JP2008147334A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2008147334A
JP2008147334A JP2006331579A JP2006331579A JP2008147334A JP 2008147334 A JP2008147334 A JP 2008147334A JP 2006331579 A JP2006331579 A JP 2006331579A JP 2006331579 A JP2006331579 A JP 2006331579A JP 2008147334 A JP2008147334 A JP 2008147334A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
laser
mask member
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006331579A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
和彦 佐藤
Masao Nishida
征男 西田
Hirokazu Sayama
弘和 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006331579A priority Critical patent/JP2008147334A/en
Publication of JP2008147334A publication Critical patent/JP2008147334A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device by which individual portions of a semiconductor substrate can be selectively heat-treated at different temperatures by using a laser light. <P>SOLUTION: The method of manufacturing the semiconductor device includes a process (a) wherein a mask member 3 having a laser transmitting portion 3a having a predetermined transmissivity at a portion corresponding to a specific portion A3 of a semiconductor substrate 1 and a laser reflecting portion 3b at a portion corresponding to another portion B3 of the semiconductor substrate 1 is disposed on the semiconductor substrate 1; and a process (b) wherein a laser light 7 is irradiated on the semiconductor substrate 1 via the mask member 3 to heat-treat only the specific portion A3 of the semiconductor substrate 1 by the laser light 7 which has passed through the laser transmitting portion 3a of the mask member 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザー光を用いて半導体基板の各部分を選択的に異なる温度で熱処理する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, in which each portion of a semiconductor substrate is selectively heat-treated at different temperatures using laser light.

半導体装置の製造には多数の熱工程が必要である。熱処理の目的として、半導体に添加される不純物の活性化とデポ膜のアニールの2通りに分けられる。従来、電気炉を用いた熱処理が一般的であったが、近年はランプ加熱による熱処理が主流となっている。いずれも半導体基板上の全デバイスに同一の熱処理を行っている。近年、研究レベルではレーザー光を用いた熱処理技術が行われつつあり、msecでの熱処理により不純物注入直後の不純物分布を維持したままで、不純物の活性化が可能になっている(非特許文献1)。   Manufacturing a semiconductor device requires a large number of thermal processes. The purpose of the heat treatment is divided into two types: activation of impurities added to the semiconductor and annealing of the deposition film. Conventionally, heat treatment using an electric furnace has been common, but in recent years heat treatment by lamp heating has become mainstream. In any case, the same heat treatment is performed on all devices on the semiconductor substrate. In recent years, a heat treatment technique using laser light is being performed at the research level, and it is possible to activate impurities while maintaining the impurity distribution immediately after impurity implantation by heat treatment in msec (Non-patent Document 1). ).

A. Shima, et. al : Dopant Profile Engineering of CMOS Devices Formed By non-melt Laser Spike Annealing, VLSI Technology Symp. P.144A. Shima, et.al: Dopant Profile Engineering of CMOS Devices Formed By non-melt Laser Spike Annealing, VLSI Technology Symp.

しかしながら、半導体基板上の全デバイスに同一温度の熱処理が行われる結果、各不純物および構造に最適な熱処理をするのは不可能であった。例えばCMOSトランジスタを製造する場合、nFETのSD(ソースドレイン)に用いられるAsよりも、pFETのSDに用いられるBは、熱拡散係数が大きいため、pFETの短チャネル特性を満足させる様にpFETを熱処理すると、nFETの熱処理が不足し、性能を十分引き出すことができていなかった。また、ゲートのポリシリコンは、Si基板よりも融点が低く、Si基板熱処理の上限温度を決定するため、最適化における上限温度を狭めてしまっていた。   However, as a result of performing heat treatment at the same temperature on all devices on the semiconductor substrate, it has been impossible to perform heat treatment optimal for each impurity and structure. For example, when manufacturing a CMOS transistor, B used for SD of pFET has a larger thermal diffusion coefficient than As used for SD (source drain) of nFET, so that pFET should be used to satisfy the short channel characteristics of pFET. When the heat treatment was performed, the heat treatment of the nFET was insufficient, and the performance could not be sufficiently obtained. In addition, the polysilicon of the gate has a lower melting point than the Si substrate, and the upper limit temperature in the optimization has been narrowed to determine the upper limit temperature of the Si substrate heat treatment.

そこで、この発明は上記のような問題点を解消するためになされたもので、レーザー光を用いて、半導体基板の各部分を選択的に異なる温度(適切な温度)で熱処理できる半導体装置の製造方法を提供することにある。   Accordingly, the present invention has been made to solve the above-described problems, and manufacturing a semiconductor device capable of selectively heat-treating each portion of a semiconductor substrate at a different temperature (appropriate temperature) using a laser beam. It is to provide a method.

上記課題を解決する為に、請求項1に記載の発明は、半導体基板の特定部分に対応する部分に所定の透過率を有するレーザ透過部を有し、前記半導体基板の他の部分に対応する部分にレーザ反射部を有するマスク部材を、前記半導体基板上に配置し、前記マスク部材を介して前記半導体基板にレーザー光を照射して、前記半導体基板の前記特定部分だけを前記マスク部材の前記レーザ透過部を透過した前記レーザー光により熱処理するものである。   In order to solve the above-mentioned problem, the invention according to claim 1 has a laser transmission part having a predetermined transmittance in a part corresponding to a specific part of the semiconductor substrate, and corresponds to another part of the semiconductor substrate. A mask member having a laser reflecting portion in a portion is disposed on the semiconductor substrate, and the semiconductor substrate is irradiated with laser light through the mask member, so that only the specific portion of the semiconductor substrate is in the mask member. It heat-processes with the said laser beam which permeate | transmitted the laser permeation | transmission part.

また請求項7に記載の発明は、半導体基板の第1の特定部分に対応する部分に第1の透過率を有する第1のレーザ透過部を有し、前記半導体基板の第2の特定部分に対応する部分に前記第1の透過率と異なる第2の透過率を有する第2のレーザ透過部を有するマスク部材を、前記半導体基板上に配置し、前記マスク部材を通じて前記半導体基板にレーザー光を照射して、前記半導体基板の前記第1の特定部分を、前記マスク部材の前記第1のレーザ透過部を透過した前記レーザー光により熱処理すると共に、前記半導体基板の前記第2の特定部分を、前記マスク部材の前記第2のレーザ透過部を透過した前記レーザー光により熱処理するものである。   According to a seventh aspect of the present invention, the first specific portion of the semiconductor substrate includes a first laser transmitting portion having a first transmittance, and the second specific portion of the semiconductor substrate is provided with the first specific portion. A mask member having a second laser transmitting portion having a second transmittance different from the first transmittance in a corresponding portion is disposed on the semiconductor substrate, and laser light is transmitted to the semiconductor substrate through the mask member. Irradiating and heat-treating the first specific portion of the semiconductor substrate with the laser light transmitted through the first laser transmitting portion of the mask member, and the second specific portion of the semiconductor substrate, Heat treatment is performed by the laser beam transmitted through the second laser transmitting portion of the mask member.

請求項1に記載の発明によれば、半導体基板の各部分を選択的に異なる温度(適切な温度)で熱処理できる。   According to the first aspect of the present invention, each part of the semiconductor substrate can be selectively heat-treated at different temperatures (appropriate temperatures).

また請求項7に記載の発明によれば、請求項1の効果に加えて、第1および第2の特定部分を1回のレーザ照射で同時にそれぞれ適切な温度(異なる温度)で熱処理できる。   According to the seventh aspect of the invention, in addition to the effect of the first aspect, the first and second specific portions can be simultaneously heat-treated at an appropriate temperature (different temperatures) by one laser irradiation.

本発明は、レーザー光が単一波長で単一方向照射されることを利用し、その各部分に応じて異なる透過率を有するマスク部材を半導体基板上に配置し、そのマスク部材を介して半導体基板にレーザー光を照射することで、半導体基板の各部分をそれぞれ異なる温度で熱処理する半導体装置の製造方法である。   The present invention utilizes the fact that laser light is irradiated in a single direction at a single wavelength, and arranges a mask member having a different transmittance depending on each part on a semiconductor substrate, and the semiconductor through the mask member. This is a method for manufacturing a semiconductor device in which each part of a semiconductor substrate is heat-treated at different temperatures by irradiating the substrate with laser light.

実施の形態1.
この実施の形態では、本発明の基本形態を説明する。以下、半導体基板の各部分として、半導体基板に形成される各デバイス(ここでは2つのデバイス)に含まれる不純物注入領域に着目し、それら各不純物注入領域をそれぞれ異なる温度で熱処理する場合で説明する。
Embodiment 1 FIG.
In this embodiment, the basic mode of the present invention will be described. Hereinafter, focusing on the impurity implantation regions included in each device (here, two devices) formed on the semiconductor substrate as each portion of the semiconductor substrate, a case will be described where each impurity implantation region is heat-treated at a different temperature. .

まず図1の様に、半導体基板1における各デバイスA,Bが形成される形成領域A2,B2にそれぞれ、不純物注入領域A3,B3を形成する。そしてその半導体基板1上の所定位置にマスク部材3を配置する。   First, as shown in FIG. 1, impurity implantation regions A3 and B3 are formed in formation regions A2 and B2 in the semiconductor substrate 1 where the devices A and B are formed, respectively. Then, a mask member 3 is disposed at a predetermined position on the semiconductor substrate 1.

このマスク部材3は、半導体基板1における熱処理をしたい部分(ここでは不純物注入領域A3:特定部分)に対応する部分に所定の透過率(即ち不純物注入領域A3の熱処理に適した光強度の透過光が得られる透過率)を有するレーザ透過部3aを有し、半導体基板1における熱処理をしたくない部分(ここでは不純物注入領域B3:他の部分)に対応する部分にはレーザ反射部3bを有する様に形成されている。   The mask member 3 has a predetermined transmittance (that is, transmitted light having a light intensity suitable for the heat treatment of the impurity implantation region A3) in a portion corresponding to a portion (in this case, the impurity implantation region A3: specific portion) to be heat-treated in the semiconductor substrate 1. And a laser reflecting portion 3b in a portion corresponding to a portion of the semiconductor substrate 1 where heat treatment is not desired (impurity implantation region B3: other portion). It is formed like this.

そして図2の様に、マスク部材3を介して半導体基板1の一面全体に、レーザー光7を照射する。これにより、不純物注入領域B3は、マスク部材3のレーザ反射部3bにより保護されて熱処理されず、不純物注入領域A3だけが、レーザ透過部3aを透過したレーザー光7により適切な温度で熱処理される。   Then, as shown in FIG. 2, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. Thus, the impurity implantation region B3 is protected by the laser reflecting portion 3b of the mask member 3 and is not heat-treated, and only the impurity implantation region A3 is heat-treated at an appropriate temperature by the laser light 7 transmitted through the laser transmission portion 3a. .

そしてその熱処理後、上記の手順に準拠した手順で、不純物注入領域B3だけを適切な温度で熱処理する。この様にして、レーザー光7を用いて半導体基板1の各不純物注入領域A,Bをそれぞれ異なる温度(適切な温度)で熱処理される。   After the heat treatment, only the impurity-implanted region B3 is heat-treated at an appropriate temperature in accordance with the procedure based on the above procedure. In this way, the impurity implantation regions A and B of the semiconductor substrate 1 are heat-treated at different temperatures (appropriate temperatures) using the laser beam 7.

ここで、マスク部材3について詳説する。   Here, the mask member 3 will be described in detail.

マスク部材3は、例えば板状に形成されている。そしてマスク部材3のレーザ反射部3bは、マスク部材3上に吸収係数の小さな物質からなる反射膜を成膜して構成されるか(構造1)、または全反射の条件(後述の式1)を満たす様に屈折率の異なる2種類の透過性部材を重ね合わせて2層構造として構成される(構造2)。   The mask member 3 is formed in a plate shape, for example. The laser reflecting portion 3b of the mask member 3 is configured by forming a reflective film made of a material having a small absorption coefficient on the mask member 3 (structure 1) or a condition for total reflection (formula 1 described later). Two types of transparent members having different refractive indexes are superposed so as to satisfy the above structure (Structure 2).

上記の構造1の場合、上記の吸収係数の小さな物質として例えば金属が用いられる。特に真空蒸着して形成した金属薄膜は、反射率の高い反射膜であり、効果的にLSIプロセスに適合する。上記の金属としては、特に限定は無いが、Al,Cu,Au,Ag,Co,Ni,W,Pt,Fe,TiのうちLSI製造プロセスと親和性の高いものを選ぶことが望ましい。この様にすれば、金属性の反射膜を用いて簡単な構成でレーザ反射部3bを構成できる。   In the case of the structure 1, for example, a metal is used as the substance having a small absorption coefficient. In particular, a metal thin film formed by vacuum deposition is a reflective film having a high reflectivity, and is effectively adapted to an LSI process. The metal is not particularly limited, but it is desirable to select a metal having high affinity with the LSI manufacturing process among Al, Cu, Au, Ag, Co, Ni, W, Pt, Fe, and Ti. In this way, the laser reflecting portion 3b can be configured with a simple configuration using a metallic reflective film.

また全反射は、屈折率の大きい物質から屈折率の小さい物質に光が進む時に、その境界面で光が100%反射する現象である。このため、上記の構造2の様に構成されたレーザ反射部3bでも、レーザー光7による熱処理を完全に遮断できる。尚、全反射の条件は、入射光の入射角度が下記の式1で表される臨界角θcよりも大きくなることである。ここで、n1は入射元の物質の屈折率、n2(n1>n2)は入射先の物質の屈折率である。   Total reflection is a phenomenon in which light is reflected 100% at the boundary surface when light travels from a material with a high refractive index to a material with a low refractive index. For this reason, the heat treatment by the laser beam 7 can be completely blocked even by the laser reflecting portion 3b configured as in the structure 2 described above. The condition for total reflection is that the incident angle of the incident light is larger than the critical angle θc expressed by the following formula 1. Here, n1 is the refractive index of the incident source substance, and n2 (n1> n2) is the refractive index of the incident substance.

θc=arcsin(n2/n1)・・・式1   θc = arcsin (n2 / n1) ・ ・ ・ Equation 1

この様にすれば、全反射の条件(上記の式1)を利用して簡単な構成でレーザ反射部3bを構成できる。   In this way, the laser reflection portion 3b can be configured with a simple configuration using the total reflection condition (the above formula 1).

またマスク部材3のレーザ透過部3aは、完全に透過させる場合(即ち透過率100%の場合)と、任意の透過率(即ち0%より大きく100%未満の透過率)で透過させる場合とで、その構成が異なる。即ち完全に透過させる場合は、レーザ透過部3aは、マスク部材3に開口部を設けることで構成される。この様にすれば、開口部を設けるだけの簡単な構成で透過率100%のレーザ透過部3aを構成できる。他方、任意の透過率で透過させる場合は、マスク部材3は、光屈折を利用する場合と、金属蒸着法またはスパッタ法による金属性透過膜を用いる場合とで、その構成が異なる。   The laser transmitting portion 3a of the mask member 3 is used when transmitting completely (that is, when the transmittance is 100%) and when transmitting at an arbitrary transmittance (that is, when the transmittance is greater than 0% and less than 100%). The configuration is different. That is, when transmitting completely, the laser transmission part 3a is comprised by providing the mask member 3 with an opening part. In this way, the laser transmitting portion 3a having a transmittance of 100% can be configured with a simple configuration in which only an opening is provided. On the other hand, when transmitting with arbitrary transmittance, the configuration of the mask member 3 is different between the case of using light refraction and the case of using a metallic permeable film by a metal vapor deposition method or a sputtering method.

即ち光屈折を利用する場合は、レーザ透過部3aは、屈折率の異なる複数の透過性部材を重ね合わせて複層構造(例えば2層構造)として構成される。光屈折とは、物質P(屈折率Np)から物質Q(屈折率Nq)に光が進む時に、その境界面で光が100%反射されずに一部の光が境界面を越えて進行方向を変えて透過する現象であり、その際の透過率は、各物質P,Qの屈折率Np,Nqに関係しており、適当な屈折率の物質を複数重ね合わせることで任意の透過率の物質を得ることができる。この特性を利用して、この場合(即ち光屈折を利用する場合)では、任意の透過率を有するレーザ透過部3aを構成している。この様にすれば、屈折率の組合せを利用して簡単な構成で任意の透過率のレーザ透過部3aを構成できる。   That is, when using light refraction, the laser transmitting portion 3a is configured as a multilayer structure (for example, a two-layer structure) by superposing a plurality of transparent members having different refractive indexes. Light refraction means that when light travels from the substance P (refractive index Np) to the substance Q (refractive index Nq), the light is not reflected 100% at the boundary surface, and a part of the light travels beyond the boundary surface. The transmittance at this time is related to the refractive indexes Np and Nq of the respective substances P and Q, and an arbitrary transmittance can be obtained by overlapping a plurality of substances having appropriate refractive indexes. A substance can be obtained. Utilizing this characteristic, in this case (that is, when utilizing light refraction), the laser transmitting portion 3a having an arbitrary transmittance is configured. In this way, the laser transmitting portion 3a having an arbitrary transmittance can be configured with a simple configuration using a combination of refractive indexes.

他方、金属蒸着法またはスパッタ法による金属性透過膜を用いる場合は、レーザ透過部3aは、基部となる透過性部材(例えばSiO2基板)上にCr、インコーネル、アルミ等の金属からなる金属性透過膜を金属蒸着法またはスパッタ法で成膜して構成される。この構成では、その金属性透過膜の材質または厚さ等を調整することで、任意の透過率を有するレーザ透過部3aを構成している。この様にすれば、金属蒸着法またはスパッタ法による金属性透過膜を用いて簡単な構成で任意の透過率のレーザ透過部3aを構成できる。 On the other hand, in the case of using a metal permeable film formed by a metal vapor deposition method or a sputtering method, the laser transmitting portion 3a is a metal made of a metal such as Cr, Inconel, and aluminum on a transmissive member (for example, SiO 2 substrate) as a base portion. The conductive permeable film is formed by metal vapor deposition or sputtering. In this configuration, the laser transmission portion 3a having an arbitrary transmittance is configured by adjusting the material or thickness of the metallic transmission film. In this way, the laser transmission portion 3a having an arbitrary transmittance can be configured with a simple configuration using a metallic transmission film formed by a metal vapor deposition method or a sputtering method.

以上に説明した半導体装置の製造方法によれば、半導体基板1における熱処理をしたい部分(特定部分)に対応する部分に所定の透過率を有するレーザ透過部3aを有し、半導体基板1における熱処理をしたくない部分(他の部分)に対応する部分にレーザ反射部3bを有するマスク部材3を、半導体基板1上に配置し、そのマスク部材3を介して半導体基板1にレーザー光7を照射して、半導体基板1における熱処理をしたくない部分はレーザ反射部3bにより保護して熱処理せず、半導体基板1における熱処理をしたい部分だけをマスク部材3のレーザ透過部3aを透過したレーザー光7により熱処理するので、半導体基板1の各部分を選択的に異なる温度(適切な温度)で熱処理できる。これにより、不純物の種類に応じた熱処理の最適化が可能となり、デバイス性能の向上が望める。   According to the method for manufacturing a semiconductor device described above, the laser transmitting portion 3a having a predetermined transmittance is provided in a portion corresponding to a portion (specific portion) to be heat-treated in the semiconductor substrate 1, and the heat treatment in the semiconductor substrate 1 is performed. A mask member 3 having a laser reflecting portion 3b in a portion corresponding to a portion not desired (other portion) is disposed on the semiconductor substrate 1, and the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. Thus, the portion of the semiconductor substrate 1 that is not to be heat-treated is protected by the laser reflecting portion 3b and is not heat-treated. Since the heat treatment is performed, each portion of the semiconductor substrate 1 can be selectively heat treated at a different temperature (appropriate temperature). As a result, it is possible to optimize the heat treatment according to the type of impurities, and the improvement of device performance can be expected.

また、半導体基板1の表面の加工工程の追加もなく、レーザーアニール工程にマスク部材3を一枚追加するだけで、上記の効果を実現できる。   In addition, the above effect can be realized by adding one mask member 3 to the laser annealing process without adding a processing process for the surface of the semiconductor substrate 1.

尚、この実施の形態では、半導体基板1の各部分として、半導体基板1に形成される各デバイスA,Bに含まれる不純物注入領域A3,B3を扱ったが、各不純物注入領域A3,B3の代わりに各デバイスA,Bのパーツ(例えばゲート電極)を扱ってもよい。そうすれば、不純物の種類に応じた熱処理の最適化だけでばく、デバイスのパーツ別等に応じた熱処理の最適化も可能となり、更なるデバイス性能の向上が望める。   In this embodiment, the impurity implantation regions A3 and B3 included in the devices A and B formed on the semiconductor substrate 1 are handled as the portions of the semiconductor substrate 1, but the impurity implantation regions A3 and B3 Instead, the parts (for example, gate electrodes) of the devices A and B may be handled. By doing so, it is possible to optimize the heat treatment according to the parts of the device, etc., by simply optimizing the heat treatment according to the type of impurities, and further improve the device performance.

実施の形態2.
上記の実施の形態1は、各不純物注入領域A3,B3をそれぞれ「異なる工程で」異なる温度で熱処理するものであった。それに対しこの実施の形態は、各不純物注入領域A3,B3をそれぞれ「同時に」異なる温度で熱処理する様にしたものである。以下、この実施の形態について詳説する。
Embodiment 2. FIG.
In the first embodiment, the impurity implantation regions A3 and B3 are heat-treated at different temperatures “in different steps”. In contrast, in this embodiment, the impurity implantation regions A3 and B3 are heat-treated at different temperatures “simultaneously”. Hereinafter, this embodiment will be described in detail.

この実施の形態のマスク部材3は、図3の様に、デバイスAに対応する部分(第1の特定部分)に第1の透過率(即ち不純物注入領域A3の熱処理に適した光強度の透過光が得られる透過率)を有する第1のレーザ透過部3a−1を有し、デバイスBに対応する部分(第2の特定部分)に前記第1の透過率と異なる第2の透過率(即ち透過光が不純物注入領域B3の熱処理に適した光強度となる透過率)を有する第2のレーザ透過部3a−2を有する様に形成される。   As shown in FIG. 3, the mask member 3 of this embodiment has a first transmittance (that is, a light intensity suitable for heat treatment of the impurity implantation region A3) in a portion corresponding to the device A (first specific portion). A first laser transmitting portion 3a-1 having a light transmission rate), and a second transmittance different from the first transmittance (a second specific portion) corresponding to the device B (second specific portion) That is, it is formed so as to have the second laser transmitting portion 3a-2 having transmitted light (transmittance at a light intensity suitable for the heat treatment of the impurity implantation region B3).

そして図3の様に、このマスク部材3を介して半導体基板1の一面全体にレーザー光7を照射する。これにより、デバイスA(従って不純物注入領域A3)は、マスク部材3の第1のレーザ透過部3a−1を透過したレーザー光7により適切な温度で熱処理され、デバイスB(従って不純物注入領域B3)は、マスク部材3の第2のレーザ透過部3a−2を透過したレーザー光7により適切な温度で熱処理される。この様にして、レーザー光7を用いて半導体基板1の各不純物注入領域A3,B3を同時にそれぞれ適切な温度(異なる温度)で熱処理される。   As shown in FIG. 3, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. As a result, the device A (accordingly, the impurity implantation region A3) is heat-treated at an appropriate temperature by the laser beam 7 transmitted through the first laser transmitting portion 3a-1 of the mask member 3, and the device B (accordingly, the impurity implantation region B3). Is heat-treated at an appropriate temperature by the laser light 7 transmitted through the second laser transmitting portion 3a-2 of the mask member 3. In this way, each of the impurity implantation regions A3 and B3 of the semiconductor substrate 1 is simultaneously heat-treated at an appropriate temperature (different temperature) using the laser beam 7.

以上に説明した半導体装置の製造方法によれば、上記の実施の形態1の効果に加えて、各不純物注入領域A3,B3を1回のレーザ照射で同時にそれぞれ適切な温度(異なる温度)で熱処理できる。   According to the semiconductor device manufacturing method described above, in addition to the effects of the first embodiment, the impurity implantation regions A3 and B3 are simultaneously heat-treated at an appropriate temperature (different temperatures) by one laser irradiation. it can.

尚、この実施の形態では、異なる温度で同時に熱処理する部分として2つの部分(第1および第2の特定部分)を扱ったが、一般的にNつ(N:3以上の整数)の部分(第1,第2,…,第Nの特定部分)を扱っても構わない。   In this embodiment, two parts (first and second specific parts) are handled as parts to be simultaneously heat-treated at different temperatures. However, in general, N parts (N: an integer of 3 or more) ( The first, second,..., Nth specific portion) may be handled.

尚、この実施の形態では、半導体基板1の各部分として、半導体基板1に形成される各デバイスA,Bに含まれる不純物注入領域A3,B3を扱ったが、各不純物注入領域A3,B3の代わりに各デバイスA,Bのパーツ(例えばゲート電極)を扱ってもよい。   In this embodiment, the impurity implantation regions A3 and B3 included in the devices A and B formed on the semiconductor substrate 1 are handled as the portions of the semiconductor substrate 1, but the impurity implantation regions A3 and B3 Instead, the parts (for example, gate electrodes) of the devices A and B may be handled.

実施の形態3.
この実施の形態に係る半導体装置の製造方法は、上記の実施の形態1に係る半導体装置の製造方法をCMOSプロセスのSD(ソースドレイン)の熱処理工程に適用して、pFETのSD領域とnFETのSD領域をそれぞれ異なる温度で熱処理する様にしたものである。以下では、例えばnFETとpFETの2つのデバイスを搭載したCMOSトランジスタを例に挙げて説明する。
Embodiment 3 FIG.
The semiconductor device manufacturing method according to this embodiment is obtained by applying the semiconductor device manufacturing method according to the above-described first embodiment to the heat treatment process of the SD (source drain) of the CMOS process, and the SD region of the pFET and the nFET. The SD regions are heat treated at different temperatures. Hereinafter, for example, a CMOS transistor equipped with two devices, nFET and pFET, will be described as an example.

まず図4の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域B2に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域A2に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 4, according to a normal CMOS process, a CMOS transistor is manufactured up to a stage before heat treatment. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (for example, Si substrate) 1, and a p-well B5 and an n + SD region (impurity implantation region) B3 are formed in a formation region B2 where an nFET is formed in the semiconductor substrate 1. The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate are formed in the formation region A2 in the semiconductor substrate 1 where the pFET is formed. Electrode A7 is formed.

そして図4の様に、まず、半導体基板1上の所定位置に、nFETの形成領域B2を選択的に熱処理するためのマスク部材3nを配置する。このマスク部材3nは、nFETの形成領域B2(特定部分)に対応する部分に所定の透過率(即ちnFET(特にSD領域B3)の熱処理に適した光強度の透過光が得られる透過率)を有するレーザ透過部3aを有し、pFETの形成領域A2に対応する部分(他の部分)にレーザ反射部3bを有する様に形成されている。   As shown in FIG. 4, first, a mask member 3 n for selectively heat-treating the nFET formation region B <b> 2 is disposed at a predetermined position on the semiconductor substrate 1. This mask member 3n has a predetermined transmittance (that is, a transmittance with which light having a light intensity suitable for heat treatment of the nFET (particularly the SD region B3) is obtained) in a portion corresponding to the nFET formation region B2 (specific portion). The laser transmission part 3a is provided, and the laser reflection part 3b is formed in a part (other part) corresponding to the pFET formation region A2.

そして図5の様に、そのマスク部材3nを介して半導体基板1の一面全体にレーザー光7を照射する。これにより、pFETは、マスク部材3nのレーザ反射部3bにより保護されて熱処理されず、nFETだけが、マスク部材3nのレーザ透過部3aを透過したレーザー光7により適切な温度で熱処理される。   Then, as shown in FIG. 5, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3n. Thus, the pFET is protected by the laser reflecting portion 3b of the mask member 3n and is not heat-treated, and only the nFET is heat-treated at an appropriate temperature by the laser light 7 transmitted through the laser transmitting portion 3a of the mask member 3n.

そして図6の様に、次に、半導体基板1上の所定位置に、マスク部材3nの代わりに、pFETの形成領域A2を選択的に熱処理するためのマスク部材3pを配置する。このマスク部材3pは、pFETの形成領域A2に対応する部分(特定部分)に所定の透過率(即ちpFET(特にSD領域A3)の熱処理に適した光強度の透過光が得られる透過率)を有するレーザ透過部3aを有し、nFETの形成領域B2に対応する部分(他の部分)にレーザ反射部3bを有する様に形成されている。   Then, as shown in FIG. 6, a mask member 3p for selectively heat-treating the pFET formation region A2 is disposed at a predetermined position on the semiconductor substrate 1 instead of the mask member 3n. The mask member 3p has a predetermined transmittance (that is, a transmittance with which light having a light intensity suitable for heat treatment of the pFET (particularly the SD region A3) is obtained) in a portion (specific portion) corresponding to the pFET formation region A2. The laser transmission part 3a is provided, and the laser reflection part 3b is formed in a part (other part) corresponding to the nFET formation region B2.

そして図6の様に、そのマスク部材3pを介して半導体基板1の一面全体にレーザー光7を照射する。これにより、nFETは、マスク部材3pのレーザ反射部3bにより保護されて熱処理されず、pFETだけが、マスク部材3pのレーザ透過部3aを透過したレーザー光7により適切な温度で熱処理される。この様にして、レーザー光7を用いて、半導体基板1におけるpFET(特にSD領域A3)およびnFET(特にSD領域B3)がそれぞれ適切な温度(異なる温度)で熱処理される。   Then, as shown in FIG. 6, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3p. Thereby, the nFET is protected by the laser reflecting portion 3b of the mask member 3p and is not heat-treated, and only the pFET is heat-treated at an appropriate temperature by the laser light 7 transmitted through the laser transmitting portion 3a of the mask member 3p. In this way, using the laser beam 7, the pFET (particularly the SD region A3) and the nFET (particularly the SD region B3) in the semiconductor substrate 1 are heat-treated at appropriate temperatures (different temperatures).

以上に説明した半導体装置の製造方法によれば、CMOSトランジスタにおけるnFET(特にSD領域B3)およびpFET(特にSD領域A3)をそれぞれ適切な温度(異なる温度)で熱処理でき、CMOSトランジスタの性能を向上させることができる。この点、従来法では、nFETおよびpFETを対して同じ温度の熱処理しかできなかった。一般に、nFETに不純物としてよく用いられるAsは、熱拡散が小さく高温ほど活性化し易いという特徴を持ち、他方、pFETに不純物として用いられるBは、拡散量がかなり大きいという特徴を持つので、従来法では、半導体基板1全体に行われる熱処理の温度の上限がpFETで制限され、nFETに適切な温度で熱処理を行うのが難しかった。   According to the semiconductor device manufacturing method described above, the nFET (especially the SD region B3) and the pFET (especially the SD region A3) in the CMOS transistor can be heat-treated at appropriate temperatures (different temperatures) to improve the performance of the CMOS transistor. Can be made. In this regard, the conventional method can only perform heat treatment at the same temperature for nFET and pFET. Generally, As, which is often used as an impurity in nFET, has a feature that thermal diffusion is small and it is easy to activate at higher temperatures, while B, which is used as an impurity in pFET, has a feature that the diffusion amount is considerably large. Then, the upper limit of the temperature of the heat treatment performed on the entire semiconductor substrate 1 is limited by the pFET, and it is difficult to perform the heat treatment at a temperature suitable for the nFET.

実施の形態4.
上記の実施の形態3は、pFETとnFETをそれぞれ「異なる工程」で異なる温度で熱処理するものであった。それに対しこの実施の形態は、上記の実施の形態2の半導体装置の製造方法を用いることで、pFETとnFETをそれぞれ「同時」に異なる温度で熱処理する様にしたものである。以下、この実施の形態について詳説する。
Embodiment 4 FIG.
In the third embodiment, the pFET and the nFET are heat-treated at different temperatures in “different processes”. On the other hand, in this embodiment, the semiconductor device manufacturing method of the above-described second embodiment is used to heat-treat the pFET and the nFET “differently” at different temperatures. Hereinafter, this embodiment will be described in detail.

まず図7の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域B2に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域A2に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 7, a CMOS transistor is manufactured up to a stage before heat treatment according to a normal CMOS process. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (for example, Si substrate) 1, and a p-well B5 and an n + SD region (impurity implantation region) B3 are formed in a formation region B2 where an nFET is formed in the semiconductor substrate 1. The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate are formed in the formation region A2 in the semiconductor substrate 1 where the pFET is formed. Electrode A7 is formed.

そして図7の様に、半導体基板1上の所定位置にマスク部材3を配置する。このマスク部材3は、pFETの形成領域A2(第1の特定部分)に対応する部分に第1の透過率(即ちpFET(特にSD領域A3)の熱処理に適した光強度の透過光が得られる透過率)を有する第1のレーザ透過部3a−1を有し、nFETの形成領域B2(第2の特定部分)に対応する部分に第2の透過率(即ちnFET(特にSD領域B3)の熱処理に適した光強度の透過光が得られる透過率)を有する第2のレーザ透過部3a−2を有する様に形成されている。   Then, as shown in FIG. 7, the mask member 3 is disposed at a predetermined position on the semiconductor substrate 1. The mask member 3 can obtain transmitted light having a light intensity suitable for heat treatment of the first transmittance (that is, the pFET (particularly, the SD region A3)) in a portion corresponding to the pFET formation region A2 (first specific portion). A first laser transmitting portion 3a-1 having a transmittance), and a second transmittance (that is, an nFET (especially SD region B3)) in a portion corresponding to an nFET formation region B2 (second specific portion). It is formed so as to have a second laser transmission portion 3a-2 having a transmittance that allows transmission light having a light intensity suitable for heat treatment.

そして図8の様に、そのマスク部材3を介して半導体基板1の一面全体にレーザー光7を照射する。これにより、pFETは、マスク部材3の第1のレーザ透過部3a−1を透過したレーザー光7により適切な温度で熱処理され、nFETは、マスク部材3の第2のレーザ透過部3a−2を透過したレーザー光7により適切な温度で熱処理される。この様にして、レーザー光7を用いて、半導体基板1のnFETおよびpFETが同時にそれぞれ適切な温度(異なる温度)で熱処理される。   Then, as shown in FIG. 8, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. As a result, the pFET is heat-treated at an appropriate temperature by the laser light 7 transmitted through the first laser transmitting portion 3a-1 of the mask member 3, and the nFET is subjected to the second laser transmitting portion 3a-2 of the mask member 3. Heat treatment is performed at an appropriate temperature by the transmitted laser beam 7. In this way, the nFET and pFET of the semiconductor substrate 1 are simultaneously heat-treated at appropriate temperatures (different temperatures) using the laser beam 7.

以上に説明した半導体装置の製造方法によれば、上記の実施の形態3の効果に加えて、CMOSトランジスタにおけるnFETおよびpFETを1回のレーザ照射で同時に選択的に適切な温度で熱処理できる。   According to the semiconductor device manufacturing method described above, in addition to the effects of the third embodiment, the nFET and the pFET in the CMOS transistor can be selectively heat-treated at a suitable temperature simultaneously by one laser irradiation.

実施の形態5.
上記の実施の形態3は、pFETのSD領域A3とnFETのSD領域B3に対してはそれぞれ異なる温度で熱処理し、pFET(nFET)のSD領域A3(B3)とゲート電極A7(B7)に対してはそれぞれ同じ温度で熱処理するものであった。それに対しこの実施の形態は、上記の実施の形態1,2の半導体装置の製造方法を組み合わせることで、pFETのSD領域A3、pFETのゲート電極A7、nFETのSD領域B3およびnFETのゲート電極B7をそれぞれ異なる温度で熱処理する様にしたものである。以下、この実施の形態について詳説する。
Embodiment 5. FIG.
In the third embodiment, the pFET SD region A3 and the nFET SD region B3 are heat-treated at different temperatures, and the pFET (nFET) SD region A3 (B3) and the gate electrode A7 (B7) are subjected to heat treatment. Each was heat-treated at the same temperature. On the other hand, in this embodiment, the semiconductor device manufacturing method of the first and second embodiments is combined, so that the pFET SD region A3, the pFET gate electrode A7, the nFET SD region B3, and the nFET gate electrode B7. Are heat-treated at different temperatures. Hereinafter, this embodiment will be described in detail.

まず図9の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 9, a CMOS transistor is manufactured up to a stage before heat treatment according to a normal CMOS process. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (eg, Si substrate) 1 and a p-well B5, an n + SD region (impurity implantation region) B3, The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate electrode A7 are formed in the formation region of the semiconductor substrate 1 where the pFET is formed. Form.

そして図9の様に、半導体基板1上の所定位置に、各FETのSD領域A3,B3を選択的に異なる温度で熱処理するためのマスク部材3sを配置する。   Then, as shown in FIG. 9, a mask member 3s for selectively heat-treating the SD regions A3 and B3 of each FET at different temperatures is disposed at a predetermined position on the semiconductor substrate 1.

このマスク部材3nは、pFETのSD領域A3に対応する部分(第1の特定部分)に第1の透過率(即ちSD領域A3の熱処理に適した光強度の透過光が得られる透過率)Tbを有する第1のレーザ透過部3a−1を有し、nFETのSD領域B3に対応する部分(第2の特定部分)に第2の透過率(SD領域B3の熱処理に適した光強度の透過光が得られる透過率)Taを有する第2のレーザ透過部3a−2を有し、各FETのゲート電極A7,B7に対応する部分(他の部分)にレーザ反射部3bを有する様に形成されている。   The mask member 3n has a first transmittance (that is, a transmittance at which transmitted light having a light intensity suitable for the heat treatment of the SD region A3) corresponding to the SD region A3 (first specific portion) of the pFET Tb. The first laser transmitting portion 3a-1 having the above and the second transmittance (light intensity transmission suitable for the heat treatment of the SD region B3) in the portion (second specific portion) corresponding to the SD region B3 of the nFET It has a second laser transmission part 3a-2 having a transmittance (Ta from which light can be obtained) Ta, and is formed so as to have a laser reflection part 3b in a part (other part) corresponding to the gate electrodes A7 and B7 of each FET. Has been.

そして図10の様に、そのマスク部材3sを介して半導体基板1の一面全体にレーザー光7を照射する。これにより、各FETのゲート電極A7,B7はマスク部材3sのレーザ反射部3bにより保護して熱処理せず、第1のレーザ透過部3a−1を透過したレーザー光7によりpFETのSD領域A3を選択的に適切な温度で熱処理して活性化させると共に、レーザ透過部3aー2を透過したレーザー光7によりnFETのSD領域B3を選択的に適切な温度で熱処理して活性化させる。   Then, as shown in FIG. 10, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3s. As a result, the gate electrodes A7 and B7 of each FET are protected by the laser reflecting portion 3b of the mask member 3s and are not heat-treated, and the SD region A3 of the pFET is formed by the laser light 7 transmitted through the first laser transmitting portion 3a-1. The heat treatment is selectively activated at an appropriate temperature and activated, and the SD region B3 of the nFET is selectively activated at an appropriate temperature by the laser beam 7 transmitted through the laser transmitting portion 3a-2.

そして図11の様に、次に、半導体基板1上の所定位置に、マスク部材3sの代わりに、各FETのゲート電極A7,B7を選択的に異なる温度で熱処理するためのマスク部材3gを配置する。このマスク部材3gは、ゲート電極A7(第3の特定部分)に対応する部分に第3の透過率(即ちゲート電極A7の熱処理に適した光強度の透過光が得られる透過率)を有する第1のレーザ透過部3a−1を有し、ゲート電極B7(第4の特定部分)に対応する部分に第4の透過率(即ちゲート電極B7の熱処理に適した光強度の透過光が得られる透過率)を有する第2のレーザ透過部3a−2を有し、各FETのSD領域A3,B3(他の部分)に対応する部分にレーザ反射部3bを有する様に形成されている。   Then, as shown in FIG. 11, next, in place of the mask member 3s, a mask member 3g for selectively heat-treating the gate electrodes A7 and B7 of each FET at different temperatures is disposed at a predetermined position on the semiconductor substrate 1. To do. The mask member 3g has a third transmittance (that is, a transmittance at which transmitted light having a light intensity suitable for heat treatment of the gate electrode A7 is obtained) in a portion corresponding to the gate electrode A7 (third specific portion). 1 and a portion corresponding to the gate electrode B7 (fourth specific portion) has a fourth transmittance (that is, transmitted light having a light intensity suitable for heat treatment of the gate electrode B7). The second laser transmitting portion 3a-2 having a transmittance) is formed, and the laser reflecting portion 3b is formed in a portion corresponding to the SD regions A3 and B3 (other portions) of each FET.

そして図11の様に、そのマスク部材3gを介して半導体基板1の一面全体にレーザー光7を照射する。これにより、各SD領域A3,B3は、マスク部材3gのレーザ反射部3bにより保護されて熱処理されず、pFETのゲート電極A7は、マスク部材3gの第1のレーザ透過部3a−1を透過したレーザー光7により選択的に適切な温度で熱処理され、nFETのゲート電極B7は、マスク部材3gの第2のレーザ透過部3a−2を透過したレーザー光7により選択的に適切な温度で熱処理される。この様にして、レーザー光7を用いて、半導体基板1におけるpFETのSD領域A3、nFETのSD領域B3、pFETのゲート電極A7およびpFETのゲート電極B7がそれぞれ異なる温度(適切な温度)で熱処理される。   Then, as shown in FIG. 11, the entire surface of the semiconductor substrate 1 is irradiated with the laser beam 7 through the mask member 3g. Thereby, each SD area | region A3, B3 is protected by the laser reflection part 3b of the mask member 3g, and is not heat-processed, and the gate electrode A7 of pFET permeate | transmitted the 1st laser transmission part 3a-1 of the mask member 3g. The nFET gate electrode B7 is selectively heat-treated at the appropriate temperature by the laser light 7 transmitted through the second laser transmitting portion 3a-2 of the mask member 3g. The In this manner, using the laser beam 7, the pFET SD region A3, the nFET SD region B3, the pFET gate electrode A7 and the pFET gate electrode B7 in the semiconductor substrate 1 are heat-treated at different temperatures (appropriate temperatures). Is done.

一般にポリシリコン中での不純物の拡散速度はシリコン中での不純物の拡散速度よりも速くなるため、ゲート電極A7,B7をポリシリコンで形成した場合、ゲート電極A7(B7)を適切に熱処理するための温度と、SD領域A3(B3)を適切に熱処理するための温度とは同じではない。しかしながら、この実施の形態に係る半導体装置の製造方法によれば、各SD領域A3,3をそれぞれ適切な温度(異なる温度)で熱処理するだけでなく、ゲート電極A7(B7)とSD領域A3(B3)もそれぞれ適切な温度(異なる温度)で熱処理できるので、半導体装置のデバイス性能をより一層向上できる。   In general, the diffusion rate of impurities in polysilicon is higher than the diffusion rate of impurities in silicon. Therefore, when the gate electrodes A7 and B7 are formed of polysilicon, the gate electrode A7 (B7) is appropriately heat-treated. And the temperature for appropriately heat-treating the SD region A3 (B3) are not the same. However, according to the manufacturing method of the semiconductor device according to this embodiment, each SD region A3, 3 is not only heat-treated at an appropriate temperature (different temperature), but also the gate electrode A7 (B7) and the SD region A3 ( Since B3) can also be heat-treated at an appropriate temperature (different temperature), the device performance of the semiconductor device can be further improved.

実施の形態6.
上記の実施の形態5は、pFETのSD領域A3とnFETのSD領域B3に対してはそれぞれ「同時」に異なる温度で熱処理し、pFET(nFET)のSD領域A3(B3)とゲート電極A7(B7)に対してはそれぞれ「異なる工程」で異なる温度で熱処理するものであった。それに対しこの実施の形態は、上記の実施の形態2の半導体装置の製造方法を適用することで、pFETのSD領域A3、pFETのゲート電極A7、nFETのSD領域B3およびnFETのゲート電極B7をそれぞれ「同時」に異なる温度で熱処理する様にしたものである。以下、この実施の形態について詳説する。
Embodiment 6 FIG.
In the fifth embodiment, the SD region A3 of the pFET and the SD region B3 of the nFET are thermally treated at different temperatures “simultaneously”, respectively, and the SD region A3 (B3) of the pFET (nFET) and the gate electrode A7 ( For B7), heat treatment was performed at different temperatures in “different steps”. On the other hand, in this embodiment, by applying the semiconductor device manufacturing method of the second embodiment, the pFET SD region A3, the pFET gate electrode A7, the nFET SD region B3, and the nFET gate electrode B7 are formed. Heat treatment is performed at different temperatures “simultaneously”. Hereinafter, this embodiment will be described in detail.

まず図12の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 12, according to a normal CMOS process, a CMOS transistor is manufactured up to a stage before heat treatment. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (eg, Si substrate) 1 and a p-well B5, an n + SD region (impurity implantation region) B3, The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate electrode A7 are formed in the formation region of the semiconductor substrate 1 where the pFET is formed. Form.

そして図12の様に、半導体基板1上の所定位置にマスク部材3を配置する。このマスク部材3は、pFETのSD領域A3(第1の特定部分)に対応する部分に第1の透過率(即ちSD領域A3の熱処理に適した光強度の透過光が得られる透過率)を有する第1のレーザ透過部3a−1を有し、nFETのSD領域B3(第2の特定部分)に対応する部分に第2の透過率(即ちSD領域B3の熱処理に適した光強度の透過光が得られる透過率)を有する第2のレーザ透過部3a−2を有し、pFETのゲート電極A7(第3の特定部分)に対応する部分に第3の透過率(即ちゲート電極A7の熱処理に適した光強度の透過光が得られる透過率)を有する第3のレーザ透過部3a−3を有し、nFETのゲート電極A7(第4の特定部分)に対応する部分に第4の透過率(即ちゲート電極A7の熱処理に適した光強度の透過光が得られる透過率)を有する第4のレーザ透過部3a−4を有する様に形成されている。   Then, as shown in FIG. 12, the mask member 3 is arranged at a predetermined position on the semiconductor substrate 1. This mask member 3 has a first transmittance (that is, a transmittance at which transmitted light having a light intensity suitable for the heat treatment of the SD region A3 is obtained) in a portion corresponding to the SD region A3 (first specific portion) of the pFET. The first laser transmitting portion 3a-1 has a second transmittance (that is, light intensity suitable for heat treatment of the SD region B3) in a portion corresponding to the SD region B3 (second specific portion) of the nFET. A second laser transmitting portion 3a-2 having a light transmittance), and a portion corresponding to the gate electrode A7 (third specific portion) of the pFET has a third transmittance (that is, the gate electrode A7). A third laser transmitting portion 3a-3 having a transmittance capable of obtaining a transmitted light having a light intensity suitable for heat treatment), and a fourth portion corresponding to the gate electrode A7 (fourth specific portion) of the nFET. Transmittance (that is, a transmittance that allows transmission of light having a light intensity suitable for heat treatment of the gate electrode A7) It is formed so as to have a laser transmitting section 3a-4 of 4.

そして図12の様に、そのマスク部材3を介して半導体基板1の一面全体にレーザー光7を照射する。これにより、pFETのSD領域A3は、マスク部材3の第1のレーザ透過部3a−1を透過したレーザー光7により適切な温度で熱処理され、nFETのSD領域B3は、マスク部材3の第2のレーザ透過部3a−2を透過したレーザー光7により適切な温度で熱処理され、pFETのゲート電極A7は、マスク部材3の第3のレーザ透過部3a−3を透過したレーザー光7により適切な温度で熱処理され、nFETのゲート電極B7は、マスク部材3の第4のレーザ透過部3a−4を透過したレーザー光7により適切な温度で熱処理される。この様にして、レーザー光7を用いて、半導体基板1のpFETのSD領域A3、pFETのゲート電極A7、nFETのSD領域B3およびnFETのゲート電極B7がそれぞれ同時に異なる温度(適切な温度)で熱処理される。   Then, as shown in FIG. 12, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. Thereby, the SD region A3 of the pFET is heat-treated at an appropriate temperature by the laser light 7 transmitted through the first laser transmitting portion 3a-1 of the mask member 3, and the SD region B3 of the nFET is the second region of the mask member 3. The gate electrode A7 of the pFET is appropriately heat treated by the laser beam 7 transmitted through the third laser transmitting portion 3a-3 of the mask member 3. The nFET gate electrode B7 is heat-treated at an appropriate temperature by the laser beam 7 transmitted through the fourth laser transmitting portion 3a-4 of the mask member 3. In this way, using the laser beam 7, the SD region A3 of the pFET, the gate electrode A7 of the pFET, the SD region B3 of the nFET, and the gate electrode B7 of the nFET are simultaneously different at different temperatures (appropriate temperatures). Heat treated.

以上に説明した半導体装置の製造方法によれば、上記の実施の形態5の効果に加えて、CMOSトランジスタにおけるpFETのSD領域A3、pFETのゲート電極A7、nFETのSD領域B3およびnFETのゲート電極B7をそれぞれ1回のレーザ照射で同時に異なる温度で熱処理できる。   According to the semiconductor device manufacturing method described above, in addition to the effects of the fifth embodiment, the pFET SD region A3, the pFET gate electrode A7, the nFET SD region B3, and the nFET gate electrode in the CMOS transistor. B7 can be heat-treated at different temperatures simultaneously by one laser irradiation.

実施の形態7.
この実施の形態に係る半導体装置の製造方法は、上記の実施の形態1の半導体装置の製造方法をCMOSプロセスのSD(ソースドレイン)の熱処理工程に適用して、各FETのゲート電極は熱処理せずに、各FETのSD領域だけを所定の温度で熱処理する様にしたものである。以下、例えばnFETとpFETの2つのデバイスを搭載したCMOSトランジスタを例に挙げて説明する。
Embodiment 7 FIG.
In the semiconductor device manufacturing method according to this embodiment, the semiconductor device manufacturing method of the first embodiment is applied to the SD (source drain) heat treatment process of the CMOS process, and the gate electrode of each FET is heat-treated. Instead, only the SD region of each FET is heat-treated at a predetermined temperature. Hereinafter, for example, a CMOS transistor equipped with two devices of nFET and pFET will be described as an example.

まず図14の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域B2に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域A2に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 14, according to a normal CMOS process, a CMOS transistor is manufactured up to a stage before heat treatment. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (for example, Si substrate) 1, and a p-well B5 and an n + SD region (impurity implantation region) B3 are formed in a formation region B2 where an nFET is formed in the semiconductor substrate 1. The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate are formed in the formation region A2 in the semiconductor substrate 1 where the pFET is formed. Electrode A7 is formed.

そして図14の様に、半導体基板1上の所定位置に、各FETのSD領域A3,B3を選択的に同じ温度で熱処理するためのマスク部材3を配置する。このマスク部材3は、各FETのSD領域A3,B3(特定部分)に対応する部分に所定の透過率を有するレーザ透過部3aを有し、各FETのゲート電極A7,B7(他の部分)に対応する部分にレーザ反射部3bを有する様に形成されている。   Then, as shown in FIG. 14, a mask member 3 for selectively heat-treating the SD regions A3 and B3 of each FET at the same temperature is disposed at a predetermined position on the semiconductor substrate 1. This mask member 3 has a laser transmitting portion 3a having a predetermined transmittance in a portion corresponding to the SD region A3, B3 (specific portion) of each FET, and gate electrodes A7, B7 (other portions) of each FET. Is formed so as to have a laser reflecting portion 3b in a portion corresponding to the above.

そして図15の様に、そのマスク部材3を介して半導体基板1の一面全体にレーザー光7を照射する。これにより、各FETのゲート電極A7,B7は、マスク部材3のレーザ反射部3bにより保護されて熱処理されず、各FETのSD領域A3,B3だけが、マスク部材3のレーザ透過部3aを透過したレーザー光7により選択的に所定の温度で熱処理される。この様にして、レーザー光7を用いて、各FETのゲート電極A7,B7は(従ってゲート絶縁膜A6,B6も)熱処理されず、各FETのSD領域A3,B3だけが所定の温度で熱処理される。   Then, as shown in FIG. 15, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. Thereby, the gate electrodes A7 and B7 of each FET are protected by the laser reflecting portion 3b of the mask member 3 and are not heat-treated, and only the SD regions A3 and B3 of each FET are transmitted through the laser transmitting portion 3a of the mask member 3. The laser beam 7 is selectively heat-treated at a predetermined temperature. In this way, using the laser beam 7, the gate electrodes A7 and B7 of each FET (and thus the gate insulating films A6 and B6) are not heat-treated, and only the SD regions A3 and B3 of each FET are heat-treated at a predetermined temperature. Is done.

この実施の形態に係る半導体装置の製造方法は、例えばCMOSトランジスタにおける各FETのゲート電極A7,B7は(従ってゲート絶縁膜A6,B6も)熱処理せず、各FETのSD領域A3,B3だけを同じ所定の温度で熱処理する場合に適している。   In the method of manufacturing the semiconductor device according to this embodiment, for example, the gate electrodes A7 and B7 of each FET in the CMOS transistor (and thus the gate insulating films A6 and B6) are not heat-treated, and only the SD regions A3 and B3 of each FET are processed. Suitable for heat treatment at the same predetermined temperature.

実施の形態8.
この実施の形態に係る半導体装置の製造方法は、上記の実施の形態1,2の半導体装置の製造方法を組み合わせることで、CMOSトランジスタにおけるpFETのSD領域およびnFETのSD領域をそれぞれ異なる温度で熱処理し、且つpFETとnFETの一方(例えばpFET)のゲート電極を熱処理せず、他方(例えばnFET)のゲート電極だけを熱処理する様にしたものである。以下では、例えばnFETとpFETの2つのデバイスを搭載したCMOSトランジスタを例に挙げて説明する。
Embodiment 8 FIG.
The semiconductor device manufacturing method according to this embodiment combines the above-described semiconductor device manufacturing methods of the first and second embodiments, so that the pFET SD region and the nFET SD region in the CMOS transistor are heat-treated at different temperatures. In addition, the gate electrode of one of the pFET and the nFET (eg, pFET) is not heat-treated, and only the gate electrode of the other (eg, nFET) is heat-treated. Hereinafter, for example, a CMOS transistor equipped with two devices, nFET and pFET, will be described as an example.

まず図16の様に、通常のCMOSプロセスに従って、CMOSトランジスタを熱処理する前の段階まで作製する。即ち例えば、半導体基板(例えばSi基板)1に素子分離膜4を形成し、且つ半導体基板1おけるnFETが形成される形成領域B2に、p-ウエルB5、n+SD領域(不純物注入領域)B3、ゲート絶縁膜B6およびゲート電極B7を形成すると共に、半導体基板1におけるpFETが形成される形成領域A2に、n-ウエルA5、p+SD領域(不純物注入領域)A3、ゲート絶縁膜A6およびゲート電極A7を形成する。   First, as shown in FIG. 16, a CMOS transistor is manufactured up to a stage before heat treatment according to a normal CMOS process. That is, for example, an element isolation film 4 is formed on a semiconductor substrate (for example, Si substrate) 1, and a p-well B5 and an n + SD region (impurity implantation region) B3 are formed in a formation region B2 where an nFET is formed in the semiconductor substrate 1. The gate insulating film B6 and the gate electrode B7 are formed, and the n-well A5, the p + SD region (impurity implantation region) A3, the gate insulating film A6, and the gate are formed in the formation region A2 in the semiconductor substrate 1 where the pFET is formed. Electrode A7 is formed.

そして図16の様に、半導体基板1上の所定位置に、各FETのSD領域A3,B3、nFETのゲート電極をそれぞれ選択的に異なる温度で熱処理するためのマスク部材3を配置する。このマスク部材3は、pFETのSD領域A3(第1の特定部分)に対応する部分に第1の透過率(即ちSD領域A3の熱処理に適した光強度の透過光が得られる透過率)を有する第1のレーザ透過部3a−1を有し、nFETのSD領域B3(第2の特定部分)に対応する部分に第2の透過率(即ちSD領域B3の熱処理に適した光強度の透過光が得られる透過率)を有する第2のレーザ透過部3a−2を有し、nFETのゲート電極B7(第3の特定部分)に対応する部分に第3の透過率(即ちゲート電極B7の熱処理に適した光強度の透過光が得られる透過率)を有する第3のレーザ透過部3a−3を有し、pFETのゲート電極A7(他の部分)に対応する部分にレーザ反射部3bを有する様に形成されている。   Then, as shown in FIG. 16, mask members 3 for selectively heat-treating the SD regions A3 and B3 of the FETs and the gate electrodes of the nFETs at different temperatures are arranged at predetermined positions on the semiconductor substrate 1. This mask member 3 has a first transmittance (that is, a transmittance at which transmitted light having a light intensity suitable for the heat treatment of the SD region A3 is obtained) in a portion corresponding to the SD region A3 (first specific portion) of the pFET. A first laser transmitting portion 3a-1 having a second transmittance (that is, a light intensity suitable for heat treatment of the SD region B3) in a portion corresponding to the SD region B3 (second specific portion) of the nFET. A second laser transmitting portion 3a-2 having a light transmittance), and a portion corresponding to the gate electrode B7 (third specific portion) of the nFET has a third transmittance (that is, the gate electrode B7). A third laser transmitting portion 3a-3 having a transmittance that allows transmission light having a light intensity suitable for heat treatment), and a laser reflecting portion 3b in a portion corresponding to the gate electrode A7 (other portion) of the pFET. It is formed to have.

そして図17の様に、そのマスク部材3を介して半導体基板1の一面全体にレーザー光7を照射する。これにより、pFETのゲート電極A7は、マスク部材3のレーザ反射部3bにより保護されて熱処理されず、pFETのSD領域A3は、マスク部材3の第1のレーザ透過部3a−1を通過したレーザー光7により適切な温度で熱処理され、nFETのSD領域B3は、マスク部材3の第2のレーザ透過部3a−2を通過したレーザー光7により適切な温度で熱処理され、nFETのゲート電極B7は、マスク部材3の第3のレーザ透過部3a−3を通過したレーザー光7により適切な温度で熱処理される。   Then, as shown in FIG. 17, the entire surface of the semiconductor substrate 1 is irradiated with the laser light 7 through the mask member 3. As a result, the gate electrode A7 of the pFET is protected by the laser reflecting portion 3b of the mask member 3 and is not heat-treated, and the SD region A3 of the pFET passes through the first laser transmitting portion 3a-1 of the mask member 3. The nFET SD region B3 is heat-treated at an appropriate temperature by the laser light 7 that has passed through the second laser transmitting portion 3a-2 of the mask member 3, and the nFET gate electrode B7 is Then, heat treatment is performed at an appropriate temperature by the laser light 7 that has passed through the third laser transmitting portion 3a-3 of the mask member 3.

この様にして、pFETのゲート電極A7は(従ってゲート絶縁膜A6も)熱処理されず、pFETのSD領域A3、nFETのSD領域B3およびnFETのゲート電極B7がそれぞれ同時に異なる温度(適切な温度)で熱処理される。   In this way, the pFET gate electrode A7 (and hence the gate insulating film A6) is not heat-treated, and the pFET SD region A3, the nFET SD region B3, and the nFET gate electrode B7 are simultaneously at different temperatures (appropriate temperatures). Heat treated.

この実施の形態に係る半導体装置の製造方法は、例えばCMOSトランジスタにおけるpFETのSD領域A3およびnFETのSD領域B3をそれぞれ異なる温度で熱処理し、且つpFETとnFETの一方(例えばpFET)のゲート電極A7を熱処理せず、他方(例えばnFET)のゲート電極B7だけを熱処理する場合に適している。   In the method of manufacturing a semiconductor device according to this embodiment, for example, the SD region A3 of the pFET and the SD region B3 of the nFET in the CMOS transistor are heat-treated at different temperatures, respectively, and the gate electrode A7 of one of the pFET and nFET (for example, pFET) Is suitable for a case where only the other (for example, nFET) gate electrode B7 is heat-treated.

またこの実施の形態に係る半導体装置の製造方法によれば、pFETのSD領域A3、nFETのSD領域B3および例えばnFETのゲート電極B7を1回のレーザ照射で同時にそれぞれ適切な温度(異なる温度)で熱処理できる。   In addition, according to the method of manufacturing a semiconductor device according to this embodiment, the pFET SD region A3, the nFET SD region B3, and the nFET gate electrode B7, for example, can be simultaneously subjected to appropriate temperatures (different temperatures) by one laser irradiation. Can be heat treated.

この発明は、例えば半導体集積回路製品が対象となる。   The present invention is directed to, for example, a semiconductor integrated circuit product.

実施の形態1に係る半導体装置の製造方法における、半導体基板1上にマスク部材3を配置した状態を示した図である。6 is a diagram showing a state in which a mask member 3 is arranged on a semiconductor substrate 1 in the method for manufacturing a semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。6 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of the semiconductor substrate 1 through a mask member 3 in the method for manufacturing a semiconductor device according to the first embodiment. FIG. 実施の形態2に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of the semiconductor substrate 1 through the mask member 3 in the method for manufacturing a semiconductor device according to the second embodiment. 実施の形態3に係る半導体装置の製造方法における、半導体基板1上にマスク部材3nを配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3n is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to a third embodiment. 実施の形態3に係る半導体装置の製造方法における、マスク部材3nを介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of the semiconductor substrate 1 through a mask member 3n in the method for manufacturing a semiconductor device according to the third embodiment. 実施の形態3に係る半導体装置の製造方法における、マスク部材3pを介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of a semiconductor substrate 1 through a mask member 3p in the method for manufacturing a semiconductor device according to the third embodiment. 実施の形態4に係る半導体装置の製造方法における、半導体基板1上にマスク部材3を配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3 is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to a fourth embodiment. 実施の形態4に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of the semiconductor substrate 1 through the mask member 3 in the method for manufacturing a semiconductor device according to the fourth embodiment. 実施の形態5に係る半導体装置の製造方法における、半導体基板1上にマスク部材3sを配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3s is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to a fifth embodiment. 実施の形態5に係る半導体装置の製造方法における、マスク部材3sを介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated on the entire surface of a semiconductor substrate 1 through a mask member 3s in a method for manufacturing a semiconductor device according to a fifth embodiment. 実施の形態5に係る半導体装置の製造方法における、マスク部材3gを介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of the semiconductor substrate 1 through a mask member 3g in the method for manufacturing a semiconductor device according to the fifth embodiment. 実施の形態6に係る半導体装置の製造方法における、半導体基板1上にマスク部材3を配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3 is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to a sixth embodiment. 実施の形態6に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which a whole surface of a semiconductor substrate 1 is irradiated with a laser beam 7 through a mask member 3 in a method for manufacturing a semiconductor device according to a sixth embodiment. 実施の形態7に係る半導体装置の製造方法における、半導体基板1上にマスク部材3を配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3 is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to a seventh embodiment. 実施の形態7に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated on the entire surface of a semiconductor substrate 1 through a mask member 3 in a method for manufacturing a semiconductor device according to a seventh embodiment. 実施の形態8に係る半導体装置の製造方法における、半導体基板1上にマスク部材3を配置した状態を示した図である。FIG. 10 is a diagram showing a state in which a mask member 3 is arranged on a semiconductor substrate 1 in a method for manufacturing a semiconductor device according to an eighth embodiment. 実施の形態8に係る半導体装置の製造方法における、マスク部材3を介して半導体基板1の一面全体にレーザー光7を照射している状態を示した図である。FIG. 10 is a diagram showing a state in which laser light 7 is irradiated to the entire surface of a semiconductor substrate 1 through a mask member 3 in a method for manufacturing a semiconductor device according to an eighth embodiment.

符号の説明Explanation of symbols

1 半導体基板、3,3n,3p,3s,3g マスク部材、3a レーザ透過部、3a−1 第1のレーザ透過部、3a−2 第2のレーザ透過部、3a−3 第3のレーザ透過部、3a−4 第4のレーザ透過部、3b レーザ反射部、7 レーザー光、B3,A3 SD領域、A7,B7 ゲート電極、A,B デバイス、A2,B2 形成領域、A3,B3 不純物注入領域。   DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 3, 3n, 3p, 3s, 3g Mask member, 3a Laser transmission part, 3a-1 1st laser transmission part, 3a-2 2nd laser transmission part, 3a-3 3rd laser transmission part 3a-4 4th laser transmitting part, 3b laser reflecting part, 7 laser light, B3, A3 SD region, A7, B7 gate electrode, A, B device, A2, B2 formation region, A3, B3 impurity implantation region.

Claims (10)

半導体基板の各部分を選択的に異なる温度で熱処理する半導体装置の製造方法であって、
(a)半導体基板の特定部分に対応する部分に所定の透過率を有するレーザ透過部を有し、前記半導体基板の他の部分に対応する部分にレーザ反射部を有するマスク部材を、前記半導体基板上に配置する工程と、
(b)前記マスク部材を介して前記半導体基板にレーザー光を照射して、前記半導体基板の前記特定部分だけを前記マスク部材の前記レーザ透過部を透過した前記レーザー光により熱処理する工程と、
を備えることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which each part of a semiconductor substrate is selectively heat-treated at different temperatures,
(A) a mask member having a laser transmitting portion having a predetermined transmittance at a portion corresponding to a specific portion of the semiconductor substrate and having a laser reflecting portion at a portion corresponding to the other portion of the semiconductor substrate; A step of placing on top;
(B) irradiating the semiconductor substrate with laser light through the mask member, and heat-treating only the specific portion of the semiconductor substrate with the laser light transmitted through the laser transmitting portion of the mask member;
A method for manufacturing a semiconductor device, comprising:
前記レーザ反射部は、前記マスク部材上に金属性の反射膜を成膜して構成されることを特徴とする請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the laser reflecting portion is configured by forming a metallic reflective film on the mask member. 前記レーザ反射部は、全反射の条件を満たす様に屈折率の異なる2種類の部材を重ね合わせて構成されることを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the laser reflecting portion is configured by stacking two kinds of members having different refractive indexes so as to satisfy a condition of total reflection. 前記レーザ透過部は、前記マスク部材に開口部を設けて構成されることを特徴とする請求項1〜請求項3の何れかに記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the laser transmitting portion is configured by providing an opening in the mask member. 前記レーザ透過部は、屈折率の異なる複数の部材を重ね合わせて構成されることを特徴とする請求項1〜請求項3の何れかに記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 1, wherein the laser transmitting portion is configured by overlapping a plurality of members having different refractive indexes. 前記レーザ透過部は、基部となる透過性部材上に金属蒸着法またはスパッタ法による金属性透過膜を成膜して構成されることを特徴とする請求項1〜請求項3の何れかに記載の半導体装置の製造方法。   The said laser transmission part is formed by forming a metallic transmission film by a metal vapor deposition method or a sputtering method on a transparent member which becomes a base part. Semiconductor device manufacturing method. 半導体基板の各部分を選択的に異なる温度で熱処理する半導体装置の製造方法であって、
(a)半導体基板の第1の特定部分に対応する部分に第1の透過率を有する第1のレーザ透過部を有し、前記半導体基板の第2の特定部分に対応する部分に前記第1の透過率と異なる第2の透過率を有する第2のレーザ透過部を有するマスク部材を、前記半導体基板上に配置する工程と、
(b)前記マスク部材を通じて前記半導体基板にレーザー光を照射して、前記半導体基板の前記第1の特定部分を、前記マスク部材の前記第1のレーザ透過部を透過した前記レーザー光により熱処理すると共に、前記半導体基板の前記第2の特定部分を、前記マスク部材の前記第2のレーザ透過部を透過した前記レーザー光により熱処理する工程と、
を備えることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which each part of a semiconductor substrate is selectively heat-treated at different temperatures,
(A) A first laser transmitting portion having a first transmittance is provided in a portion corresponding to the first specific portion of the semiconductor substrate, and the first corresponding to the second specific portion of the semiconductor substrate is provided in the first specific portion. Disposing a mask member having a second laser transmission portion having a second transmittance different from the transmittance of the semiconductor substrate on the semiconductor substrate;
(B) The semiconductor substrate is irradiated with laser light through the mask member, and the first specific portion of the semiconductor substrate is heat-treated with the laser light transmitted through the first laser transmitting portion of the mask member. And heat-treating the second specific portion of the semiconductor substrate with the laser light transmitted through the second laser transmitting portion of the mask member;
A method for manufacturing a semiconductor device, comprising:
前記第1または第2のレーザ透過部は、前記マスク部材に開口部を設けて構成されることを特徴とする請求項7に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 7, wherein the first or second laser transmitting portion is configured by providing an opening in the mask member. 前記第1および/または第2のレーザ透過部は、屈折率の異なる複数の部材を重ね合わせて構成されることを特徴とする請求項7または請求項8に記載の半導体装置の製造方法。   9. The method of manufacturing a semiconductor device according to claim 7, wherein the first and / or second laser transmitting portion is configured by overlapping a plurality of members having different refractive indexes. 前記第1および/またはレーザ透過部は、基部となる透過性部材上に金属蒸着法またはスパッタ法による金属性透過膜を成膜して構成されることを特徴とする請求項7または請求項8に記載の半導体装置の製造方法。   The said 1st and / or laser transmissive part is comprised by forming the metal permeable film by the metal vapor deposition method or the sputtering method on the transparent member used as a base, It is comprised. The manufacturing method of the semiconductor device as described in any one of Claims 1-3.
JP2006331579A 2006-12-08 2006-12-08 Method of manufacturing semiconductor device Pending JP2008147334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331579A JP2008147334A (en) 2006-12-08 2006-12-08 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331579A JP2008147334A (en) 2006-12-08 2006-12-08 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2008147334A true JP2008147334A (en) 2008-06-26

Family

ID=39607194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331579A Pending JP2008147334A (en) 2006-12-08 2006-12-08 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2008147334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190129441A (en) * 2018-05-11 2019-11-20 엘지이노텍 주식회사 A surface-emitting laser packgae and optical module including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190129441A (en) * 2018-05-11 2019-11-20 엘지이노텍 주식회사 A surface-emitting laser packgae and optical module including the same
KR102556816B1 (en) * 2018-05-11 2023-07-18 엘지이노텍 주식회사 A surface-emitting laser packgae and optical module including the same

Similar Documents

Publication Publication Date Title
JP4627961B2 (en) Method for manufacturing semiconductor device
US9048220B2 (en) Method of crystallizing silicon thin film and method of manufacturing silicon thin-film transistor device
TWI224868B (en) Method of forming poly-silicon thin film transistor
JP2000323713A (en) Manufacture of thin film transistor
JPH11506567A (en) How to form a shallow junction
JPH065536A (en) Manufacture of semiconductor device
KR20040083353A (en) Semiconductor device and method of fabricating the same
JP2004536441A (en) Semiconductor device and method of manufacturing the same
JPWO2007086163A1 (en) Semiconductor device manufacturing method and semiconductor device
JP2008147334A (en) Method of manufacturing semiconductor device
JP2008021827A (en) Manufacturing method for semiconductor device
US7767509B2 (en) Methods of forming a multilayer capping film to minimize differential heating in anneal processes
TW463382B (en) Manufacturing method of thin film transistor
US20040102057A1 (en) Sacrificial annealing layer for a semiconductor device and a method of fabrication
JP4466423B2 (en) Thin film transistor manufacturing method and liquid crystal display device manufacturing method
JP5349735B2 (en) THIN FILM TRANSISTOR HAVING MULTILAYER STRUCTURE GATE ELECTRODE AND MANUFACTURING METHOD
JP2002057164A (en) Manufacturing method of semiconductor device
JP5122818B2 (en) Method for manufacturing thin film semiconductor device
JP4239744B2 (en) Thin film transistor manufacturing method
JP2005101553A5 (en)
KR100882834B1 (en) Thin film semiconductor device and manufacturing method thereof
JPH03227525A (en) Manufacture of thin film transistor
KR101784995B1 (en) Thin film transistor, organic light emitting display device comprising the TFT and the fabricating methods of the TFT and the OLED
JP4689155B2 (en) Method for manufacturing semiconductor device
JP3232878B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080905