JP2008153208A - Connecting member, and electrode-connecting construction using the same - Google Patents

Connecting member, and electrode-connecting construction using the same Download PDF

Info

Publication number
JP2008153208A
JP2008153208A JP2007299895A JP2007299895A JP2008153208A JP 2008153208 A JP2008153208 A JP 2008153208A JP 2007299895 A JP2007299895 A JP 2007299895A JP 2007299895 A JP2007299895 A JP 2007299895A JP 2008153208 A JP2008153208 A JP 2008153208A
Authority
JP
Japan
Prior art keywords
electrode
conductive
connection
sheet
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299895A
Other languages
Japanese (ja)
Other versions
JP4670859B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Naoyuki Shiozawa
直行 塩沢
Mitsugi Fujinawa
貢 藤縄
Yasushi Goto
泰史 後藤
Tomohisa Ota
共久 太田
Yoshiyuki Ikezoe
善幸 池添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007299895A priority Critical patent/JP4670859B2/en
Publication of JP2008153208A publication Critical patent/JP2008153208A/en
Application granted granted Critical
Publication of JP4670859B2 publication Critical patent/JP4670859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-resolution connecting member, and an electrode-connecting construction that uses the same, capable of diminishing the emission of conductive particles from an electrode, preventing the connecting member from containing bubbles to improve the long-term connection reliability, and eliminating the need for aligning the conductive particles with the electrode for providing superior working efficiency. <P>SOLUTION: The connecting member has insulating adhesive layers 2, 3 on one face or both faces of a conductive sheet 1 comprising a conductive material 6 and a binder 5 and having conductive properties in the direction of the pressure; the insulating adhesive layers are lower in melt viscosity than the sheet, at least when being connected with the sheet; and the binder 5 contains epoxide-based adhesive denaturalized from polyeser, acrylic rubber, nitril butadiene rubber (NBR), or nylon, and a curing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品と回路板や、回路板同士を接着固定すると共に、両者の電極同士を電気的に接続する接続部材及びこれを用いた電極の接続構造に関する。   The present invention relates to an electronic component and a circuit board, a connection member that bonds and fixes circuit boards, and electrically connects both electrodes, and an electrode connection structure using the connection member.

近年、電子部品の小型薄型化に伴い、これらに用いる回路は高密度、高精細化しており、このような電子部品と微細電極の接続は、従来のハンダやゴムコネクタ等では対応が困難であることから、最近では分解能に優れた異方導電性の接着剤や膜状物(以下接続部材)が多用されている。この接続部材は、導電粒子を所定量含有した接着剤からなるもので、この接続部材を電子部品と電極や回路との間に設け、加圧または加熱加圧手段を構じることによって、両者の電極同士が電気的に接続されると共に、電極に隣接して形成されている電極同士には絶縁性を付与して電子部品と回路とが接着固定されるものである。上記接続部材を高分解能化するための基本的な考えは、導電粒子の粒径を隣接電極間よりも小さくすることで隣接電極間における絶縁性を確保し、併せて導電粒子の含有量を粒子同士が接触しない程度とし、かつ電極上に確実に存在させることにより接続部分における導電性を得ることである。   In recent years, with the miniaturization and thinning of electronic components, the circuits used for these have become dense and high definition, and it is difficult to connect such electronic components and fine electrodes with conventional solders, rubber connectors, and the like. Therefore, recently, anisotropic conductive adhesives and film-like materials (hereinafter referred to as connection members) having excellent resolution have been frequently used. This connecting member is made of an adhesive containing a predetermined amount of conductive particles. Both the connecting member is provided between an electronic component and an electrode or circuit, and a pressurizing or heating / pressurizing means is provided. The electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with insulation so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the connecting member is to ensure the insulation between the adjacent electrodes by making the particle size of the conductive particles smaller than between the adjacent electrodes, and also to reduce the content of the conductive particles. It is to obtain the conductivity at the connection portion by making it so that they do not contact each other and reliably existing on the electrode.

特開平03−107888号公報Japanese Patent Laid-Open No. 03-107888 特開平04−366630号公報Japanese Patent Laid-Open No. 04-366630 特開昭61−195179号公報JP-A-61-195179

上記従来の方法は、導電粒子の粒径を小さくすると、粒子同士が2次凝集を起こして大きくなって隣接電極間の絶縁性が保持できなくなり、また導電粒子の含有量を減少すると接続すべき電極上の導電粒子の数も減少することから接触点数が不足し接続電極間での十分な導通が得られなくなるため、長期接続信頼性を保ちながら接続部材を高分解能化することは極めて困難であった。すなわち、近年の著しい高分解能化すなわち電極面積や隣接電極間隙(スペース)の微細化、あるいは電極の幅に対する高さの比の増加等により、電極上の導電粒子が接続時の加圧または加熱加圧により接着剤と共に隣接電極間隙に流出し、接続部材の高分解能化の妨げとなっていた。このとき、接着剤の流出を抑制するために、接着剤を高粘度とする電極と導電粒子の接触が不十分となり相対峙する電極の接続が不可能となる。一方、接着剤の粘度を低くすると、導電粒子の流出に加えてスペース部に気泡を含みやすく接続信頼性、特に耐湿性が低下してしまう欠点がある。   In the above conventional method, when the particle size of the conductive particles is reduced, the particles cause secondary agglomeration and become larger, so that insulation between adjacent electrodes cannot be maintained, and when the content of the conductive particles is reduced, the conductive particles should be connected. Since the number of conductive particles on the electrode also decreases, the number of contact points is insufficient and sufficient continuity between connection electrodes cannot be obtained, so it is extremely difficult to increase the resolution of the connection member while maintaining long-term connection reliability. there were. In other words, due to the recent remarkable increase in resolution, that is, the electrode area and the gap between adjacent electrodes (spaces), or the increase in the ratio of the height to the width of the electrode, the conductive particles on the electrode are pressurized or heated at the time of connection. The pressure flows out together with the adhesive into the gap between adjacent electrodes, which hinders the high resolution of the connecting member. At this time, in order to suppress the outflow of the adhesive, the contact between the electrode having a high viscosity and the conductive particles is insufficient, and the electrodes facing each other cannot be connected. On the other hand, when the viscosity of the adhesive is lowered, in addition to the outflow of the conductive particles, there is a drawback in that bubbles are likely to be included in the space portion and connection reliability, particularly moisture resistance is lowered.

また、このような微細電極や回路の接続を可能とし、かつ接続信頼性に優れた接続部材として、面方向の必要部のみに導電粒子の密集領域を形成するような接続部材の提案もある。これによれば、半導体チップのようなドット状の微細電極の接続が可能となるものの、導電粒子の密集領域と電極との正確な位置合わせが必要で、作業性に劣る欠点がある。   In addition, as a connection member that enables connection of such fine electrodes and circuits and is excellent in connection reliability, there is a proposal of a connection member that forms a dense region of conductive particles only in necessary portions in the plane direction. According to this, although a dot-like fine electrode such as a semiconductor chip can be connected, there is a disadvantage that workability is inferior because accurate alignment of the conductive particle dense region and the electrode is necessary.

本発明は上記欠点に鑑みされたもので、電極上からの導電粒子の流出が少なく、また接続部に気泡を含み難く長期接続信頼性に優れ、導電粒子と電極との正確な位置合わせが不要で作業性に優れた、高分解能の接続部材及びこれを用いた電極の接続構造を提供することを目的とする。   The present invention has been made in view of the above-described drawbacks, and there is little outflow of conductive particles from the electrode, and it is difficult to contain bubbles in the connection portion, and it has excellent long-term connection reliability, and accurate alignment between the conductive particles and the electrode is not necessary An object of the present invention is to provide a high-resolution connecting member excellent in workability and an electrode connecting structure using the same.

請求項1に記載の発明は、導電材料とバインダとよりなる加圧方向に導電性を有する導電性シートの片面又は両面に、上記シートより少なくとも接続時の溶融粘度が低い絶縁性の接着剤層を形成してなる接続部材であって、上記バインダが、ポリエステル、アクリルゴム、ニトリルブタジエンラバー(NBR)又はナイロンで変性したエポキシ樹脂と、硬化剤とを含有してなるエポキシ系接着剤である接続部材に関する。
請求項2に記載の発明は、エポキシ樹脂がアクリルゴムで変性されている、請求項1記載の接続部材に関する。
請求項3に記載の発明は、接着剤層の材料がアクリルゴムで変性したエポキシ樹脂を含有してなるエポキシ系接着剤である、請求項1又は2記載の接続部材に関する。
請求項4に記載の発明は、導電性シートの両面に前記接着剤層が形成されている、請求項1〜3のいずれか一項に記載の接続部材に関する。
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の接続部材における導電性シートが相対峙する電極列間に存在し、かつ対向する電極と前記導電材料とが接触し、接着剤層が前記電極の少なくとも突出する電極の周囲を覆ってなることを特徴とする電極の接続構造に関する。
請求項6に記載の発明は、対向する接続電極の少なくとも一方が、基板を有しないリードフレームの電極であることを特徴とする、請求項5記載の電極の接続構造に関する。
According to the first aspect of the present invention, there is provided an insulating adhesive layer having a low melt viscosity at the time of connection, at least when connected to one or both sides of a conductive sheet having conductivity in a pressurizing direction composed of a conductive material and a binder. A connection member formed by forming a binder, wherein the binder is an epoxy adhesive containing an epoxy resin modified with polyester, acrylic rubber, nitrile butadiene rubber (NBR) or nylon, and a curing agent. It relates to members.
The invention according to claim 2 relates to the connection member according to claim 1, wherein the epoxy resin is modified with acrylic rubber.
The invention according to claim 3 relates to the connection member according to claim 1 or 2, wherein the adhesive layer material is an epoxy adhesive containing an epoxy resin modified with acrylic rubber.
Invention of Claim 4 is related with the connection member as described in any one of Claims 1-3 in which the said adhesive bond layer is formed in both surfaces of an electroconductive sheet.
According to a fifth aspect of the present invention, the conductive sheet in the connecting member according to any one of the first to fourth aspects exists between the electrode rows facing each other, and the opposing electrode and the conductive material are in contact with each other. And an adhesive layer covering at least the periphery of the protruding electrode of the electrode.
The invention according to claim 6 relates to the electrode connection structure according to claim 5, wherein at least one of the opposing connection electrodes is an electrode of a lead frame having no substrate.

本発明によれば、導電材料が絶縁層で被覆された絶縁被覆粒子である導電材料とバインダとよりなる導電領域である導電性を有するシートと、絶縁領域である接着剤層との機能を分離して形成可能なため、高分解能化かつ接続信頼性に優れた接続部材及びこれを用いた電極の接続構造が得られる。導電材料が絶縁層で被覆された絶縁被覆粒子である導電材料を用いているので、絶縁性が良好で、導電材料のバインダに対する濃度を高密度に形成でき、電極上に導通に寄与する導電材料を多数存在させることができ低抵抗で信頼性を高めることができる。   According to the present invention, the function of the conductive sheet, which is a conductive region composed of a conductive material that is an insulating coating particle coated with an insulating layer and a binder, and the adhesive layer, which is an insulating region, is separated. Therefore, a connection member having high resolution and excellent connection reliability and an electrode connection structure using the connection member can be obtained. Since the conductive material is a conductive material that is an insulating coated particle coated with an insulating layer, the conductive material has good insulation, can form a high concentration of the conductive material with respect to the binder, and contributes to conduction on the electrode. Many can be present, and the reliability can be improved with low resistance.

本発明を図面を参照しながら説明する。図1は、本発明の一実施例を説明する接続部材の断面模式図である。本発明の接続部材は、加圧方向のみに導電性を有する導電性シート1の片面または両面に、前記シートより少なくとも接続時の溶融粘度が低い接着剤層2、及び3を形成してなり、さらに汚染防止や取扱い性向上を目的に接着層に対して剥離可能なセパレータ4を片面もしくは両面の接着剤層に必要に応じて設けてある。   The present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a connecting member for explaining an embodiment of the present invention. The connection member of the present invention is formed by forming adhesive layers 2 and 3 having a lower melt viscosity at the time of connection than the sheet on one side or both sides of the conductive sheet 1 having conductivity only in the pressing direction, Further, a separator 4 that can be peeled off from the adhesive layer is provided on one or both sides of the adhesive layer as necessary for the purpose of preventing contamination and improving the handleability.

