JP2008145204A - テスト回路、テスト方法、半導体集積回路 - Google Patents

テスト回路、テスト方法、半導体集積回路 Download PDF

Info

Publication number
JP2008145204A
JP2008145204A JP2006331149A JP2006331149A JP2008145204A JP 2008145204 A JP2008145204 A JP 2008145204A JP 2006331149 A JP2006331149 A JP 2006331149A JP 2006331149 A JP2006331149 A JP 2006331149A JP 2008145204 A JP2008145204 A JP 2008145204A
Authority
JP
Japan
Prior art keywords
test
input
output
signals
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006331149A
Other languages
English (en)
Inventor
Takayuki Yamauchi
貴行 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006331149A priority Critical patent/JP2008145204A/ja
Publication of JP2008145204A publication Critical patent/JP2008145204A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 LSI回路の占有面積と入出力端子数の増加を抑制しつつLSI回路のテスト時間の短縮化を可能にするLSIのテスト回路を提供する。
【解決手段】 スキャンパスが形成されたテスト対象チップ2に対するテストを行うための同チップ2とは別のテスト用チップ3上に形成されており、スキャンイン信号SINが入力端子31より入力されると、テスト入力制御回路36によって各スキャンパス毎の分岐入力テスト信号SIN1及びSIN2を生成し、夫々を入力用電極11或いは14に供給する。スキャンサンプルモードになった後、各スキャンパスからせられたテスト結果が出力用電極17及び18よりテスト出力制御回路37に対して与えられ、これらが一の信号として多重化されて出力端子34より外部に供給される。
【選択図】 図1

Description

本発明は、半導体集積回路(LSI)のテスト回路に関し、特に大規模な論理LSIのテスト回路、及びこのテスト回路を用いたテスト方法に関する。又、本発明は、テスト回路を備えた半導体集積回路に関する。
今日の半導体プロセスの微細化に伴い、論理LSIに搭載される回路規模は増加の傾向にある。このようなプロセス微細化に伴い、同一回路規模に対する半導体の製造コストが低下する一方で、LSIの検査はテスト対象回路が増加するために試験すべき項目が多数に及ぶため、テスト時間及びテストコストの増加が問題となっている。特に、数千個から数十万個に及ぶ生産量の製品を検査するためには、製造した集積回路チップを個々に検査する際の検査時間の短縮が極めて重要である。通常、専用のLSIテスト機器(LSIテスタ)にテストパタンを与えて自動的に検査を行う構成を採るが、このテストパタンはLSIの機能の複雑さに応じて規模が増大する。このため、テストを効率化するために設計段階において種々の考慮がなされており、かかる設計方法をテスト容易化設計と一般的に称される。
テスト容易化設計の手法として代表的なものに、スキャンパス法がある。スキャンパス法では、LSI中に含まれるフリップフロップの全部または一部をテスト用のフリップフロップ(以下、「スキャンフリップフロップ」と記載)に置き換え、これらをシリアルに接続してスキャンパス(スキャンチェインとも称する)を形成する。
スキャンパス法では、各スキャンフリップフロップ間をシリアルに接続したシフトレジスタを構成することで、外部よりLSI内部のフリップフロップを直接制御・観測する経路を確立する。又、スキャンフリップフロップを用いて、テスト時に順序回路をすべて組合せ回路として取り扱う。このため、スキャンパス法では計算機による実用上充分な品質のテストパタン自動発生が可能である。従って、大規模な論理LSIではテストが容易となるスキャンパス法に基づくテスト容易化設計が採用されることが多い。
図4はスキャンパス形成がされたLSI回路(テスト対象回路)の従来の構成を示すブロック図である。図4に示されるLSI回路50は、テスト対象となる組み合わせ回路部20、8個のスキャンフリップフロップ21〜28、入力端子51〜53、及び出力端子54を備え、8個のスキャンフリップフロップ21〜28が相互にシリアル接続されることでスキャンパスが形成されている。
8個のスキャンフリップフロップ21〜28は、何れもDタイプのフリップフロップであり、主入力端子D、主出力端子Q、スキャン入力端子SI、スキャンイネーブル入力端子SE及びスキャンクロック入力端子CKを有する。又、入力端子51は、スキャンイン信号SINを外部から入力するための端子であり、入力端子52は、スキャンイネーブル信号SENを外部から入力するための端子であり、入力端子53は、スキャンクロック信号SCLKを外部から入力するための端子であり、出力端子54は、テスト結果(スキャン結果)等の情報を出力するための端子である。尚、図4では、各フリップフロップ21〜28において、テスト結果が主出力端子Qから出力される構成としているが、テスト結果を出力する専用の出力端子を各フリップフロップが備えるものとしても良い。更にこの場合、スキャン結果のみを外部に出力させるための外部出力端子を出力端子54とは別に備える構成としても良い。
そして、上述したように、8個のスキャンフリップフロップ21〜28は、夫々シリアルに接続されており、具体的には、スキャンフリップフロップ21の出力信号がスキャンフリップフロップ22のスキャン入力端子SIより入力され、スキャンフリップフロップ22の出力信号がスキャンフリップフロップ22の出力信号がスキャンフリップフロップ23のスキャン入力端子SIより入力され、以下も同様に構成される。そして、スキャンフリップフロップ28の出力信号が、組み合わせ回路部20のテスト結果を示す信号として出力端子54より出力される。
尚、各スキャンフリップフロップ21〜28のスキャンイネーブル入力端子SEには、入力端子52より共通のスキャンイネーブル信号SENが入力され、スキャンクロック入力端子CKには、入力端子53より共通のスキャンクロック信号SCLKが入力される構成である。各スキャンフリップフロップ21〜28は、スキャンイネーブル信号SEの値に応じて組み合わせ回路部20からデータを読み出してラッチするスキャンサンプルモードと、ラッチされたデータをスキャンクロック信号SCLKに同期して出力端子54に対して出力させるスキャンシフトモードの切替を行う。又、スキャンイン信号の入力やラッチされているスキャンデータの出力等の動作モードの切替を行う。又、各スキャンフリップフロップ21〜28の夫々の主入力端子Dと主出力端子Qは、組み合わせ回路部20と接続されている。
例えば、システムイネーブル信号SENが非アクティブな状態の下で組み合わせ回路部20を動作させた後、システムイネーブル信号SENをアクティブ状態にすると、スキャンクロック信号SCLKの立ち上がりと共にスキャンフリップフロップ21〜28がスキャンサンプルモードとなり、組み合わせ回路部20内の各順序回路の出力値が、対応するスキャンフリップフロップ21〜28の主入力端子Dより取り込まれる。その後、スキャンクロック信号SCLKの供給に応じて、シフト動作されることにより各スキャンフリップフロップ21〜28において保持されているデータが主出力端子Qから順次スキャンパスを介して出力され、出力端子54へと送出される。出力端子54より出力されるこの信号SOをLSI回路50の外部にて観測することで、LSI回路50の組み合わせ回路部20が正しく動作しているか否かの判断を行うことができる。
しかしながら、図4のような構成の場合、各スキャンフリップフロップ21〜28をシリアルに接続してスキャンパスを形成するため、スキャンパスの経路長が長くなるという問題がある。図4では、説明のためにスキャンフリップフロップの数を8個としたが、実際はLSI回路50の集積度に応じて大幅に増加する。スキャンパスの経路長が長くなると、テストパタンとして入力端子51より入力するスキャンイン信号SINの信号長が長くなり、又、各スキャンフリップフロップで保持している値を出力端子54まで遷移させるのに多くの時間を要し、テスト時間が増加してしまうという問題がある。
このような問題を解消するため、従来より、スキャンパスを分割することでスキャンパスの経路長を短くする方法が採られている。
図5は、図4に示される構成において、スキャンパスを分割した場合の従来構成を示すブロック図である。図5に示されるLSI回路60は、図4のLSI回路50と同様、8個のスキャンフリップフロップ21〜28を備えているが、これらの内、スキャンフリップフロップ21〜24は、互いにシリアルに接続されて第1のスキャンパスを構成し、スキャンフリップフロップ25〜28は、スキャンフリップフロップ21〜24とは独立して互いにシリアルに接続されて第2のスキャンパスを構成している。各スキャンパスを構成するスキャンフリップフロップの内、最も外部信号の入力端子側に近いスキャンフリップフロップ21及び25のスキャン入力端子SIは、前者が入力端子61に、後者が入力端子62に夫々接続されている。又、図4の構成と同様、各スキャンフリップフロップの主出力端子Qは後段のスキャンフリップフロップのスキャン入力端子SIに接続される。そして、各スキャンパスの最も出力端子側に近いスキャンフリップフロップ24及び28の主出力端子Qは、前者が出力端子65に、後者が出力端子66に夫々接続される。そして、各スキャンフリップフロップ21〜28のスキャンイネーブル入力端子SEには、入力端子63より共通のスキャンイネーブル信号SENが入力され、スキャンクロック入力端子CKには、入力端子64より共通のスキャンクロック信号SCLKが入力される。
図5のような構成にすると、スキャンパスの経路長は短縮化されるため、テストパタン長或いはテスト時間の短縮化が図られる反面、スキャンパスが複数系統形成されることにより、各スキャンパスにスキャンイン信号を入力するための入力端子、及び各スキャンパスからテスト結果を示す信号を出力させるための出力端子の数が増加するという問題が生じる。図5では、説明のために2系統のスキャンパスを有する場合について示しているが、系統数が大幅に上昇してくると、テスト時にLSI回路60外部において接続すべき配線が複雑化し、場合によっては接続の混同を起こす可能性もある。
このような背景の下、入力端子数、或いは出力端子数を増やさずにスキャンパスを分割するために、テストを行うスキャンパスを選択可能とし、各スキャンパスの入出力制御を行うためのテスト制御回路を内部に備えるLSI装置(例えば、特許文献1参照)や、外部信号に基づいてスキャンパスの経路変更を可能に構成される半導体テスト回路(例えば、特許文献2参照)が従来より開示されている。
特開平5−209935号公報 特開2004−226291号公報
しかしながら、特許文献1に記載の方法によれば、内部に備えられているセレクタによって選択された一のスキャンパスのデータしか得ることができず、又、複数のスキャンパスを一のテスト制御回路によって制御するためには、当該テスト制御回路と各スキャンパスとの間に多数の長い配線が敷設されることとなり、この配線領域を確保するためにLSI回路の占有面積が増大してしまう。
又、特許文献2の記載の方法によれば、入力されたコマンドに基づいてスキャンパスを確定するためのコマンド解析部を要し、このコマンド解析部に基づいて決定された一のスキャンパスを実現するように接続される。特許文献2には具体的な接続方法について明記されていないものの、例えばスイッチング素子の導通によってスキャンパスを確定するような場合、複数のスイッチング素子の導通制御がLSI回路内部で行われることとなり、その制御は複雑なものとなる。又、制御のための信号線を別途配線する必要があり、特許文献1と同様、この配線領域を確保するためにLSI回路の占有面積が増大してしまう。
本発明は、上記の問題点に鑑み、LSI回路の占有面積と入出力端子数の増加を抑制しつつLSI回路のテスト時間の短縮化を可能にするLSIのテスト回路を提供することを目的とする。又、本発明は、このテスト回路を用いたLSIのテスト方法、及びこのテスト回路を備えるLSI(半導体集積回路)を提供することを目的とする。
上記目的を達成するための本発明に係るテスト回路は、複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、複数の入力信号を受け付ける入力端子と、前記入力信号に基づいて、入力された信号数よりも多い複数の分岐入力テスト信号を生成すると共に、前記複数の分岐入力テスト信号を前記テスト対象チップに対して各別に供給するテスト入力制御回路と、前記複数の分岐入力テスト信号に基づいて前記テスト対象チップ上で得られたテスト結果を示す複数の分岐出力テスト信号が前記各スキャンパスを介して供給されると共に、当該複数の分岐出力テスト信号に基づいて、前記複数の分岐出力テスト信号数より少ない数の出力信号を生成するテスト出力制御回路と、前記出力信号を外部に出力する出力端子と、を備えることを第1の特徴とする。
本発明に係るテスト回路の上記第1の特徴構成によれば、テスト回路内部で、入力信号に基づいて各スキャンパス夫々に対して供給される複数の分岐入力テスト信号が生成される構成であるため、これら複数の分岐入力テスト信号を入力可能な複数系統のスキャンパスを有するテスト対象チップに対してテストを行うことで、一系統のスキャンパスを有するチップに対してテストを行う際に要するテスト時間と比較してテスト時間の短縮を図ることができると共に、テスト回路に対して外部より信号を入力するための入力端子を各スキャンパス毎に備える必要がなく、入力端子数を減少できる。又、テスト回路内部で、各スキャンパス夫々において得られたテスト結果を示す複数の分岐出力テスト信号から、この信号数より少ない数の出力信号が生成される構成であるため、分岐出力テスト信号そのものを外部に出力させるための出力端子を各スキャンパス毎に備える必要がなく、出力端子数を減少できる。従って、このテスト回路を用いてテスト対象チップに対するテストを行う際、テスト回路外部での配線は単純化され、接続時に混同を起こす蓋然性は大幅に減少される。
又、一部のスキャンパスに限られず、最大で全てのスキャンパスにおけるテスト結果に基づく信号を出力端子から出力させることが可能であるため、少ない端子数で構成されていてもテスト結果の判定を十分に行うことが可能である。
更に、形成されたスキャンパスを介して得られたテスト結果に基づく信号が出力端子から出力される単純な構成であるため、信号に応じてスキャンパスを変更させるための制御手段やその制御のための信号配線等を敷設する必要がなく、単純な構成で実現が可能である。
又、本発明に係るテスト回路は、上記第1の特徴構成に加えて、前記テスト入力制御回路が、前記複数の分岐入力テスト信号が多重化されてなる前記入力信号に対して分離処理を行うことで、又は、内部に有するテスト信号発生回路によって前記入力信号に基づいて信号生成を行うことで、前記複数の分岐入力テスト信号を生成することを第2の特徴とする。
本発明に係るテスト回路の上記第2の特徴構成によれば、少ない信号数から各スキャンパスに対して供給される複数の分岐入力テスト信号をテスト回路内部において容易に生成することができる。特に、テスト信号発生回路によって内部にて複数の分岐入力テスト信号を生成可能に構成されることで、入力端子からは分岐入力テスト信号に基づく信号を入力する必要がなく、入力されるべき信号の簡素化が図られる。
又、本発明に係るテスト回路は、上記第1又は第2の特徴構成に加えて、前記テスト出力制御回路が、前記複数の分岐出力テスト信号に対して多重化処理を行うことで、又は、内部に有するテスト結果判定回路によって前記複数の分岐出力テスト信号に基づいて前記テスト対象チップのテスト結果を判定すると共に当該判定結果に基づいて信号生成を行うことで、前記出力信号を生成することを第3の特徴とする。
本発明に係るテスト回路の上記第3の特徴構成によれば、各スキャンパスを介して得られた複数の分岐出力テスト信号に基づく情報を少ない信号数で外部に供給することができる。特に、テスト結果判定回路によって内部にて複数の分岐出力テスト信号に基づいてテスト対象チップのテスト結果の判定処理が行われることで、外部にて出力信号に基づいて判定処理を別途行う必要がなく、例えば判定結果を示す出力信号のみを出力端子から出力させる等、出力信号の簡素化を図ることができる。
又、本発明に係るテスト回路は、上記第1〜第3の何れか一の特徴構成に加えて、前記テスト対象チップが備える複数の入力用電極に対して前記複数の分岐入力テスト信号を各別に入力するための複数の入力テスト信号用接続点と、前記テスト対象チップが備える複数の出力用電極からの前記複数の分岐出力テスト信号の入力を各別に受け付けるための複数の出力テスト信号用接続点と、を備えることを第4の特徴とする。
本発明に係るテスト回路の上記第4の特徴構成によれば、テスト対象チップとテスト回路との間では、複数の入力用電極と複数の入力テスト信号用接続点、及び複数の出力用電極と複数の出力テスト信号用接続点とが夫々各別に信号授受可能に構成されていれば、テスト対象チップとテスト回路との間で複数の分岐入力テスト信号或いは複数の分岐出力テスト信号の授受が可能となるため、両者間の配線が簡素化される。例えば、テスト対象チップの端子(入力用電極及び出力用電極)とテスト回路を有するチップの対応する端子(入力テスト信号用及び出力テスト信号用接続点)を夫々対向するように配置し、はんだバンプにより接続させるフリップチップ実装方式を採用することができる。又、別の例としては、テスト対象チップとテスト回路を有するチップとの間に、両者間の配線を敷設した別基板(インターポーザー)を介装して構成するものとしても良い。
又、上記目的を達成するための本発明に係るテスト回路は、複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、複数の入力信号を受け付ける入力端子と、前記入力信号に基づいて、入力された信号数よりも多い複数の分岐入力テスト信号を生成すると共に、前記複数の分岐入力テスト信号を前記テスト対象チップに対して各別に供給するテスト入力制御回路と、を備えることを第5の特徴とする。
本発明に係るテスト回路の上記第5の特徴構成によれば、テスト回路内部で、入力信号に基づいて各スキャンパス夫々に対して供給される複数の分岐入力テスト信号が生成される構成であるため、これら複数の分岐入力テスト信号を入力可能な複数系統のスキャンパスを有するテスト対象チップに対してテストを行うことで、一系統のスキャンパスを有するチップに対してテストを行う際に要するテスト時間と比較してテスト時間の短縮を図ることができると共に、テスト回路に対して外部より信号を入力するための入力端子を各スキャンパス毎に備える必要がなく、入力端子数を減少できる。
又、上記目的を達成するための本発明に係るテスト回路は、複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、複数の信号に基づいて前記テスト対象チップ上で得られたテスト結果を示す複数の分岐出力テスト信号が前記各スキャンパスを介して供給されると共に、当該複数の分岐出力テスト信号に基づいて、前記複数の分岐出力テスト信号数より少ない数の出力信号を生成するテスト出力制御回路と、前記出力信号を外部に出力する出力端子と、を備えることを第6の特徴とする。
本発明に係るテスト回路の上記第6の特徴構成によれば、テスト回路内部で、各スキャンパス夫々において得られたテスト結果を示す複数の分岐出力テスト信号から、この信号数より少ない数の出力信号が生成される構成であるため、分岐出力テスト信号そのものを外部に出力させるための出力端子を各スキャンパス毎に備える必要がなく、出力端子数を減少できる。従って、このテスト回路を用いてテスト対象チップに対するテストを行う際、テスト回路外部での配線は単純化され、接続時に混同を起こす蓋然性は大幅に減少される。
又、本発明に係るテスト方法は、上記第4の特徴構成を備えるテスト回路を用いて行われるテスト方法であって、前記複数の入力用電極及び前記複数の出力用電極を備え、複数系統のスキャンパスが形成されてなるテスト対象チップに対し、前記複数の入力テスト信号用接続点と前記複数の入力用電極とを各別に電気的に接続させると共に、前記複数の出力テスト信号用接続点と前記複数の出力用電極とを各別に電気的に接続させ、前記テスト回路に備えられる前記入力端子から外部より前記複数の入力信号を前記テスト回路に対して入力し、前記テスト回路が、前記テスト入力制御回路によって前記入力信号に対して分離処理を行うことで、又は、内部に有するテスト信号発生回路によって前記入力信号に基づいて信号生成を行うことで、前記複数の入力信号に基づいて前記複数の分岐入力テスト信号を生成して前記複数の入力テスト信号用接続点及び前記複数の入力用電極を介して前記テスト対象チップに与え、前記テスト対象チップが、前記複数の分岐入力テスト信号に基づいてテストが行われると共に、当該テスト結果として得られた前記複数の分岐出力テスト信号を前記複数の出力用電極及び前記複数の出力テスト信号用接続点を介して前記テスト回路に与え、前記テスト回路内の前記テスト出力制御回路において前記複数の分岐出力テスト信号に基づいて生成された前記出力信号を前記出力端子より取り出して前記テスト回路の外部にてテスト結果の判定を行うか、或いは、前記テスト出力制御回路内の前記テスト結果判定回路において前記複数の分岐出力テスト信号に基づいてテスト結果の判定を行うことを特徴とする。
本発明に係るテスト方法の上記特徴によれば、少ない入出力端子数のテスト回路によって短時間でテスト対象チップに対して動作テストを行うことができる。
又、本発明に係る半導体集積回路は、上記第4の特徴構成を備えるテスト回路と、前記複数の入力用電極及び前記複数の出力用電極を備えると共に、複数系統のスキャンパスが形成されてなるテスト対象チップと、を備え、前記複数の入力テスト信号用接続点と前記複数の入力用電極とが各別に電気的に接続されると共に、前記複数の出力テスト信号用接続点と前記複数の出力用電極とが各別に電気的に接続されていることを特徴とする。
本発明に係る半導体集積回路の上記特徴構成によれば、テストを行うための入出力端子数の増加と回路の占有面積の拡大を抑制しつつ、短時間でテスト対象チップの動作テストを行うことができる。
本発明の構成によれば、LSI回路の占有面積と入出力端子数の増加を抑制しつつLSI回路のテスト時間の短縮化を可能にするLSIのテスト回路を提供することができる。
[第1実施形態]
以下において、本発明に係るテスト回路(以下、適宜「本発明回路」と称する)、本発明に係るテスト方法(以下、適宜「本発明方法」と称する)、及び本発明に係る半導体集積回路(以下、適宜「本発明LSI」と称する)の第1実施形態(以下、適宜「本実施形態」と称する)について図1及び図2を参照して説明する。
図1は、本発明回路及び本発明回路を用いてテストを行う対象となるテスト対象チップの構成を示すブロック図である。
図1に示すように、本発明回路は、テストを行う対象となるテスト対象チップ2とは別のテスト用チップ3に搭載されている。
テスト対象チップ2は、図5に示した従来構成と同様、複数のスキャンパスが分割して形成されている。尚、図1において、図4或いは図5と同一の構成部分については、同一の符号を付してその説明を簡素化又は省略する。
テスト対象チップ2は、テスト対象となる組み合わせ回路部20、8個のスキャンフリップフロップ21〜28、入力用電極11〜16、出力用電極17及び18を備えて構成され、スキャンフリップフロップ21〜24が、互いにシリアルに接続されて第1のスキャンパスを構成し、スキャンフリップフロップ25〜28が、スキャンフリップフロップ21〜24とは独立して互いにシリアルに接続されて第2のスキャンパスを構成している。
各入力用電極11〜13は、夫々第1のスキャンパス(を構成するスキャンフリップフロップ21)に対してスキャンイン信号SIN1、スキャンイネーブル信号SEN1、スキャンクロック信号SCK1をテスト用チップ3より入力するための接続用電極であり、出力用電極17は、第1のスキャンパスを介して得られるテスト結果を示す信号SO1をテスト用チップ3に対して出力するための接続用電極である。同様に、各入力用電極14〜16は、夫々第2のスキャンパス(を構成するスキャンフリップフロップ25)に対してスキャンイン信号SIN2、スキャンイネーブル信号SEN2、スキャンクロック信号SCK2をテスト用チップ3より入力するための接続用電極であり、出力用電極18は、第2のスキャンパスを介して得られるテスト結果を示す信号SO2をテスト用チップ3に対して出力するための接続用電極である。尚、後述するように、スキャンイン信号SIN1及びSIN2は、テスト用チップ3に入力されるスキャンイン信号SINに基づいて生成される信号であり、以下では各スキャンパスに対して入力されるスキャンイン信号を「分岐入力テスト信号」と称する。同様に、スキャンイネーブル信号SEN1及びSEN2を「分岐イネーブル信号」と、スキャンクロック信号SCK1及びSCK2を「分岐クロック信号」と夫々称することとする。
一方、テスト用チップ3は、入力端子31〜33、出力端子34、入力テスト信号用接続点41〜46、出力テスト信号用接続点47及び48、テスト入力制御回路36、及びテスト出力制御回路37を備えて構成される。
入力端子31は、スキャンイン信号SINを外部から入力するための端子であり、入力端子32は、スキャンイネーブル信号SENを外部から入力するための端子であり、入力端子33は、スキャンクロック信号SCLKを外部から入力するための端子であり、出力端子34は、テスト結果(スキャン結果)等の情報を示す出力信号SOを出力するための端子である。
テスト入力制御回路36は、入力端子31より入力されたスキャンイン信号SINより複数の分岐入力テスト信号SIN1及びSIN2を生成し、入力端子32より入力されたスキャンイネーブル信号SENより複数の分岐イネーブル信号SEN1及びSEN2を生成し、入力端子33より入力されたスキャンクロック信号SCLKより複数の分岐クロック信号SCK1及びSCK2を生成する。
又、入力テスト信号用接続点41と入力用電極11、入力テスト信号用接続点42と入力用電極12、入力テスト信号用接続点43と入力用電極13、入力テスト信号用接続点44と入力用電極14、入力テスト信号用接続点45と入力用電極15、及び入力テスト信号用接続点46と入力用電極16は夫々互いに電気的に接続されており、信号の授受が可能に構成されている。従って、テスト入力制御回路36において生成された分岐入力テスト信号SIN1が入力テスト信号用接続点41より入力用電極11に入力され、分岐イネーブル信号SEN1が入力テスト信号用接続点42より入力用電極12に入力され、分岐クロック信号SCK1が入力テスト信号用接続点43より入力用電極13に入力される。同様に、テスト入力制御回路36において生成された分岐入力テスト信号SIN2が入力テスト信号用接続点41より入力用電極14に入力され、分岐イネーブル信号SEN2が入力テスト信号用接続点42より入力用電極15に入力され、分岐クロック信号SCK1が入力テスト信号用接続点43より入力用電極16に入力される構成である。
同様に、出力用電極17と出力テスト信号用接続点47、出力用電極18と出力テスト信号用接続点48は夫々互いに電気的に接続されており、信号の授受が可能に構成されている。従って、第1のスキャンパスを介して得られるテスト結果を示す信号SO1が出力用電極17より出力テスト信号用接続点47に入力され、第2のスキャンパスを介して得られるテスト結果を示す信号SO2が出力用電極18より出力テスト信号用接続点48に入力される構成である。尚、各スキャンパスを介して得られるテスト結果を示す信号を以下では「分岐出力テスト信号」と称する。
テスト出力制御回路37は、出力テスト信号用接続点47より入力された分岐出力テスト信号SO1、及び出力テスト信号用接続点48より入力された分岐出力テスト信号SO2を多重化して一の出力信号SOを生成し、出力端子34より外部に出力する。尚、テスト出力制御回路37はテスト入力制御回路36と制御信号線35によって接続されており、テスト入力制御回路36における分離処理と同期して信号の多重化処理が可能に構成されている。
図2は、テスト対象チップ2とテスト用チップ3とのチップ間の関係を模式的に示す概念図である。図2に示される本発明LSI1は、テスト対象チップ2とテスト用チップ3とがハンダバンプ40によって電気的に接続されている(フリップチップ実装)。この構成により、各入力テスト信号用接続点41〜46と各入力用電極11〜16、並びに各出力用電極17及び18と各出力テスト信号用接続点47及び48が夫々電気的に接続されて、これらの間で信号の授受が可能となっている。
このようにテスト対象チップ2とテスト用チップ3とがハンダバンプによって接続されることで、接続のための配線領域を削減することができ、これによってチップ面積を大幅に減少させることができる。
このような構成の下、テスト対象チップ2のテストを行う場合について以下に説明する。上述したように、入力端子31よりスキャンイン信号SINが、入力端子32よりスキャンイネーブル信号SENが、入力端子33よりスキャンクロック信号SCKが、夫々テスト用チップ3に対して入力される。このとき、入力端子33より入力するスキャンクロック信号SCKは、各スキャンパスに対して入力すべき分岐クロック信号SCK1及びSCK2を生成可能な周波数であるものとする。
テスト入力制御回路36は、入力されたスキャンイン信号SIN、スキャンイネーブル信号SEN、スキャンクロック信号SCKに基づいて、分岐入力テスト信号SIN1及びSIN2、分岐イネーブル信号SEN1及びSEN2、分岐クロック信号SCK1及びSCK2を生成する。そして、分岐入力テスト信号SIN1が入力テスト信号用接続点41より入力用電極11へと与えられ、分岐イネーブル信号SEN1が入力テスト信号用接続点42より入力用電極12へと与えられ、分岐クロック信号SCK1が入力テスト信号用接続点43より入力用電極13へと与えられ、これらの各入力用電極より第1のスキャンパスへと供給される。この内、分岐入力テスト信号SIN1はスキャンフリップフロップ21に与えられ、分岐イネーブル信号SEN1及び分岐クロック信号SCK1は第1のスキャンパスを形成する各スキャンフリップフロップ21〜24に対して共通に与えられる。
同様に、分岐入力テスト信号SIN2が入力テスト信号用接続点44より入力用電極14へと与えられ、分岐イネーブル信号SEN2が入力テスト信号用接続点45より入力用電極15へと与えられ、分岐クロック信号SCK2が入力テスト信号用接続点46より入力用電極16へと与えられ、これらの各入力用電極より第2のスキャンパスへと供給される。この内、分岐入力テスト信号SIN2はスキャンフリップフロップ25に与えられ、分岐イネーブル信号SEN2及び分岐クロック信号SCK2は第2のスキャンパスを形成する各スキャンフリップフロップ25〜28に対して共通に与えられる。
尚、スキャンイン信号SINは、分岐入力テスト信号SIN1及びSIN2が多重化されて構成されており、テスト入力制御回路36においてこれら多重化された分岐入力テスト信号SIN1及びSIN2が分離されることで各分岐入力テスト信号SIN1及びSIN2が生成されるものとすることができる。又、各分岐イネーブル信号SEN1及びSEN2、或いは各分岐クロック信号SCK1及びSCK2は、スキャンイネーブル信号SIN或いはスキャンクロック信号SCKと同一の信号として出力されるものとしても構わないし、テスト入力制御回路36においてスキャンイネーブル信号SIN或いはスキャンクロック信号SCKに対して遅延処理等の一般的な信号処理を施された後に生成される信号として出力されるものとしても構わない。
このように構成されるとき、テスト入力制御回路36において生成される分岐イネーブル信号SEN1及びSEN2が非アクティブな状態の下で組み合わせ回路部20を動作させた後、スキャンイネーブル信号SENを変化させて分岐イネーブル信号SEN1及びSEN2をアクティブ状態にすると、分岐クロック信号SCLK1の立ち上がりと共にスキャンフリップフロップ21〜24がスキャンサンプルモードとなり、組み合わせ回路部20内の各順序回路の出力値が対応するスキャンフリップフロップ21〜24の各主入力端子Dより取り込まれる。同様に、分岐クロック信号SCLK2の立ち上がりと共にスキャンフリップフロップ25〜28がスキャンサンプルモードとなり、組み合わせ回路部20内の各順序回路の出力値が対応するスキャンフリップフロップ25〜28の各主入力端子Dより取り込まれる。
その後、分岐クロック信号SCLK1の供給に応じて、シフト動作されることにより各スキャンフリップフロップ21〜24において保持されているデータが主出力端子Qから順次スキャンパスを介して出力され、出力用電極17へと送出される(分岐出力テスト信号SO1)。同様に、分岐クロック信号SCLK2の供給に応じて、シフト動作されることにより各スキャンフリップフロップ25〜28において保持されているデータが主出力端子Qから順次スキャンパスを介して出力され、出力用電極18へと送出される(分岐出力テスト信号SO2)。
テスト出力制御回路37は、出力用電極17から出力テスト信号用接続点47を介して供給される分岐出力テスト信号SO1と、出力用電極18から出力テスト信号用接続点48を介して供給される分岐出力テスト信号SO2とを、制御信号線35より入力される制御信号(分岐クロック信号SCLK1及びSCLK2であっても構わないし、これらに基づいて生成されるクロック信号であっても構わない)に基づくタイミングで多重化し、出力信号SO2を生成して出力端子34より出力する。この出力信号SO2を本発明LSI1の外部にて観測することで、組み合わせ回路部20が正しく動作しているか否かの判断を行うことができる。
このように構成されることで、各スキャンパスに対して供給する各信号がテスト入力制御回路36内で生成されるため、本発明LSI1には、テスト回路に対して外部より信号を入力するための入力端子を各スキャンパス毎に備える必要がなく、又、スキャンクロック信号SCKを所望の分岐クロック信号SCK1及びSCK2を生成可能な範囲内の周波数(少なくとも分岐クロック信号SCK1或いはSCK2より高周波信号)としておくことで、従来の複数のスキャンパスを備える構成の場合よりテスト時間を増加させることなく入力端子数を減少できる。又、テスト用チップ3(テスト回路)内部で、各スキャンパス夫々において得られたテスト結果を示す複数の分岐出力テスト信号SO1及びSO2から、この信号数より少ない数の出力信号SOが生成される構成であるため、分岐出力テスト信号SO1及びSO2そのものを外部に出力させるための出力端子を各スキャンパス毎に備える必要がなく、出力端子数を減少できる。従って、このテスト回路を用いてテスト対象チップに対するテストを行う際、テスト回路外部での配線は単純化され、接続時に混同を起こす蓋然性は大幅に減少される。
又、テスト用チップ3をテスト対象チップ2とは別チップで構成することにより、テスト対象チップ2とテスト用チップとを異なる製造プロセスで製造することができる。従って、例えばテスト対象チップ2が微細な製造プロセスを要求される場合であっても、テスト用チップ3に対しては通常の安価な製造プロセスで製造することができ、低廉な製造コストでテスト回路を作製することができる。又、別チップで構成することにより、LSI本来の機能を実現するための回路群は全てテスト対象チップ2内に搭載されており、この本来の機能を実現するための回路群の配置状態を気にすることなく、テストのための配線や回路配置を実現することができる。従って、例えば、複数のスキャンパス間を接続するために長い配線を敷設することも可能であり、更に、配線遅延時間を小さくするために線幅の広い配線を使用することも可能である。線幅の広い配線を利用することで、配線遅延時間が小さくなるため、各スキャンフリップフロップでのシフト動作に対する制約が少なくなり、各スキャンフリップフロップに対して行うタイミング調整が容易化される。即ち、テスト用チップ3に対して入力されるスキャンクロック信号SCLKの信号特性の制約が少なくなり、自由度が向上する。
[第2実施形態]
以下において、本発明回路、本発明方法、及び本発明LSIの第2実施形態(以下、適宜「本実施形態」と称する)について図3を参照して説明する。尚、本実施形態は、第1実施形態と比較して、テスト用チップの構成が一部異なるものであり、他の構成要素は同一であるため、その説明を省略する。
図3は、本実施形態におけるテスト用チップ3aの概略的構成を示すブロック図である。図3に示されるテスト用チップ3aは、第1実施形態における図1のテスト用チップ3と比較して、テスト入力制御回路36の代わりに、テスト信号発生回路38を内部に有するテスト入力制御回路36aを備え、テスト出力制御回路37の代わりに、テスト信号発生回路39を内部に有するテスト出力制御回路37aを備える構成である。
テスト用チップ3aは、入力端子31からシステムスキャンイン信号TINが、入力端子32からシステムスキャンイネーブル信号TENが、入力端子33からシステムスキャンクロック信号TCLKが、夫々入力される。テスト入力制御回路36aは、テスト信号発生回路38において、入力されたシステムスキャンイン信号TINに基づいて、システムスキャンイネーブル信号TEN及びシステムスキャンクロック信号TCLKの値に応じたタイミングで、LFSR(Linear Feedback Shift Register)等の方法を用いて分岐入力テスト信号SIN1或いはSIN2を生成し、入力テスト信号用接続点41或いは44よりテスト対象チップ2に対して出力する。
又、テスト出力制御回路37aは、テスト結果判定回路39において、出力用電極17から出力テスト信号用接続点47を介して供給される分岐出力テスト信号SO1、及び出力用電極18から出力テスト信号用接続点48を介して供給される分岐出力テスト信号SO2に基づいて組み合わせ回路部20のテスト結果を判定し、判定結果を出力端子34より出力する。
このように構成されるとき、テスト入力制御回路36a内で分岐入力テスト信号SIN1及びSIN2が生成されるため、予めこれらの分岐入力テスト信号が多重化されたスキャンイン信号をテスト用チップ3の外部にて作成しておく必要がない。即ち、テスト用チップ3の入力端子31に対して入力するシステムスキャンイン信号TINとしては、所望の分岐入力テスト信号SIN1及びSIN2をテスト信号発生回路38において生成するための設定条件が反映された信号であれば良い。
又、テスト出力制御回路36b内で分岐出力テスト信号SO1及びSO2の判定が行われるため、出力端子34から出力される信号に基づいて外部でテスト結果の判定を行う必要がない。従って、LSI1の外部においてテスト結果の判定を行うための別回路或いは別装置を接続する必要がない。
尚、本実施形態では、テスト入力制御回路36aとテストに出力制御回路37aとを備える構成としたが、何れか一方が第1実施形態と同一の構成であっても構わない。即ち、テスト入力制御回路として36又は36aを備え、テスト出力制御回路として37又は37aを備えていれば、本発明の効果を奏することができる。
[別実施形態]
以下に別実施形態について説明する。
〈1〉 上述の各実施形態では、テスト用チップ3(又は3a)がテスト入力制御回路36(又は36a)及びテスト出力制御回路37(又は37a)を双方備える構成としたが、これらの内の何れか一方のみ(入力制御回路のみ、或いは出力制御回路のみ)を備える構成であっても良い。この場合、両方を備える場合と比較すると、その効果は減少するものの、従来構成と比較した場合にはテスト時間を増加させることなく入力或いは出力端子数を減少させることができるという効果を奏することができる。
又、このとき、テスト入力制御回路36(又は36a)と、テスト出力制御回路37(又は37a)を備えるチップとが、夫々異なるチップ上に搭載されており、テスト入力制御回路36を備える第1チップとテスト対象チップ2、及び、テスト出力制御回路37を備える第2チップとテスト対象チップ2が夫々電気的に接続される構成としても良い。更にこのとき、テスト入力制御回路36とテスト出力制御回路37を接続する制御信号線35がテスト対象チップ2上に配線される構成としても良い。
〈2〉 上述の各実施形態では、スキャンパスが2系統である場合を例に挙げて説明を行ったが、2系統に限られず3系統以上の複数系統が存在する場合においても同様に実現が可能である。又、分岐イネーブル信号及び分岐クロック信号においては、必ずしもスキャンパス毎に異なる信号を生成する必要はなく、スキャンパス間で同一の信号を利用する構成としても構わない。
又、上述の各実施形態では、テスト用チップ3が全てのスキャンパスに対して与えられる複数の分岐入力テスト信号を多重化等によって纏めた一の信号が入力端子より入力される構成としたが、必ずしもテスト対象チップ2上に存在する全てのスキャンパスに対して供給される分岐入力テスト信号全てを一の信号に纏める必要はなく、少なくともスキャンパスの系統数より少ない数に纏められた信号が入力可能な入力端子数であれば良い。同様に、テスト用チップ3が全てのスキャンパスから得られた複数の分岐出力テスト信号を多重化等によって纏めた一の信号を出力する構成としたが、必ずしもテスト対象チップ2上に存在する全てのスキャンパスを介して得られる分岐出力テスト信号全てを一の信号に纏める必要はなく、少なくともスキャンパスの系統数よりも少ない数に纏められた信号を出力可能な出力端子数であれば良い。
〈3〉 テスト対象チップ2とテスト用チップ3との接続方法としては、フリップチップ実装による方法の他、両者間の配線を敷設した別基板(インターポーザー)を介装することで接続を形成するものとしても良い。
〈4〉 テスト用チップ3上には、スキャンクロック信号SCK1と分岐入力テスト信号SIN1との間の遅延、及びスキャンクロック信号SCK2と分岐入力テスト信号SIN2との間の遅延の制御を行うために、配線の寄生抵抗、寄生容量、寄生インダクタンス等を考慮して、信号の分配経路を調整可能な遅延制御回路を搭載するものとしても良い。
例えば、図1の構成において、スキャンクロック信号SCK1は、テスト用チップ3側より各スキャンフリップフロップ21〜24の夫々のスキャンクロック入力端子CKに対して供給される構成であるが、図1の構成のように、スキャンクロック信号SCK1が出力されるテスト入力制御回路36の入力テスト信号用接続点43と、各スキャンクロック入力端子CKに直接接続されている入力用電極13とを単純に接続した場合においては、クロック信号の伝播遅延の影響を受けて各スキャンクロック入力端子CKに各クロック信号が到着する時刻が異なる状態、いわゆるクロックスキュー(clock skew:伝播時間のずれ)が発生する場合がある。
一般的に、システムLSIがターゲット周波数で動作するためには、現クロックが到着した時点から次のクロックが到着するまでの間に、送り側のフリップフロップから出た信号が受け側のフリップフロップに到達する必要がある。即ち、受け側のフリップフロップに対する信号の到着タイミングが、現クロック到着時以後であり(ホールド制約条件)、且つ、次クロック到着時以前である(セットアップ制約条件)必要がある。
従って、上記のクロックスキュー(ずれ時間)がスキャンフリップフロップのホールド制約条件を満たさない範囲となる場合、スキャンフリップフロップのシフトモードにおいてホールド違反が発生し、シフトモードが誤動作することとなる。又、クロックスキューが大きい場合、スキャンサンプルモード時のセットアップ制約条件を満たすためにスキャンクロック周波数を高くすることができず、この結果テスト時間が増大する。このため、一般的にテスト対象チップのクロック信号配線に対してクロックツリーシンセシス(Clock Tree Synthesis:CTS)を適用し、クロックスキューを低減する手法が用いられている。クロックツリーシンセシスでは、クロック信号配線系路上にバッファを挿入したり、配線径路を制約することにより、各クロック信号入力端子CKまでの遅延時間を制御する。
しかしながら、従来手法によれば、このようなバッファをクロック信号配線経路上に設けることでスキャンフリップフロップ側の回路規模が増大するという問題や、配線経路が制約されることにより配線の混雑が発生し、レイアウト設計が難しくなるという問題がある。
これに対し、本発明LSI1の構成では、テスト対象チップ2とテスト用チップ3とが別チップで構成されているため、遅延制御のためのバッファや配線の大部分をテストチップ3側に搭載することが可能である。これにより、スキャンフリップフロップが搭載されているチップ(テスト対象チップ2)側にバッファを設ける必要がなく、又、テスト用チップ3上で配線制約条件を満足するように設計することでテスト対象チップ2内での配線混雑の問題は発生しない。従って、スキャンフリップフロップが搭載されているチップ上での配線混雑の問題が緩和されるため、かかるチップ(チップ2)に搭載されている組み合わせ回路部20のタイミングに影響を与えることなくクロックスキューの低減が可能となる。これにより上記ホールド違反を容易に解消することができ、更に、テスト対象チップ2のシフト動作を高速化することができるため、テストパタン入力の時間を更に短縮することが可能となる。尚、上述ではSCK1のみにつき説明を行ったが、スキャンパスを構成する各系統毎に(図1ではSCK1及びSCK2)上記の構成を採用することが可能である。
更に、上述の第2実施形態のように、テスト信号発生回路38を備える場合には、予め複数の分岐入力テスト信号SIN1及びSIN2を多重化させたスキャンイン信号SINを入力する必要がないため、入力信号のデータ長を短くすることができ、入力端子31に対する信号入力の時間を短縮化することができ、テスト時間の短縮化が図られる。
本発明に係るテスト回路が搭載されたテスト用チップ及び当該テスト回路を用いてテストを行う対象となるテスト対象チップの構成を示すブロック図 テスト対象チップとテスト用チップとのチップ間の関係を模式的に示す概念図 第2実施形態におけるテスト用チップの概略的構成を示すブロック図 スキャンパス形成がされたLSI回路(テスト対象回路)の従来の構成を示すブロック図 複数のスキャンパスが分割形成がされたLSI回路(テスト対象回路)の従来構成を示すブロック図
符号の説明
1: 本発明に係るLSI
2: テスト対象チップ
3: テスト用チップ
11、12、13、14、15、16: 入力用電極
17、18: 出力用電極
21、22、23、24、25、26、27、28: スキャンフリップフロップ
31、32、33: 入力端子
34: 出力端子
35: 制御信号線
36、36a: テスト入力制御回路
37、37a: テスト出力制御回路
38: テスト信号発生回路
39: テスト結果判定回路
40: ハンダバンプ
41、42、43、44、45、46: 入力テスト信号用接続点
47、48: 出力テスト信号用接続点
50: LSI回路
51、52、53: 入力端子
54: 出力端子
60: LSI回路
61、62、63、64: 入力端子
65、66: 出力端子

Claims (8)

  1. 複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、
    複数の入力信号を受け付ける入力端子と、
    前記入力信号に基づいて、入力された信号数よりも多い複数の分岐入力テスト信号を生成すると共に、前記複数の分岐入力テスト信号を前記テスト対象チップに対して各別に供給するテスト入力制御回路と、
    前記複数の分岐入力テスト信号に基づいて前記テスト対象チップ上で得られたテスト結果を示す複数の分岐出力テスト信号が前記各スキャンパスを介して供給されると共に、当該複数の分岐出力テスト信号に基づいて、前記複数の分岐出力テスト信号数より少ない数の出力信号を生成するテスト出力制御回路と、
    前記出力信号を外部に出力する出力端子と、を備えることを特徴とするテスト回路。
  2. 前記テスト入力制御回路が、
    前記複数の分岐入力テスト信号が多重化されてなる前記入力信号に対して分離処理を行うことで、又は、内部に有するテスト信号発生回路によって前記入力信号に基づいて信号生成を行うことで、前記複数の分岐入力テスト信号を生成することを特徴とする請求項1に記載のテスト回路。
  3. 前記テスト出力制御回路が、
    前記複数の分岐出力テスト信号に対して多重化処理を行うことで、又は、内部に有するテスト結果判定回路によって前記複数の分岐出力テスト信号に基づいて前記テスト対象チップのテスト結果を判定すると共に当該判定結果に基づいて信号生成を行うことで、前記出力信号を生成することを特徴とする請求項1又は請求項2に記載のテスト回路。
  4. 前記テスト対象チップが備える複数の入力用電極に対して前記複数の分岐入力テスト信号を各別に入力するための複数の入力テスト信号用接続点と、
    前記テスト対象チップが備える複数の出力用電極からの前記複数の分岐出力テスト信号の入力を各別に受け付けるための複数の出力テスト信号用接続点と、を備えることを特徴とする請求項1〜請求項3の何れか1項に記載のテスト回路。
  5. 複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、
    複数の入力信号を受け付ける入力端子と、
    前記入力信号に基づいて、入力された信号数よりも多い複数の分岐入力テスト信号を生成すると共に、前記複数の分岐入力テスト信号を前記テスト対象チップに対して各別に供給するテスト入力制御回路と、を備えることを特徴とするテスト回路。
  6. 複数系統のスキャンパスが形成されたテスト対象チップに対するテストを行うための前記テスト対象チップとは別チップで形成されたテスト回路であって、
    複数の信号に基づいて前記テスト対象チップ上で得られたテスト結果を示す複数の分岐出力テスト信号が前記各スキャンパスを介して供給されると共に、当該複数の分岐出力テスト信号に基づいて、前記複数の分岐出力テスト信号数より少ない数の出力信号を生成するテスト出力制御回路と、
    前記出力信号を外部に出力する出力端子と、を備えることを特徴とするテスト回路。
  7. 請求項4に記載のテスト回路を用いて行われるテスト方法であって、
    前記複数の入力用電極及び前記複数の出力用電極を備え、複数系統のスキャンパスが形成されてなるテスト対象チップに対し、前記複数の入力テスト信号用接続点と前記複数の入力用電極とを各別に電気的に接続させると共に、前記複数の出力テスト信号用接続点と前記複数の出力用電極とを各別に電気的に接続させ、
    前記テスト回路に備えられる前記入力端子から外部より前記複数の入力信号を前記テスト回路に対して入力し、
    前記テスト回路が、前記テスト入力制御回路によって前記入力信号に対して分離処理を行うことで、又は、内部に有するテスト信号発生回路によって前記入力信号に基づいて信号生成を行うことで、前記複数の入力信号に基づいて前記複数の分岐入力テスト信号を生成して前記複数の入力テスト信号用接続点及び前記複数の入力用電極を介して前記テスト対象チップに与え、
    前記テスト対象チップが、前記複数の分岐入力テスト信号に基づいてテストが行われると共に、当該テスト結果として得られた前記複数の分岐出力テスト信号を前記複数の出力用電極及び前記複数の出力テスト信号用接続点を介して前記テスト回路に与え、
    前記テスト回路内の前記テスト出力制御回路において前記複数の分岐出力テスト信号に基づいて生成された前記出力信号を前記出力端子より取り出して前記テスト回路の外部にてテスト結果の判定を行うか、或いは、前記テスト出力制御回路内の前記テスト結果判定回路において前記複数の分岐出力テスト信号に基づいてテスト結果の判定を行うことを特徴とするテスト方法。
  8. 請求項4に記載のテスト回路と、
    前記複数の入力用電極及び前記複数の出力用電極を備えると共に、複数系統のスキャンパスが形成されてなるテスト対象チップと、を備え、
    前記複数の入力テスト信号用接続点と前記複数の入力用電極とが各別に電気的に接続されると共に、
    前記複数の出力テスト信号用接続点と前記複数の出力用電極とが各別に電気的に接続されていることを特徴とする半導体集積回路。
JP2006331149A 2006-12-07 2006-12-07 テスト回路、テスト方法、半導体集積回路 Withdrawn JP2008145204A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331149A JP2008145204A (ja) 2006-12-07 2006-12-07 テスト回路、テスト方法、半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331149A JP2008145204A (ja) 2006-12-07 2006-12-07 テスト回路、テスト方法、半導体集積回路

Publications (1)

Publication Number Publication Date
JP2008145204A true JP2008145204A (ja) 2008-06-26

Family

ID=39605555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331149A Withdrawn JP2008145204A (ja) 2006-12-07 2006-12-07 テスト回路、テスト方法、半導体集積回路

Country Status (1)

Country Link
JP (1) JP2008145204A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137292A (ja) * 2013-01-17 2014-07-28 Fujitsu Semiconductor Ltd スキャン回路、半導体装置および半導体装置の試験方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137292A (ja) * 2013-01-17 2014-07-28 Fujitsu Semiconductor Ltd スキャン回路、半導体装置および半導体装置の試験方法
US9110140B2 (en) 2013-01-17 2015-08-18 Socionext Inc. Scan circuit, semiconductor device, and method for testing semiconductor device

Similar Documents

Publication Publication Date Title
US6734549B2 (en) Semiconductor device having a device for testing the semiconductor
EP1595156B1 (en) Testing of integrated circuits
US6343365B1 (en) Large-scale integrated circuit and method for testing a board of same
KR20130042076A (ko) 반도체 장치
US7739571B2 (en) Semiconductor integrated circuit and system LSI having a test expected value programming circuit
US20110175638A1 (en) Semiconductor integrated circuit and core test circuit
US7778790B2 (en) Semiconductor integrated circuit device and delay fault testing method
JP5167975B2 (ja) 半導体装置
JP2008145204A (ja) テスト回路、テスト方法、半導体集積回路
JP2003066123A (ja) テスト方法およびテスト装置並びにテスト装置の構築方法
JP2008203089A (ja) マルチチップ半導体装置およびその検査方法ならびに該マルチチップ半導体装置を組み込んだ電子機器
JP4278360B2 (ja) マルチチップパッケージlsiのテスト回路
JP4610919B2 (ja) 半導体集積回路装置
WO2007077849A1 (ja) 半導体チップ及び半導体集積回路
US7765448B2 (en) Clock signal distributing circuit, information processing device and clock signal distributing method
JP4525125B2 (ja) マルチチップ型半導体装置
JP2007114163A (ja) マルチチップパッケージlsi
US20240137026A1 (en) Techniques For Storing States Of Signals In Configurable Storage Circuits
JP2008122310A (ja) デバイステスタ、タイミング校正方法
JP4703398B2 (ja) 半導体集積回路およびその試験方法
JP2000009800A (ja) スキャンテスト回路およびそれを備えた半導体装置ならびにスキャンテスト方法
JP2004037254A (ja) スキャンテスト装置
US20070132472A1 (en) Semiconductor integrated circuit and method for testing the same
JP2009216419A (ja) 半導体集積回路装置
JP2002189060A (ja) 半導体集積回路装置およびその検査方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302