JP2008145068A - Refrigerant piping for heat exchanger - Google Patents

Refrigerant piping for heat exchanger Download PDF

Info

Publication number
JP2008145068A
JP2008145068A JP2006334205A JP2006334205A JP2008145068A JP 2008145068 A JP2008145068 A JP 2008145068A JP 2006334205 A JP2006334205 A JP 2006334205A JP 2006334205 A JP2006334205 A JP 2006334205A JP 2008145068 A JP2008145068 A JP 2008145068A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
copper
pipe
tensile stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006334205A
Other languages
Japanese (ja)
Inventor
Haruo Nakada
春男 中田
Yasuhiko Oka
恭彦 岡
Junichiro Tanaka
順一郎 田中
Mitsuharu Numata
光春 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006334205A priority Critical patent/JP2008145068A/en
Publication of JP2008145068A publication Critical patent/JP2008145068A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide refrigerant piping for a heat exchanger, hardly causing stress corrosion cracks in the case where refrigerant piping such as refrigerant piping of a heat exchanger for supplying hot water is coated with heat insulating material where urea remains and used. <P>SOLUTION: In this copper-made refrigerant pipings 3A, 3B for the heat exchanger, piping material is made of phosphorous-deoxidized copper, and the pipings are coated with heat insulating material having urea remaining as residue. The pipings are used under the condition that tensile stress is applied by internal pressure in circulation of a refrigerant. The pipings are formed of oxygen-free copper, which will not cause corrosion crack due to tensile stress. Thus, when the oxygen-free copper not causing stress corrosion crack is adopted, stress corrosion crack of copper-made refrigerant pipings 3A, 3B in which the pipe material is formed of phosphorous-deoxidized copper, and the pipings are coated with heat insulating material having urea remaining as residue, and which is used under the condition that tensile stress is applied by internal pressure in circulation of the refrigerant, can be restrained as much as possible, so that the reliability of a product can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、引っ張り応力による腐蝕割れを生じない熱交換器用冷媒配管の構成に関するものである。   The present invention relates to a configuration of a refrigerant pipe for a heat exchanger that does not cause corrosion cracking due to tensile stress.

従来から良く知られている、例えばヒートポンプ式給湯機等の給湯機用熱交換器に用いられる熱交換器としては、水が流通する内管と、冷媒が流通する外管との二重管からなり、これを長円形状に巻成することにより多数の段数重ね合わせて熱交換器本体を構成した二重管式熱交換器がある。   As a heat exchanger used for a heat exchanger for a water heater such as a heat pump type water heater, which is well known from the past, a double pipe composed of an inner pipe through which water flows and an outer pipe through which refrigerant flows. Thus, there is a double-pipe heat exchanger in which a heat exchanger body is configured by superimposing a large number of stages by winding this into an oval shape.

このような二重管式熱交換器の場合、水が流通する内管に腐食によって孔が空くと、水と冷媒とがまざりあってしまうため、当該水の漏洩を検知して、給湯装置の運転を停止する必要があった。そこで、その対応として、上記内管の外側に内管から漏洩した水を導く漏洩検知溝を有する漏洩検知管を設け、上記水の漏洩をいち早く検知するようにしていた。したがって、同構成では、、実質的に熱交換器が、内管、漏洩検知管および外管の三重管により構成されることになる。したがって、同構成の場合、長円形状への曲げ加工が困難で、部品点数も多いために製造工程が複雑化するとともに、コストの増大を免れがたいという問題があった。   In the case of such a double-pipe heat exchanger, if a hole is formed due to corrosion in the inner pipe through which water flows, water and refrigerant are mixed together. It was necessary to stop operation. Therefore, as a countermeasure, a leak detection pipe having a leak detection groove for guiding water leaked from the inner pipe is provided outside the inner pipe, so that the leakage of the water is quickly detected. Therefore, in this configuration, the heat exchanger is substantially constituted by a triple tube of an inner tube, a leak detection tube, and an outer tube. Therefore, in the case of the same configuration, there is a problem that it is difficult to bend into an oval shape and the number of parts is large, so that the manufacturing process is complicated and the increase in cost is difficult to avoid.

そこで、上記のような給湯機用の熱交換器として、内側に水通路を形成する長い芯管の外周に、冷媒通路を形成する芯管よりも外径(通路径)の小さいキャピラリチューブ等の巻管からなる2本の外管を所定のピッチで螺旋状に巻き付け、これらを、例えば長円形状に巻成して多数の段数重ね合わせ、その後、鑞付け等を施すことにより一体形状とし、上記芯管側を水通路とするとともに、上記外管側を冷媒通路としたものが提案されている(特許文献1参照)。   Therefore, as a heat exchanger for a water heater as described above, a capillary tube having a smaller outer diameter (passage diameter) than the core tube forming the refrigerant passage is formed on the outer periphery of the long core tube forming the water passage on the inside. Two outer tubes made of a wound tube are spirally wound at a predetermined pitch, and these are wound into, for example, an oval shape, stacked in a number of stages, and then subjected to brazing or the like to form an integral shape, There has been proposed one in which the core tube side is a water passage and the outer tube side is a refrigerant passage (see Patent Document 1).

このような構成によれば、水通路を形成する芯管側に孔が空いても、上記外管側に孔が空かない限り冷媒通路側に水が侵入する恐れはないし、また上記外管の間の芯管外周面における水の漏出状態から容易に水の漏洩を検知できるから、上述のような漏洩検知管も不要になる。   According to such a configuration, even if there is a hole in the core tube forming the water passage, there is no risk that water will enter the refrigerant passage side unless there is a hole in the outer tube side. Since the leakage of water can be easily detected from the leakage state of the water on the outer peripheral surface of the core tube, the leakage detection tube as described above becomes unnecessary.

特許第3587189号公報(明細書第2頁、図1)Japanese Patent No. 3587189 (Specification, second page, FIG. 1)

ところが、上記のような、りん脱酸銅よりなり、断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される給湯用熱交換器等の冷媒配管は、使用期間中に断熱材中に残った発泡用の尿素と水との混合から発生するアンモニアによって、応力腐蝕割れを発生し、短期間で割れや冷媒漏れを生じる問題がある。   However, a refrigerant pipe such as a heat exchanger for hot water supply that is made of phosphorous deoxidized copper, covered with a heat insulating material, and used under a condition in which a tensile stress acts due to internal pressure during refrigerant circulation, is as described above. There is a problem that stress corrosion cracking occurs due to the ammonia generated from the mixing of foaming urea and water remaining in the heat insulating material during the period of use, and cracks and refrigerant leakage occur in a short period of time.

本願発明は、このような問題を解決するためになされたもので、上述のように熱交換器用の冷媒配管が、りん脱酸銅よりなり、尿素を含む断熱材に覆われて使用されるような場合に、その構成材料として、応力腐蝕割れを生じない無酸素銅、または応力腐蝕割れ耐力の大きい銅合金を使用することによって、上述のような引っ張り応力による腐蝕割れを生じさせないようにした熱交換器用冷媒配管を提供することを目的とするものである。   The present invention has been made to solve such problems. As described above, the refrigerant pipe for the heat exchanger is made of phosphorous deoxidized copper and is covered with a heat insulating material containing urea. In such a case, use oxygen-free copper that does not cause stress corrosion cracking or a copper alloy with a high stress corrosion cracking resistance as a constituent material to prevent the above-described corrosion cracking caused by tensile stress. It aims at providing the refrigerant | coolant piping for exchangers.

本願発明は、上記の目的を達成するためになされたものであって、次のような有効な課題解決手段を備えて構成されている。   The present invention has been made in order to achieve the above object, and includes the following effective problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、りん脱酸銅よりなり、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管3A,3Bであって、引っ張り応力による腐蝕割れを生じない無酸素銅により形成したことを特徴としている。
(1) First problem-solving means The first problem-solving means of the present invention is made of phosphorous deoxidized copper, covered with a heat insulating material in which urea remains as a residue, and tensile stress is applied by internal pressure during refrigerant circulation. It is copper refrigerant | coolant piping 3A, 3B for heat exchangers used on the conditions to perform, Comprising: It formed by the oxygen-free copper which does not produce the corrosion crack by tensile stress.

このように、応力腐蝕割れを生じない無酸素銅を採用すると、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管3A,3Bの応力腐蝕割れが可及的に抑制されるようになり、製品の信頼性が向上する。   In this way, when oxygen-free copper that does not cause stress corrosion cracking is used, heat exchange is performed under conditions in which urea remains as a residue and where tensile stress acts due to internal pressure during refrigerant flow Stress corrosion cracking of the dexterous copper refrigerant pipes 3A and 3B is suppressed as much as possible, and the reliability of the product is improved.

(2) 第2の課題解決手段
本願発明の第2の課題解決手段は、りん脱酸銅よりなり、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管3A,3Bであって、引っ張り応力による腐蝕割れに対する耐力の大きい銅合金により形成したことを特徴としている。
(2) Second Problem Solving Means The second problem solving means of the present invention is made of phosphorous deoxidized copper, covered with a heat insulating material in which urea remains as a residue, and tensile stress is applied by internal pressure during refrigerant circulation. The copper refrigerant pipes 3A and 3B for heat exchangers used under such conditions are characterized by being formed of a copper alloy having a high resistance to corrosion cracking due to tensile stress.

このように、引っ張り応力による腐蝕割れに対する耐力の大きい銅合金を採用すると、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管3A,3Bの応力腐蝕割れが可及的に抑制されるようになり、製品の信頼性が向上する。   As described above, when a copper alloy having a high resistance to corrosion cracking due to tensile stress is employed, it is covered with a heat insulating material in which urea remains as a residue, and is used under a condition in which tensile stress acts due to internal pressure during refrigerant flow. Stress corrosion cracking of the copper refrigerant pipes 3A and 3B for the heat exchanger is suppressed as much as possible, and the reliability of the product is improved.

(3) 第3の課題解決手段
本願発明の第3の課題解決手段は、上記第1又は第2の課題解決手段の構成において、熱交換器は、水通路配管1を有して構成されており、冷媒配管3A,3Bは同水通路配管1の外周面上に巻成して配設され、同水通路配管1の通路断面積よりも小さな通路断面積を有して構成されていることを特徴としている。
(3) Third Problem Solving Means The third problem solving means of the present invention is the configuration of the first or second problem solving means, wherein the heat exchanger has a water passage pipe 1. The refrigerant pipes 3A and 3B are wound around the outer peripheral surface of the water passage pipe 1 and have a passage cross-sectional area smaller than the passage cross-sectional area of the water passage pipe 1. It is characterized by.

このように、熱交換器が、水通路配管1を有して構成されているとともに、冷媒配管3A,3Bは同水通路配管1の外周面上に巻成して配設され、同水通路配管1の通路断面積よりも小さな通路断面積を有して構成されている場合、特に冷媒配管に引っ張り応力が採用した場合に同応力による腐蝕割れが生じやすいので、上記第1又は第2の課題解決手段の構成は有効である。   Thus, the heat exchanger is configured to have the water passage pipe 1, and the refrigerant pipes 3 </ b> A and 3 </ b> B are wound around the outer peripheral surface of the water passage pipe 1. When the pipe 1 is configured to have a passage cross-sectional area smaller than the passage cross-sectional area, particularly when a tensile stress is employed in the refrigerant pipe, corrosion cracking due to the stress is likely to occur. The configuration of the problem solving means is effective.

(4) 第4の課題解決手段
本願発明の第4の課題解決手段は、上記第1,第2又は第3の課題解決手段の構成において、冷媒配管3A,3B内を流れる冷媒がCO2冷媒であることを特徴としている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first, second or third problem solving means, the refrigerant flowing in the refrigerant pipes 3A, 3B is a CO 2 refrigerant. It is characterized by being.

このように、冷媒配管3A,3B内を流れる冷媒が高温、高圧のCO2冷媒(例えば120℃、10K前後)である銅製熱交換器は、冷媒流通時の内部圧力が大きく、同圧力で冷媒配管部分の応力腐蝕割れが生じやすいので、上記第1、第2又は第3の課題解決手段の構成は有効に作用する。 As described above, the copper heat exchanger in which the refrigerant flowing in the refrigerant pipes 3A and 3B is a high-temperature and high-pressure CO 2 refrigerant (for example, 120 ° C., around 10K) has a large internal pressure during refrigerant circulation, and the refrigerant is at the same pressure. Since stress corrosion cracking of the piping portion is likely to occur, the configuration of the first, second, or third problem solving means works effectively.

以上の結果、本願発明によると、CO2を冷媒とする給湯用熱交換器の冷媒配管やR410を冷媒とする熱交換器の高圧側冷媒配管等における応力腐蝕割れの問題を略確実に解決することができ、製品の信頼性を大きく向上させることができる。 As a result of the above, according to the present invention, the problem of stress corrosion cracking in the refrigerant pipe of the hot water supply heat exchanger using CO 2 as the refrigerant and the high pressure side refrigerant pipe of the heat exchanger using R 410 as the refrigerant can be solved almost certainly. The reliability of the product can be greatly improved.

図1および図2には、一例として給湯機用熱交換器を構成するに適した本願発明の最良の実施の形態に係る熱交換器および同熱交換器用の冷媒配管の構成が示されている。   FIG. 1 and FIG. 2 show, as an example, the configuration of a heat exchanger according to the best embodiment of the present invention suitable for configuring a heat exchanger for a hot water heater and refrigerant piping for the heat exchanger. .

同給湯用熱交換器は、図示のように、内側に水通路2を形成する長い芯管1の外周に、冷媒通路4A,4Bを形成する芯管1よりも外径(通路径)の小さいキャピラリチューブ等の巻管からなる2本の外管3A,3Bを所定のピッチで螺旋状に巻き付け、これを、例えば長円形状に巻成して多数の段数重ね合わせ、その後、ろう付け等を施すことにより一体形状とし、上記芯管1側を水通路2とするとともに、上記外管3A,3B側を冷媒通路4A,4Bとしている。そして、その外周を発泡剤として尿素を使用して発泡させた断熱材でカバーして構成している。   As shown in the drawing, the hot water supply heat exchanger has an outer diameter (passage diameter) smaller than that of the core tube 1 that forms the refrigerant passages 4A and 4B on the outer periphery of the long core tube 1 that forms the water passage 2 inside. Two outer tubes 3A and 3B made of a wound tube such as a capillary tube are spirally wound at a predetermined pitch, and this is wound into, for example, an oval shape and overlapped by a number of stages, and then brazed, etc. As a result, the core pipe 1 side is used as the water passage 2 and the outer pipes 3A and 3B are used as the refrigerant passages 4A and 4B. And the outer periphery is comprised and covered with the heat insulating material made to foam using urea as a foaming agent.

そして、同構成では、上記冷媒配管4A,4Bに流す冷媒として例えば高温(120℃)、高圧(10K)のCO2冷媒が採用されている。また、上記外管3A,3Bは、P(リン)を混合することによってO2(酸素)を除去(脱酸)した脆性のあるリン脱酸銅(Cu=99.5%)よりなっている。 In this configuration, for example, a high-temperature (120 ° C.) and high-pressure (10 K) CO 2 refrigerant is employed as the refrigerant flowing through the refrigerant pipes 4A and 4B. The outer tubes 3A and 3B are made of brittle phosphorous deoxidized copper (Cu = 99.5%) from which O 2 (oxygen) is removed (deoxidized) by mixing P (phosphorus). .

このような構成によれば、水通路2を形成する芯管1側に孔が空いても、上記外管3A,3B側に孔が空かない限り、冷媒通路4A,4B側に水が侵入する恐れはないし、また上記外管3A,3Bの間の芯管1の外周面における水の漏出状態から容易に水の漏洩を検知することができ、漏洩検知管なども不要になる。   According to such a configuration, even if a hole is formed on the core tube 1 side forming the water passage 2, water enters the refrigerant passages 4A and 4B unless the hole is formed on the outer tubes 3A and 3B. There is no fear, and the leakage of water can be easily detected from the leakage state of water on the outer peripheral surface of the core tube 1 between the outer tubes 3A and 3B, and the leakage detection tube is not necessary.

ところで、このような構成の場合、すでに述べたように外管3A,3Bは細径であると同時に、巻き付けにより所定の引張り応力が生じており、この引っ張り応力は、運転時における高温(120℃)、高圧(10K)の冷媒(CO2)の流通によって管の径が拡大することによって、さらに増大する。 In the case of such a configuration, as already described, the outer tubes 3A and 3B have a small diameter and at the same time, a predetermined tensile stress is generated by winding, and this tensile stress is a high temperature (120 ° C. during operation). ), And the diameter of the pipe is further increased by the circulation of the high-pressure (10K) refrigerant (CO 2 ).

このように、配管の材料が脆性のあるりん脱酸銅であり、しかも発泡剤としての尿素が残っている断熱材に覆われ、内部圧力により引っ張り応力が作用する条件の下で使用される給湯用熱交換器の外管(冷媒配管)3A,3Bは、使用期間中に上記断熱材から発生するアンモニア(発泡部に残っている尿素に周囲の水が反応して生じる)によって応力腐蝕割れを発生し、短期間で割れや冷媒漏れを生じる問題がある。   Thus, the hot water supply used under the condition that the material of the piping is brittle phosphorous deoxidized copper and is covered with a heat insulating material in which urea as a foaming agent remains, and tensile stress acts on the internal pressure. The outer tubes (refrigerant pipes) 3A and 3B of the heat exchanger for use are subject to stress corrosion cracking due to ammonia generated from the heat insulating material during the period of use (performed by the reaction of surrounding water with urea remaining in the foamed part). There is a problem that occurs and causes cracks and refrigerant leakage in a short period of time.

そこで、本実施の形態では、そのような問題を避けるために、上述のように外管3A,3Bが、発泡剤としての尿素が残渣として残り、水との反応によってアンモニアを生じる断熱材に覆われて使用される場合に、その構成する材料として、応力腐蝕割れを生じない無酸素銅、または応力腐蝕割れ耐力の大きい銅合金を使用して構成するようにしている。   Therefore, in the present embodiment, in order to avoid such a problem, as described above, the outer tubes 3A and 3B are covered with a heat insulating material in which urea as a foaming agent remains as a residue and generates ammonia by reaction with water. In the case of being used, it is configured using oxygen-free copper that does not cause stress corrosion cracking or a copper alloy having a high stress corrosion cracking resistance as a material constituting the material.

このように、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される給湯用熱交換器の銅製冷媒配管である外管3A,3Bを、引っ張り応力による腐蝕割れを生じない無酸素銅により形成すると、使用期間中に断熱材からアンモニアが発生しても、それによる応力腐蝕割れが可及的に抑制されるようになり、製品の信頼性が向上する。   Thus, the outer pipe 3A, which is a copper refrigerant pipe of a heat exchanger for hot water supply, which is covered with a heat insulating material in which urea remains as a residue and is used under a condition in which a tensile stress acts due to an internal pressure during refrigerant circulation, When 3B is made of oxygen-free copper that does not cause corrosion cracking due to tensile stress, even if ammonia is generated from the heat insulating material during the period of use, stress corrosion cracking due to this will be suppressed as much as possible. Reliability is improved.

また、一方、無酸素銅以外に引っ張り応力による腐蝕割れに対する耐力の大きい銅合金を採用して形成した場合にも、略同様に応力腐蝕割れが可及的に抑制されるようになり、やはり製品の信頼性が向上する。   On the other hand, in addition to oxygen-free copper, when using a copper alloy that has a high resistance to corrosion cracking due to tensile stress, stress corrosion cracking is suppressed as much as possible, and the product Reliability is improved.

以上の実施形態で示した給湯用熱交換器のように、熱交換器が、水通路配管としての芯管1を有して構成されているとともに、冷媒配管としての外管3A,3Bが同芯管1の外周面上に巻成して配設され、同外管3A,3Bの通路断面積が上記芯管1の通路断面積よりも小さな通路断面積を有して構成されている場合、特に冷媒配管として銅製冷媒配管3A,3Bに引っ張り応力が採用した場合には、同応力による腐蝕割れが生じやすいので、上記の構成は特に有効である。   Like the hot water supply heat exchanger shown in the above embodiment, the heat exchanger is configured to have the core tube 1 as the water passage piping, and the outer tubes 3A and 3B as the refrigerant piping are the same. When wound around the outer peripheral surface of the core tube 1 and the passage cross-sectional area of the outer pipes 3A and 3B is configured to have a passage cross-sectional area smaller than the passage cross-sectional area of the core tube 1 In particular, when tensile stress is applied to the copper refrigerant pipes 3A and 3B as the refrigerant pipe, the above-described configuration is particularly effective because corrosion cracking due to the stress is likely to occur.

さらに、以上の構成の場合、冷媒配管である外管3A,3Bを流れる冷媒が高温、高圧のCO2冷媒であることを特徴としている。 Furthermore, in the case of the above configuration, the refrigerant flowing through the outer pipes 3A and 3B, which are refrigerant pipes, is a high-temperature, high-pressure CO 2 refrigerant.

このように、冷媒配管である外管3A,3B内を流れる冷媒が高温、高圧のCO2冷媒である銅製熱交換器は、より大きな応力が生じやすく、冷媒配管部分の応力腐蝕割れが生じやすいので、上記の構成は特に有効に作用する。 As described above, the copper heat exchanger in which the refrigerant flowing in the outer pipes 3A and 3B, which are refrigerant pipes, is a high-temperature and high-pressure CO 2 refrigerant is liable to generate a greater stress, and stress corrosion cracking of the refrigerant pipe portion is likely to occur. Therefore, the above configuration works particularly effectively.

これらの結果、本実施の形態の熱交換器用冷媒配管によると、CO2を冷媒とする給湯用熱交換器等における従来のような応力腐蝕割れの問題を略確実に解決することができ、製品の信頼性を可及的に向上させることができる。 As a result, according to the heat exchanger refrigerant pipe of the present embodiment, the conventional stress corrosion cracking problem in a hot water heat exchanger or the like using CO 2 as a refrigerant can be solved almost certainly. Can be improved as much as possible.

なお、上記外管3A,3Bの使用環境としては、断熱材に覆われいることが必要であるが、それに加えて水分が共存する環境で使用する場合に適している。   In addition, although it is necessary for the outer pipes 3A and 3B to be covered with a heat insulating material, the outer pipes 3A and 3B are suitable for use in an environment where moisture coexists.

また、上記外管3A,3Bはろう付けされていてもよい(図2中のM部分を参照)。   Further, the outer tubes 3A and 3B may be brazed (see the M portion in FIG. 2).

また同ろう付けは、炉中ろう付けその他の方法でろう付けされていてもよい。   The brazing may be performed by brazing in a furnace or other methods.

本願発明の最良の実施の形態に係る給湯用熱交換器の構成を示す一部切欠斜視図である。It is a partially cutaway perspective view showing the configuration of the hot water supply heat exchanger according to the best mode of the present invention. 同給湯用熱交換器の要部の横断面図である。It is a cross-sectional view of the principal part of the heat exchanger for hot water supply.

符号の説明Explanation of symbols

1は芯管、2は水通路、3A,3Bは外管、4A,4Bは水通路、Mはろう付け部である。   1 is a core tube, 2 is a water passage, 3A and 3B are outer tubes, 4A and 4B are water passages, and M is a brazing part.

Claims (4)

りん脱酸銅よりなり、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管(3A),(3B)・・・であって、引っ張り応力による腐蝕割れを生じない無酸素銅により形成したことを特徴とする熱交換器用冷媒配管。   Copper refrigerant pipe (3A) for a heat exchanger (3A), which is made of phosphorous-deoxidized copper, covered with a heat insulating material in which urea remains as a residue, and used under conditions in which tensile stress acts due to internal pressure during refrigerant flow 3B)... A refrigerant pipe for a heat exchanger, which is formed of oxygen-free copper that does not cause corrosion cracking due to tensile stress. りん脱酸銅よりなり、残渣として尿素が残る断熱材に覆われ、かつ冷媒流通時の内部圧力により引っ張り応力が作用する条件の下で使用される熱交換器用の銅製冷媒配管(3A),(3B)・・・であって、引っ張り応力による腐蝕割れに対する耐力の大きい銅合金により形成したことを特徴とする熱交換器用冷媒配管。   Copper refrigerant pipe (3A) for a heat exchanger (3A), which is made of phosphorous-deoxidized copper, covered with a heat insulating material in which urea remains as a residue, and used under conditions in which tensile stress acts due to internal pressure during refrigerant flow 3B)... A refrigerant pipe for a heat exchanger, which is made of a copper alloy having a high resistance to corrosion cracking due to tensile stress. 熱交換器は、水通路配管(1)を有して構成されており、冷媒配管(3A),(3B)・・・は同水通路配管(1)の外周面上に巻成して配設され、同水通路配管(1)の通路断面積よりも小さな通路断面積を有して構成されていることを特徴とする請求項1又は2記載の熱交換器用冷媒配管。   The heat exchanger has a water passage pipe (1), and the refrigerant pipes (3A), (3B)... Are wound around the outer peripheral surface of the water passage pipe (1). The refrigerant pipe for a heat exchanger according to claim 1 or 2, wherein the refrigerant pipe is configured to have a passage cross-sectional area smaller than a passage cross-sectional area of the water passage pipe (1). 冷媒配管(3A),(3B)・・・内を流れる冷媒がCO2冷媒であることを特徴とする請求項1,2又は3記載の熱交換器用冷媒配管。 Refrigerant pipe (3A), the heat exchanger refrigerant pipe according to claim 1, 2 or 3, wherein the a refrigerant CO 2 refrigerant flowing through the (3B) ···.
JP2006334205A 2006-12-12 2006-12-12 Refrigerant piping for heat exchanger Pending JP2008145068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334205A JP2008145068A (en) 2006-12-12 2006-12-12 Refrigerant piping for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334205A JP2008145068A (en) 2006-12-12 2006-12-12 Refrigerant piping for heat exchanger

Publications (1)

Publication Number Publication Date
JP2008145068A true JP2008145068A (en) 2008-06-26

Family

ID=39605442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334205A Pending JP2008145068A (en) 2006-12-12 2006-12-12 Refrigerant piping for heat exchanger

Country Status (1)

Country Link
JP (1) JP2008145068A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424217A (en) * 1977-07-27 1979-02-23 Hitachi Cable Ltd Copper alloy for tube material
JPS59129054U (en) * 1983-02-09 1984-08-30 株式会社東芝 solar heat collector
JPH0339893A (en) * 1989-07-06 1991-02-20 Akutoronikusu Kk High reliability loop type capillary heat pipe
JPH11269449A (en) * 1998-03-19 1999-10-05 Gun Ei Chem Ind Co Ltd Binder composition for glass wool or rock wool heat insulation material
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2003227655A (en) * 2002-02-05 2003-08-15 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply machine
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2005164166A (en) * 2003-12-04 2005-06-23 Kobelco & Materials Copper Tube Inc Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424217A (en) * 1977-07-27 1979-02-23 Hitachi Cable Ltd Copper alloy for tube material
JPS59129054U (en) * 1983-02-09 1984-08-30 株式会社東芝 solar heat collector
JPH0339893A (en) * 1989-07-06 1991-02-20 Akutoronikusu Kk High reliability loop type capillary heat pipe
JPH11269449A (en) * 1998-03-19 1999-10-05 Gun Ei Chem Ind Co Ltd Binder composition for glass wool or rock wool heat insulation material
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2003227655A (en) * 2002-02-05 2003-08-15 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply machine
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2005164166A (en) * 2003-12-04 2005-06-23 Kobelco & Materials Copper Tube Inc Heat exchanger

Similar Documents

Publication Publication Date Title
JP4926892B2 (en) Flange connection structure of heat exchanger
JP2009041880A (en) Water heat exchanger for water heater
JP2010043766A (en) Heat exchanger and water heater equipped therewith
JP2008121908A (en) Heat exchanger
JP2009216309A (en) Heat exchanger
JP5935763B2 (en) Twisted tube heat exchanger and manufacturing method of torsion tube heat exchanger
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP2008145068A (en) Refrigerant piping for heat exchanger
JP4222354B2 (en) Welding structure and welding method of aluminum accumulator and heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2016138731A (en) Heat exchanger
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
US20050173495A1 (en) Method of protecting against corrosion at high temperature
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
JP5073074B2 (en) Heat exchanger and heat pump water heater using the same
JP2011099620A (en) Heat exchanger
JP2003156291A (en) Heat exchanger
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JP2006234353A (en) Welding structure and welding method of aluminum accumulator, and heat exchanger
JP6172701B2 (en) Heat exchanger
JP2013011390A (en) Water-refrigerant heat exchanger
JP2009024969A (en) Heat exchanger
JP2010127610A (en) Heat exchanger
JP2004093057A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929