加圧方向に導電性を有するシート1は図2に示すように、絶縁層で被覆された絶縁被覆粒子である導電材料6を含有したバインダ5よりなる。ここに導電材料6としては、図2(a)(f)(g)のように初めからバインダ5の表面より突出していても、あるいは図2(b)〜(e)のように加圧または加熱加圧手段を構じることでバインダ5の厚み減少によって導電性を付与するようなバインダ5の厚みより小粒径の粒子状のものでも良い。バインダ5に対する導電材料6の割合は、0.1〜20体積%程度である。また導電性を得やすくするために、バインダ5の厚さは膜形成の得られる範囲で薄い方が好ましく、30μm以下より好ましくは15μm以下である。   As shown in FIG. 2, the sheet 1 having conductivity in the pressurizing direction is made of a binder 5 containing a conductive material 6 which is insulating coating particles coated with an insulating layer. Here, the conductive material 6 may be protruded from the surface of the binder 5 from the beginning as shown in FIGS. 2 (a), 2 (f) and 2 (g), or may be pressurized or as shown in FIGS. 2 (b) to 2 (e). It may be in the form of particles having a particle diameter smaller than the thickness of the binder 5 that provides conductivity by reducing the thickness of the binder 5 by providing a heating and pressing means. The ratio of the conductive material 6 to the binder 5 is about 0.1 to 20% by volume. Further, in order to make it easy to obtain conductivity, the thickness of the binder 5 is preferably as thin as possible within the range in which film formation is obtained, and is 30 μm or less, more preferably 15 μm or less.

導電材料6としては、導電材料6を絶縁層8で被覆してなる図3(c)のような絶縁被覆粒子や、導電粒子と絶縁粒子の併用等も適用可能である。導電材料6は、例えば図2の(a)〜(e)の例示のように導電粒子で形成することが好ましい。また導電材料6は、図2(f)のようなバインダ5に貫通口を設けめっき等で導電体を形成したり、図2(g)のように導電繊維状でも良い。導電粒子としては、Au,Ag,Ni,Cu,W,Sb,Sn,はんだ等の金属粒子やカーボン等があり、またこれら導電粒子を核材とするか、あるいは非導電性のガラス、セラミックス、プラスチック等からなる核材に、前記したような材質からなる導電層を被覆等により形成した図3(a)のようなものでも良い。微小な電極上に1個以上、好ましくは多くの粒子数を確保するには小粒径粒子が好適であり、10μm以下、より好ましくは5μm以下である。これら導電粒子の中では、はんだ等の熱溶融金属やプラスチック等の高分子核材に導電層を形成したものが、加熱加圧もしくは加圧により変形性を有し、積層時に回路との接触面積が増加し向上するので好ましい。特に高分子類を核とした場合、はんだのように融点を示さないので軟化の状態を接続温度で広く制御でき、電極の厚みや平坦性のばらつきに対応し易い接続部材が得られるので好ましい。また例えば、NiやW等の硬質金属粒子や、図3(b)のような表面に多数の突起を有する粒子の場合には、導電粒子が電極や配線パターンに食い込むので、酸化膜や汚染層の存在する場合にも低い接続抵抗が得られ信頼性が向上する。   As the conductive material 6, insulating coating particles as shown in FIG. 3C formed by coating the conductive material 6 with an insulating layer 8, or a combination of conductive particles and insulating particles can be applied. The conductive material 6 is preferably formed of conductive particles, for example, as illustrated in FIGS. 2A to 2E. Further, the conductive material 6 may have a through-hole in the binder 5 as shown in FIG. 2 (f) to form a conductor by plating or the like, or may be in the form of conductive fibers as shown in FIG. 2 (g). Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, W, Sb, Sn, and solder, and carbon. These conductive particles are used as a core material, or non-conductive glass, ceramics, 3 (a) may be used in which a conductive layer made of the above-described material is formed on a core material made of plastic or the like by covering or the like. In order to secure one or more particles, preferably a large number of particles, on a minute electrode, small particles are suitable, and are 10 μm or less, more preferably 5 μm or less. Among these conductive particles, those in which a conductive layer is formed on a polymer core material such as a hot-melt metal such as solder or plastic, are deformable when heated or pressurized, and the contact area with the circuit during lamination Is preferable because it increases and improves. In particular, when a polymer is used as a nucleus, it does not show a melting point like solder, so that the softening state can be widely controlled by the connection temperature, and a connection member that can easily cope with variations in electrode thickness and flatness is obtained. Further, for example, in the case of hard metal particles such as Ni and W, or particles having a large number of protrusions on the surface as shown in FIG. 3B, the conductive particles bite into the electrode or wiring pattern, so that an oxide film or a contamination layer Even in the presence of this, a low connection resistance is obtained and the reliability is improved.

バインダ5は、熱可塑性材料や、熱や光により硬化性を示す材料が広く適用でき、接着性を有することが好ましい。これらは接続後の耐熱性や耐湿性に優れることから、硬化性材料の適用が好ましい。中でもエポキシ樹脂系接着剤は、短時間硬化が可能で接続作業性が良く、分子構造上接着性に優れる等の特徴から好ましく適用できる。   As the binder 5, it is preferable that a thermoplastic material or a material exhibiting curability by heat or light can be widely applied and has adhesiveness. Since these are excellent in heat resistance and moisture resistance after connection, application of a curable material is preferable. Among them, the epoxy resin adhesive can be preferably applied from the characteristics that it can be cured for a short time, has good connection workability, and has excellent adhesion in terms of molecular structure.

エポキシ系接着剤は、例えば高分子量のエポキシ、固形エポキシと液状エポキシ、ウレタンやポリエステル、アクリルゴム、NBR、ナイロン等で変性したエポキシを主成分とし、硬化剤や触媒、カップリング剤、充填剤等を添加してなるものが一般的である。   Epoxy adhesives include, for example, high molecular weight epoxy, solid epoxy and liquid epoxy, urethane, polyester, acrylic rubber, NBR, nylon, etc. modified epoxy as the main component, curing agent, catalyst, coupling agent, filler, etc. What is added is generally.

本発明の接続部材は、加圧方向に導電性を有するシート1の片面または両面に、前記シートより少なくとも接続時の溶融粘度が低い接着剤層2と、必要に応じてさらに接着剤層3を形成する。接着剤層2、3の厚みは、接続後に電極の体積を除くスペース部を充填できるように形成することが好ましい。接着剤層2、3は、前記したバインダ5と同様な絶縁材料が適用可能であり、絶縁性に影響の無い範囲で少量の導電粒子を含んでも良い。   The connecting member of the present invention has an adhesive layer 2 having a melt viscosity lower than that of the sheet at least on the one or both sides of the sheet 1 having conductivity in the pressurizing direction, and further an adhesive layer 3 as necessary. Form. The thickness of the adhesive layers 2 and 3 is preferably formed so that the space portion excluding the volume of the electrode can be filled after connection. The adhesive layers 2 and 3 can be made of an insulating material similar to that of the binder 5 described above, and may contain a small amount of conductive particles within a range that does not affect the insulating properties.

接続時の溶融粘度について図4で説明する。接続温度における粘度をバインダ5、接着剤層2のように変えることで、接着剤層2の流動時にバインダ5が相対的に粘度の高いことから、導電材料6は接着剤層2または3と混ざり難く、電極上からの流出が抑制される。接着剤層2、3の粘度は100ポイズ以下として接続することが好ましい。接着剤層2、3とバインダ5の接続時の溶融粘度の差は、10ポイズ以上好ましくは100ポイズ以上である。またこの時のバインダ5が少なくとも若干の流動性を有すると加圧方向の導電性が得やすい。特に導電材料6がバインダ5に埋没している場合や、接着剤層が片面に存在する場合には、バインダ5が接続時に流動性を有することが必要となる。接着剤層2、3は、材料、厚み、粘度等が同一であっても良く、あるいは電極基板の材質に適合した組み合わせとする等、任意に代えることもできる。また接着剤層2と3は、それぞれ2層以上に形成してもよい。   The melt viscosity at the time of connection will be described with reference to FIG. By changing the viscosity at the connection temperature like the binder 5 and the adhesive layer 2, the conductive material 6 is mixed with the adhesive layer 2 or 3 because the binder 5 has a relatively high viscosity when the adhesive layer 2 flows. It is difficult to suppress the outflow from the electrode. It is preferable to connect the adhesive layers 2 and 3 with a viscosity of 100 poise or less. The difference in melt viscosity when connecting the adhesive layers 2 and 3 and the binder 5 is 10 poise or more, preferably 100 poise or more. Further, if the binder 5 at this time has at least some fluidity, it is easy to obtain conductivity in the pressing direction. In particular, when the conductive material 6 is buried in the binder 5 or when the adhesive layer is present on one side, the binder 5 needs to have fluidity when connected. The adhesive layers 2 and 3 may have the same material, thickness, viscosity, or the like, or may be arbitrarily changed, for example, a combination suitable for the material of the electrode substrate. Moreover, you may form the adhesive bond layers 2 and 3 in two or more layers, respectively.

本発明の接続部材の製法としては、例えば導電性シート1と接着剤層2をラミネートしたり、順次塗工して積層する等の方法が採用できる。   As a method for producing the connection member of the present invention, for example, a method of laminating the conductive sheet 1 and the adhesive layer 2 or sequentially coating and laminating can be employed.

本発明の接続部材を用いた電極の接続構造について図5〜9により説明する。図5は、基板11に形成された突出電極12と、基板11’の平面電極13とが加圧方向に導電性シート1を介して接続した構造である。すなわち平面電極13側に接着剤層3が存在しない場合であるが、導電性シート1は、対抗する上下の基板11−11’間並びに相対峙する電極列間に存在し、対抗する電極12と13とが導電性のシート1中の導電材料6と接触している。また接着剤層2は前記突出電極12の少なくとも突出する電極の周囲を覆っている。ここに平面電極13は、基板11’面からの凹凸がないか、あっても数μm以下とわずかな場合をいう。これらを例示すると、アディティブ法や薄膜法により形成した電極が代表的である。   An electrode connection structure using the connection member of the present invention will be described with reference to FIGS. FIG. 5 shows a structure in which the protruding electrode 12 formed on the substrate 11 and the planar electrode 13 of the substrate 11 ′ are connected via the conductive sheet 1 in the pressing direction. That is, although the adhesive layer 3 does not exist on the plane electrode 13 side, the conductive sheet 1 exists between the opposing upper and lower substrates 11-11 ′ and between the opposing electrode rows, and the opposing electrode 12 and 13 is in contact with the conductive material 6 in the conductive sheet 1. The adhesive layer 2 covers at least the protruding electrode 12 of the protruding electrode 12. Here, the planar electrode 13 refers to a case where there is no unevenness from the surface of the substrate 11 ′ or even a few μm or less. Examples of these are representative electrodes formed by the additive method or thin film method.

図6は、基板11に形成された電極が突出電極同士12と12’の場合で、導電性シート1の両面に接着剤層2及び3を有する接続部材を介して接続した構造である。接着剤層2及び3はそれぞれ突出電極12と12’の突出する電極の周囲を覆っており、またそれぞれの基板面11及び11’と接している。   FIG. 6 shows a structure in which the electrodes formed on the substrate 11 are protruding electrodes 12 and 12 ′, and are connected to both surfaces of the conductive sheet 1 via connecting members having adhesive layers 2 and 3. Adhesive layers 2 and 3 cover the protruding electrodes 12 and 12 ', respectively, and are in contact with the respective substrate surfaces 11 and 11'.

図7は図6と同様であるが、一方の電極14が頂部を有する場合である。頂部があるにもかかわらず、導電性シート1が電極12と頂部14間に存在している。電極間12−14において導電材料6はその距離に応じて変形度を変えている。頂部を持つ電極14としては、導電塗料の印刷やグリーンシート法による回路電極、あるいは半導体チップ(IC)のバンプ類等がある。   FIG. 7 is similar to FIG. 6, but with one electrode 14 having a top. Despite the top, the conductive sheet 1 is present between the electrode 12 and the top 14. The degree of deformation of the conductive material 6 is changed in accordance with the distance between the electrodes 12-14. Examples of the electrode 14 having the top include a conductive paint printing, a circuit electrode by a green sheet method, and bumps of a semiconductor chip (IC).

図8は突出電極12と12’同士の接続例であるが、電極12側に基板を有しない場合である。基板を有しない電極としては、いわゆるQFP等のパッケージ形ICのリードフレーム等がある。なお、図6〜8のような突出電極同士の場合、従来技術では接続時の熱圧により一方の電極がスペースにずれてしまい接続不能であったり、電極上からの粒子の流出が特に顕著であり問題となっていた。   FIG. 8 shows an example of connection between the protruding electrodes 12 and 12 ′, but is a case where no substrate is provided on the electrode 12 side. As an electrode having no substrate, there is a lead frame of a package type IC such as a so-called QFP. In the case of protruding electrodes as shown in FIGS. 6 to 8, in the conventional technique, one electrode is shifted to a space due to the thermal pressure at the time of connection, and connection is impossible, or the outflow of particles from the electrode is particularly remarkable. There was a problem.

図9のように接着層2をスペースに対し過充填として、接続部の周囲にはみださせて、封止材や防湿材の機能を付与することも可能である。この場合、導電性シート1の末端部を接着層2及び/または3により覆う構造を、一度の接続操作で得ることができる。   As shown in FIG. 9, the adhesive layer 2 can be overfilled with respect to the space so as to protrude from the periphery of the connecting portion, and a function of a sealing material or a moisture-proof material can be imparted. In this case, a structure in which the end portion of the conductive sheet 1 is covered with the adhesive layers 2 and / or 3 can be obtained by a single connection operation.

図5〜9において、基板11としては、ポリイミドやポリエステル等のプラスチックフィルム、ガラスエポキシ等の複合体、シリコーン等の半導体、ガラスやセラミックス等の無機物等を例示できる。突出電極12は上記した他に、各種回路類や端子類も含むことができる。なお、図5〜8で示した各種電極類は、それぞれ任意に組み合わせて適用できる。   5 to 9, examples of the substrate 11 include plastic films such as polyimide and polyester, composites such as glass epoxy, semiconductors such as silicone, inorganic substances such as glass and ceramics, and the like. The protruding electrode 12 can include various circuits and terminals in addition to the above. The various electrodes shown in FIGS. 5 to 8 can be applied in any combination.

本発明によれば、加圧方向に導電性を有するシートの片面または両面に、接続時の溶融粘度が低い接着剤層を形成してなる。そのため、接続時の加熱加圧等により接着層が低粘度となっても、導電性シートは接着剤層に比べ高粘度なことから電極上から導電粒子の流出が少なく、電極上に高密度に存在したまま接続が可能である。接着剤層は任意に粘度調整が可能なため、接続部に気泡を含み難い構成がとれる。また加圧方向に導電性を有するシートは、接続部材の厚み方向のどの部分にも存在するので、導電粒子と電極との正確な位置合わせが不要である。接着剤層はその目的に応じ、例えば電極基板の材質に適合した組み合わせが可能なことから材料の選択肢が拡大し、やはり接続信頼性が向上する。また一方を溶剤に可溶性もしくは膨潤性としたり、あるいは耐熱性に差をもたせることで、一方の基板面から優先的に剥離可能とし再接続するいわゆるリペア性を付与することも可能となる。また接着層を接続部の外にはみ出させ封止材的作用により、補強や防湿効果を得ることもできる。   According to the present invention, an adhesive layer having a low melt viscosity at the time of connection is formed on one or both sides of a sheet having conductivity in the pressing direction. Therefore, even if the adhesive layer has a low viscosity due to heat and pressure at the time of connection, the conductive sheet has a higher viscosity than the adhesive layer, so there is less outflow of conductive particles from the electrode, and the conductive sheet has a high density on the electrode. Connection is possible while existing. Since the viscosity of the adhesive layer can be adjusted arbitrarily, it is possible to take a configuration in which bubbles are hardly included in the connection portion. Moreover, since the sheet | seat which has electroconductivity in a pressurization direction exists in every part of the thickness direction of a connection member, exact alignment with a conductive particle and an electrode is unnecessary. Depending on the purpose of the adhesive layer, for example, a combination suitable for the material of the electrode substrate is possible, so the choice of materials is expanded, and the connection reliability is also improved. Further, by making one of them soluble or swellable in a solvent, or by making a difference in heat resistance, it is possible to preferentially peel from one substrate surface and to provide so-called repair property for reconnection. Further, it is possible to obtain a reinforcing or moisture-proof effect by causing the adhesive layer to protrude outside the connecting portion and acting as a sealing material.

以下実施例でさらに詳細に説明するが、本発明はこれに限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
(1)導電性シートの作製
マトリックスとしてアクリルゴム(ガラス転移点−10℃、分子量50万、官能基としてカルボキシル基1%含有)とマイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(エポキシ当量185)の比率を40/60とし、酢酸エチルの30%溶液を得た。この溶液に、粒径5±0.2μmのポリスチレン系粒子にNi/Auの厚さ0.2/0.02μmの金属被覆を形成した導電性粒子を5体積%添加し混合分散した。この分散液をセパレータ(シリコーン処理ポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、110℃20分乾燥しマトリックス厚み5μmのシートを得た。このシートは、図2(b)に相当する。
(2)接着剤層の形成
アクリルゴムとマイクロカプセル型潜在性硬化剤含有の液状エポキシ樹脂の比率を10/90とし、導電性粒子を含有しない厚み15μmのシートを前記(1)と同様に作製した。まず(1)の導電性シート面と(2)の接着層面とをゴムロールで圧延しながらラミネートし、続いて導電性シート面のセパレータを剥離しながらこの面にさらに接着剤層面とを同様にラミネートし接続部材を得た。これらのマトリックス及び接着層の溶融粘度は図4の特性であった。ここに溶融粘度は、硬化剤を除く配合を加熱溶融し徐冷しながら求めたものである。
(3)接続
ポリイミドフィルム上に高さ18μmの銅の回路を有する2層FPC回路板(回路ピッチは100μm、電極幅50μmの平行回路の電極)同士の接続を行った。まず一方の回路板の端部電極に、前記接続部材を1.5mm幅で載置し、セパレータを剥離した後貼り付けた。この後セパレータを剥離し、他の回路板と上下回路を位置合わせし、150℃、20kgf/mm、15秒で接続した。
(4)評価
この接続体の断面を研磨し顕微鏡観察したところ、図6相当の接続構造であった。スペースは気泡混入がなく粒子が球形であったが、電極上は粒子が圧縮変形され上下電極と接触保持されていた。相対峙する電極間を接続抵抗、隣接する電極間を絶縁抵抗として評価したところ、接続抵抗は1Ω以下、絶縁抵抗は10Ω以上であり、これらは85℃、85%RH1000時間処理後も変化が殆どなく良好な長期信頼性を示した。
Example 1
(1) Production of conductive sheet Liquid epoxy resin (epoxy equivalent) containing acrylic rubber (glass transition point-10 ° C, molecular weight 500,000, containing 1% carboxyl group as functional group) and microcapsule type latent curing agent as matrix The ratio of 185) was 40/60, and a 30% solution of ethyl acetate was obtained. To this solution, 5% by volume of conductive particles in which a Ni / Au 0.2 / 0.02 μm thick metal coating was formed on polystyrene-based particles having a particle size of 5 ± 0.2 μm was added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 110 ° C. for 20 minutes to obtain a sheet having a matrix thickness of 5 μm. This sheet corresponds to FIG.
(2) Formation of Adhesive Layer A 15 μm thick sheet containing no conductive particles was prepared in the same manner as in (1) above, with the ratio of acrylic rubber and liquid epoxy resin containing a microcapsule type latent curing agent being 10/90. did. First, the conductive sheet surface of (1) and the adhesive layer surface of (2) are laminated while being rolled with a rubber roll, and then the adhesive layer surface is similarly laminated to this surface while peeling the separator on the conductive sheet surface. A connecting member was obtained. The melt viscosity of these matrices and adhesive layers were the characteristics of FIG. Here, the melt viscosity is determined while heating and melting the composition excluding the curing agent and gradually cooling it.
(3) Connection Two-layer FPC circuit boards (circuit pitch is 100 μm, electrode of a parallel circuit with an electrode width of 50 μm) having a copper circuit with a height of 18 μm on a polyimide film were connected to each other. First, the connecting member was placed on the end electrode of one circuit board with a width of 1.5 mm, and the separator was peeled off and then attached. Thereafter, the separator was peeled off, the other circuit board and the upper and lower circuits were aligned, and connected at 150 ° C., 20 kgf / mm 2 for 15 seconds.
(4) Evaluation When the cross section of this connection body was polished and observed with a microscope, it was a connection structure corresponding to FIG. The space was free of bubbles and the particles were spherical, but the particles were compressed and deformed on the electrodes and held in contact with the upper and lower electrodes. When the resistance between the electrodes facing each other was evaluated as the connection resistance, and between the adjacent electrodes as the insulation resistance, the connection resistance was 1Ω or less and the insulation resistance was 10 8 Ω or more, which changed even after treatment at 85 ° C. and 85% RH for 1000 hours. No long-term reliability was observed.

実施例2
実施例1と同様であるが、接着層の形成を片面のみとし、回路板の一方をガラス1.1mm上に酸化インジウム厚み0.2μm(ITO、表面抵抗20Ω/□)の薄膜回路を有する平面電極とし、平面電極側に導電性シートがくるようにした。この構成は、図5に相当する。この場合も、実施例1と同様に良好な接続特性を示した。本実施例では、平面電極のガラス側の接着力がFPC側に比べて相対的に低いことから、ガラス側から強制的に剥離した時きれいに界面剥離しその後の清浄化が容易であった。このことは、現在同様な構成で多用されている液晶パネルの接続におけるリペア性の付与に好適である。
Example 2
Similar to Example 1, except that the adhesive layer is formed on only one side, and one of the circuit boards has a thin film circuit with an indium oxide thickness of 0.2 μm (ITO, surface resistance 20Ω / □) on glass 1.1 mm. An electrode was used, and a conductive sheet was placed on the planar electrode side. This configuration corresponds to FIG. Also in this case, good connection characteristics were exhibited as in Example 1. In this example, since the adhesive force on the glass side of the flat electrode was relatively lower than that on the FPC side, the interface peeled cleanly when forcibly peeling from the glass side, and subsequent cleaning was easy. This is suitable for providing repairability in the connection of liquid crystal panels that are frequently used in the same configuration at present.

実施例3
実施例2と同様であるがFPCに変えて、ICチップ(2×10mm、高さ0.5mm、4辺周囲にバンプと呼ばれる50μm角、高さ20μmの金電極が200個形成)を用いた。ガラス側のITO電極を、前記ICチップのバンプ電極のサイズに対応するように変更した。また、導電性シートの導電材料を平均粒径3μmの導電粒子とし、添加量1体積%、マトリックスの厚み10μmのシートとし、図2(d)の構成とした。接続体は図7に相当する構成であるが、良好な接続特性を示した。本実施例では、バンプがマッシュルーム形で頂部を有していたが粒子は圧縮変形され上下電極と接触保持されていた。隣接バンプ間に気泡混入がなく、良好な長期信頼性を示した。導電粒子は相対峙する電極間距離に応じて粒子の変形度が異なり部分的にバンプに食い込むものも見られた。
Example 3
Similar to Example 2, but instead of FPC, an IC chip (2 × 10 mm, height 0.5 mm, 200 gold electrodes of 50 μm square and 20 μm height called bumps formed around 4 sides) was used. . The ITO electrode on the glass side was changed to correspond to the size of the bump electrode of the IC chip. Further, the conductive material of the conductive sheet is conductive particles having an average particle diameter of 3 μm, the addition amount is 1% by volume, and the matrix has a thickness of 10 μm, and the configuration shown in FIG. Although the connection body has a configuration corresponding to FIG. 7, it showed good connection characteristics. In this example, the bump was mushroom-shaped and had a top, but the particles were compressed and deformed and held in contact with the upper and lower electrodes. Air bubbles were not mixed between adjacent bumps, and good long-term reliability was demonstrated. Some of the conductive particles have a different degree of deformation depending on the distance between the electrodes facing each other, and some of the conductive particles bite into the bumps.

実施例4
実施例3の接続部材と同様であるが、接着層の厚みを片側25μm、他の面を50μmに形成した。電極は、QFP形ICのリード(厚み100μm、ピッチ300μm)でありガラスエポキシ基板上の銅の厚み35μmの端子と接続した。本構成は図8相当の片側に基板のない構成である。本実施例は、高さの大きな電極同士の接続であるが、電極ずれがなく良好な接続特性を示した。導電性シートの中の導電材料は図示していないが、粒子は圧縮変形され上下電極と接触保持されていた。隣接電極間に気泡混入がなく、良好な長期信頼性を示した。本実施例では、基板のない部分もリード高さに沿って接着層が形成され、リードを固定できた。
Example 4
Although it was the same as that of the connection member of Example 3, the thickness of the adhesive layer was formed at 25 μm on one side and 50 μm on the other surface. The electrodes were QFP-type IC leads (thickness: 100 μm, pitch: 300 μm), and were connected to terminals of copper on a glass epoxy substrate having a thickness of 35 μm. This configuration has no substrate on one side corresponding to FIG. In this example, the electrodes were connected to each other with a large height, but there was no electrode displacement and good connection characteristics were shown. Although the conductive material in the conductive sheet is not shown, the particles were compressed and deformed and held in contact with the upper and lower electrodes. Air bubbles were not mixed between adjacent electrodes, and good long-term reliability was demonstrated. In this example, the adhesive layer was formed along the lead height even in the portion without the substrate, and the lead could be fixed.

実施例5
実施例3の接続部材と同様であるが、導電粒子の表面を図3(c)のような絶縁被覆処理を行った。すなわち平均粒径3μmの導電粒子の表面を、ガラス転移点127℃、のナイロン樹脂で厚み約0.2μm被覆し、添加量を10体積%に増加した。本実施例の接続構造を図10に示す。実施例3と同様に評価したが良好な接続特性を示した。本実施例では、電極12上の粒子数が著しく増加した。電極接続部12−12’は、接続時の熱圧による絶縁層8及びバインダ5の軟化により導通可能であるが、隣接電極列のスペース部は熱圧が少なく導電材料6の表面が絶縁層8で被覆されたままなので、絶縁性も良好であった。本構成は、導電材料6のバインダ5に対する濃度を高密度に構成できる。
導電材料が絶縁層で被覆された絶縁被覆粒子を用いた場合、実施例1〜4で示した電極の接続構造に適用でき、実施例1と同様スペース部の絶縁性が良好となり、導電材料6のバインダ5に対する濃度を高密度に構成でき電極上の粒子数を増加することができ接続抵抗を低くすることができる。
Example 5
Although it is the same as that of the connection member of Example 3, the surface of the conductive particles was subjected to an insulation coating treatment as shown in FIG. That is, the surface of the conductive particles having an average particle diameter of 3 μm was coated with a nylon resin having a glass transition point of 127 ° C. to a thickness of about 0.2 μm, and the addition amount was increased to 10% by volume. The connection structure of this example is shown in FIG. Evaluation was made in the same manner as in Example 3, but good connection characteristics were exhibited. In this example, the number of particles on the electrode 12 increased remarkably. The electrode connecting portion 12-12 ′ can be conducted by the softening of the insulating layer 8 and the binder 5 due to the heat pressure at the time of connection, but the space portion of the adjacent electrode row has a small heat pressure and the surface of the conductive material 6 is the insulating layer 8. As it was still covered with, the insulation was good. In this configuration, the concentration of the conductive material 6 with respect to the binder 5 can be configured with a high density.
When the insulating coating particles in which the conductive material is coated with the insulating layer are used, it can be applied to the electrode connection structure shown in the first to fourth embodiments, and the insulating property of the space portion is improved as in the first embodiment, so that the conductive material 6 It is possible to configure the concentration of the binder 5 at a high density, increase the number of particles on the electrode, and reduce the connection resistance.

本発明の一実施例を示す接続部材の断面模式図。The cross-sectional schematic diagram of the connection member which shows one Example of this invention. 本発明に好適な導電性シートの断面模式図。The cross-sectional schematic diagram of the electroconductive sheet suitable for this invention. 発明に好適な導電体の断面模式図。The cross-sectional schematic diagram of the conductor suitable for invention. 本発明の一実施例を示す温度と溶融粘度の測定結果を示す線図。The diagram which shows the measurement result of temperature and melt viscosity which shows one Example of this invention. 本発明の一実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows one Example of this invention. 本発明の他の実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows the other Example of this invention. 本発明の他の実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows the other Example of this invention. 本発明の他の実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows the other Example of this invention. 本発明の他の実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows the other Example of this invention. 本発明の一実施例を示す電極の接続構造を示す断面模式図。The cross-sectional schematic diagram which shows the connection structure of the electrode which shows one Example of this invention.

符号の説明Explanation of symbols

1 導電性シート
2 接着剤層−1
3 接着剤層−2
4 セパレータ
5 バインダ
6 導電材料
7 核材
8 絶縁層
11 基板
12 突出電極
13 平面電極
14 頂部を持つ電極
15 IC。
1 Conductive Sheet 2 Adhesive Layer-1
3 Adhesive layer-2
4 Separator 5 Binder 6 Conductive Material 7 Core Material 8 Insulating Layer 11 Substrate 12 Projecting Electrode 13 Planar Electrode 14 Electrode with Top 15 IC.

Claims (6)

導電材料とバインダとよりなる加圧方向に導電性を有する導電性シートの片面又は両面に、前記シートより少なくとも接続時の溶融粘度が低い絶縁性の接着剤層を形成してなる接続部材であって、
前記バインダが、ポリエステル、アクリルゴム、ニトリルブタジエンラバー(NBR)又はナイロンで変性したエポキシ樹脂と、硬化剤とを含有してなるエポキシ系接着剤である接続部材。
It is a connecting member formed by forming an insulating adhesive layer having a melt viscosity at least lower than that of the sheet on one or both sides of a conductive sheet having conductivity in a pressing direction composed of a conductive material and a binder. And
A connecting member, wherein the binder is an epoxy adhesive containing an epoxy resin modified with polyester, acrylic rubber, nitrile butadiene rubber (NBR) or nylon, and a curing agent.
前記エポキシ樹脂がアクリルゴムで変性されている、請求項1記載の接続部材。   The connection member according to claim 1, wherein the epoxy resin is modified with acrylic rubber. 前記接着剤層の材料がアクリルゴムで変性したエポキシ樹脂を含有してなるエポキシ系接着剤である、請求項1又は2記載の接続部材。   The connection member according to claim 1 or 2, wherein the material of the adhesive layer is an epoxy adhesive containing an epoxy resin modified with acrylic rubber. 前記導電性シートの両面に前記接着剤層が形成されている、請求項1〜3のいずれか一項に記載の接続部材。   The connection member according to any one of claims 1 to 3, wherein the adhesive layer is formed on both surfaces of the conductive sheet. 請求項1〜4のいずれか一項に記載の接続部材における導電性シートが相対峙する電極列間に存在し、かつ対向する電極と前記導電材料とが接触し、接着剤層が前記電極の少なくとも突出する電極の周囲を覆ってなることを特徴とする電極の接続構造。   The conductive sheet in the connection member according to any one of claims 1 to 4 exists between the electrode rows facing each other, and the opposing electrode and the conductive material are in contact with each other, and an adhesive layer is formed on the electrode. An electrode connection structure characterized by covering at least the periphery of the protruding electrode. 対向する接続電極の少なくとも一方が、基板を有しないリードフレームの電極であることを特徴とする、請求項5記載の電極の接続構造。
6. The electrode connection structure according to claim 5, wherein at least one of the opposing connection electrodes is an electrode of a lead frame having no substrate.
JP2007299895A 2007-11-19 2007-11-19 Connection member and electrode connection structure using the same Expired - Fee Related JP4670859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299895A JP4670859B2 (en) 2007-11-19 2007-11-19 Connection member and electrode connection structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299895A JP4670859B2 (en) 2007-11-19 2007-11-19 Connection member and electrode connection structure using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003298640A Division JP2004006417A (en) 2003-08-22 2003-08-22 Connecting element and connection structure of electrode using this

Publications (2)

Publication Number Publication Date
JP2008153208A true JP2008153208A (en) 2008-07-03
JP4670859B2 JP4670859B2 (en) 2011-04-13

Family

ID=39655140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299895A Expired - Fee Related JP4670859B2 (en) 2007-11-19 2007-11-19 Connection member and electrode connection structure using the same

Country Status (1)

Country Link
JP (1) JP4670859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003685A (en) 2019-07-02 2021-01-12 아지노모토 가부시키가이샤 Resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459786A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Connection member of circuit
JPH0346774A (en) * 1989-07-12 1991-02-28 Catalysts & Chem Ind Co Ltd Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JPH03192742A (en) * 1989-12-21 1991-08-22 Sumitomo Metal Ind Ltd Connection of electric circuit component
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
JPH04315782A (en) * 1991-04-15 1992-11-06 Shin Etsu Polymer Co Ltd Low-pitch heat seal connector and manufacture thereof
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH05247178A (en) * 1992-03-06 1993-09-24 Kanegafuchi Chem Ind Co Ltd Curable resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459786A (en) * 1987-08-31 1989-03-07 Hitachi Chemical Co Ltd Connection member of circuit
JPH0346774A (en) * 1989-07-12 1991-02-28 Catalysts & Chem Ind Co Ltd Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JPH03192742A (en) * 1989-12-21 1991-08-22 Sumitomo Metal Ind Ltd Connection of electric circuit component
JPH04301382A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Connecting member
JPH04315782A (en) * 1991-04-15 1992-11-06 Shin Etsu Polymer Co Ltd Low-pitch heat seal connector and manufacture thereof
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH05247178A (en) * 1992-03-06 1993-09-24 Kanegafuchi Chem Ind Co Ltd Curable resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003685A (en) 2019-07-02 2021-01-12 아지노모토 가부시키가이샤 Resin composition

Also Published As

Publication number Publication date
JP4670859B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
JPH07230840A (en) Connecting member and electrode connecting structure using the same
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
KR102517498B1 (en) Conductive material and manufacturing method of connection body
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP2006339160A (en) Thermosetting circuit connection member, connection structure of electrode using it and connection method of electrode
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2010278025A (en) Anisotropic conductive film
JP4661914B2 (en) Electrode connection method
JP4670859B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP4760993B2 (en) Connection member and electrode connection structure using the same
JP4670858B2 (en) Repair property imparting method and connecting member
JP4670857B2 (en) Repair property imparting method and connecting member
JP4760992B2 (en) Connection member and electrode connection structure using the same
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP4595981B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP4631893B2 (en) Connection member, electrode connection structure and connection method using the connection member
JP2008124029A (en) Connecting member
JP4155470B2 (en) Electrode connection method using connecting members
JP2008153206A (en) Connecting member, and electrode-connecting construction using the same
JP2008060090A (en) Manufacturing method of connecting member, and connecting member
JP2008112731A (en) Connecting member, and connection structure of electrode using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees