粒子密度が高くならないので、ガラス基板4及びフレキシブル基板5と絶縁性接着剤樹脂2との密着性は低下せず、マイグレーション不良の発生も抑えられる。したがって、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。
The electrode joint structure according to the first embodiment of the present invention is configured as described above.
According to the electrode bonded structure according to the first embodiment of the present invention, the conductive particles 3 are formed in the insulating adhesive resin 2 such that the outer region 52 of the edge portion 51A is more than the inner region of the edge portion 51A of the facing region 51. Since the particles are dispersed so as to have a low volume density, aggregation of the conductive particles 3 is suppressed, and occurrence of a short circuit failure is suppressed. Further, since the inner region of the edge portion 51A of the facing region 51 does not include a member (for example, insulating particles) that impedes contact between the conductive particles 3 and the glass substrate 4 and the flexible substrate 5, conduction between the electrodes. Since the particle density does not increase, the adhesion between the glass substrate 4 and the flexible substrate 5 and the insulating adhesive resin 2 does not decrease, and the occurrence of migration failure can be suppressed. Therefore, it is possible to ensure connection reliability at a high voltage and cope with a narrow pitch (for example, 0.1 mm or less).

また、本発明の第1実施形態にかかる電極接合構造体によれば、上記のようにマイグレーションの発生が抑えられるので、ガラス基板4の第1の電極4Aを銀で形成することができ、フラットディスプレイパネルなどへの適用が可能となる。   Moreover, according to the electrode junction structure concerning 1st Embodiment of this invention, since generation | occurrence | production of migration is suppressed as mentioned above, the 1st electrode 4A of the glass substrate 4 can be formed with silver, and it is flat. It can be applied to display panels.

次に、図1A〜図1D、図2A〜図2C、図3、及び図4を用いて、本発明の第1実施形態にかかる電極接合方法について説明する。図2A〜図2Cは、本発明の第1実施形態にかかる電極接合方法の手順を示す断面図である。図3は、絶縁性接着剤樹脂の、時間に対する溶融粘度の変化を示すグラフである。図4は、本発明の第1実施形態にかかる電極接合方法のフローチャートである。   Next, the electrode joining method according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 1D, 2A to 2C, 3, and 4. 2A to 2C are cross-sectional views illustrating the procedure of the electrode bonding method according to the first embodiment of the present invention. FIG. 3 is a graph showing the change in melt viscosity with time of the insulating adhesive resin. FIG. 4 is a flowchart of the electrode bonding method according to the first embodiment of the present invention.

本発明の第1実施形態にかかる電極接合方法の手順を説明する前に、まず、当該電極接合方法に使用する部材及び装置について説明する。
本発明の第1実施形態にかかる電極接合方法において、ガラス基板4とフレキシブル基板5とを接合するための絶縁性接着剤樹脂は、導電性粒子3を含まない第1の絶縁性接着剤樹脂21と、導電性粒子3が(好ましくは均一に)分散された第2の絶縁性接着剤樹脂22とで構成されている。第2の絶縁性接着剤樹脂22は、ガラス基板4とフレキシブル基板5との全体の電極間の導通にほとんど影響がない部分に対応する大きさに形成されている。第1の絶縁性接着剤樹脂21は、第2の絶縁性接着剤樹脂22が加圧及び加熱されて溶融したとき主に流動する側、すなわち導電性粒子3の凝集が起きやすい側において、対向領域51の縁部51Aに対応する大きさに形成されている。本第1実施形態では、ガラス基板4の複数の第1の電極4A及びフレキシブル基板5の複数の第2の電極5Aは、図1Aの左右方向に平行に設けられ、第2の絶縁性接着剤樹脂22は、主に図1Aの右方向に向かって流動するものとしている。このため、第1の絶縁性接着剤樹脂21は、図1Aの右側の対向領域51の縁部51Aに対応するように形成されている。
Before describing the procedure of the electrode bonding method according to the first embodiment of the present invention, first, members and apparatuses used for the electrode bonding method will be described.
In the electrode bonding method according to the first embodiment of the present invention, the insulating adhesive resin for bonding the glass substrate 4 and the flexible substrate 5 is the first insulating adhesive resin 21 not including the conductive particles 3. And a second insulating adhesive resin 22 in which the conductive particles 3 are dispersed (preferably uniformly). The second insulating adhesive resin 22 is formed in a size corresponding to a portion that hardly affects the conduction between the entire electrodes of the glass substrate 4 and the flexible substrate 5. The first insulating adhesive resin 21 is opposed on the side that mainly flows when the second insulating adhesive resin 22 is pressurized and heated and melted, that is, on the side where the aggregation of the conductive particles 3 easily occurs. A size corresponding to the edge 51 </ b> A of the region 51 is formed. In the first embodiment, the plurality of first electrodes 4A of the glass substrate 4 and the plurality of second electrodes 5A of the flexible substrate 5 are provided in parallel in the left-right direction of FIG. 1A, and the second insulating adhesive The resin 22 is assumed to flow mainly in the right direction in FIG. 1A. For this reason, the first insulating adhesive resin 21 is formed so as to correspond to the edge portion 51A of the facing region 51 on the right side of FIG. 1A.

第1及び第2の絶縁性接着剤樹脂21,22は、それぞれ熱硬化性樹脂で構成されている。例えば、第1及び第2の絶縁性接着剤樹脂21,22は、加圧されるとともに加熱されたときに低温で且つ短時間で硬化するアクリル樹脂や、耐熱性、耐吸湿性、接着性、絶縁性等の面で機能的に優れたエポキシ樹脂等で構成されている。
第1及び第2の絶縁性接着剤樹脂21,22の形態は、それぞれペースト状であってもシート(フィルム)化されたものでもよい。例えば、導電性粒子3が分散された第2の絶縁性接着剤樹脂22は、異方性導電性ペーストや異方性導電性フィルム、異方性導電性シートであってもよい。それらの中でも異方性導電性シートが用いられることが、加工性や取り扱い性が優れているので好ましい。図2A及び図2Bでは、第1及び第2の絶縁性接着剤樹脂22がシート化されたものを図示している。
The first and second insulating adhesive resins 21 and 22 are each composed of a thermosetting resin. For example, the first and second insulating adhesive resins 21 and 22 are an acrylic resin that is cured at a low temperature in a short time when pressurized and heated, heat resistance, moisture absorption resistance, adhesiveness, It is made of an epoxy resin or the like that is functionally superior in terms of insulation.
Each of the first and second insulating adhesive resins 21 and 22 may be in the form of a paste or a sheet (film). For example, the second insulating adhesive resin 22 in which the conductive particles 3 are dispersed may be an anisotropic conductive paste, an anisotropic conductive film, or an anisotropic conductive sheet. Among them, it is preferable to use an anisotropic conductive sheet because of excellent workability and handleability. 2A and 2B show the first and second insulating adhesive resins 22 formed into a sheet.

また、第1及び第2の絶縁性接着剤樹脂21,22の厚さ(図2Aの縦方向)は、それぞれ15μm〜60μmの範囲内で設定されることが好ましい。第1及び第2の絶縁性接着剤樹脂21,22の厚さが15μm未満である場合には、第1及び第2の電極4A,5A間の電極接合強度が不足し剥がれ易くなり、60μmを越える場合には、第1及び第2の電極4A,5A間の電気的接続が取り難くなる。また、第1及び第2の絶縁性接着剤樹脂21,22の厚さは、第1の電極4A又は第2の電極5Aの厚さに応じて適宜設定されることが好ましい。例えば、第1の電極4A又は第2の電極5Aの厚さが10〜20μmであれば、第1及び第2の絶縁性接着剤樹脂21,22の厚さは、35μm〜50μm程度の範囲内で設定されることが好ましい。   Moreover, it is preferable that the thickness (vertical direction of FIG. 2A) of 1st and 2nd insulating adhesive resin 21 and 22 is each set within the range of 15 micrometers-60 micrometers. When the thicknesses of the first and second insulating adhesive resins 21 and 22 are less than 15 μm, the electrode bonding strength between the first and second electrodes 4A and 5A is insufficient and is easily peeled off. When exceeding, it becomes difficult to take the electrical connection between the first and second electrodes 4A and 5A. The thicknesses of the first and second insulating adhesive resins 21 and 22 are preferably set as appropriate according to the thickness of the first electrode 4A or the second electrode 5A. For example, if the thickness of the first electrode 4A or the second electrode 5A is 10 to 20 μm, the thickness of the first and second insulating adhesive resins 21 and 22 is in the range of about 35 μm to 50 μm. It is preferable that

また、第1の絶縁性接着剤樹脂21の厚さと第2の絶縁性接着剤樹脂22の厚さは、同程度であることが好ましいが、第1の絶縁性接着剤樹脂21の厚さが第2の絶縁性接着剤樹脂22の厚さに比べて小さくてもよい。
なお、第1の絶縁性接着剤樹脂21の厚さが、第2の絶縁性接着剤樹脂22の厚さに比べて大きい場合には、図2Bに示すようにガラス基板4とフレキシブル基板5とを重ね合わせたときに、第1及び第2の絶縁性接着剤樹脂21,22の厚さ方向の高さにバラツキが生じ、このバラツキにより位置ズレが生じて、接続不良に繋がる可能性がある。
Further, the thickness of the first insulating adhesive resin 21 and the thickness of the second insulating adhesive resin 22 are preferably approximately the same, but the thickness of the first insulating adhesive resin 21 is The thickness may be smaller than the thickness of the second insulating adhesive resin 22.
When the thickness of the first insulating adhesive resin 21 is larger than the thickness of the second insulating adhesive resin 22, as shown in FIG. 2B, the glass substrate 4 and the flexible substrate 5 When the first and second insulating adhesive resins 21 and 22 are overlapped, there is a variation in the thickness in the thickness direction, and this variation may cause a positional deviation, leading to a connection failure. .

また、絶縁性接着剤樹脂2の幅(図2Aの奥行き方向)及び長さ(図2Aの横方向)は、1mm以上であることが好ましい。絶縁性接着剤樹脂2の幅又は長さが1mm未満である場合には、第1及び第2の電極4A,5A間の電極接合強度が不足し剥がれ易くなる恐れがある。   Moreover, it is preferable that the width | variety (depth direction of FIG. 2A) and length (horizontal direction of FIG. 2A) of the insulating adhesive resin 2 are 1 mm or more. If the width or length of the insulating adhesive resin 2 is less than 1 mm, the electrode bonding strength between the first and second electrodes 4A and 5A may be insufficient and may be easily peeled off.

また、第1及び第2の絶縁性接着剤樹脂21,22は、図3に示すように、第1の絶縁性接着剤樹脂21(図3では太線で示す)が溶融し始めたのち、第2の絶縁性接着剤樹脂22(図3では破線で示す)が溶融し始め、次いで、第1の絶縁性接着剤樹脂21が硬化し始めたのち、第2の絶縁性接着剤樹脂22が硬化し始めるように、それぞれの材質が選定されている。さらに、第1及び第2の絶縁性接着剤樹脂21,22は、第2の絶縁性接着剤樹脂2が硬化し始めたときには、第1の絶縁性接着剤樹脂21の溶融粘度が第2の絶縁性接着剤樹脂22の溶融粘度よりも高く又は同程度になるように、それぞれの材質が選定されている(図3では、第1の絶縁性接着剤樹脂21の溶融粘度が第2の絶縁性溶融粘度よりも高い場合を示している)。   In addition, as shown in FIG. 3, the first and second insulating adhesive resins 21 and 22 are first melted after the first insulating adhesive resin 21 (shown by a bold line in FIG. 3) starts to melt. After the second insulating adhesive resin 22 (indicated by a broken line in FIG. 3) begins to melt, and then the first insulating adhesive resin 21 begins to cure, the second insulating adhesive resin 22 cures. Each material is selected to begin. Furthermore, the first and second insulating adhesive resins 21 and 22 are such that when the second insulating adhesive resin 2 begins to cure, the melt viscosity of the first insulating adhesive resin 21 is the second. Each material is selected so as to be higher than or similar to the melt viscosity of the insulating adhesive resin 22 (in FIG. 3, the melt viscosity of the first insulating adhesive resin 21 is the second insulating material). It shows a case where the viscosity is higher than the melting melt viscosity).

このような構成は、例えば、第1の絶縁性接着剤樹脂21の最低溶融粘度Fに達する溶融温度を第2の絶縁性接着剤樹脂22の最低溶融粘度Fに達する溶融温度よりも低く又は同程度にすることで実現可能である。具体的には、例えば第2の絶縁性接着剤樹脂22として異方性導電性シートを用いたときには、一般的な異方性導電性シートの溶融温度が120〜130℃程度であるので、第1の絶縁性接着剤樹脂21の溶融温度は、120〜130℃よりも低い温度(好ましくは80〜120℃)に設定すればよい。 Such a configuration, for example, lower than the melting temperature reaching a melting temperature reaches the minimum melt viscosity F 1 of the first insulating adhesive resin 21 to the minimum melt viscosity F 2 of the second insulating adhesive resin 22 Or it is realizable by making it comparable. Specifically, for example, when an anisotropic conductive sheet is used as the second insulating adhesive resin 22, the melting temperature of a general anisotropic conductive sheet is about 120 to 130 ° C. What is necessary is just to set the melting temperature of 1 insulating adhesive resin 21 to the temperature lower than 120-130 degreeC (preferably 80-120 degreeC).

なお、第1の絶縁性接着剤樹脂21の溶融温度を第2の絶縁性接着剤樹脂22の溶融温度よりも高く(上記例では120〜130℃以上)した場合には、第2の絶縁性接着剤樹脂22が先に最低溶融粘度に達して硬化を開始したのち、第1の絶縁性接着剤樹脂21が遅れて最低溶融粘度に達して硬化を開始することになる。この場合、対向領域51の縁部51A側により多くの量の導電性粒子3が流動して凝集しやすい状態になり、導電性粒子3の凝集を抑制することができない可能性がある。
上記のように、第1及び第2の絶縁性接着剤樹脂21,22の溶融粘度及び溶融温度を調整する方法としては、例えば、第1の絶縁性接着剤樹脂21と第2の絶縁性接着剤樹脂22の材質を異種材料(異種成分)とする方法や、分子量に差をつける方法などがある。また、第1及び第2の絶縁性接着剤樹脂21,22の、時間に対する溶融粘度の変化に差をつける方法としては、例えば、第1の絶縁性接着剤樹脂21の熱伝導率が第2の絶縁性接着剤樹脂22の熱伝導率よりも低くなるようにそれぞれの材質を適宜選択する方法などがある。
When the melting temperature of the first insulating adhesive resin 21 is higher than the melting temperature of the second insulating adhesive resin 22 (120 to 130 ° C. or more in the above example), the second insulating property After the adhesive resin 22 first reaches the minimum melt viscosity and starts curing, the first insulating adhesive resin 21 delays and reaches the minimum melt viscosity to start curing. In this case, a large amount of the conductive particles 3 tends to flow and aggregate on the edge 51A side of the facing region 51, and the aggregation of the conductive particles 3 may not be suppressed.
As described above, as a method of adjusting the melt viscosity and the melt temperature of the first and second insulating adhesive resins 21 and 22, for example, the first insulating adhesive resin 21 and the second insulating adhesive can be used. There are a method in which the material of the agent resin 22 is a different material (a different component), a method of making a difference in molecular weight, and the like. Moreover, as a method of making a difference in the change in melt viscosity with respect to time of the first and second insulating adhesive resins 21 and 22, for example, the thermal conductivity of the first insulating adhesive resin 21 is the second. There is a method of appropriately selecting each material so as to be lower than the thermal conductivity of the insulating adhesive resin 22.

また、本発明の第1実施形態にかかる電極接合方法においては、第1及び第2の絶縁性接着剤樹脂21,22を溶融(軟化)させるのに、図2A及び図2Bに示す圧着ツール8を使用する。圧着ツール8は、図2Bに示すように、その下端部に加熱用ヒータ8Aを備えるとともに、その上部にエアシリンダ8Bを備え、エアシリンダ8Bに接続されたモータ8Cが駆動することにより上下動可能に構成されている。圧着ツール8は、モータ8Cの駆動によりガラス基板4又はフレキシブル基板5にその下端部の加圧加熱面が接触し、その接触状態で、エアシリンダ8Bにエアーが供給されてエアシリンダ8Bが駆動するとともに、加熱用ヒータ8Aが発熱することで、圧力及び熱のエネルギーを発生させ、第1及び第2の絶縁性接着剤樹脂21,22を同時的に加圧するとともに加熱できるように構成された装置である。
なお、圧着ツール8の加圧加熱面は、圧力及び熱のエネルギーをその全面にわたって一様に供給できるように構成されている。すなわち、圧着ツール8の加圧加熱面のどの部分においても、供給される圧力及び熱のエネルギーは同様である。
In the electrode joining method according to the first embodiment of the present invention, the crimping tool 8 shown in FIGS. 2A and 2B is used to melt (soften) the first and second insulating adhesive resins 21 and 22. Is used. As shown in FIG. 2B, the crimping tool 8 is provided with a heater 8A at the lower end thereof and an air cylinder 8B at the upper portion thereof, and can be moved up and down by driving a motor 8C connected to the air cylinder 8B. It is configured. The crimping tool 8 is driven by the motor 8C so that the pressure heating surface at the lower end thereof is brought into contact with the glass substrate 4 or the flexible substrate 5, and in this contact state, air is supplied to the air cylinder 8B and the air cylinder 8B is driven. At the same time, the heating heater 8A generates heat to generate pressure and heat energy so that the first and second insulating adhesive resins 21 and 22 can be pressurized and heated simultaneously. It is.
The pressure heating surface of the crimping tool 8 is configured so that pressure and heat energy can be supplied uniformly over the entire surface. That is, the pressure and heat energy supplied are the same in any part of the pressure heating surface of the crimping tool 8.

また、本発明の第1実施形態にかかる電極接合方法においては、図示していないが、ガラス基板4を下にした状態で圧着ステージである支持台に載置されて電極接合が行われるものとする。   Further, in the electrode bonding method according to the first embodiment of the present invention, although not shown, the electrode bonding is performed by placing the glass substrate 4 on a support table that is a crimping stage with the glass substrate 4 facing down. To do.

また、本発明の第1実施形態にかかる電極接合方法においては、圧着ツール8により第1及び第2の絶縁性接着剤21,22を加圧及び加熱するとき、第1及び第2の保護シート6,7を介して行う。   In the electrode joining method according to the first embodiment of the present invention, when the first and second insulating adhesives 21 and 22 are pressed and heated by the crimping tool 8, the first and second protective sheets are used. 6 and 7.

第2の保護シート7は、絶縁性接着剤樹脂22に対応する大きさに形成されている。第1の保護シート6は、第1の絶縁性接着剤樹脂21に対応する大きさに形成され、第2の保護シート7よりも熱伝導率が高い材質で構成されている。例えば、第2の保護シート7はテフロン(登録商標)やポリイミドなどの非金属で構成され、第1の保護シート6は銅などの金属で構成されている。このように構成することにより、圧着ツール8により第1及び第2の保護シート6,7を介して第1及び第2の絶縁性接着剤樹脂21,22を同時的に加圧及び加熱した際、圧着ツール8より第1及び第2の絶縁性接着剤樹脂21,22に供給される熱のエネルギーを異ならせることができる。これにより、例えば、第1の絶縁性接着剤樹脂21と第2の絶縁性接着剤樹脂22との温度差を15℃以上にすることも可能である。
なお、第1及び第2の保護シート6,7は、一体化されて一枚のシート状に形成されていてもよいし、それぞれ分離されていてもよい。
The second protective sheet 7 is formed in a size corresponding to the insulating adhesive resin 22. The first protective sheet 6 is formed in a size corresponding to the first insulating adhesive resin 21 and is made of a material having a higher thermal conductivity than that of the second protective sheet 7. For example, the second protective sheet 7 is made of a nonmetal such as Teflon (registered trademark) or polyimide, and the first protective sheet 6 is made of a metal such as copper. With this configuration, when the first and second insulating adhesive resins 21 and 22 are simultaneously pressed and heated by the crimping tool 8 via the first and second protective sheets 6 and 7. The energy of heat supplied from the crimping tool 8 to the first and second insulating adhesive resins 21 and 22 can be made different. Thereby, for example, the temperature difference between the first insulating adhesive resin 21 and the second insulating adhesive resin 22 can be set to 15 ° C. or more.
In addition, the 1st and 2nd protection sheets 6 and 7 may be integrated and formed in the shape of one sheet, and may be isolate | separated, respectively.

次に、本発明の第1実施形態にかかる電極接合方法の手順を説明する。
まず、ステップS1では、図2A及び図2Bに示すように、複数の第1の電極4Aを有するガラス基板4と、ガラス基板4の複数の第1の電極4Aにそれぞれ対向するように形成された複数の第2の電極5Aを有する第2の回路成形体5との対向領域51の縁部51Aに第1の絶縁性接着剤樹脂21を配置するとともに、対向領域51の縁部51Aより内側に、第1の絶縁性接着剤樹脂21に隣接して第2の絶縁性接着剤樹脂22を配置する。
なお、このとき、第1及び第2の絶縁性接着剤樹脂21,22は一体的に構成されて、ガラス基板4又はフレキシブル基板5に予め貼り付けられていてもよい。また、第1及び第2の絶縁性接着剤樹脂21,22はそれぞれ別個に構成されて、一方がガラス基板4に予め貼り付けられ、他方がフレキシブル基板5に予め貼り付けられていてもよい。
Next, the procedure of the electrode joining method according to the first embodiment of the present invention will be described.
First, in step S1, as shown in FIGS. 2A and 2B, the glass substrate 4 having the plurality of first electrodes 4A and the plurality of first electrodes 4A of the glass substrate 4 are formed to face each other. The first insulating adhesive resin 21 is disposed on the edge portion 51A of the facing region 51 with the second circuit molded body 5 having the plurality of second electrodes 5A, and on the inner side of the edge portion 51A of the facing region 51. The second insulating adhesive resin 22 is disposed adjacent to the first insulating adhesive resin 21.
At this time, the first and second insulating adhesive resins 21 and 22 may be integrally formed and attached to the glass substrate 4 or the flexible substrate 5 in advance. Further, the first and second insulating adhesive resins 21 and 22 may be configured separately, one of which is previously attached to the glass substrate 4 and the other is attached to the flexible substrate 5 in advance.

次いで、ステップS2では、圧着ツール8により、第1の保護シート6及びフレキシブル基板5を介して第1の絶縁性接着剤樹脂21の加圧及び加熱を開始すると同時的に、第2の保護シート7及びフレキシブル基板5を介して第2の絶縁性接着剤樹脂22の加圧及び加熱を開始する。   Next, in step S2, when the pressurization and heating of the first insulating adhesive resin 21 are started by the crimping tool 8 via the first protective sheet 6 and the flexible substrate 5, the second protective sheet is simultaneously used. 7 and pressurization and heating of the second insulating adhesive resin 22 are started via the flexible substrate 5.

次いで、ステップS3では、圧着ツール8の加圧及び加熱により、第1の絶縁性接着剤樹脂21の溶融を開始させる。なお、図3では、第1の絶縁性接着剤樹脂21が溶融を開始してから、第1の絶縁性接着剤樹脂21が最低溶融粘度Fに達するまでの区間を領域Aで示している。
次いで、ステップS4では、圧着ツール8の加圧及び加熱により、第2の絶縁性接着剤樹脂22の溶融を開始させる。なお、図3では、第1の絶縁性接着剤樹脂21が溶融を開始してから、第2の絶縁性接着剤樹脂22が最低溶融粘度Fに達するまでの区間を領域Cで示している。
Next, in step S <b> 3, melting of the first insulating adhesive resin 21 is started by pressurization and heating of the crimping tool 8. In FIG. 3, a region from the start of melting of the first insulating adhesive resin 21 to the time when the first insulating adhesive resin 21 reaches the minimum melt viscosity F 1 is indicated by a region A. .
Next, in step S <b> 4, melting of the second insulating adhesive resin 22 is started by pressurization and heating of the crimping tool 8. Also shows in Fig. 3, the section from the first insulating adhesive resin 21 starts melting, until the second insulating adhesive resin 22 reaches the minimum melt viscosity F 2 in the region C .

次いで、ステップS5では、ステップS3により溶融を開始して最低溶融粘度Fに達した第1の絶縁性接着剤樹脂21を、圧着ツール8の加圧及び加熱により徐々に硬化させる。
次いで、ステップS6では、ステップS4により溶融を開始して最低溶融粘度Fに達した第2の絶縁性接着剤樹脂22を、圧着ツール8の加圧及び加熱により徐々に硬化させる。なお、このとき、第1の絶縁性接着剤樹脂21の溶融粘度は、第2の絶縁性接着剤樹脂22の溶融粘度よりも高く又は同程度になっている。
Next, in step S <b> 5, the first insulating adhesive resin 21 that starts melting in step S <b> 3 and reaches the minimum melt viscosity F <b> 1 is gradually cured by pressurization and heating of the crimping tool 8.
Next, in step S < b > 6, the second insulating adhesive resin 22 that has started melting in step S < b > 4 and has reached the minimum melt viscosity F < b > 2 is gradually cured by pressurization and heating of the crimping tool 8. At this time, the melt viscosity of the first insulating adhesive resin 21 is higher or approximately the same as the melt viscosity of the second insulating adhesive resin 22.

次いで、ステップS7では、ステップS5〜S6の過程でガラス基板4のそれぞれの第1の電極4Aとそれらに対向するフレキシブル基板5のそれぞれの第2の電極5Aとに接触するように導電性粒子3が移動した状態で、第1及び第2の絶縁性接着剤樹脂21,22の硬化を完了させて、ガラス基板4のそれぞれの第1の電極4Aとフレキシブル基板5のそれぞれの第2の電極5Aとを導電性粒子3を介して電気的に接合する。なお、図3では、第1の絶縁性接着剤樹脂21が硬化を開始してから、第1の絶縁性接着剤樹脂21が硬化状態に達するまでの区間を領域Bで示し、第2の絶縁性接着剤樹脂22が硬化を開始してから、第2の絶縁性接着剤樹脂22が硬化状態に達するまでの区間を領域Dで示している。   Next, in step S7, the conductive particles 3 are brought into contact with the first electrodes 4A of the glass substrate 4 and the second electrodes 5A of the flexible substrate 5 facing them in the process of steps S5 to S6. In the state where the first and second insulating adhesive resins 21 and 22 are cured, the first electrode 4A of the glass substrate 4 and the second electrode 5A of the flexible substrate 5 are completed. Are electrically joined via the conductive particles 3. In FIG. 3, a region from when the first insulating adhesive resin 21 starts to cure until the first insulating adhesive resin 21 reaches the cured state is indicated by a region B, and the second insulating resin A region D from the start of curing of the adhesive adhesive resin 22 to the second insulating adhesive resin 22 reaching a cured state is indicated by a region D.

なお、上記ステップS3〜S7は、上記ステップS2において開始した第1及び第2の絶縁性接着剤樹脂21,22への加圧及び加熱を、上記ステップS3〜S7の間、続けることで行われる工程である。
以上のステップS1〜ステップS7により、ガラス基板4とフレキシブル基板5との電極接合が完了する。
In addition, said step S3-S7 is performed by continuing the pressurization and heating to the 1st and 2nd insulating adhesive resin 21 and 22 started in said step S2 during said step S3-S7. It is a process.
Through the above steps S1 to S7, the electrode bonding between the glass substrate 4 and the flexible substrate 5 is completed.

上記のような溶融状態の変化の関係から、第1の絶縁性接着剤樹脂21が溶融(軟化)して流動を開始してから、第2の絶縁性接着剤樹脂22が溶融(軟化)して流動を開始するまでの図3のIの期間は、複数の第1又は第2の電極4A,5Aの電極間への絶縁性接着剤樹脂2の充填性を高めて、加圧不足による絶縁性接着剤樹脂2とガラス基板4及びフレキシブル基板5との密着性を向上させるプロセスとなる。   From the relationship of the change in the molten state as described above, after the first insulating adhesive resin 21 melts (softens) and starts to flow, the second insulating adhesive resin 22 melts (softens). In the period I in FIG. 3 until the flow starts, the filling property of the insulating adhesive resin 2 between the plurality of first or second electrodes 4A and 5A is improved, and insulation due to insufficient pressurization is performed. This is a process for improving the adhesion between the adhesive resin 2 and the glass substrate 4 and the flexible substrate 5.

また、第2の絶縁性接着剤樹脂22が溶融(軟化)して流動を開始してから最低溶融粘度Fに達するまでの図3のIIの期間は、第1の絶縁性接着剤樹脂21が第2の絶縁性接着剤樹脂22に先行して溶融し硬化することにより、第2の絶縁性接着剤樹脂22及び導電性粒子3の流動性が緩和されるので、加圧不足による絶縁性接着剤樹脂2とガラス基板4及びフレキシブル基板5との密着性を向上させるとともに導電性粒子3の凝集を抑制するプロセスとなる。 Further, the period II in FIG. 3 from when the second insulating adhesive resin 22 melts (softens) and starts to flow until it reaches the minimum melt viscosity F 2 is the first insulating adhesive resin 21. Since the fluidity of the second insulating adhesive resin 22 and the conductive particles 3 is eased by melting and curing prior to the second insulating adhesive resin 22, the insulating property due to insufficient pressurization. This is a process for improving the adhesion between the adhesive resin 2 and the glass substrate 4 and the flexible substrate 5 and suppressing the aggregation of the conductive particles 3.

また、第2の絶縁性接着剤樹脂22が最低溶融粘度Fに達してから硬化状態に達するまでの図3のIIIの期間は、導電性粒子3の凝集が抑制された状態で第1及び第2の絶縁性接着剤樹脂21,22が硬化するプロセスとなる。 Further, during the period III in FIG. 3 from when the second insulating adhesive resin 22 reaches the minimum melt viscosity F 2 until reaching the cured state, the first and second conductive adhesives 3 are prevented from aggregating. This is a process in which the second insulating adhesive resins 21 and 22 are cured.

なお、本第1実施形態においては、第1の絶縁性接着剤樹脂21と第2の絶縁性接着剤樹脂22とが同時的に加圧及び加熱されて、それらの一部が境界付近で混在して一体化したものを絶縁性接着剤樹脂2(図2C参照)としている。   In the first embodiment, the first insulating adhesive resin 21 and the second insulating adhesive resin 22 are simultaneously pressurized and heated, and some of them are mixed near the boundary. Thus, the integrated adhesive resin 2 (see FIG. 2C) is used.

本発明の第1実施形態にかかる電極接合方法によれば、対向領域51の縁部51Aに導電性粒子3を含まない熱硬化性の第1の絶縁性接着剤樹脂21を配置するとともに、対向領域51の縁部51Aより内側に導電性粒子3が分散された熱硬化性の第2の絶縁性接着剤樹脂22を配置した状態で、第1及び第2の絶縁性接着剤樹脂21,22を同時的に加圧及び加熱して、第1の絶縁性接着剤樹脂21を第2の絶縁性接着剤樹脂22よりも先に溶融させて硬化させるようにしているので、第1の絶縁性接着剤樹脂21により導電性粒子3及び第2の絶縁性接着剤樹脂22の流動速度が緩和(減速)される。これにより、対向領域51の縁部51Aの外側領域52への導電性粒子3の流動量が少なくなり、加圧及び加熱後の絶縁性接着剤樹脂2中における対向領域51の縁部51Aの外側領域52では導電性粒子3の凝集が抑制され、ショート不良の発生が抑えられる。
また、第1の絶縁性接着剤樹脂21により第2の絶縁性接着剤樹脂22の流動速度が緩和(減速)されるので、第2の絶縁性接着剤樹脂22に圧着ツール8から加圧力を効果的に伝えることができ、加圧不足に起因するマイグレーション不良の発生も抑えられる。
さらに、第1及び第2の絶縁性接着剤樹脂21,22中には、導電性粒子3とガラス基板4及びフレキシブル基板5との接触を阻害する部材(例えば絶縁性粒子)が含まれていないので、電極間の導通も確保できるとともに、粒子密度が高くならないので第1及び第2の絶縁性接着剤樹脂21,22の流動性は悪くならず、ガラス基板4及びフレキシブル基板5と第1及び第2の絶縁性接着剤樹脂21,22との密着性は低下しない。
According to the electrode bonding method according to the first embodiment of the present invention, the thermosetting first insulating adhesive resin 21 not including the conductive particles 3 is disposed on the edge 51A of the facing region 51, and the facing region 51A is opposed to the facing region 51. In a state where the thermosetting second insulating adhesive resin 22 in which the conductive particles 3 are dispersed is arranged inside the edge 51A of the region 51, the first and second insulating adhesive resins 21 and 22 are disposed. Since the first insulating adhesive resin 21 is melted and cured prior to the second insulating adhesive resin 22, the first insulating adhesive resin 21 is first pressurized. The flow rate of the conductive particles 3 and the second insulating adhesive resin 22 is relaxed (decelerated) by the adhesive resin 21. Thereby, the flow amount of the conductive particles 3 to the outer region 52 of the edge portion 51A of the facing region 51 decreases, and the outer side of the edge portion 51A of the facing region 51 in the insulating adhesive resin 2 after pressurization and heating. In the region 52, the aggregation of the conductive particles 3 is suppressed, and the occurrence of short circuit failure is suppressed.
In addition, since the flow rate of the second insulating adhesive resin 22 is relaxed (decreased) by the first insulating adhesive resin 21, pressure is applied to the second insulating adhesive resin 22 from the crimping tool 8. Effective transmission can be achieved, and the occurrence of migration failure due to insufficient pressurization can be suppressed.
Further, the first and second insulating adhesive resins 21 and 22 do not include a member (for example, insulating particles) that hinders contact between the conductive particles 3 and the glass substrate 4 and the flexible substrate 5. Therefore, the conduction between the electrodes can be ensured, and since the particle density does not increase, the fluidity of the first and second insulating adhesive resins 21 and 22 does not deteriorate, and the glass substrate 4 and the flexible substrate 5 and the first and second Adhesiveness with the second insulating adhesive resins 21 and 22 does not decrease.

したがって、本発明の第1実施形態にかかる電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。本発明の第1実施形態にかかる電極接合方法は、特に、上記効果が求められるガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術においては、より有用である。   Therefore, according to the electrode joining method according to the first embodiment of the present invention, it is possible to suppress the occurrence of short-circuit defects and suppress the occurrence of migration defects to ensure connection reliability at a high voltage and reduce the pitch (for example, 0.1 mm or less). The electrode bonding method according to the first embodiment of the present invention is more useful particularly in a flat panel bonding technique represented by electrode bonding between a glass substrate and a flexible substrate, which requires the above-described effects.

また、本発明の第1実施形態にかかる電極接合方法によれば、第1及び第2の絶縁性接着剤樹脂21,22を同時的に加圧するとともに加熱するという簡単な(1つの)作業で、上記効果を得ることができるので、1組の回路形成体の電極接合を行うのにかかる時間が短いという特有な効果もある。   In addition, according to the electrode joining method according to the first embodiment of the present invention, the first and second insulating adhesive resins 21 and 22 can be simultaneously pressurized and heated (one). Since the above effect can be obtained, there is also a specific effect that the time required for performing electrode joining of a set of circuit formed bodies is short.

また、本発明の第1実施形態にかかる電極接合方法によれば、第2の絶縁性接着剤樹脂22が溶融して硬化し始めたとき、第1の絶縁性接着剤樹脂21の溶融粘度が第2の絶縁性接着剤樹脂2の溶融粘度よりも高く又は同程度になるように構成されているので、導電性粒子3及び第2の絶縁性接着剤樹脂22の流動速度を、さらに効果的に緩和することが可能となる。   In addition, according to the electrode joining method according to the first embodiment of the present invention, when the second insulating adhesive resin 22 starts to melt and harden, the melt viscosity of the first insulating adhesive resin 21 increases. Since it is comprised so that it may become higher than melt viscosity of the 2nd insulating adhesive resin 2, it is more effective in the flow rate of the electroconductive particle 3 and the 2nd insulating adhesive resin 22. It becomes possible to relax.

なお、上記では、第1の絶縁性接着剤樹脂21が第2の絶縁性接着剤樹脂22よりも先に溶融するように、第1の絶縁性接着剤樹脂21と第2の絶縁性接着剤樹脂22の材質を異ならせたが、本発明はこれに限定されない。例えば、上記のように第1の保護シート6の熱伝導率を第2の保護シート7の熱伝導率よりも高くすることで、圧着ツール8から第1及び第2の絶縁性接着剤樹脂21,22に供給される熱のエネルギーを高くし、第1の絶縁性接着剤樹脂21が第2の絶縁性接着剤樹脂22よりも先に溶融するようにすることも可能であるので、第1及び第2の絶縁性接着剤樹脂21,22は同一の材質であってもよい。すなわち、導電性粒子3を含まない領域と導電性粒子3が分散された領域とを有する単一の絶縁性接着剤樹脂であってもよい。
なお、圧着ツール8から第1及び第2の絶縁性接着剤樹脂21,22に供給される熱のエネルギーを異ならせる方法として、第1及び第2の保護シート6,7の熱伝導率を異ならせる方法を一例に挙げたが、本発明はこれに限定されず、他の方法により上記熱のエネルギーを異ならせてもよい。
In the above description, the first insulating adhesive resin 21 and the second insulating adhesive are so melted that the first insulating adhesive resin 21 is melted before the second insulating adhesive resin 22. Although the material of the resin 22 is varied, the present invention is not limited to this. For example, by making the thermal conductivity of the first protective sheet 6 higher than the thermal conductivity of the second protective sheet 7 as described above, the first and second insulating adhesive resins 21 from the crimping tool 8 can be used. , 22 can be made higher so that the first insulating adhesive resin 21 is melted before the second insulating adhesive resin 22. And the 2nd insulating adhesive resin 21 and 22 may be the same material. That is, a single insulating adhesive resin having a region not including the conductive particles 3 and a region in which the conductive particles 3 are dispersed may be used.
As a method for differentiating the energy of heat supplied from the crimping tool 8 to the first and second insulating adhesive resins 21 and 22, the thermal conductivity of the first and second protective sheets 6 and 7 is different. However, the present invention is not limited to this, and the heat energy may be varied by other methods.

また、上記では、第1及び第2の絶縁性接着剤樹脂21,22を、第1及び第2の保護シート6,7とフレキシブル基板5とを介して同時的に加圧及び加熱するようにしたが、これに代えて、第1及び第2の保護シート6,7を圧着ツール8とガラス基板4との間に配置して、第1及び第2の絶縁性接着剤樹脂21,22を、第1及び第2の保護シート6,7とガラス基板4とを介して同時的に加圧及び加熱するようにしてもよい。   In the above, the first and second insulating adhesive resins 21 and 22 are simultaneously pressurized and heated via the first and second protective sheets 6 and 7 and the flexible substrate 5. However, instead of this, the first and second protective sheets 6 and 7 are disposed between the crimping tool 8 and the glass substrate 4, and the first and second insulating adhesive resins 21 and 22 are disposed. The pressure and heating may be performed simultaneously via the first and second protective sheets 6 and 7 and the glass substrate 4.

また、上記では、ガラス基板4を第1の回路形成体の一例として挙げたが、第1の回路形成体としては、ガラス基板の他、ガラエポ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板、プリント配線基板、フレキシブル基板等が用いられてもよい。
また、上記では、フレキシブル基板5を第2の回路形成体の一例して挙げたが、第2の回路形成体としては、フレキシブル基板の他に、ガラス基板、ガラエポ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板、プリント配線基板、ICチップ等が用いられてもよい。
第1及び第2の回路形成体を上記のような構成にすることにより、高い生産性を保ちつつ高品質な電極接合構造体を安価に提供することができる。
In the above description, the glass substrate 4 is given as an example of the first circuit forming body. However, as the first circuit forming body, a glass substrate, a glass-epoxy wiring substrate, a polyethylene terephthalate substrate, a polycarbonate substrate, and a polyethylene naphthalate. A substrate, a polyimide substrate, a ceramic substrate, a printed wiring substrate, a flexible substrate, or the like may be used.
In the above description, the flexible substrate 5 is given as an example of the second circuit forming body. As the second circuit forming body, in addition to the flexible substrate, a glass substrate, a glass epoxy wiring substrate, a polyethylene terephthalate substrate, a polycarbonate are used. A substrate, a polyethylene naphthalate substrate, a polyimide substrate, a ceramic substrate, a printed wiring substrate, an IC chip, or the like may be used.
By configuring the first and second circuit formation bodies as described above, a high-quality electrode junction structure can be provided at low cost while maintaining high productivity.

なお、上記では、ガラス基板4とフレキシブル基板5との電極接合における第1の絶縁性接着剤樹脂21の配置について説明したが、フレキシブル基板5に代えて矩形の電子部品15をガラス基板4に接合する場合、第1の絶縁性接着剤樹脂21を以下のように配置すればよい。   Although the arrangement of the first insulating adhesive resin 21 in the electrode bonding between the glass substrate 4 and the flexible substrate 5 has been described above, a rectangular electronic component 15 is bonded to the glass substrate 4 instead of the flexible substrate 5. In this case, the first insulating adhesive resin 21 may be arranged as follows.

すなわち、電子部品15の複数の電極が各辺部分に沿って配置され、図5に示すように、それに対向するようにガラス基板4の複数の電極4Aが配置されて、第2の絶縁性接着剤樹脂22が図5の主に上下左右方向に流動するような場合、例えば、図5に示すように第1の絶縁性接着剤樹脂21を第2の絶縁性接着剤樹脂22の全周に沿って配置すればよい。(なお、図5においては、図示を理解し易くするため電子部品15を取り除いた状態を示している)。また、電子部品15の角部においては、他の部分に比べて加圧及び加熱された第2の絶縁性接着剤樹脂22の流動速度が遅く、導電性粒子3が凝集したとしてもショート不良を起こす可能性が低い。このため、図6に示すように、第1の絶縁性接着剤樹脂21を電子部品15の角部以外の縁部51Aに対応するように形成してもよい(なお、図6も図5と同様に、図示を理解し易くするため電子部品15を取り除いた状態を示している)。   That is, the plurality of electrodes of the electronic component 15 are arranged along each side portion, and as shown in FIG. 5, the plurality of electrodes 4A of the glass substrate 4 are arranged so as to face each other, and the second insulating adhesion is performed. In the case where the adhesive resin 22 mainly flows in the vertical and horizontal directions in FIG. 5, for example, as shown in FIG. 5, the first insulating adhesive resin 21 is placed on the entire circumference of the second insulating adhesive resin 22. It only has to be arranged along. (Note that FIG. 5 shows a state in which the electronic component 15 is removed for easy understanding of the illustration). Further, in the corner portion of the electronic component 15, the flow rate of the second insulating adhesive resin 22 that has been pressurized and heated is slower than in other portions, and even if the conductive particles 3 are aggregated, a short circuit failure is caused. The possibility of waking up is low. For this reason, as shown in FIG. 6, the first insulating adhesive resin 21 may be formed so as to correspond to the edge portion 51A other than the corner portion of the electronic component 15 (FIG. 6 is also similar to FIG. Similarly, the state where the electronic component 15 is removed is shown for easy understanding of the illustration).

《実施例》
次に、本発明の第1実施形態の電極接合方法の具体例の1つである実施例を、図2A〜図2C、図3及び図4を参照しながら説明する。まず、各構成要素の具体的構成について説明する。
"Example"
Next, an example which is one of the specific examples of the electrode bonding method according to the first embodiment of the present invention will be described with reference to FIGS. 2A to 2C, 3 and 4. First, a specific configuration of each component will be described.

本実施例において、第1の回路形成体は、厚さ1.8mmのポリイミドフィルム上に、厚さ3μmの銀で形成した複数の第1の電極4AをL/S=50μm/50μmの幅で配置したガラス基板4で構成している。なお、Lは電極の幅を示し、Sは隣り合う電極と電極との間の幅を示す。すなわち、上記構成の電極間のピッチは50μm+50μm=100μm=0.1mmである。
また、本実施例において、第2の回路形成体は、厚さ50μmのポリイミドフィルム上に、厚さ20μmの銅で形成した複数の第2の電極5AをL/S=50μm/50μmの幅で配置したフレキシブル基板5で構成している。
また、本実施例において、第1の絶縁性接着剤樹脂は、長さ2mm、幅2mm、厚さ25μmの熱硬化性のエポキシ樹脂を主成分とした樹脂シート21で構成している。
また、本実施例において、第2の絶縁性接着剤樹脂は、ニッケルを平均粒径8μm程度に形成した導電性粒子3を均一に分散した、長さ2mm、幅2mm、厚さ25μmの熱硬化性のエポキシ樹脂を主成分とした異方性導電性シート22で構成している。
また、本実施例において、第1の保護シート6は、長さ2mm、幅2mm、厚さ130μmの銅で形成されている。
また、本実施例において、第2の保護シート7は、長さ2mm、幅2mm、厚さ130μmのテフロン(登録商標)で形成されている。
In the present embodiment, the first circuit formed body has a plurality of first electrodes 4A formed of silver having a thickness of 3 μm on a polyimide film having a thickness of 1.8 mm with a width of L / S = 50 μm / 50 μm. The glass substrate 4 is arranged. L indicates the width of the electrode, and S indicates the width between the adjacent electrodes. That is, the pitch between the electrodes having the above configuration is 50 μm + 50 μm = 100 μm = 0.1 mm.
Further, in this example, the second circuit formed body has a plurality of second electrodes 5A formed of copper having a thickness of 20 μm on a polyimide film having a thickness of 50 μm with a width of L / S = 50 μm / 50 μm. The flexible substrate 5 is arranged.
In the present embodiment, the first insulating adhesive resin is composed of a resin sheet 21 mainly composed of a thermosetting epoxy resin having a length of 2 mm, a width of 2 mm, and a thickness of 25 μm.
In the present example, the second insulating adhesive resin is a thermoset having a length of 2 mm, a width of 2 mm, and a thickness of 25 μm, in which conductive particles 3 in which nickel is formed with an average particle size of about 8 μm are uniformly dispersed. It is comprised with the anisotropic conductive sheet 22 which has an electroconductive epoxy resin as a main component.
In the present embodiment, the first protective sheet 6 is made of copper having a length of 2 mm, a width of 2 mm, and a thickness of 130 μm.
In this embodiment, the second protective sheet 7 is formed of Teflon (registered trademark) having a length of 2 mm, a width of 2 mm, and a thickness of 130 μm.

以下、本実施例の電極接合方法を説明する。
まず、ガラス基板4の複数の電極4A上で且つ対向領域51の縁部51Aより内側に異方性導電性シート22を貼り付けるとともに対向領域51の縁部51Aに樹脂シート21を貼り付けたのち、図2Bに示すように、ガラス基板4のそれぞれの第1の電極4Aとフレキシブル基板5のぞれぞれの第2の電極5Aとが対向するように位置合わせしてガラス基板4とフレキシブル基板5とを重ね合わせる(図4のステップS1)。
Hereinafter, the electrode joining method of the present embodiment will be described.
First, the anisotropic conductive sheet 22 is pasted on the plurality of electrodes 4A of the glass substrate 4 and inside the edge 51A of the facing region 51, and the resin sheet 21 is pasted on the edge 51A of the facing region 51. As shown in FIG. 2B, the glass substrate 4 and the flexible substrate are aligned so that the first electrodes 4A of the glass substrate 4 and the second electrodes 5A of the flexible substrate 5 face each other. 5 are superimposed (step S1 in FIG. 4).

次いで、圧着ツール8の加熱用ヒータ8A、エアシリンダ8B及びモータ8Cを駆動して、第1及び第2の保護シート6,7とフレキシブル基板5とを介して同時的に樹脂シート21及び異方性導電性シート22の加圧及び加熱を開始する(図4のステップS2)。
次いで、圧着ツール8による加圧及び加熱により、樹脂シート21の溶融を開始(図4のステップS3)させたのち、異方性導電性シート22の溶融を開始(図4のステップS4)させる。
Next, the heater 8A, the air cylinder 8B, and the motor 8C of the crimping tool 8 are driven, and the resin sheet 21 and the anisotropic are simultaneously passed through the first and second protective sheets 6 and 7 and the flexible substrate 5. The pressurization and heating of the conductive sheet 22 are started (step S2 in FIG. 4).
Next, the resin sheet 21 starts to be melted by pressurization and heating with the crimping tool 8 (step S3 in FIG. 4), and then the anisotropic conductive sheet 22 starts to melt (step S4 in FIG. 4).

次いで、圧着ツール8による加圧及び加熱により、最低溶融粘度に達した樹脂シート21の硬化を開始(図4のステップS5)させたのち、最低溶融粘度に達した異方性導電性シート22の硬化を開始(図4のステップS6)させる。   Next, the resin sheet 21 that has reached the minimum melt viscosity is started to be cured by pressurization and heating with the crimping tool 8 (step S5 in FIG. 4), and then the anisotropic conductive sheet 22 that has reached the minimum melt viscosity. Curing is started (step S6 in FIG. 4).

次いで、上記樹脂シート21及び異方性導電性シート22の溶融及び硬化の過程でガラス基板4のそれぞれの第1の電極4Aとそれらに対向するフレキシブル基板5のそれぞれの第2の電極5Aとに接触するように導電性粒子3が移動した状態で、第1及び第2の絶縁性接着剤樹脂21,22を硬化状態にして、ガラス基板4のそれぞれの第1の電極4Aとフレキシブル基板5のそれぞれの第2の電極5Aとを導電性粒子3を介して電気的に接合する(図4のステップS7)。
なお、このとき、加熱用ヒータ8Aによる加熱温度は樹脂シート21及び異方性導電性シート22に対して180℃となるように設定し、エアシリンダ8Bによる加圧力は3MPaに設定し、それらの加圧及び加熱時間は10秒に設定した。
Next, in the process of melting and curing the resin sheet 21 and the anisotropic conductive sheet 22, each first electrode 4 </ b> A of the glass substrate 4 and each second electrode 5 </ b> A of the flexible substrate 5 facing them. In a state where the conductive particles 3 are moved so as to come into contact with each other, the first and second insulating adhesive resins 21 and 22 are cured, and the first electrode 4A and the flexible substrate 5 of the glass substrate 4 are respectively cured. Each second electrode 5A is electrically joined via the conductive particles 3 (step S7 in FIG. 4).
At this time, the heating temperature by the heater 8A is set to 180 ° C. with respect to the resin sheet 21 and the anisotropic conductive sheet 22, and the pressurizing force by the air cylinder 8B is set to 3 MPa. Pressurization and heating time were set to 10 seconds.

上記電極接合方法により接合された電極接合構造体においては、図2Cに示すように、樹脂シート21と異方性導電性シート22とが加圧及び加圧されてそれらの一部が混在した絶縁性接着剤樹脂2中において、導電性粒子3が対向領域51の縁部51Aの内側領域よりも対向領域51の縁部51Aの外側領域52が低い体積密度(0に近い体積密度)になるように分散され、導電性粒子3の凝集は発生しなかった。また、隣接する電極と電極との間にも絶縁性背着剤樹脂2が隙間無く充填された。したがって、電極間のピッチが0.1mmの第1及び第2のフレキシブル基板4,5において、ショート不良及びマイグレーション不良が発生しないことが確認された。   In the electrode bonded structure bonded by the above electrode bonding method, as shown in FIG. 2C, the resin sheet 21 and the anisotropic conductive sheet 22 are pressed and pressed, and a part of them is mixed. In the conductive adhesive resin 2, the conductive particles 3 have a lower volume density (a volume density close to 0) in the outer region 52 of the edge portion 51 </ b> A of the facing region 51 than in the inner region of the edge portion 51 </ b> A of the facing region 51. The conductive particles 3 were not aggregated. Further, the insulating backing resin 2 was filled between the adjacent electrodes without any gap. Therefore, it was confirmed that no short-circuit failure and migration failure occurred in the first and second flexible substrates 4 and 5 having a pitch between the electrodes of 0.1 mm.

《第2実施形態》
図7A〜図7Cを用いて、本発明の第2実施形態にかかる電極接合方法について説明する。図7A〜図7Cは、本発明の第2実施形態にかかる電極接合方法の手順を示す断面図である。本発明の第2実施形態にかかる電極接合方法は、第1の保護シート6に代えて第1の保護シート61を備える点で、本発明の第1実施形態にかかる電極接合方法と相違する。また、ここでは、第1及び第2の絶縁性接着剤樹脂21,22とは、同一の熱硬化性の樹脂で構成されているものとする。それ以外の点については同様であるので重複する説明は省略し、主に相違点を説明する。
<< Second Embodiment >>
The electrode joining method according to the second embodiment of the present invention will be described with reference to FIGS. 7A to 7C. 7A to 7C are cross-sectional views showing the procedure of the electrode joining method according to the second embodiment of the present invention. The electrode bonding method according to the second embodiment of the present invention is different from the electrode bonding method according to the first embodiment of the present invention in that a first protective sheet 61 is provided instead of the first protective sheet 6. Here, it is assumed that the first and second insulating adhesive resins 21 and 22 are made of the same thermosetting resin. Since the other points are the same, redundant description will be omitted, and differences will be mainly described.

第1の保護シート61は、第2の保護シート7と材質が同一で、第2の保護シート7よりも厚さが厚くなるように構成されている。それ以外の点は第1の保護シート6と同様に構成されている。   The first protective sheet 61 is made of the same material as the second protective sheet 7 and is configured to be thicker than the second protective sheet 7. The other points are configured in the same manner as the first protective sheet 6.

このように構成された第1の保護シート61を介して第1の絶縁性接着剤樹脂21を加圧及び加熱したとき、第1の絶縁性接着剤樹脂21には、第2の保護シート6を介して加圧及び加熱された第2の絶縁性接着剤樹脂22よりも強い圧力のエネルギーが圧着ツール8から供給される。第2の絶縁性接着剤樹脂22よりも第1の絶縁性接着剤樹脂21に強い圧力のエネルギーが供給されると、第1の絶縁性接着剤樹脂21の最低溶融粘度が第2の絶縁性接着剤樹脂22の最低溶融粘度よりも低くなるとともに、第1の保護シート61は第2の保護シート7よりも厚さが厚いために加圧及び加熱したときに第1の保護シート61の方がより早く熱が伝導することよって、第2の絶縁性接着剤樹脂22よりも第1の絶縁性接着剤樹脂21の溶融及び硬化が促進され、第1及び第2の絶縁性接着剤樹脂21,22の溶融粘度の状態が図3に示すように変化する。このため、上記構成によれば、第1の絶縁性接着剤樹脂21は第2の絶縁性接着剤樹脂22よりも先に硬化し、第2の絶縁性接着剤樹脂22及び導電性粒子3の流動速度が緩和されることとなる。   When the first insulating adhesive resin 21 is pressurized and heated through the first protective sheet 61 configured in this manner, the first protective adhesive resin 21 includes the second protective sheet 6. The pressure tool 8 supplies energy of a pressure stronger than that of the second insulating adhesive resin 22 that has been pressurized and heated via the pressure. When energy of a pressure higher than that of the second insulating adhesive resin 22 is supplied to the first insulating adhesive resin 21, the minimum melt viscosity of the first insulating adhesive resin 21 becomes the second insulating property. Since the first protective sheet 61 is lower than the minimum melt viscosity of the adhesive resin 22 and the first protective sheet 61 is thicker than the second protective sheet 7, the first protective sheet 61 is more pressurized when heated and pressurized. As the heat is conducted faster, the melting and curing of the first insulating adhesive resin 21 is promoted than the second insulating adhesive resin 22, and the first and second insulating adhesive resins 21 are accelerated. , 22 change as shown in FIG. For this reason, according to the said structure, the 1st insulating adhesive resin 21 hardens | cures prior to the 2nd insulating adhesive resin 22, and the 2nd insulating adhesive resin 22 and the electroconductive particle 3 of FIG. The flow rate will be relaxed.

したがって、本発明の第2実施形態にかかる電極接合方法によれば、加圧及び加熱後の絶縁性接着剤樹脂2中における対向領域51の縁部51Aの外側領域52では導電性粒子3の凝集が抑制され、ショート不良の発生が抑えられるとともに、加圧不足によるマイグレーション不良の発生も抑えることができる。   Therefore, according to the electrode joining method according to the second embodiment of the present invention, the conductive particles 3 are aggregated in the outer region 52 of the edge portion 51A of the facing region 51 in the insulating adhesive resin 2 after pressurization and heating. Is suppressed, occurrence of short-circuit defects is suppressed, and occurrence of migration defects due to insufficient pressurization can be suppressed.

なお、上記では、第1及び第2の絶縁性接着剤樹脂21,22に供給される圧着ツール8の圧力のエネルギーが異なることの理解を容易にするために、第1及び第2の保護シートの材質が同一として説明したが、本発明はこれに限定されない。第1の保護シート6と第2の保護シート7の厚みを異ならせることにより、圧力ツール8から第1及び第2の絶縁性接着剤樹脂21,22に供給される圧力のエネルギーを異ならせることができるように構成されていればよい。例えば、図8に示すように、一枚のテフロン(登録商標)やポリイミド等の非金属からなる第2の保護シート7上に、銅等の金属からなる第1の保護シート6を貼り付けることで、厚みを異ならせてもよい。このように構成した場合、第1及び第2の保護シートの製造が容易となる。   In the above, in order to facilitate understanding that the pressure energy of the crimping tool 8 supplied to the first and second insulating adhesive resins 21 and 22 is different, the first and second protective sheets are used. However, the present invention is not limited to this. By making the thickness of the first protective sheet 6 and the second protective sheet 7 different, the energy of the pressure supplied from the pressure tool 8 to the first and second insulating adhesive resins 21 and 22 is made different. What is necessary is just to be comprised so that. For example, as shown in FIG. 8, the first protective sheet 6 made of a metal such as copper is pasted on the second protective sheet 7 made of a non-metal such as Teflon (registered trademark) or polyimide. Thus, the thickness may be varied. When comprised in this way, manufacture of the 1st and 2nd protection sheet becomes easy.

また、上記では、第1及び第2の絶縁性接着剤樹脂21,22に供給される圧着ツール8の圧力のエネルギーが異なることにより、最低溶融粘度等が異なることの理解を容易にするために、第1及び第2の絶縁性接着剤樹脂21,22とは、同一の熱硬化性の樹脂で構成されるものとして説明したが、本発明はこれに限定されない。第1及び第2の絶縁性接着剤樹脂21,22の材質は、上記圧力のエネルギーが供給されることにより、第1の絶縁性接着剤樹脂21の最低溶融粘度が第2の絶縁性接着剤樹脂22の最低溶融粘度よりも低くなる材質であればよい。   Further, in the above, in order to facilitate understanding of the difference in the minimum melt viscosity and the like due to the pressure energy of the crimping tool 8 supplied to the first and second insulating adhesive resins 21 and 22 being different. The first and second insulating adhesive resins 21 and 22 have been described as being composed of the same thermosetting resin, but the present invention is not limited to this. The material of the first and second insulating adhesive resins 21 and 22 is such that the minimum melt viscosity of the first insulating adhesive resin 21 is the second insulating adhesive when the energy of the pressure is supplied. Any material that is lower than the minimum melt viscosity of the resin 22 may be used.

また、第2の保護シート7よりも厚さを厚くした第1の保護シート61は、圧着ツール8とガラス基板4又はフレキシブル基板5との間に配置され、圧着ツール8により第2の保護シート7と同一の厚さになるまで圧縮できるように、ある程度の弾性力を有する材質で構成されることが好ましい。第2の保護シート7と同一の厚さになるまで圧縮できない場合、第1の保護シート61と第2の保護シート7との間に段差を生じて、この段差により位置ズレが生じて、接続不良に繋がる可能性がある。   The first protective sheet 61 having a thickness greater than that of the second protective sheet 7 is disposed between the crimping tool 8 and the glass substrate 4 or the flexible substrate 5, and the second protective sheet is formed by the crimping tool 8. 7 is preferably made of a material having a certain degree of elasticity so that it can be compressed to the same thickness as 7. If compression is not possible until the second protective sheet 7 has the same thickness, a step is formed between the first protective sheet 61 and the second protective sheet 7, and a positional shift occurs due to this step, and the connection It may lead to defects.

なお、上記第2実施形態では、第1及び第2の保護シート6,7の厚さを異ならせることにより、圧力ツール8から第1及び第2の絶縁性接着剤樹脂21,22に供給される圧力のエネルギーを異ならせるように構成したが、これに代えて、第1及び第2の保護シート6,7の弾性率を異ならせることにより、圧力ツール8から第1及び第2の絶縁性接着剤樹脂21,22に供給される圧力のエネルギーを異ならせるように構成してもよい。   In the second embodiment, the thicknesses of the first and second protective sheets 6 and 7 are made different so that the first and second insulating adhesive resins 21 and 22 are supplied from the pressure tool 8. However, instead of this, by changing the elastic modulus of the first and second protective sheets 6, 7, the first and second insulating properties can be changed from the pressure tool 8. You may comprise so that the energy of the pressure supplied to the adhesive resin 21 and 22 may differ.

なお、本発明は上記各実施形態に限定されるものではなく、その他種々の態様で実施できる。
なお、上記各実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
In addition, this invention is not limited to said each embodiment, It can implement in another various aspect.
In addition, it can be made to show each effect which each embodiment has among each embodiment by combining suitably.

本発明にかかる電極接合方法及び電極接合構造体は、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑える効果を有するので、回路形成体の電極に他の回路形成体の電極を導電性粒子が分散された絶縁性接着剤樹脂を用いて接合する技術、特にガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術において、隣接する電極間の狭ピッチ化が求められるときに有用である。   Since the electrode bonding method and the electrode bonding structure according to the present invention have the effect of suppressing the occurrence of short-circuit defects and the occurrence of migration defects, the conductive particles are connected to the electrodes of other circuit-formed bodies. Useful when a narrow pitch between adjacent electrodes is required in technology for joining using dispersed insulating adhesive resin, especially in flat panel joining technology represented by electrode joining between glass substrate and flexible substrate. It is.

本発明の第1実施形態にかかる電極接合構造体の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the electrode junction structure concerning 1st Embodiment of this invention. 図1Aのa−a断面図である。It is aa sectional drawing of FIG. 1A. 図1Aのb−b断面図である。It is bb sectional drawing of FIG. 1A. 図1Aのc−c断面図である。It is cc sectional drawing of FIG. 1A. 本発明の第1実施形態にかかる電極接合方法の手順を示す断面図である。It is sectional drawing which shows the procedure of the electrode joining method concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電極接合方法の手順を示す他の断面図である。It is other sectional drawing which shows the procedure of the electrode joining method concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電極接合方法の手順を示すさらに他の断面図である。It is other sectional drawing which shows the procedure of the electrode joining method concerning 1st Embodiment of this invention. 第1の絶縁性接着剤樹脂と第2の絶縁性接着剤樹脂の、時間に対する溶融粘度の変化を示すグラフである。It is a graph which shows the change of the melt viscosity with respect to time of 1st insulating adhesive resin and 2nd insulating adhesive resin. 本発明の第1実施形態にかかる電極接合方法のフローチャートである。It is a flowchart of the electrode joining method concerning 1st Embodiment of this invention. 第2の回路形成体が電子部品であるときにおける、第1及び第2の絶縁性接着剤樹脂の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of 1st and 2nd insulating adhesive resin when a 2nd circuit formation body is an electronic component. 第2の回路形成体が電子部品であるときにおける、第1及び第2の絶縁性接着剤樹脂の他の配置構成を示す平面図である。It is a top view which shows the other arrangement structure of the 1st and 2nd insulating adhesive resin when a 2nd circuit formation body is an electronic component. 本発明の第2実施形態にかかる電極接合方法の手順を示す断面図である。It is sectional drawing which shows the procedure of the electrode joining method concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる電極接合方法の手順を示す他の断面図である。It is other sectional drawing which shows the procedure of the electrode joining method concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる電極接合方法の手順を示すさらに他の断面図である。It is other sectional drawing which shows the procedure of the electrode bonding method concerning 2nd Embodiment of this invention. 第1及び第2の保護シートの他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 1st and 2nd protection sheet. 従来の電極接合方法の手順を示す断面図である。It is sectional drawing which shows the procedure of the conventional electrode joining method. 従来の電極接合構造体の断面図である。It is sectional drawing of the conventional electrode junction structure. 従来の電極接合構造体の平面図である。It is a top view of the conventional electrode junction structure. 図9Bのx−x断面図である。It is xx sectional drawing of FIG. 9B.

符号の説明Explanation of symbols

2 絶縁性接着剤樹脂
3 導電性粒子
4 ガラス基板
4A 第1の電極
5 フレキシブル基板
5A 第2の電極
6 第1の保護シート
7 第2の保護シート
8 圧着ツール
21 第1の絶縁性接着剤樹脂
22 第2の絶縁性接着剤樹脂
2 Insulating Adhesive Resin 3 Conductive Particles 4 Glass Substrate 4A First Electrode 5 Flexible Substrate 5A Second Electrode 6 First Protective Sheet 7 Second Protective Sheet 8 Crimping Tool 21 First Insulating Adhesive Resin 22 Second insulating adhesive resin

Claims (12)

複数の第1の電極を有する第1の回路形成体と、上記複数の第1の電極に対向するように形成された複数の第2の電極を有する第2の回路成形体との対向領域の縁部に、導電性粒子を含まない熱硬化性の第1の絶縁性接着剤樹脂を配置するとともに、上記対向領域の上記縁部より内側に、導電性粒子が分散された熱硬化性の第2の絶縁性接着剤樹脂を配置し、
上記第1又は第2の回路形成体を介して上記第1及び第2の絶縁性接着剤樹脂を加圧加熱して、上記それぞれの第1の電極と上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合する、電極接合方法。
A facing region between a first circuit forming body having a plurality of first electrodes and a second circuit molded body having a plurality of second electrodes formed so as to face the plurality of first electrodes. A thermosetting first insulating adhesive resin that does not contain conductive particles is disposed at the edge, and a thermosetting second resin in which conductive particles are dispersed inside the edge of the facing region. 2 insulating adhesive resin,
The first and second insulating adhesive resins are pressurized and heated through the first or second circuit formation body, and the first electrode and the second electrode are connected to each other. An electrode joining method for electrically joining via conductive particles.
上記加圧加熱により、上記それぞれの第1の電極と上記それぞれの第2の電極とを上記導電性粒子を介して電気的に接合するとき、第1の絶縁性接着剤樹脂を第2の絶縁性接着剤樹脂よりも先に溶融させて硬化させる、請求項1に記載の電極接合方法。   When the respective first electrodes and the respective second electrodes are electrically bonded via the conductive particles by the pressure heating, the first insulating adhesive resin is second insulated. The electrode bonding method according to claim 1, wherein the adhesive bonding resin is melted and cured before the adhesive resin. 上記第2の絶縁性接着剤樹脂が硬化し始めるとき、上記第1の絶縁性接着剤樹脂の溶融粘度は、上記第2の絶縁性接着剤樹脂の溶融粘度よりも高い、請求項2に記載の電極接合方法。   The melt viscosity of the first insulating adhesive resin is higher than that of the second insulating adhesive resin when the second insulating adhesive resin begins to cure. Electrode joining method. 上記加圧加熱のための圧力及び熱のエネルギーを供給する圧着ツールと上記第1又は第2の回路形成体との間において、上記第1の絶縁性接着剤樹脂の配置領域に相当する領域に第1の保護シートを配置するとともに、上記第2の絶縁性接着剤樹脂の配置領域に相当する領域に上記第1の保護シートとは異なる第2の保護シートを配置した状態で、上記圧着ツールにより上記加圧加熱して、上記圧着ツールから上記第1の保護シートを介して上記第1の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーが、上記圧着ツールから上記第2の保護シートを介して上記第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーよりも高くなるようにしている、請求項1〜3のいずれか1つに記載の電極接合方法。   In a region corresponding to the arrangement region of the first insulating adhesive resin between the pressure bonding tool for supplying pressure and heat energy for pressure heating and the first or second circuit forming body. In the state where the first protective sheet is disposed and the second protective sheet different from the first protective sheet is disposed in the region corresponding to the region where the second insulating adhesive resin is disposed, The pressure or heat energy supplied from the pressure bonding tool to the first insulating adhesive resin through the first protective sheet is applied from the pressure bonding tool to the second pressure. The electrode joining method according to any one of claims 1 to 3, wherein the pressure or heat energy supplied to the second insulating adhesive resin through a protective sheet is higher than the energy. 上記第1の保護シートと上記第2の保護シートの熱伝導率を異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、請求項4に記載の電極接合方法。   By making the thermal conductivity of the first protective sheet different from that of the second protective sheet, the pressure or heat energy supplied from the pressure tool to the first and second insulating adhesive resins is changed. The electrode joining method according to claim 4, wherein the electrode joining methods are different. 上記第1の保護シートと上記第2の保護シートの厚みを異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、請求項4に記載の電極接合方法。   By varying the thicknesses of the first protective sheet and the second protective sheet, the pressure or heat energy supplied from the pressure tool to the first and second insulating adhesive resins is varied. The electrode joining method according to claim 4. 上記第1の保護シートと上記第2の保護シートの弾性率を異ならせることにより、上記圧力ツールから上記第1及び第2の絶縁性接着剤樹脂に供給される上記圧力又は熱のエネルギーを異ならせている、請求項4に記載の電極接合方法。   By differentiating the elastic modulus of the first protective sheet and the second protective sheet, the pressure or heat energy supplied from the pressure tool to the first and second insulating adhesive resins is made different. The electrode joining method according to claim 4, wherein 上記第1の回路形成体の上記第1の電極又は上記第2の回路形成体の上記第2の電極が銀で形成されている、請求項1〜7のいずれか1つに記載の電極接合方法。   The electrode junction according to any one of claims 1 to 7, wherein the first electrode of the first circuit formation body or the second electrode of the second circuit formation body is formed of silver. Method. 複数の第1の電極を有する第1の回路形成体と、
上記第1の回路形成体の複数の上記第1の電極にそれぞれ対向して配置された複数の第2の電極を有する第2の回路形成体と、
上記第1の回路形成体と上記第2の回路形成体との対向領域に配置されて両者を接合する絶縁性接着剤樹脂と、
上記絶縁性接着剤樹脂中において、上記対向領域の縁部の内側領域よりも上記対向領域の上記縁部の外側領域が低い体積密度になるように分散され、上記第1の回路形成体の上記それぞれの第1の電極と、それらに対向する上記第2の回路形成体の上記それぞれの第2の電極とを電気的に接続する導電性粒子と、
を備える、電極接合構造体。
A first circuit forming body having a plurality of first electrodes;
A second circuit forming body having a plurality of second electrodes disposed respectively facing the plurality of first electrodes of the first circuit forming body;
An insulating adhesive resin that is disposed in an opposing region of the first circuit forming body and the second circuit forming body to join the two;
In the insulating adhesive resin, the outer region of the edge of the facing region is dispersed so as to have a lower volume density than the inner region of the edge of the facing region, and the first circuit forming body is Conductive particles electrically connecting each first electrode and each second electrode of the second circuit formation opposite to the first electrode;
An electrode joint structure comprising:
上記縁部の外側領域における上記導電性粒子の体積密度は、上記縁部の内側領域における上記導電性粒子の体積密度の50%以下である、請求項9に記載の電極接合構造体。   The electrode junction structure according to claim 9, wherein a volume density of the conductive particles in the outer region of the edge is 50% or less of a volume density of the conductive particles in the inner region of the edge. 上記導電性粒子は、上記絶縁性接着剤樹脂の上記対向領域の上記縁部の内側領域にのみ分散されている、請求項9に記載の電極接合構造体。   The electrode junction structure according to claim 9, wherein the conductive particles are dispersed only in an inner region of the edge portion of the facing region of the insulating adhesive resin. 上記第1の回路形成体の上記第1の電極又は上記第2の回路形成体の上記第2の電極が銀で形成されている、請求項9〜11のいずれか1つに記載の電極接合構造体。   The electrode junction according to any one of claims 9 to 11, wherein the first electrode of the first circuit formation body or the second electrode of the second circuit formation body is formed of silver. Structure.
JP2006334027A 2006-12-12 2006-12-12 Electrode bonding method Expired - Fee Related JP4762873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334027A JP4762873B2 (en) 2006-12-12 2006-12-12 Electrode bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334027A JP4762873B2 (en) 2006-12-12 2006-12-12 Electrode bonding method

Publications (2)

Publication Number Publication Date
JP2008147474A true JP2008147474A (en) 2008-06-26
JP4762873B2 JP4762873B2 (en) 2011-08-31

Family

ID=39607299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334027A Expired - Fee Related JP4762873B2 (en) 2006-12-12 2006-12-12 Electrode bonding method

Country Status (1)

Country Link
JP (1) JP4762873B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186848A (en) * 2009-02-12 2010-08-26 Fujitsu Ltd Method of manufacturing electronic component unit
JP2013191795A (en) * 2012-03-15 2013-09-26 Dexerials Corp Connection method using anisotropic conductive material and anisotropic conductive assembly
JP2018056278A (en) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Implementation method of electronic component, joint structure of electronic component, substrate device, display device, and display system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297516A (en) * 2002-03-29 2003-10-17 Optrex Corp Connection method of flexible board
JP2006286790A (en) * 2005-03-31 2006-10-19 Canon Inc Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof
JP2006303130A (en) * 2005-04-20 2006-11-02 Sharp Corp Method for connecting drive circuit board to display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297516A (en) * 2002-03-29 2003-10-17 Optrex Corp Connection method of flexible board
JP2006286790A (en) * 2005-03-31 2006-10-19 Canon Inc Method of bonding wiring board, structure of bonded part thereof, and electric circuit device with bonded part thereof
JP2006303130A (en) * 2005-04-20 2006-11-02 Sharp Corp Method for connecting drive circuit board to display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186848A (en) * 2009-02-12 2010-08-26 Fujitsu Ltd Method of manufacturing electronic component unit
JP2013191795A (en) * 2012-03-15 2013-09-26 Dexerials Corp Connection method using anisotropic conductive material and anisotropic conductive assembly
JP2018056278A (en) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Implementation method of electronic component, joint structure of electronic component, substrate device, display device, and display system

Also Published As

Publication number Publication date
JP4762873B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
KR101640965B1 (en) Anisotropic conductive film, bonded body and bonding method
JP2008069316A (en) Adhesive for mounting electronic part and electronic part mounted structure
TWI713423B (en) Method for manufacturing connection structure and anisotropic conductive adhesive
JP6187918B2 (en) Circuit member connection structure, connection method, and connection material
JP6358535B2 (en) Wiring board connection structure and wiring board connecting method
TW201230899A (en) Electronic-component-mounted wiring substrate and method of manufacturing the same
JP4762873B2 (en) Electrode bonding method
CN107454741B (en) Conductive particle, connection material for circuit member, connection structure, and connection method
KR102047733B1 (en) Mounting Method Of Electronic Component, Bonding Structure Of Electronic Component, Substrate Device, Display Device, And Display System
JP5008476B2 (en) Electrode bonding unit and electrode bonding method
TW201301300A (en) Anisotropic conductive connection material, film laminate, connection method, and connection structure
JP4648294B2 (en) Electrode bonding method and electrode bonding structure
JP5281762B2 (en) Electrode bonding structure
JP2008306024A (en) Electrode connection method and electrode connection structure
JPH11111755A (en) Manufacture of semiconductor device
JP6536968B2 (en) Connection material
JP6474008B2 (en) Connecting material
JP2008112732A (en) Connecting method of electrode
JP2010140924A (en) Electronic component mounting structure, and electronic component mounting method
JP2008071748A (en) Connecting method
JP2005191386A (en) Electrode connecting method and method for manufacturing liquid crystal display element
JP7122084B2 (en) Flexible circuit board, connector, method for manufacturing connector, method for designing flexible circuit board
CN107369631B (en) Method for connecting circuit components
JP2003197806A (en) Manufacturing method for wiring base board and wiring base board
JP2008153208A (en) Connecting member, and electrode-connecting construction using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees