JP2008142842A - Wafer and method of manufacturing same - Google Patents

Wafer and method of manufacturing same Download PDF

Info

Publication number
JP2008142842A
JP2008142842A JP2006333549A JP2006333549A JP2008142842A JP 2008142842 A JP2008142842 A JP 2008142842A JP 2006333549 A JP2006333549 A JP 2006333549A JP 2006333549 A JP2006333549 A JP 2006333549A JP 2008142842 A JP2008142842 A JP 2008142842A
Authority
JP
Japan
Prior art keywords
wafer
curve
workpiece
angle
streak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333549A
Other languages
Japanese (ja)
Other versions
JP5085923B2 (en
Inventor
Kazuaki Taniguchi
和昭 谷口
Yukinobu Obara
幸伸 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP2006333549A priority Critical patent/JP5085923B2/en
Publication of JP2008142842A publication Critical patent/JP2008142842A/en
Application granted granted Critical
Publication of JP5085923B2 publication Critical patent/JP5085923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wafer having a main surface reduced in waviness and hard to be damaged and a method of manufacturing the wafer. <P>SOLUTION: In this method of manufacturing a wafer, at least one of a fixed abrasive grain wire tool and a member W to be machined is moved while moving at least one of the fixed abrasive grain wire tool and the member W to be machined in the moving direction Z intersecting with a predetermined axis X. The member W to be machined is cut while forming streaks drawing a curve C curved in one direction on the cutting surface Wx of the member to be machined along the moving direction Z. The angles of the streaks γa, γb on the straight lines Ma, Mb connecting one ends Va, Vb of the curve to the apex U of the curve C relative to a reference line Y connecting both ends of the curve C to each other are 1° or larger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ウェハおよびその製造方法に関するものである。   The present invention relates to a wafer and a manufacturing method thereof.

ワイヤ工具は、高速で走行させたワイヤを被加工部材(ワークともいう)に押し当てることによって被加工部材を切断する工具である。具体的には、シリコン、サファイア、石英、磁性材料石材などの硬脆材で構成された被加工部材から、高い寸法精度で薄板(ウェハ)を切り出すスライス加工に用いられる。   A wire tool is a tool that cuts a workpiece by pressing a wire traveled at a high speed against the workpiece (also referred to as a workpiece). Specifically, it is used for slicing that cuts out a thin plate (wafer) with high dimensional accuracy from a workpiece made of hard and brittle materials such as silicon, sapphire, quartz, and magnetic material stone.

このようなワイヤ工具には、遊離砥粒方式のものと固定砥粒方式のものとが存在する。遊離砥粒方式によるワイヤ工具(遊離砥粒ワイヤ工具)は、研削液中にミクロンサイズの砥粒を混合した加工液(スラリー)をワイヤによって被加工部材に擦りつけながら加工を行うワイヤ工具である。固定砥粒方式によるワイヤ工具(固定砥粒ワイヤ工具)は、表面に砥粒を直接固着させたワイヤによって加工を行うワイヤ工具である。この固定砥粒ワイヤ工具は、遊離砥粒ワイヤ工具に比べて加工精度が劣るものの加工能率が高いという優位性をもつ。   Such wire tools include a loose abrasive type and a fixed abrasive type. A free abrasive grain wire tool (free abrasive wire tool) is a wire tool that performs processing while rubbing a processing liquid (slurry), in which micron-size abrasive grains are mixed in a grinding liquid, against a workpiece by a wire. . A wire tool based on a fixed abrasive method (fixed abrasive wire tool) is a wire tool that performs processing using a wire in which abrasive grains are directly fixed to a surface. This fixed-abrasive wire tool has the advantage that the machining efficiency is high, although the machining accuracy is inferior to that of the loose-abrasive wire tool.

一方、ワイヤ工具には、切断中にワイヤ側もしくは被加工部材側を揺動させる揺動機構を有する装置も存在している。この揺動機構には、切断時における切粉の排出性を高めて、加工精度を高める利点がある。例えば、特許文献1には、ワイヤ列に微少振動を与えながらインゴットを切断することによってワイヤ工具の切れ味を長時間維持できる固定砥粒ワイヤ工具が記載されている。
特開平11−77510号公報
On the other hand, there is also a device having a rocking mechanism for rocking the wire side or the workpiece side during cutting. This rocking mechanism has the advantage of improving the machining accuracy by improving the discharge of chips during cutting. For example, Patent Document 1 describes a fixed abrasive wire tool that can maintain the sharpness of a wire tool for a long time by cutting an ingot while applying minute vibrations to the wire row.
Japanese Patent Laid-Open No. 11-77510

しかしながら、上記の固定砥粒ワイヤ工具にあっては、揺動する角度(揺動角)に対する詳細な検討はされていない。また、遊離砥粒ワイヤ工具に対してしばしば設定される揺動角(2θ=0〜4°)を固定砥粒ワイヤ工具に対して適用したとしても、主面のうねりが大きなウェハを形成してしまう。さらに、揺動時にウェハ主面において形成される線状の条痕がウェハを破損しやすくするおそれがある。   However, in the above-mentioned fixed abrasive wire tool, a detailed examination on the swing angle (swing angle) has not been made. Further, even if the swing angle (2θ = 0 to 4 °) often set for the loose abrasive wire tool is applied to the fixed abrasive wire tool, a wafer with a large waviness of the main surface is formed. End up. In addition, linear streaks formed on the main surface of the wafer during swinging may easily damage the wafer.

本発明は、上記した事情に鑑みて為されたものであり、主面のうねりが低減されかつ破損しにくいウェハ及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wafer in which the undulation of the main surface is reduced and is not easily damaged, and a method for manufacturing the same.

本発明に係るウェハの製造方法は、表面に砥粒を固着したワイヤを複数の主軸ローラに巻架した固定砥粒ワイヤ工具によって、所定の軸線に沿って延びる被加工部材を切断することによってウェハを製造する方法であって、固定砥粒ワイヤ工具及び被加工部材のうち少なくとも一方を、所定の軸線に交差する移動方向に移動させつつ、固定砥粒ワイヤ工具及び被加工部材のうち少なくとも一方を揺動させることによって、移動方向に沿う被加工部材の切断加工面上おいて一方向に湾曲した曲線を描く複数の条痕を形成しながら、被加工部材を切断し、曲線の一端と曲線の頂点とを結ぶ直線が曲線の両端を結ぶ基準線に対してなす条痕の角度を1°以上とする。   The method for manufacturing a wafer according to the present invention includes cutting a member to be processed extending along a predetermined axis with a fixed abrasive wire tool in which a wire having abrasive grains fixed on a surface thereof is wound around a plurality of spindle rollers. The at least one of the fixed abrasive wire tool and the workpiece is moved while moving at least one of the fixed abrasive wire tool and the workpiece in a moving direction intersecting a predetermined axis. By swinging, the workpiece is cut while forming a plurality of traces that draw a curved curve in one direction on the cutting surface of the workpiece along the moving direction. The angle of the streak formed by the straight line connecting the vertices with respect to the reference line connecting both ends of the curve is set to 1 ° or more.

本発明のウェハ製造方法によれば、条痕が描く曲線の一端と曲線の頂点とを結ぶ直線が基準線に対してなす条痕の角度(条痕角)を1°以上とする。このようにすれば、1°未満の条痕角を有する条痕を形成する場合に比べて、ウェハ主面のうねりが低減される。また、条痕角が1°未満の条痕を形成する場合に比べて、条痕が描く曲線の曲率が増大される。この曲率の増大によって、条痕に発生する応力が一方向に集中しにくくなるため、破損しにくいウェハを形成することができる。   According to the wafer manufacturing method of the present invention, the angle of the streak (streak angle) formed by the straight line connecting one end of the curve drawn by the streak and the vertex of the curve with respect to the reference line is 1 ° or more. In this way, the waviness of the main surface of the wafer is reduced as compared with the case of forming a streak having a streak angle of less than 1 °. Further, the curvature of the curve drawn by the streak is increased as compared with the case where the streak angle is less than 1 °. This increase in curvature makes it difficult for stress generated in the streak to concentrate in one direction, so that a wafer that is not easily damaged can be formed.

ここで、上記の条痕角は3〜6°とすることが好ましい。このようにすれば、3°未満または6°超の条痕を形成する場合に比べて主面のうねりがより低減される。また、条痕角が3°未満の条痕を形成する場合に比べて、より破損しにくいウェハを形成することができる。   Here, the streak angle is preferably 3 to 6 °. In this way, the waviness of the main surface is further reduced as compared with the case where the streak of less than 3 ° or more than 6 ° is formed. Further, it is possible to form a wafer that is less likely to be damaged as compared with the case where the streak angle is less than 3 °.

また、本発明に係るウェハは、ウェハの主面上において一方向に湾曲した曲線を描く複数の条痕を有し、曲線の一端と曲線の頂点とを結ぶ直線が曲線の両端を結ぶ基準線に対してなす条痕の角度が1°以上である。   In addition, the wafer according to the present invention has a plurality of streaks that draw a curve curved in one direction on the main surface of the wafer, and a straight line connecting one end of the curve and the vertex of the curve connects the both ends of the curve The angle of the streak is 1 ° or more.

本発明のウェハによれば、条痕が描く曲線の一端と曲線の頂点とを結ぶ直線が基準線に対してなす条痕の角度(条痕角)が1°以上である。これによれば、1°未満の条痕角を有するウェハに比べて、ウェハ主面のうねりが低減される。また、条痕角が1°未満の条痕を有する場合に比べて、条痕が描く曲線の曲率が増大される。曲率が増大されると、条痕に発生する応力が一方向に集中しにくくなるため、ウェハの破損が防止される。   According to the wafer of the present invention, the angle of the streak (streak angle) formed by the straight line connecting one end of the curve drawn by the streak and the vertex of the curve with respect to the reference line is 1 ° or more. According to this, the waviness of the wafer main surface is reduced as compared with a wafer having a streak angle of less than 1 °. In addition, the curvature of the curve drawn by the streak is increased as compared with the case where the streak angle is less than 1 °. When the curvature is increased, the stress generated in the streak becomes difficult to concentrate in one direction, and thus damage to the wafer is prevented.

ここで、上記の条痕角は、3〜6°であることが好ましい。これによれば、3°未満または6°超の条痕角を有するウェハに比べて主面のうねりがより低減される。また、3°未満の条痕角を有するウェハに比べて、ウェハの破損がより防止される。   Here, the streak angle is preferably 3 to 6 °. According to this, the waviness of the main surface is further reduced as compared with a wafer having a streak angle of less than 3 ° or more than 6 °. Further, the wafer is prevented from being damaged as compared with a wafer having a streak angle of less than 3 °.

本発明のウェハおよびその製造方法によれば、主面のうねりが低減されかつ破損しにくいウェハ及びその製造方法を提供することが可能である。   According to the wafer and the manufacturing method thereof of the present invention, it is possible to provide a wafer and a method of manufacturing the same in which the undulation of the main surface is reduced and is not easily damaged.

以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. For the convenience of illustration, the dimensional ratios in the drawings do not necessarily match those described.

まず、図1を参照して、第一実施形態に係るウェハの製造方法を適用した固定砥粒ワイヤ工具の構成概略について説明する。ここで、図1は、本実施形態に係る製造方法を実施する固定砥粒ワイヤ工具を概略的に示す図である。   First, a schematic configuration of a fixed abrasive wire tool to which the wafer manufacturing method according to the first embodiment is applied will be described with reference to FIG. Here, FIG. 1 is a diagram schematically showing a fixed abrasive wire tool for performing the manufacturing method according to the present embodiment.

図1に示すように、固定砥粒ワイヤ工具100は、3本の主軸ローラ10,11,12と、複数のガイドプーリ20と、一対のワイヤリール30A,30Bと、ワイヤ50と、揺動板60とを備えている。固定砥粒ワイヤ工具100は、主軸ローラ10を備えなくともよいし、更なる主軸ローラを備えるものであってもよい。   As shown in FIG. 1, the fixed abrasive wire tool 100 includes three spindle rollers 10, 11, 12, a plurality of guide pulleys 20, a pair of wire reels 30 </ b> A, 30 </ b> B, a wire 50, and a swing plate. 60. The fixed abrasive wire tool 100 may not include the main shaft roller 10 or may include a further main shaft roller.

ワイヤ50は、鋼鉄等からなるワイヤの外周面にダイヤモンド等の砥粒が公知の方法によって固着されたものである。   The wire 50 is obtained by fixing abrasive grains such as diamond to the outer peripheral surface of a wire made of steel or the like by a known method.

ワイヤ50の両端部は、ワイヤリール30A,ワイヤリール30Bによって巻回されている。このワイヤリール30A,30Bは、モータなどの駆動手段(不図示)によって駆動可能に設置されており、ワイヤリール30Aからワイヤリール30Bへワイヤ50の繰出しおよび巻取り動作を行うことができる。固定砥粒ワイヤ工具100の運転時において、ワイヤリール30A,30Bは、ワイヤ50の繰出しおよび巻取り動作を交互に行い、ワイヤ列50C(後述)を被加工部材W上で摺動する摺動動作を行う。   Both ends of the wire 50 are wound around a wire reel 30A and a wire reel 30B. The wire reels 30A and 30B are installed so as to be drivable by a driving means (not shown) such as a motor, and can feed and wind the wire 50 from the wire reel 30A to the wire reel 30B. During the operation of the fixed abrasive wire tool 100, the wire reels 30A and 30B alternately perform the feeding and winding operations of the wire 50, and slide the wire row 50C (described later) on the workpiece W. I do.

ワイヤ50の中間部は、ガイドプーリ20を介して、回動自在に設けられた3本の主軸ローラ10,11,12に巻架されている。この主軸ローラ10,11,12には、複数列の平行なワイヤ案内溝が一定のピッチで形成されている。このワイヤ案内溝によって案内されたワイヤ50は、ワイヤ列50Cを形成する。固定砥粒ワイヤ工具100の運転時には、ワイヤ列50Cが被加工部材Wに直接接触して被加工部材Wの切断加工を行う。   An intermediate portion of the wire 50 is wound around three main shaft rollers 10, 11, and 12 that are rotatably provided via a guide pulley 20. A plurality of rows of parallel wire guide grooves are formed in the main shaft rollers 10, 11, and 12 at a constant pitch. The wires 50 guided by the wire guide grooves form a wire row 50C. During operation of the fixed abrasive wire tool 100, the wire row 50C directly contacts the workpiece W to cut the workpiece W.

主軸ローラ10,11,12は、同一の揺動板60に軸支されている。この揺動板60は、揺動手段(不図示)によって揺動可能に設置されており、固定砥粒ワイヤ工具100の運転時には、ワイヤ列50Cを揺動させる揺動動作(後述)を行う。例えば、主軸ローラ10,11,12が正三角形をなす場合、揺動板60は、その三角形の重心を固定しつつワイヤ列50Cを揺動する。   The main shaft rollers 10, 11, 12 are pivotally supported on the same swing plate 60. The swinging plate 60 is swingably installed by swinging means (not shown), and performs a swinging operation (described later) that swings the wire row 50C when the fixed abrasive wire tool 100 is operated. For example, when the spindle rollers 10, 11, and 12 form an equilateral triangle, the swing plate 60 swings the wire row 50C while fixing the center of gravity of the triangle.

ワイヤ列50Cの下方には、ワークテーブル40が設けられている。ワークテーブル40上には、軸線X方向に延びる被加工部材Wが載置される。この被加工部材Wは、例えば、円柱状部材である。このワークテーブル40は、公知の昇降移動手段(不図示)によって昇降移動可能に設置されており、固定砥粒ワイヤ工具100の運転時には、軸線Xに交差する移動方向Z、例えば鉛直方向に被加工部材Wを移動させる。被加工部材Wの移動方向Zへの移動については、固定砥粒ワイヤ工具100を動かしてもよいし、固定砥粒ワイヤ工具100および被加工部材Wの両方を動かしてもよい。   A work table 40 is provided below the wire row 50C. A workpiece W extending in the direction of the axis X is placed on the work table 40. The workpiece W is, for example, a columnar member. The work table 40 is installed so as to be movable up and down by a known vertical movement means (not shown), and when the fixed abrasive wire tool 100 is operated, the work table 40 is machined in the movement direction Z intersecting the axis X, for example, the vertical direction. The member W is moved. Regarding the movement of the workpiece W in the movement direction Z, the fixed abrasive wire tool 100 may be moved, or both the fixed abrasive wire tool 100 and the workpiece W may be moved.

また、被加工部材Wは、カーボン、レジン、ガラスなどで構成されるベース台(不図示)を介してワークテーブル40に載置してもよい。このようにすれば、固定砥粒ワイヤ工具100の揺動時においても、ワークテーブル40を損傷することなく、被加工部材Wを加工することが出来る。   Further, the workpiece W may be placed on the work table 40 via a base (not shown) made of carbon, resin, glass, or the like. In this way, the workpiece W can be processed without damaging the work table 40 even when the fixed abrasive wire tool 100 is swung.

次に、図1〜図3を参照して、固定砥粒ワイヤ工具100の動作を説明し、併せて本実施形態に係るウェハ製造方法について説明する。ここで、図2は、図1の固定砥粒ワイヤ工具の動作を示す図である。図3は、加工時における被加工部材の切断加工面の様子を示す図である。   Next, with reference to FIGS. 1-3, operation | movement of the fixed abrasive wire tool 100 is demonstrated, and the wafer manufacturing method which concerns on this embodiment is demonstrated collectively. Here, FIG. 2 is a diagram showing the operation of the fixed abrasive wire tool of FIG. FIG. 3 is a diagram illustrating a state of a cut surface of a workpiece to be processed at the time of processing.

固定砥粒ワイヤ工具100の運転が開始されると、ワイヤリール30A,30Bによってワイヤ50の繰出しおよび巻取り動作が交互に行われる。同時に、図1に示すように、被加工部材Wが移動方向Zに移動されつつ、揺動板60によって揺動されるワイヤ列50Cが被加工部材Wに直接接触して被加工部材Wを切断加工していく。   When the operation of the fixed-abrasive wire tool 100 is started, the wire reels 30A and 30B alternately perform the wire 50 feeding and winding operations. At the same time, as shown in FIG. 1, while the workpiece W is moved in the movement direction Z, the wire row 50C rocked by the rocking plate 60 directly contacts the workpiece W and cuts the workpiece W. Processing.

このとき、ワイヤ列50Cは、移動方向Zに直行する基準面を中心として揺動される。具体的には、図2に示すように、固定砥粒ワイヤ工具100は、傾斜状態100aと、傾斜状態100bとの、2つの状態間を交互に行き来する。ここで、10a,11a,12aは傾斜状態100aの主軸ローラ、P1a,P2aはワイヤ列50Cと主軸ローラ10a,11a,12aとの接点、Laは接点P1aおよび接点P2aを結ぶ直線、をそれぞれ示す。傾斜状態100bに係る符号についても同様に、10b,11b,12bは傾斜状態100bの主軸ローラ、P1b,P2bはワイヤ列50Cと主軸ローラ10b,11b,12bとの接点、Lbは接点P1bおよび接点P2bを結ぶ直線、をそれぞれ示す。Qは直線La,Lbの交点を示し、基準面Sは交点Qを含み移動方向Zに直交する面として設定される。基準面Sは例えば水平面である。   At this time, the wire row 50 </ b> C is swung around a reference plane orthogonal to the movement direction Z. Specifically, as shown in FIG. 2, the fixed abrasive wire tool 100 alternates between two states, an inclined state 100a and an inclined state 100b. Here, 10a, 11a, and 12a are spindle rollers in the inclined state 100a, P1a and P2a are contact points between the wire row 50C and the spindle rollers 10a, 11a, and 12a, and La is a straight line that connects the contact points P1a and P2a. Similarly, for the reference numerals related to the inclined state 100b, 10b, 11b, and 12b are the main shaft rollers in the inclined state 100b, P1b and P2b are the contacts between the wire row 50C and the main shaft rollers 10b, 11b, and 12b, and Lb is the contacts P1b and P2b. A straight line connecting the two is shown. Q indicates the intersection of the straight lines La and Lb, and the reference plane S is set as a plane that includes the intersection Q and is orthogonal to the movement direction Z. The reference plane S is, for example, a horizontal plane.

直線La,Lbは、それぞれ傾斜状態100a,100bのワイヤ列50Cに相当する。直線La,Lbと基準面Sとのなす角度−θ,+θは、基準面Sに対してワイヤ列50Cが傾斜できる最大の傾斜角度を示す。固定砥粒ワイヤ工具100が傾斜状態100aから傾斜状態100bに傾斜するその間の角度を揺動角と定義すると、揺動角は2θで表される。なお、明細書中に記載される角度を示す符号はすべて絶対値を示す。   The straight lines La and Lb correspond to the wire rows 50C in the inclined states 100a and 100b, respectively. The angles −θ and + θ formed by the straight lines La and Lb and the reference surface S indicate the maximum inclination angles at which the wire row 50C can be inclined with respect to the reference surface S. When the angle between the tilted state 100a and the tilted state 100b of the fixed abrasive wire tool 100 is defined as the swing angle, the swing angle is represented by 2θ. In addition, all the codes | symbols which show the angle described in a specification show an absolute value.

ワイヤ列50Cの揺動時には、基準面Sに対するワイヤ列50Cの傾斜角度が−θから0を経て+θへまたはその逆へ連続的に変化する。そのため、図3に示すように、移動方向Zに沿う被加工部材Wの切断加工面Wx上において一方向に湾曲した曲線Cを描く条痕が形成されながら、被加工部材Wが切断加工される。   When the wire row 50C swings, the inclination angle of the wire row 50C with respect to the reference plane S continuously changes from −θ to 0 through + θ or vice versa. Therefore, as shown in FIG. 3, the workpiece W is cut while a streak that draws a curved line C curved in one direction on the cutting surface Wx of the workpiece W along the movement direction Z is formed. .

ここで、Uは曲線Cの頂点、VaおよびVbは曲線Cの端点、Maは頂点Uと端点Vaを結ぶ直線、Mbは頂点Uと端点Vbを結ぶ直線、Yは端点Vaと端点Vbを結ぶ基準線、γaは基準線Yと直線Maとのなす条痕角、γbは基準線Yと直線Lbとのなす条痕角、斜線部は切断加工済部、をそれぞれ示す。この条痕角γaおよびγbは、後述する利点から1°≦γaまたは1°≦γbを満たす。なお、被加工部材Wが移動方向Zに移動されつつ切断加工が行われるため、切断加工面Wx上には、曲線Cと同じ条痕角γaおよびγbを有する複数の曲線を描く条痕が形成される。   Here, U is the vertex of curve C, Va and Vb are end points of curve C, Ma is a straight line connecting vertex U and end point Va, Mb is a straight line connecting vertex U and end point Vb, and Y is connecting end point Va and end point Vb. Reference line, γa indicates a streak angle formed by the reference line Y and the straight line Ma, γb indicates a streak angle formed by the reference line Y and the straight line Lb, and a hatched part indicates a cut processed part. The streak angles γa and γb satisfy 1 ° ≦ γa or 1 ° ≦ γb because of the advantages described later. In addition, since cutting is performed while the workpiece W is moved in the movement direction Z, streaks that draw a plurality of curves having the same streak angles γa and γb as the curve C are formed on the cut surface Wx. Is done.

次に、図4を参照して、本実施形態に係るウェハについて説明する。ここで、図4は実施形態に係るウェハの主面を示す図である。   Next, the wafer according to the present embodiment will be described with reference to FIG. Here, FIG. 4 is a view showing the main surface of the wafer according to the embodiment.

被加工部材Wが移動方向Zに移動されつつ、被加工部材Wの切断加工面Wx上に複数の条痕が形成されながら上記の切断加工が行われると、最終的に、被加工部材Wから薄板状のウェハが切断される。切断されたウェハの主面には、図4に示すように、被加工部材Wの移動方向Zと同方向に湾曲した複数の曲線C1,C2,C3を描く条痕が形成されている。   When the workpiece W is moved in the movement direction Z and the above-described cutting process is performed while a plurality of streaks are formed on the cutting surface Wx of the workpiece W, finally, the workpiece W A thin wafer is cut. On the main surface of the cut wafer, as shown in FIG. 4, streaks are formed that draw a plurality of curves C1, C2, and C3 curved in the same direction as the movement direction Z of the workpiece W.

ここで、U1は曲線C1の頂点、Va1およびVb1は曲線C1の端点、Ma1は頂点U1と端点Va1を結ぶ直線、Mb1は頂点U1と端点Vb1を結ぶ直線、Y1は端点Va1と端点Vb1を結ぶ基準線、γaは基準線Y1と直線Ma1とのなす条痕角、γbは基準線Y1と直線Mb1とのなす条痕角、Z1は基準線Y1を基準とする曲線C1の湾曲幅、Xはウェハ主面Wfxの軸線、をそれぞれ示す。C2,C3に係る要素符号についても同様である。   Here, U1 is the vertex of the curve C1, Va1 and Vb1 are the end points of the curve C1, Ma1 is a straight line connecting the vertex U1 and the end point Va1, Mb1 is a straight line connecting the vertex U1 and the end point Vb1, and Y1 is connecting the end point Va1 and the end point Vb1. The reference line, γa is the streak angle formed by the reference line Y1 and the straight line Ma1, γb is the streak angle formed by the reference line Y1 and the straight line Mb1, Z1 is the bending width of the curve C1 with respect to the reference line Y1, and X is The axis of wafer main surface Wfx is shown, respectively. The same applies to the element codes related to C2 and C3.

ウェハWfの主面Wfxは、上述の切断加工面Wxに対応する。なお、図4では、紙面の都合上3本の条痕のみが記載されているが、例えば、2インチウェハの場合、200[μm]程度の間隔で条痕が形成される。   The main surface Wfx of the wafer Wf corresponds to the above-described cutting surface Wx. In FIG. 4, only three stripes are shown for the sake of space, but for example, in the case of a 2-inch wafer, the stripes are formed at intervals of about 200 [μm].

軸線Xを通る基準線Y2を基準とする湾曲幅Z2は、Rをワーク半径として
Z2=Rtanγa・・・(1)
によって求められる。鋭角である条痕角γaが増大すると、湾曲幅Z2が増大されるので、曲線C2の曲率が増大する。曲線C1および曲線C3についても、上式のワーク半径Rの値が他の値に置き換わるのみであるので、条痕角γaが増大すると曲線C1およびC3の曲率が増大する。また、上式において、条痕角γaの代わりに条痕角γbを用いてもよい。
The bending width Z2 with reference to the reference line Y2 passing through the axis X is Z2 = Rtanγa (1) where R is the work radius.
Sought by. When the streak angle γa, which is an acute angle, increases, the curvature width Z2 increases, so the curvature of the curve C2 increases. Also for the curves C1 and C3, since the value of the work radius R in the above equation is only replaced with another value, the curvature of the curves C1 and C3 increases as the streak angle γa increases. In the above formula, a streak angle γb may be used instead of the streak angle γa.

次に、図5〜図7を参照して、本実施形態に係るウェハおよびウェハ製造方法の利点について説明する。ここで、図5は、加工速度v=16.9[mm/h](一定)で切り出された2インチサファイアウェハ主面におけるろ波最大うねりWCM(JIS B 0610参照)と条痕角γとの関係を測定した結果を示すグラフである。図6は、揺動角2θと条痕角γとの関係を測定した結果を示すグラフである。図7は、条痕角の測定値と平均値との関係を示す表である。図7に示された条痕角γは、上述の条痕角γaおよびγbの平均値(γ=(γa+γb)/2)を示す。条痕角γが1°≦γを満足する場合には、上述の条痕角γaおよびγbに対して1°≦γaおよび1°≦γbのうち少なくとも一方が成立する。   Next, advantages of the wafer and the wafer manufacturing method according to the present embodiment will be described with reference to FIGS. Here, FIG. 5 shows the maximum waviness of filtered WCM (see JIS B 0610) and streak angle γ on the main surface of a 2-inch sapphire wafer cut out at a processing speed v = 16.9 [mm / h] (constant). It is a graph which shows the result of having measured the relationship. FIG. 6 is a graph showing the results of measuring the relationship between the rocking angle 2θ and the streak angle γ. FIG. 7 is a table showing the relationship between the measured value of the streak angle and the average value. The streak angle γ shown in FIG. 7 indicates the average value of the above-mentioned streak angles γa and γb (γ = (γa + γb) / 2). When the streak angle γ satisfies 1 ° ≦ γ, at least one of 1 ° ≦ γa and 1 ° ≦ γb holds with respect to the streak angles γa and γb.

図5を参照すると、条痕角γが1°≦γを満足することによって、WCMは30[μm]以下に低減される。これは、従来の場合(γ=0°)のWCMに比べて約1/2程度の値である。さらに、条痕角γが3°≦γ≦6°を満足することが好ましい。このようにすれば、WCMが15[μm]以下に低減される。これは、従来の場合(γ=0°)のWCMに比べて約1/3程度の値である。   Referring to FIG. 5, when the streak angle γ satisfies 1 ° ≦ γ, the WCM is reduced to 30 [μm] or less. This is a value of about ½ compared to the conventional WCM (γ = 0 °). Furthermore, it is preferable that the streak angle γ satisfies 3 ° ≦ γ ≦ 6 °. In this way, the WCM is reduced to 15 [μm] or less. This is a value of about 1/3 compared with the conventional WCM (γ = 0 °).

図6を参照すると、1°≦γの条痕角γを有する条痕を形成する場合、揺動角2θを6°≦2θの範囲に設定すればよいことがわかる。また、3°≦γ≦6°の条痕角γを有する条痕を形成する場合、揺動角2θを12°≦2θ≦16°の範囲に設定すればよいことがわかる。   Referring to FIG. 6, it can be seen that when forming a streak having a streak angle γ of 1 ° ≦ γ, the swing angle 2θ may be set in a range of 6 ° ≦ 2θ. It can also be seen that when forming a streak having a streak angle γ of 3 ° ≦ γ ≦ 6 °, the swing angle 2θ may be set in a range of 12 ° ≦ 2θ ≦ 16 °.

WCMはウェハ主面Wfxのうねり量に相当する。したがって、WCMが低減されるとウェハ主面Wfxのうねりが低減されて、ウェハWfの加工精度が向上する。従来、ウェハの加工精度を向上するにはウェハの加工時間を増大する必要があったが、上記によってウェハの加工精度が向上されれば、ウェハの加工時間の増分を低減することもできる。   WCM corresponds to the amount of waviness of the wafer main surface Wfx. Therefore, when WCM is reduced, the waviness of wafer main surface Wfx is reduced, and the processing accuracy of wafer Wf is improved. Conventionally, in order to improve the wafer processing accuracy, it has been necessary to increase the wafer processing time. However, if the wafer processing accuracy is improved as described above, the increment of the wafer processing time can be reduced.

次に、図8〜図11を参照して、本発明者が行った揺動角2θに対する考察について述べる。図8は揺動角とワイヤの撓み量を説明する図である。図9〜10は2〜4インチウェハの場合に対する揺動幅2Tと撓み量Dの差の計算結果をそれぞれ示す図である。   Next, with reference to FIG. 8 to FIG. 11, consideration for the swing angle 2θ performed by the present inventor will be described. FIG. 8 is a diagram for explaining the swing angle and the amount of bending of the wire. 9 to 10 are diagrams showing calculation results of the difference between the swing width 2T and the deflection amount D in the case of a 2 to 4 inch wafer.

遊離砥粒ワイヤ工具ではワイヤを撓ませないように加工を行うことが重要であるが、固定砥粒ワイヤ工具ではワイヤに適切な撓みを持たせながら加工を行うことが必要である。本発明者は、ワーク径n[インチ]の被加工部材Wの加工において固定砥粒ワイヤの撓み量をn[mm]とすると、加工能率がよいことを見出した。   It is important to perform processing so as not to bend the wire in the loose abrasive wire tool, but it is necessary to perform the processing while giving the wire proper bending in the fixed abrasive wire tool. The present inventor has found that the machining efficiency is good when the deflection amount of the fixed abrasive wire is n [mm] in the machining of the workpiece W having a workpiece diameter of n [inch].

ここで、図8を参照して、撓みを有して揺動するワイヤと被加工部材との接触幅が短縮される条件(加工能率が向上する条件)を、近似的に求める。図8において、Dは移動方向Z上におけるワイヤの撓み量、Wx1,Wx2はワイヤ50と被加工部材Wとの接触部、Rはワーク半径、2Tは揺動幅、斜線部は切断加工済部、をそれぞれ示す。   Here, with reference to FIG. 8, a condition (a condition for improving the machining efficiency) in which the contact width between the wire that swings with bending and the workpiece is shortened is approximately obtained. In FIG. 8, D is the amount of bending of the wire in the moving direction Z, Wx1 and Wx2 are contact portions between the wire 50 and the workpiece W, R is the work radius, 2T is the swinging width, and the hatched portion is the cut and processed portion. , Respectively.

また、図8では、円柱状の被加工部材Wの加工時に、接触幅が比較的大きくなる中心部付近の加工を想定する。揺動角2θで揺動するワイヤ50の傾斜時に、接触部Wx1,Wx2のうち一方にワイヤ50が接触するためには、
2T−D>0・・・(2)
を満たせばよい。ここで、揺動幅2Tは、2T=2Rtanθで近似的に表されるので、上式は、
tanθ>D/(2R)・・・(3)
と記載できる。
Further, in FIG. 8, it is assumed that when the cylindrical workpiece W is processed, processing near the center where the contact width is relatively large is assumed. In order for the wire 50 to contact one of the contact portions Wx1 and Wx2 when the wire 50 swinging at the swing angle 2θ is inclined,
2T-D> 0 (2)
Should be satisfied. Here, since the oscillation width 2T is approximately represented by 2T = 2Rtanθ, the above equation is
tanθ> D / (2R) (3)
Can be described.

また、ワーク半径R[mm]はワーク径n[インチ]に対してR=12.7nと表され、ワーク径n[インチ]の被加工部材に対して加工能率を向上する固定砥粒ワイヤ工具の撓み量DはD=n[mm]と表される。したがって、円柱状の被加工部材Wの中心軸付近を加工する場合において、揺動角2θ[°]は、次式を満たせばよい。
2θ>(360/π)arctan(1/25.4)・・・(4)
The workpiece radius R [mm] is expressed as R = 12.7n with respect to the workpiece diameter n [inch], and the fixed abrasive wire tool that improves the machining efficiency with respect to the workpiece having the workpiece diameter n [inch]. The deflection amount D is expressed as D = n [mm]. Therefore, when machining the vicinity of the central axis of the cylindrical workpiece W, the swing angle 2θ [°] may satisfy the following equation.
2θ> (360 / π) arctan (1 / 25.4) (4)

図9〜図11に示された2T−Dの計算結果を参照すると、2〜4インチの被加工部材において2T−D>0を満たす条件はθ≧3°である。この条件は、図5および図6において述べた揺動角の下限条件2θ≧6°に合致する。なお、図9〜図11に示されたワーク半径Rとワイヤの撓み量Dは、図ごとに異なる値を示す。図9〜図11それぞれのワーク半径R及びワイヤの撓み量Dの値は、図9(2インチの場合)においてはR=25.4[mm],D=2[mm]、図10(3インチの場合)においてはR=38.1[mm],D=3[mm]、図11(4インチの場合)においてはR=50.8[mm],D=4[mm]、である。   Referring to the calculation results of 2T-D shown in FIGS. 9 to 11, the condition that satisfies 2T−D> 0 in the workpiece of 2 to 4 inches is θ ≧ 3 °. This condition matches the swing angle lower limit condition 2θ ≧ 6 ° described in FIGS. The work radius R and the wire deflection amount D shown in FIGS. 9 to 11 show different values for each figure. The values of the workpiece radius R and the wire deflection amount D in FIGS. 9 to 11 are R = 25.4 [mm], D = 2 [mm] in FIG. 9 (in the case of 2 inches), and FIG. In the case of inch), R = 38.1 [mm] and D = 3 [mm], and in FIG. 11 (in the case of 4 inch), R = 50.8 [mm] and D = 4 [mm]. .

以上のように、本実施形態に係るウェハおよびその製造方法では、条痕が描く複数の曲線C1〜C3それぞれの一端Va1〜Va3と曲線C1〜C3それぞれの頂点U1〜U3とを結ぶ直線Ma1〜Ma3が基準線Y1〜Y3に対してそれぞれなす条痕角γaが1°以上である。または、条痕が描く複数の曲線C1〜C3それぞれの一端Vb1〜Vb3と曲線C1〜C3それぞれの頂点U1〜U3とを結ぶ直線Mb1〜Mb3が基準線Y1〜Y3に対してそれぞれなす条痕角γbが1°以上である。   As described above, in the wafer and the manufacturing method thereof according to this embodiment, the straight lines Ma1 that connect the ends Va1 to Va3 of the plurality of curves C1 to C3 drawn by the streak and the vertices U1 to U3 of the curves C1 to C3, respectively. The streak angle γa formed by Ma3 with respect to the reference lines Y1 to Y3 is 1 ° or more. Alternatively, the streak angles that the straight lines Mb1 to Mb3 connecting the ends Vb1 to Vb3 of the curves C1 to C3 drawn by the streak and the vertices U1 to U3 of the curves C1 to C3 form with respect to the reference lines Y1 to Y3, respectively. γb is 1 ° or more.

この場合、図5の測定結果より、条痕角γ=0°の場合に比べてWCMが約1/2に低減される。したがって、ウェハ主面Wfxのうねりが低減される。これは、図8〜図11の考察より、2θ<6°すなわちγ<1°の場合に比べてワイヤの被加工部材Wに対する接触幅が半分以下に低減されることによるものと考えられる。また、条痕角γaが1°未満の場合に比べて、(1)式より湾曲幅Z1〜Z3が増大されるため、条痕が描く曲線C1〜C3の曲率が増大される。この曲率の増大によって、条痕に発生する応力が一方向に集中しにくくなるため、ウェハの破損が防止される。   In this case, from the measurement result of FIG. 5, the WCM is reduced to about ½ compared to the case where the streak angle γ = 0 °. Therefore, the waviness of wafer main surface Wfx is reduced. This is considered to be due to the fact that the contact width of the wire with respect to the workpiece W is reduced to half or less compared to the case of 2θ <6 °, that is, γ <1 °, from the consideration of FIGS. Further, compared to the case where the streak angle γa is less than 1 °, the curvature widths Z1 to Z3 are increased from the equation (1), and thus the curvatures of the curves C1 to C3 drawn by the streak are increased. This increase in curvature makes it difficult for stress generated in the streak to concentrate in one direction, thereby preventing damage to the wafer.

ここで、条痕角γが3°≦γ≦6°を満足すれば、図5の測定結果よりγ=0°の場合に比べてWCMが約1/3に低減されるので、ウェハ主面Wfxのうねりがより低減される。また、条痕角が3°未満の場合に比べて、条痕が描く曲線の曲率がさらに増大されるため、ウェハの破損がより防止される。   Here, if the streak angle γ satisfies 3 ° ≦ γ ≦ 6 °, the WCM is reduced to about 1/3 as compared with the case of γ = 0 ° from the measurement result of FIG. Wfx swell is further reduced. Further, since the curvature of the curve drawn by the streak is further increased as compared with the case where the streak angle is less than 3 °, damage to the wafer is further prevented.

本発明に係るウェハおよびその製造方法は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しないように上記実施形態を変形したものであってもよい。   The wafer and the manufacturing method thereof according to the present invention are not limited to the above-described embodiment, and may be a modification of the above-described embodiment without changing the gist described in each claim.

例えば、本実施形態では、主軸ローラを軸支する揺動板を揺動することによって条痕角を形成するウェハ製造方法を示したが、被加工部材を固定するワークテーブルを揺動することによって条痕角を形成する方法であってもよい。   For example, in the present embodiment, the wafer manufacturing method in which the streak angle is formed by swinging the swinging plate that supports the spindle roller has been shown. However, by swinging the work table that fixes the workpiece, It may be a method of forming streak corners.

本実施形態に係る製造方法を実施する固定砥粒ワイヤ工具を概略的に示す図である。It is a figure showing roughly the fixed abrasive wire tool which enforces the manufacturing method concerning this embodiment. 図1の固定砥粒ワイヤ工具の動作を示す図である。It is a figure which shows operation | movement of the fixed abrasive wire tool of FIG. 加工時における被加工部材の切断加工面の様子を示す図である。It is a figure which shows the mode of the cut surface of the to-be-processed member at the time of a process. 実施形態に係るウェハの主面を示す図である。It is a figure which shows the main surface of the wafer which concerns on embodiment. 条痕角対WCM特性を示すグラフである。It is a graph which shows a streak angle versus WCM characteristic. 揺動角対条痕角特性を示すグラフである。It is a graph which shows a rocking angle vs. streak angle characteristic. 条痕角の測定値と平均値との関係を示す表である。It is a table | surface which shows the relationship between the measured value of a streak angle, and an average value. 揺動角とワイヤの撓み量を説明する図である。It is a figure explaining the rocking | fluctuation angle and the bending amount of a wire. 2インチウェハの場合の揺動幅と撓み量の差を示す計算結果である。It is a calculation result which shows the difference of the rocking | fluctuation width in the case of a 2-inch wafer, and bending amount. 3インチウェハの場合の揺動幅と撓み量の差を示す計算結果である。It is a calculation result which shows the difference of the rocking | fluctuation width in the case of a 3-inch wafer, and bending amount. 4インチウェハの場合の揺動幅と撓み量の差を示す計算結果である。It is a calculation result which shows the difference of the rocking | fluctuation width in the case of a 4-inch wafer, and bending amount.

符号の説明Explanation of symbols

10,10a,10b,11,11a,11b,12,12a,12b…主軸ローラ、20…ガイドプーリ、30A,30B…ワイヤリール、40…ワークテーブル、50…ワイヤ、50C…ワイヤ列、60…揺動板、100,100a,100b…固定砥粒ワイヤ工具、C,C1,C2,C3…条痕、P1a,P1b…接点、S…基準面、U,U1,U2,U3…曲線の頂点、Va,Va1,Va2,Va3,Vb,Vb1,Vb2,Vb3…曲線の端点、W…被加工部材、Wx…切断加工面、X…所定の軸線、Y,Y1,Y2,Y3…基準線、Z…移動方向、La,Lb…接点を結ぶ直線、Ma1,Ma2,Ma3,Mb1,Mb2,Mb3頂点と端点とを結ぶ直線、2θ…揺動角、+θ,−θ…傾斜角度、γ,γa,γb…条痕角。   10, 10a, 10b, 11, 11a, 11b, 12, 12a, 12b ... main shaft roller, 20 ... guide pulley, 30A, 30B ... wire reel, 40 ... work table, 50 ... wire, 50C ... wire row, 60 ... rocking Moving plate, 100, 100a, 100b ... fixed abrasive wire tool, C, C1, C2, C3 ... streak, P1a, P1b ... contact, S ... reference plane, U, U1, U2, U3 ... vertex of curve, Va , Va1, Va2, Va3, Vb, Vb1, Vb2, Vb3 ... curve end points, W ... workpiece, Wx ... cutting surface, X ... predetermined axis, Y, Y1, Y2, Y3 ... reference line, Z ... Movement direction, La, Lb: straight line connecting the contacts, Ma1, Ma2, Ma3, Mb1, Mb2, Mb3, a straight line connecting the vertex and the end point, 2θ: swing angle, + θ, -θ: inclination angle, γ, γa, γb ... streak corners.

Claims (4)

表面に砥粒を固着したワイヤを複数の主軸ローラに巻架した固定砥粒ワイヤ工具によって、所定の軸線に沿って延びる被加工部材を切断することによってウェハを製造する方法であって、
前記固定砥粒ワイヤ工具及び前記被加工部材のうち少なくとも一方を、前記所定の軸線に交差する移動方向に移動させつつ、
前記固定砥粒ワイヤ工具及び前記被加工部材のうち少なくとも一方を揺動させることによって、前記移動方向に沿う前記被加工部材の切断加工面上において一方向に湾曲した曲線を描く複数の条痕を形成しながら、前記被加工部材を切断し、
前記曲線の一端と前記曲線の頂点とを結ぶ直線が前記曲線の両端を結ぶ基準線に対してなす前記条痕の角度を1°以上とする、ウェハの製造方法。
A method of manufacturing a wafer by cutting a workpiece extending along a predetermined axis with a fixed abrasive wire tool in which a wire having abrasive grains fixed on a surface is wound around a plurality of spindle rollers,
While moving at least one of the fixed abrasive wire tool and the workpiece to be moved in a moving direction intersecting the predetermined axis,
By swinging at least one of the fixed abrasive wire tool and the workpiece, a plurality of striations that draw a curved curve in one direction on the cut surface of the workpiece along the moving direction are formed. While forming, cut the workpiece,
A method for manufacturing a wafer, wherein an angle of the stripe formed by a straight line connecting one end of the curve and a vertex of the curve with respect to a reference line connecting both ends of the curve is 1 ° or more.
前記角度を3〜6°とする、請求項1に記載のウェハの製造方法。
The wafer manufacturing method according to claim 1, wherein the angle is 3 to 6 °.
当該ウェハの主面上において一方向に湾曲した曲線を描く複数の条痕を有し、前記曲線の一端と前記曲線の頂点とを結ぶ直線が前記曲線の両端を結ぶ基準線に対してなす前記条痕の角度が1°以上である、ウェハ。
A plurality of streaks that draw a curve curved in one direction on the main surface of the wafer, and a straight line connecting one end of the curve and a vertex of the curve is formed with respect to a reference line connecting both ends of the curve A wafer whose streak angle is 1 ° or more.
前記角度が3〜6°である、請求項3に記載のウェハ。
The wafer according to claim 3, wherein the angle is 3 to 6 °.
JP2006333549A 2006-12-11 2006-12-11 Wafer and manufacturing method thereof Expired - Fee Related JP5085923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333549A JP5085923B2 (en) 2006-12-11 2006-12-11 Wafer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333549A JP5085923B2 (en) 2006-12-11 2006-12-11 Wafer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008142842A true JP2008142842A (en) 2008-06-26
JP5085923B2 JP5085923B2 (en) 2012-11-28

Family

ID=39603578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333549A Expired - Fee Related JP5085923B2 (en) 2006-12-11 2006-12-11 Wafer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5085923B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229752A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Cutting method with wire saw
JP2010023145A (en) * 2008-07-16 2010-02-04 Asahi Diamond Industrial Co Ltd Cutter and cutting method
CN102079112A (en) * 2009-11-26 2011-06-01 上海日进机床有限公司 Cutting method applied in diamond wire squaring machine
JP2012106903A (en) * 2010-10-20 2012-06-07 Disco Corp Method for manufacturing single crystal sapphire substrate
CN102632555A (en) * 2012-02-07 2012-08-15 徐州协鑫光电科技有限公司 Cutting method of crystal blank
CN102717446A (en) * 2012-07-13 2012-10-10 上海日进机床有限公司 Four-roller sapphire slicing machine
JP2012223837A (en) * 2011-04-15 2012-11-15 Toyo Advanced Technologies Co Ltd Wire saw device, and cutting method
JP2014042956A (en) * 2012-08-27 2014-03-13 Komatsu Ntc Ltd Method of reducing undulation on wafer surface and device thereof
WO2014061053A1 (en) * 2012-10-15 2014-04-24 トーヨーエイテック株式会社 Wire saw apparatus, and cut-machining method
WO2023226771A1 (en) * 2022-05-26 2023-11-30 长沙韵为科技有限公司 Cutting apparatus and cutting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106273017B (en) * 2016-11-02 2018-10-19 内蒙古中环光伏材料有限公司 A kind of method of squaring silicon bar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182760A (en) * 1985-02-07 1986-08-15 Sumitomo Metal Ind Ltd Cutting method by wire
JPH10249699A (en) * 1997-03-18 1998-09-22 Sharp Corp Multiwire saw
JPH10264143A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Shilicon Corp Wire saw and cutting method for ingot
JPH10272621A (en) * 1997-03-28 1998-10-13 Mitsubishi Materials Shilicon Corp Wire saw and method for cutting ingot
JPH10337725A (en) * 1997-06-05 1998-12-22 Nitomatsuku Ii R Kk Method for cutting hard brittle material and semiconductor silicon wafer
JPH1170457A (en) * 1997-08-29 1999-03-16 Tokyo Seimitsu Co Ltd Fixed abrasive grain wire saw and workpiece cutting method therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182760A (en) * 1985-02-07 1986-08-15 Sumitomo Metal Ind Ltd Cutting method by wire
JPH10249699A (en) * 1997-03-18 1998-09-22 Sharp Corp Multiwire saw
JPH10264143A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Shilicon Corp Wire saw and cutting method for ingot
JPH10272621A (en) * 1997-03-28 1998-10-13 Mitsubishi Materials Shilicon Corp Wire saw and method for cutting ingot
JPH10337725A (en) * 1997-06-05 1998-12-22 Nitomatsuku Ii R Kk Method for cutting hard brittle material and semiconductor silicon wafer
JPH1170457A (en) * 1997-08-29 1999-03-16 Tokyo Seimitsu Co Ltd Fixed abrasive grain wire saw and workpiece cutting method therewith

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229752A (en) * 2007-03-19 2008-10-02 Sumitomo Metal Mining Co Ltd Cutting method with wire saw
JP2010023145A (en) * 2008-07-16 2010-02-04 Asahi Diamond Industrial Co Ltd Cutter and cutting method
CN102079112A (en) * 2009-11-26 2011-06-01 上海日进机床有限公司 Cutting method applied in diamond wire squaring machine
JP2012106903A (en) * 2010-10-20 2012-06-07 Disco Corp Method for manufacturing single crystal sapphire substrate
JP2012223837A (en) * 2011-04-15 2012-11-15 Toyo Advanced Technologies Co Ltd Wire saw device, and cutting method
CN102632555A (en) * 2012-02-07 2012-08-15 徐州协鑫光电科技有限公司 Cutting method of crystal blank
CN102717446A (en) * 2012-07-13 2012-10-10 上海日进机床有限公司 Four-roller sapphire slicing machine
JP2014042956A (en) * 2012-08-27 2014-03-13 Komatsu Ntc Ltd Method of reducing undulation on wafer surface and device thereof
WO2014061053A1 (en) * 2012-10-15 2014-04-24 トーヨーエイテック株式会社 Wire saw apparatus, and cut-machining method
KR20150064214A (en) * 2012-10-15 2015-06-10 토요 어드밴스드 테크놀로지스 컴퍼니 리미티드 Wire saw apparatus, and cut-machining method
US9969017B2 (en) 2012-10-15 2018-05-15 Toyo Advanced Technologies Co., Ltd. Wire saw apparatus and cut-machining method
KR101990664B1 (en) * 2012-10-15 2019-06-18 토요 어드밴스드 테크놀로지스 컴퍼니 리미티드 Wire saw apparatus, and cut-machining method
WO2023226771A1 (en) * 2022-05-26 2023-11-30 长沙韵为科技有限公司 Cutting apparatus and cutting method

Also Published As

Publication number Publication date
JP5085923B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5085923B2 (en) Wafer and manufacturing method thereof
US10245661B2 (en) Wire guide roll for wire saw and method
US6543434B2 (en) Device for simultaneously separating a multiplicity of wafers from a workpiece
JP2014121784A (en) Wire slicing method of workpiece, and workpiece produced by method
JP2007237628A (en) Cutting method of single crystal sapphire substrate and cutting device therefor
JP7102422B2 (en) A method for cutting multiple wafers from wire saws, wire guide rolls, and ingots at the same time.
JP2004509776A (en) Wire sawing equipment
JP2007237627A (en) Cutting method of single crystal sapphire substrate and cutting device therefor
TWI549175B (en) Method for slicing wafers from a workpiece using a sawing wire
JP2008229752A (en) Cutting method with wire saw
KR101990664B1 (en) Wire saw apparatus, and cut-machining method
JP2009184023A (en) Workpiece cutting method using wire saw and wire saw cutting device
JP2010023145A (en) Cutter and cutting method
JP2010110865A (en) Wire saw machine
JP2010110866A (en) Wire saw machine
JP5042112B2 (en) Method and apparatus for cutting single crystal sapphire substrate
JP3979578B2 (en) Method and apparatus for cutting single crystal sapphire substrate
JP2007301688A (en) Workpiece cutting method
JP5672224B2 (en) Grooved roller and wire saw using the same
WO2013041140A1 (en) Method and apparatus for cutting semiconductor workpieces
CN103358411A (en) Wire for semiconductor wire saw and wire saw
JP2011166154A (en) Method for cutting multiple wafers from crystal formed from semiconductor material
JP2017109295A (en) Polishing device
WO2017191802A1 (en) Cutting edge trajectory correction method, recording medium, and program
JP6733022B2 (en) Grooving device using wire saw and its method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees