JP2008135713A - Method of producing laminate-type soft magnetic sheet - Google Patents

Method of producing laminate-type soft magnetic sheet Download PDF

Info

Publication number
JP2008135713A
JP2008135713A JP2007260495A JP2007260495A JP2008135713A JP 2008135713 A JP2008135713 A JP 2008135713A JP 2007260495 A JP2007260495 A JP 2007260495A JP 2007260495 A JP2007260495 A JP 2007260495A JP 2008135713 A JP2008135713 A JP 2008135713A
Authority
JP
Japan
Prior art keywords
soft magnetic
laminate
magnetic sheet
sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007260495A
Other languages
Japanese (ja)
Other versions
JP4775593B2 (en
JP2008135713A5 (en
Inventor
Keisuke Aramaki
慶輔 荒巻
Junichiro Sugita
純一郎 杉田
Morio Sekiguchi
盛男 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2007260495A priority Critical patent/JP4775593B2/en
Publication of JP2008135713A publication Critical patent/JP2008135713A/en
Publication of JP2008135713A5 publication Critical patent/JP2008135713A5/ja
Application granted granted Critical
Publication of JP4775593B2 publication Critical patent/JP4775593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a laminate-type magnetic sheet, capable of suppressing a change in sheet thickness and having small variation in a permeability. <P>SOLUTION: The method of producing a laminate-type soft magnetic sheet comprises a step (A) of applying a soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having glycidyl groups, an epoxy resin, a latent curing agent for the epoxy resin, and a solvent onto a peeling substrate, drying the composition at a temperature T1 at which substantially no curing reaction of the soft magnetic composition occurs, and removing the peeling substrate to obtain a curable soft magnetic sheet; a step (B) of preparing two or more curable soft magnetic sheets to form a laminate; a step (C) of successively compressing the laminate at a temperature T2 at which substantially no curing reaction occurs with a linear-load laminator under linear loads P1, P2 and P3 (P1<P2<P3); and a step (D) of compressing the resulting compressed laminate at a temperature T3 at which curing reaction occurs with a planar-load press to cure the laminate properly, thereby obtaining a laminate-type soft magnetic sheet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気特性に優れ、厚み変化が小さいという特性を有する軟磁性シートの製造方法に関する。   The present invention relates to a method for producing a soft magnetic sheet having excellent magnetic characteristics and small thickness change.

様々な電子機器に使用されている軟磁性シートの製造は、一般に混練圧延法により行われている。この方法では、扁平軟磁性粉末とゴムと塩素化ポリエチレンなどの結合剤とを所定の割合でニーダーで混練し、得られた混練物をカレンダーロールなどの装置で所定厚みに圧延し、更に必要に応じて結合剤を加熱架橋させることにより単層の軟磁性シートを得ている。この方法は、高密度に軟磁性粉末を充填でき、圧延により軟磁性粉末を面内方向に配向でき、シート厚の調整が容易であるという利点を有する。   The manufacture of soft magnetic sheets used in various electronic devices is generally performed by a kneading and rolling method. In this method, flat soft magnetic powder, rubber, and a binder such as chlorinated polyethylene are kneaded at a predetermined ratio with a kneader, and the obtained kneaded product is rolled to a predetermined thickness with an apparatus such as a calender roll, and further required. Accordingly, the binder is heated and crosslinked to obtain a single-layer soft magnetic sheet. This method has the advantage that the soft magnetic powder can be filled at a high density, the soft magnetic powder can be oriented in the in-plane direction by rolling, and the sheet thickness can be easily adjusted.

しかし、混練圧延法の場合、混練時に軟磁性粉末に歪みが生ずるために、軟磁性粉末自体の磁気特性が低下し、軟磁性シートの透磁率を大きくすることができないという問題がある。また、高温あるいは高温高湿環境下においてシート厚が厚くなる方向に変化し、透磁率が低下するという問題があった。   However, in the case of the kneading and rolling method, since the soft magnetic powder is distorted during kneading, there is a problem that the magnetic properties of the soft magnetic powder itself are lowered and the magnetic permeability of the soft magnetic sheet cannot be increased. Further, there has been a problem that the magnetic permeability is lowered by changing the sheet thickness in a high temperature or high temperature and high humidity environment.

そこで、混練圧延法に代えて、軟磁性粉末に歪みが生じにくい塗布法により軟磁性シートを製造することが行われるようになっている(特許文献1)。この方法では、扁平軟磁性粉末とゴムと樹脂と溶剤とからなる軟磁性シート形成用液状組成物を、剥離基材上に塗布し、乾燥することにより、高温、高温高湿下でのシート厚変化が小さい軟磁性シートを得ている。   Therefore, instead of the kneading and rolling method, a soft magnetic sheet is manufactured by a coating method in which the soft magnetic powder is less likely to be distorted (Patent Document 1). In this method, a sheet composition under high temperature, high temperature and high humidity is obtained by applying a liquid composition for forming a soft magnetic sheet composed of flat soft magnetic powder, rubber, resin and solvent onto a release substrate and drying. A soft magnetic sheet with little change is obtained.

特開2000−243615号公報JP 2000-243615 A

しかしながら、塗布法は、シート厚が比較的薄い軟磁性シートを作成する場合に適しているが、比較的厚い軟磁性シートを製造するには適してはいない。これは、厚く塗布すると塗布厚ムラが生じやすく、乾燥も困難となるからである。このため、本発明者等は、軟磁性シート形成用液状組成物に硬化性樹脂とその硬化剤とを配合し、塗布法で硬化性の薄い軟磁性シートを作成し、その複数枚を比較的低温で仮圧着し、次いで比較的高温で本圧着することにより軟磁性シートを積層型とすることを試みた。しかし、塗布法で作成された薄い軟磁性シートを積層して作成された積層型軟磁性シートは、個々の薄い軟磁性シートのシート厚変化は小さいものの、混練圧延法で製造された比較的厚い単層の軟磁性シートと同様に、高温あるいは高温高湿環境下においてシート厚が厚くなる方向に変化し、透磁率が低下するという問題があった。   However, the coating method is suitable for producing a soft magnetic sheet having a relatively thin sheet thickness, but is not suitable for producing a relatively thick soft magnetic sheet. This is because when the coating is thick, uneven coating thickness tends to occur and drying becomes difficult. For this reason, the present inventors blended a curable resin and a curing agent thereof with a liquid composition for forming a soft magnetic sheet, created a soft magnetic sheet with low curability by a coating method, Attempts were made to make the soft magnetic sheet into a laminated type by temporarily press-bonding at a low temperature and then press-bonding at a relatively high temperature. However, the laminated soft magnetic sheet produced by laminating thin soft magnetic sheets produced by the coating method is relatively thick manufactured by the kneading rolling method, although the change in the thickness of each thin soft magnetic sheet is small. Similar to the single-layer soft magnetic sheet, there is a problem in that the sheet thickness increases in a high temperature or high temperature and high humidity environment, and the magnetic permeability decreases.

本発明は、以上説明した従来技術の問題点を解決しようとするものであり、塗布法で作成した複数の薄い軟磁性シートを積層し、シート厚変化が抑制され且つ透磁率の変動も小さい積層型軟磁性シートを製造できる方法を提供することを目的とする。   The present invention is intended to solve the above-described problems of the prior art, in which a plurality of thin soft magnetic sheets prepared by a coating method are stacked, and a change in sheet thickness is suppressed and a change in permeability is small. It aims at providing the method which can manufacture a type | mold soft magnetic sheet.

本発明者は、塗布法で作成された薄い軟磁性シートを積層して作成された積層型軟磁性シートに関し、高温あるいは高温高湿環境下においてシート厚が厚くなる方向に変化し、透磁率が低下する理由として、二つの可能性を考慮した。一方は、積層型軟磁性シートを構成する薄い軟磁性シートの間に空気が取り込まれ、高温によりその空気が膨張することによりシート厚が増大するという可能性、他方は、熱圧着する際に扁平軟磁性粉末に生じた歪みが高温により緩和され、シートを構成する樹脂部分が収縮することによりシート厚が増大するという可能性である。   The present inventor relates to a laminated soft magnetic sheet prepared by laminating thin soft magnetic sheets prepared by a coating method, and the magnetic permeability changes in a direction in which the sheet thickness increases in a high temperature or high temperature and high humidity environment. Two possibilities were considered as reasons for the decline. One is the possibility that air is taken in between the thin soft magnetic sheets constituting the laminated soft magnetic sheet and the sheet expands due to the expansion of the air due to the high temperature. There is a possibility that the distortion generated in the soft magnetic powder is relieved by the high temperature, and the resin thickness constituting the sheet contracts to increase the sheet thickness.

本発明者らは、前者が主要因であると仮定し、複数の軟磁性シートの仮熱圧着時に比較的高い圧力を印加したところ、シート厚が無視できないレベルで変化してしまうという知見を得た。また、後者を主要因として仮定し、複数の軟磁性シートの仮熱圧着時に比較的低い圧力を印加したところ、やはりシート厚が無視できないレベルで変化してしまうという知見を得た。   Assuming that the former is the main factor, the present inventors have obtained the knowledge that when a relatively high pressure is applied during pre-thermal compression bonding of a plurality of soft magnetic sheets, the sheet thickness changes at a level that cannot be ignored. It was. Further, it was assumed that the latter was the main factor, and when a relatively low pressure was applied during temporary thermocompression bonding of a plurality of soft magnetic sheets, it was found that the sheet thickness would also change at a level that cannot be ignored.

本発明者らは、本願発明の目的を達成するためには、仮熱圧着時に相対的に高い圧力もしくは低い圧力を単純に印加するだけではできないということに鑑み、軟磁性シート形成用の軟磁性組成物として特定のものを使用し、それから形成された薄い軟磁性シートの積層物に対する加熱パターンと圧力印加パターンとを詳細に研究したところ、熱硬化が進行しない温度で低、中、高と3段階の線圧力で仮圧着し、続いて熱硬化が進行する温度で面圧力で本圧着することにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。   In view of the fact that in order to achieve the object of the present invention, the present inventors cannot simply apply a relatively high pressure or a low pressure at the time of temporary thermocompression bonding. A specific composition was used, and a heating pattern and a pressure application pattern for a laminate of thin soft magnetic sheets formed therefrom were studied in detail. It has been found that the above-mentioned object can be achieved by pre-bonding with a linear pressure at a stage and then finally pressing with a surface pressure at a temperature at which thermosetting proceeds, and the present invention has been completed.

即ち、本発明は、積層型軟磁性シートの製造方法であって、以下の工程(A)〜(D):
(A)少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥離基材上に塗布し、軟磁性組成物の硬化反応が実質的に生じない温度T1で乾燥し、剥離基材を取り除いて硬化性軟磁性シートを取得する工程;
(B)該硬化性軟磁性シートを2以上用意し、それらを積層して積層物を取得する工程;
(C)得られた積層物を、硬化反応が実質的に生じない温度T2において、線圧を印加するラミネーターにて線圧力P1、線圧力P2及び線圧力P3(但し、P1<P2<P3)で順次圧縮する工程; 及び
(D)続いて硬化反応が生ずる温度T3において、圧縮された積層物を、面圧を印加するプレス機で圧縮して積層型軟磁性シートを得る工程
を有することを特徴とする製造方法を提供する。
That is, this invention is a manufacturing method of a lamination type soft magnetic sheet, Comprising: The following processes (A)-(D):
(A) A soft magnetic composition obtained by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is formed on a release substrate. Applying, drying at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur, removing the release substrate, and obtaining a curable soft magnetic sheet;
(B) preparing two or more of the curable soft magnetic sheets and laminating them to obtain a laminate;
(C) At a temperature T2 at which the curing reaction does not substantially occur, the obtained laminate is subjected to linear pressure P1, linear pressure P2, and linear pressure P3 (note that P1 <P2 <P3) at a laminator that applies linear pressure. And (D) a step of compressing the compressed laminate with a press machine that applies a surface pressure to obtain a laminated soft magnetic sheet at a temperature T3 at which a curing reaction subsequently occurs. A featured manufacturing method is provided.

本発明によれば、軟磁性シート形成用の軟磁性組成物として特定のものを使用し、それから形成された薄い軟磁性シートの積層物に対する加熱パターンと圧力印加パターンに関し、熱硬化が進行しない温度で低、中、高と3段階の線圧力で仮圧着し、続いて熱硬化が進行する温度で面圧力で本圧着する。このため、高温あるいは高温高湿環境下でもシート厚の変化を抑制することができ、結果的に透磁率を低下させないようにできる。   The present invention uses a specific soft magnetic composition for forming a soft magnetic sheet, and relates to a heating pattern and a pressure application pattern for a laminate of thin soft magnetic sheets formed therefrom, and a temperature at which thermosetting does not proceed. Then, temporary pressure bonding is performed at three, linear, low, medium and high linear pressures, followed by surface pressure bonding at a surface pressure at a temperature at which thermosetting proceeds. For this reason, a change in sheet thickness can be suppressed even in a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability can be prevented from decreasing.

本発明の積層型軟磁性シートの製造方法は以下の工程(A)〜(D)を少なくとも有する。工程毎に説明する。   The method for producing a laminated soft magnetic sheet of the present invention includes at least the following steps (A) to (D). It demonstrates for every process.

工程(A)
少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥離基材上に塗布し、軟磁性組成物の硬化反応が実質的に生じない温度T1で乾燥し、剥離基材を取り除いて硬化性軟磁性シートを取得する。
Process (A)
A soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is applied onto a release substrate, The soft magnetic composition is dried at a temperature T1 at which the curing reaction does not substantially occur, and the release substrate is removed to obtain a curable soft magnetic sheet.

軟磁性組成物を剥離基材上に塗布する手法としては、ドクターブレードコート法、コンマコータコート法など公知の手法を利用することができる。塗布厚は、硬化性軟磁性シートの用途や積層数に応じて適宜決定することができるが、通常、乾燥厚が50〜200μmとなる厚さで塗布する。   As a method for applying the soft magnetic composition onto the release substrate, a known method such as a doctor blade coating method or a comma coater coating method can be used. The coating thickness can be appropriately determined according to the use of the curable soft magnetic sheet and the number of laminated layers, but the coating thickness is usually applied so that the dry thickness is 50 to 200 μm.

軟磁性組成物を剥離基材に塗布した後に乾燥し、剥離基材を取り除いて硬化性軟磁性シートを得るが、その乾燥は、軟磁性組成物の硬化反応が実質的に生じない温度T1で乾燥する。また、軟磁性組成物の硬化反応が実質的に生じない温度T1で乾燥する理由は、硬化反応が進行すると圧縮性が悪くなり、μ′が上がらず、硬化反応が進んだものを圧縮すると、高温高湿環境下での厚み変化が大きくなる為である。ここで、「硬化反応が実質的に生じない」とは、硬化反応が全く生じない場合だけでなく、発明の効果を損なわない範囲であれば僅かな硬化反応が生じてもかまわない趣旨であり、架橋反応を最終工程にて均一に行うことを意味する。硬化反応を実質的に生じないようにするための具体的手段の例としては、温度T1を硬化反応開始温度より5℃以上低い温度に設定することが挙げられる。具体的な温度T1は、軟磁性組成物の組成により異なるが、通常、130℃以下である。乾燥の具体的な手法としては、温風乾燥炉、電気加熱炉、赤外線加熱炉などを使用した公知の手法を採用することができる。   The soft magnetic composition is applied to the release substrate and then dried, and the release substrate is removed to obtain a curable soft magnetic sheet. The drying is performed at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur. dry. Also, the reason for drying at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur is that when the curing reaction proceeds, the compressibility deteriorates, and when μ ′ does not rise and the curing reaction proceeds, This is because the thickness change in a high temperature and high humidity environment becomes large. Here, “the curing reaction does not substantially occur” means that not only the curing reaction does not occur at all but also a slight curing reaction may occur as long as the effect of the invention is not impaired. Means that the crosslinking reaction is uniformly carried out in the final step. An example of a specific means for substantially preventing the curing reaction is to set the temperature T1 to a temperature lower by 5 ° C. or more than the curing reaction start temperature. Although specific temperature T1 changes with compositions of a soft-magnetic composition, it is 130 degrees C or less normally. As a specific method of drying, a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace, or the like can be employed.

軟磁性組成物では、軟磁性粉末として扁平形状のもの(扁平軟磁性粉末)を使用する。扁平軟磁性粉末を2次元の面内方向に配列させることにより、高い透磁率と大きな比重とを実現することができる。   In the soft magnetic composition, a soft magnetic powder having a flat shape (flat soft magnetic powder) is used. By arranging the flat soft magnetic powder in a two-dimensional in-plane direction, a high magnetic permeability and a large specific gravity can be realized.

扁平軟磁性粉末の原材料としては、任意の軟磁性合金を用いることができ、例えば、磁性ステンレス(Fe−Cr−Al−Si合金)、センダスト(Fe−Si−Al合金)、パーマロイ(Fe−Ni合金)、ケイ素銅(Fe−Cu−Si合金)、Fe−Si合金、Fe−Si―B(−Cu−Nb)合金、Fe−Si−Cr−Ni合金、Fe−Si−Cr合金、Fe−Si−Al−Ni−Cr合金、フェライト等が挙げられる。これらの中でも、磁気特性の点からFe−Si−Al合金又はFe−Si−Cr−Ni合金を好ましく使用できる。   As a raw material of the flat soft magnetic powder, any soft magnetic alloy can be used, for example, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—Al alloy), permalloy (Fe—Ni). Alloy), silicon copper (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Si—Cr—Ni alloy, Fe—Si—Cr alloy, Fe— Si-Al-Ni-Cr alloy, ferrite, etc. are mentioned. Among these, Fe-Si-Al alloys or Fe-Si-Cr-Ni alloys can be preferably used from the viewpoint of magnetic properties.

これらの軟磁性合金に関し、RFID通信用に用いる場合には、複素比透磁率の実数部(透磁率)μ′の数値が比較的大きく、複素比透磁率の虚数部(磁気損失)μ″の数値が比較的小さいものを使用することが好ましい。これにより、RFID通信用のアンテナコイルから放出される磁界が金属体で渦電流に変換されるのが防止され通信性能が改善される。   When these soft magnetic alloys are used for RFID communication, the real part (permeability) μ ′ of the complex relative permeability is relatively large, and the imaginary part (magnetic loss) μ ″ of the complex relative permeability is It is preferable to use one having a relatively small numerical value, whereby the magnetic field emitted from the antenna coil for RFID communication is prevented from being converted into an eddy current by the metal body, thereby improving the communication performance.

また、扁平軟磁性合金としては、渦電流損失の低減を目的にμ″の値を小さくするために、比較的抵抗が大きいものを使用することが好ましい。この場合、軟磁性合金の組成を変えることで抵抗を大きくすることができる。例えば、Fe−Si−Cr合金の場合、Siの割合を9〜15重量%とすることが好ましい。   In addition, it is preferable to use a flat soft magnetic alloy having a relatively large resistance in order to reduce the value of μ ″ for the purpose of reducing eddy current loss. In this case, the composition of the soft magnetic alloy is changed. For example, in the case of an Fe—Si—Cr alloy, the Si ratio is preferably 9 to 15% by weight.

扁平軟磁性粉末としては、扁平な形状の軟磁性粉末を用いるが、好ましくは平均粒子径が3.5〜90μm、平均厚さが0.3〜3.0μm、より好ましくは平均粒子径が10〜50μm、平均厚さが0.5〜2.5μmである。従って、扁平率を好ましくは8〜80、より好ましくは15〜65に設定する。なお、扁平軟磁性粉末の大きさを揃えるためには、必要に応じて、ふるい等を使用して分級すればよい。なお、軟磁性材料の透磁率を大きくするためには、扁平軟磁性粉末の粒子サイズを大きくして粒子同士の間隔を小さくし、且つ扁平な軟磁性粉末のアスペクト比を高めて軟磁性シートにおける反磁場の影響を小さくすることが有効である。   As the flat soft magnetic powder, a soft magnetic powder having a flat shape is used. Preferably, the average particle diameter is 3.5 to 90 μm, the average thickness is 0.3 to 3.0 μm, and more preferably the average particle diameter is 10. ˜50 μm, average thickness is 0.5 to 2.5 μm. Therefore, the flatness is preferably set to 8 to 80, more preferably 15 to 65. In addition, what is necessary is just to classify using a sieve etc. as needed in order to arrange the magnitude | size of a flat soft magnetic powder. In order to increase the magnetic permeability of the soft magnetic material, the particle size of the flat soft magnetic powder is increased to reduce the interval between the particles, and the aspect ratio of the flat soft magnetic powder is increased to increase the aspect ratio of the soft magnetic sheet. It is effective to reduce the influence of the demagnetizing field.

扁平軟磁性粉末のタップ密度と比表面積(BET法)とは互いに反比例する関係にあるが、非表面積が大きくなるとμ′の値だけでなく、大きくしたくないμ″の値も大きくなる傾向があるため、それらの数値範囲を好ましい範囲に設定する。具体的にはタップ密度を好ましくは0.55〜1.45g/ml、より好ましくは0.65〜1.40g/mlに設定し、一方、比表面積を好ましくは0.40〜1.20m/g、より好ましくは0.65〜1.00m/gに設定する。 The tap density and the specific surface area (BET method) of the flat soft magnetic powder are inversely proportional to each other. However, when the non-surface area is increased, not only the value of μ ′ but also the value of μ ″ that is not desired to be increased tends to increase. Therefore, the numerical range is set to a preferable range, specifically, the tap density is preferably set to 0.55 to 1.45 g / ml, more preferably 0.65 to 1.40 g / ml, The specific surface area is preferably set to 0.40 to 1.20 m 2 / g, more preferably 0.65 to 1.00 m 2 / g.

また、扁平軟磁性粉末として、例えばシランカップリング剤等のカップリング剤を用いてカップリング処理した軟磁性粉末を用いるようにしてもよい。カップリング処理した軟磁性粉末を用いることによって、扁平軟磁性粉末とバインダー樹脂との界面の補強効果を高め、比重や耐食性を向上させることができる。カップリング剤としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等を用いることができる。なお、前述したカップリング処理は、予め軟磁性粉末に対して施しておいてもよいし、扁平軟磁性粉末とバインダー樹脂とを混合する際に同時に混合し、その結果前記カップリング処理が行われるようにしてもよい。   Further, as the flat soft magnetic powder, for example, a soft magnetic powder that has been coupled with a coupling agent such as a silane coupling agent may be used. By using the soft magnetic powder subjected to the coupling treatment, the reinforcing effect of the interface between the flat soft magnetic powder and the binder resin can be enhanced, and the specific gravity and corrosion resistance can be improved. As the coupling agent, for example, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane and the like can be used. The above-described coupling treatment may be performed on the soft magnetic powder in advance, or at the same time when the flat soft magnetic powder and the binder resin are mixed, the coupling treatment is performed as a result. You may do it.

軟磁性組成物における扁平軟磁性粉末の使用量は、少なすぎると意図した磁気特性が得られず、多すぎると相対的にバインダー樹脂量が少なくなり、成形性が低下するので、好ましくは、溶剤を除いた軟磁性組成物中の70〜90重量%、より好ましくは80〜85重量%である。   If the amount of the flat soft magnetic powder used in the soft magnetic composition is too small, the intended magnetic properties cannot be obtained. If the amount is too large, the amount of the binder resin is relatively small and the moldability is decreased. Is 70 to 90% by weight, more preferably 80 to 85% by weight in the soft magnetic composition excluding.

軟磁性組成物は、積層型軟磁性シートに良好な柔軟性と耐熱性とを付与するために、ゴム成分としてアクリルゴムを使用する。このアクリルゴムは、エポキシ樹脂との相溶性を向上させるために必ず1以上のグリシジル基を有する。具体例としては、EA−AN、BA−EA−AN、BA−AN、BA−MMA等が挙げられる。   The soft magnetic composition uses acrylic rubber as a rubber component in order to impart good flexibility and heat resistance to the laminated soft magnetic sheet. This acrylic rubber always has one or more glycidyl groups in order to improve compatibility with the epoxy resin. Specific examples include EA-AN, BA-EA-AN, BA-AN, BA-MMA and the like.

軟磁性組成物におけるアクリルゴムの使用量は、少なすぎると十分な熱加工性が得られず、多すぎるとゴム弾性が大きくなり過ぎて熱加工性が悪くなるので、好ましくは、溶剤を除いた軟磁性組成物中の9〜16重量%、より好ましくは12〜14重量%である。   If the amount of acrylic rubber used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, the rubber elasticity becomes too large and the heat processability deteriorates. It is 9 to 16% by weight in the soft magnetic composition, more preferably 12 to 14% by weight.

軟磁性組成物は、積層型軟磁性シートに良好な加熱加工性と寸法安定性とを付与するために、エポキシ樹脂を使用する。具体例としては、フェノールノボラック、テトラグリシジルフェノール、o−クレゾールノボラック、テトラグリシジルアミン、ビスフェノールA、ビスフェノールF、ビスフェノールAグリシジルエーテル等が挙げられる。   The soft magnetic composition uses an epoxy resin in order to impart good heat processability and dimensional stability to the laminated soft magnetic sheet. Specific examples include phenol novolak, tetraglycidylphenol, o-cresol novolak, tetraglycidylamine, bisphenol A, bisphenol F, bisphenol A glycidyl ether, and the like.

軟磁性組成物におけるエポキシ樹脂の使用量は、少なすぎると十分な熱加工性が得られず、多すぎると柔軟性が損なわれるので、好ましくは、溶剤を除いた軟磁性組成物中の1.0〜6.0重量%、より好ましくは1.5〜4.0重量%である。   If the amount of the epoxy resin used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, the flexibility is impaired. It is 0 to 6.0% by weight, more preferably 1.5 to 4.0% by weight.

また、軟磁性組成物は、エポキシ樹脂を硬化させるためにエポキシ樹脂用潜在性硬化剤を使用する具体例としては、アミン類イミダゾール、ポリアミドフェノール酸無水物等が挙げられる。   In addition, specific examples of using a latent curing agent for epoxy resin for curing the epoxy resin in the soft magnetic composition include amine imidazoles and polyamidephenolic acid anhydrides.

軟磁性組成物におけるエポキシ樹脂用潜在性硬化剤の使用量は、少なすぎると製品の信頼性が低下し(保存特性低下)、多すぎると塗料のライフの低下やシートのライフの低下が生じ、コストアップもするので、好ましくは、エポキシ樹脂100重量部に対し3〜100重量部、より好ましくは10〜40重量部である。   If the amount of the latent curing agent for epoxy resin in the soft magnetic composition is too small, the reliability of the product is lowered (decrease in storage characteristics), and if it is too much, the life of the paint and the life of the sheet are lowered. Since the cost is increased, the amount is preferably 3 to 100 parts by weight, more preferably 10 to 40 parts by weight with respect to 100 parts by weight of the epoxy resin.

溶剤としては、通常の汎用溶媒を使用することができ、例えば、エタノール、n-プロパノール、イソプロピルアルコール(IPA)、n-ブチルアルコール等のアルコール類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類、テトラヒドロフラン(THF)等のエーテル類、エチルセロソルブ、n−ブチルセロソルブ、セロソルブアセテート等のセロソルブ類、トルエン、キシレン、ベンゼン等の芳香族系炭化水素類などの汎用溶媒を使用することができる。その使用量は、軟磁性組成物の組成の種類や塗布法等に応じて適宜選択することができる。   As the solvent, a general general-purpose solvent can be used. For example, alcohols such as ethanol, n-propanol, isopropyl alcohol (IPA) and n-butyl alcohol, esters such as ethyl acetate and n-butyl acetate, Acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ketones such as cyclohexanone, ethers such as tetrahydrofuran (THF), ethyl cellosolve, n-butyl cellosolve, cellosolves such as cellosolve acetate, toluene, xylene, benzene, etc. General-purpose solvents such as aromatic hydrocarbons can be used. The amount used can be appropriately selected according to the type of composition of the soft magnetic composition, the coating method, and the like.

剥離基材としては、通常の剥離基材を使用することができる。例えば、表面をシリコーン剥離処理したポリエステルシート等が挙げられる。   As the release substrate, a normal release substrate can be used. For example, a polyester sheet whose surface has been subjected to a silicone release treatment can be used.

軟磁性組成物は、上述の各成分を常法により均一に混合することで調製することが出来る。   The soft magnetic composition can be prepared by uniformly mixing the above-described components by a conventional method.

工程(B)
工程(A)で得られる硬化性軟磁性シートを2以上用意し、それらを積層して積層物を取得する。積層数は、積層型軟磁性シートの用途等によって決定される。また、積層する際に、軟磁性シートの積層物の両側に剥離シートを配置することが好ましい。この場合の剥離シートとしては、前述の表面をシリコーン剥離処理したポリエステルシート等を使用できる。
Process (B)
Two or more curable soft magnetic sheets obtained in the step (A) are prepared and laminated to obtain a laminate. The number of layers is determined by the use of the laminated soft magnetic sheet. Moreover, when laminating, it is preferable to arrange release sheets on both sides of the laminate of soft magnetic sheets. As the release sheet in this case, a polyester sheet or the like whose surface has been subjected to silicone release treatment can be used.

工程(C)
次に、工程(B)で得られる積層物を、硬化反応が実質的に生じない温度T2において、線圧を印加するラミネーターにて線圧力P1、線圧力P2及び線圧力P3(但し、P1<P2<P3)で順次圧縮して仮圧着する。このように仮圧着を行うことにより、シートのずれによる不良品が発生することを防止し、エアー抜きによる信頼性を向上させ、延伸防止が可能となるという効果が得られる。
Process (C)
Next, the laminate obtained in the step (B) is subjected to linear pressure P1, linear pressure P2 and linear pressure P3 (provided that P1 < It compresses sequentially by P2 <P3) and carries out temporary pressure bonding. By performing the temporary pressure bonding in this way, it is possible to prevent the occurrence of defective products due to sheet displacement, to improve the reliability by air bleeding, and to prevent stretching.

この工程において、軟磁性シートに硬化反応が実質的に生じない温度T2で加圧する理由は、面圧をかけた状態で均一に架橋反応させるためである。ここで、「硬化反応が実質的に生じない」とは、工程(A)の場合と同様に、硬化反応が全く生じない場合だけでなく、発明の効果を損なわない範囲であれば僅かな硬化反応が生じてもかまわない趣旨であり、架橋反応を最終工程にて均一に行うことを意味する。硬化反応を実質的に生じないようにするための具体的手段の例としては、温度T2を硬化反応開始温度より5℃以上低い温度に設定することが挙げられる。具体的な温度T2は、軟磁性シートを構成する軟磁性組成物の組成により異なるが、通常、70〜130℃、好ましくは70〜100℃である。加熱の具体的な手法としては、温風乾燥炉、電気加熱炉、赤外線加熱炉などを使用した公知の手法を採用することができる。   In this step, the reason why the soft magnetic sheet is pressurized at a temperature T2 at which a curing reaction does not substantially occur is to cause a uniform crosslinking reaction in a state where a surface pressure is applied. Here, “substantially no curing reaction” means not only when the curing reaction does not occur at all as in the case of the step (A), but also a slight curing as long as the effect of the invention is not impaired. This means that the reaction may occur, and means that the crosslinking reaction is uniformly performed in the final step. An example of a specific means for substantially preventing the curing reaction is to set the temperature T2 to a temperature lower by 5 ° C. or more than the curing reaction start temperature. Although specific temperature T2 changes with compositions of the soft-magnetic composition which comprises a soft-magnetic sheet, it is 70-130 degreeC normally, Preferably it is 70-100 degreeC. As a specific heating method, a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace, or the like can be employed.

また、線圧を印加するラミネーターにて線圧力を付加する理由は、空気の巻き込みを防止するためである。3段階で徐々に低い線圧力から高い線圧力で印加する理由は、シートの軟らかさ及び密度に合わせて効果的にエアー抜きをし、また、シートの積層ずれを起こさないようにするためである。ラミネーターの具体例としては、上下が金属ロール、ゴムロール、金属ロールとゴムロールの組み合わせ等が挙げられる。   The reason why the line pressure is applied by the laminator that applies the line pressure is to prevent air entrainment. The reason for applying gradually from low to high linear pressure in three stages is to effectively vent the sheet according to the softness and density of the sheet and to prevent sheet misalignment. . Specific examples of the laminator include a metal roll, a rubber roll, and a combination of a metal roll and a rubber roll.

P1、P2、P3の具体的な数値は、軟磁性シートの素材、積層数等により異なるが、P1が好ましくは2〜10kgf/cm、より好ましくは3〜8kgf/cm、P2が好ましくは10〜20kgf/cm、より好ましくは12〜18kgf/cm、P3が好ましくは20〜50kgf/cm、より好ましくは25〜45kgf/cmである。   Specific numerical values of P1, P2, and P3 vary depending on the material of the soft magnetic sheet, the number of laminated layers, etc., but P1 is preferably 2 to 10 kgf / cm, more preferably 3 to 8 kgf / cm, and P2 is preferably 10 20 kgf / cm, more preferably 12-18 kgf / cm, and P3 is preferably 20-50 kgf / cm, more preferably 25-45 kgf / cm.

また、本工程におけるラミネーターのラインスピードは、早すぎると熱が伝わらず圧縮が進まず、貼り合わせ不良等のトラブルが生じ、遅すぎると生産効率悪化、コストアップとなるので、好ましくは0.1〜5.0m/分、より好ましくは0.5〜3.0m/分である。   In addition, if the line speed of the laminator in this step is too fast, heat is not transmitted and compression does not proceed, causing problems such as poor bonding, and if it is too slow, production efficiency deteriorates and costs increase. It is -5.0 m / min, More preferably, it is 0.5-3.0 m / min.

工程(D)
続いて工程(C)で得られた圧縮された積層物を硬化反応が生ずる温度T3において、面圧を印加するプレス機で圧縮して硬化させつつ本圧着して本発明の積層型軟磁性シートを得る。得られた積層型軟磁性シートは、高温あるいは高温高湿環境下でもシート厚の変化が抑制され、結果的に透磁率が低下しない。
Process (D)
Subsequently, the laminated soft magnetic sheet of the present invention is subjected to main compression bonding while being compressed and cured by a press machine applying a surface pressure at a temperature T3 at which a curing reaction occurs at the compressed laminate obtained in the step (C). Get. In the obtained laminated soft magnetic sheet, a change in sheet thickness is suppressed even under a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability does not decrease.

本工程において、圧縮された積層物を硬化反応が生ずる温度T3で加圧する理由は、磁性粉を面内に配列させた状態で架橋反応を進めるためである。具体的な温度T3は、軟磁性組成物の組成により異なるが、通常140〜200℃、好ましくは150〜180℃である。また、加圧を面圧で行う理由は、面内を均一に加圧した状態で架橋させるためである。面圧の値は、軟磁性シートの素材、積層数等により異なるが、好ましくは10〜60kgf/cm、より好ましくは15〜40kgf/cmである。 In this step, the reason why the compressed laminate is pressurized at the temperature T3 at which the curing reaction occurs is to advance the crosslinking reaction in a state where the magnetic powders are arranged in the plane. Although specific temperature T3 changes with compositions of a soft-magnetic composition, it is 140-200 degreeC normally, Preferably it is 150-180 degreeC. Further, the reason for applying the pressure by the surface pressure is to perform crosslinking in a state in which the surface is uniformly pressurized. The surface pressure value varies depending on the material of the soft magnetic sheet, the number of laminated layers, and the like, but is preferably 10 to 60 kgf / cm 2 , more preferably 15 to 40 kgf / cm 2 .

以上の製造方法により得られる積層型軟磁性シートは、シート厚変化が抑制され且つ透磁率の変動も小さいものである。   The laminated soft magnetic sheet obtained by the above manufacturing method is one in which a change in sheet thickness is suppressed and a change in magnetic permeability is small.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

実施例1
(軟磁性シートの作成)
扁平軟磁性粉末Fe・Si・Cr・Ni(株式会社メイト製)550重量部と、グリシジル基を有するアクリルゴム(SG80H・3、ナガセケムテツクス株式会社製)83重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)23.1重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.9重量部と、トルエン270重量部と、酢酸エチル120重量部とを混合してなる軟磁性組成物を調製した。なお、使用した扁平軟磁性粉末の累積粒径D(μm)に関し、D10は9.4μmであり、D50は23.9μmであり、D90は49.1μmであった。また、かさ密度は0.6g/ccであり、タップ密度は、1.30g/ccであった。
Example 1
(Creation of soft magnetic sheet)
550 parts by weight of flat soft magnetic powder Fe · Si · Cr · Ni (manufactured by Mate Co., Ltd.), 83 parts by weight of acrylic rubber having a glycidyl group (SG80H · 3, manufactured by Nagase ChemteX Corp.), and epoxy resin (Epicoat) 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 23.1 parts by weight, latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Co., Ltd.) 6.9 parts by weight, toluene 270 parts by weight, and ethyl acetate 120 parts by weight To prepare a soft magnetic composition. Regarding the cumulative particle diameter D (μm) of the used flat soft magnetic powder, D10 was 9.4 μm, D50 was 23.9 μm, and D90 was 49.1 μm. The bulk density was 0.6 g / cc, and the tap density was 1.30 g / cc.

その組成物をコーターで剥離ポリエステル(PET)基材上に塗布し、80℃未満の温度で乾燥し、その後に更に100℃で乾燥し、剥離PET基材上に100μmの厚さの軟磁性シートを得た。   The composition is coated on a release polyester (PET) substrate with a coater, dried at a temperature of less than 80 ° C., then further dried at 100 ° C., and a soft magnetic sheet having a thickness of 100 μm on the release PET substrate. Got.

(軟磁性シートの積層物の作成)
上述の軟磁性シートから剥離PET基材を剥離し、単層の軟磁性シートを取得した。この単層の軟磁性シートを4枚用意し、それらを積層して積層物を得た。
(Create a laminate of soft magnetic sheets)
The peeled PET substrate was peeled from the soft magnetic sheet described above to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.

(軟磁性シートの積層物の仮圧着)
得られた積層物を、ロール温度を70℃に設定したラミネーター(ソニーケミカル&インフォメーションデバイス株式会社製)に、ラインスピード0.5m/分で線圧3.3kgf/cmで1回通し、次に線圧14.8kgf/cmで2回通し、更に、線圧29.54kg/cmで2回通して仮圧着を行った。
(Temporary pressure bonding of laminates of soft magnetic sheets)
The obtained laminate was passed once through a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) whose roll temperature was set to 70 ° C. at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm. Preliminary pressure bonding was performed by passing twice at a linear pressure of 14.8 kgf / cm and further passing twice at a linear pressure of 29.54 kg / cm.

(積層型軟磁性シートの作成)
次に、仮圧着した積層物を、真空プレス装置(北川精機製)で、165℃、10分間、24.9kgf/cmの圧力で圧縮し、実施例1の積層型軟磁性シートを得た。この積層型軟磁性シートの断面図を図1に示す。図1からは、磁性粉が高密度に充填され、面方向に整列していることがわかる。
(Creation of laminated soft magnetic sheet)
Next, the temporarily bonded laminate was compressed with a vacuum press apparatus (manufactured by Kitagawa Seiki) at 165 ° C. for 10 minutes at a pressure of 24.9 kgf / cm 2 to obtain a laminated soft magnetic sheet of Example 1. . A cross-sectional view of this laminated soft magnetic sheet is shown in FIG. From FIG. 1, it can be seen that the magnetic powder is densely packed and aligned in the plane direction.

比較例1
(軟磁性シートの作成)
実施例1と同様に、剥離PET基材上に100μmの厚さの軟磁性シートを得た。
Comparative Example 1
(Creation of soft magnetic sheet)
As in Example 1, a soft magnetic sheet having a thickness of 100 μm was obtained on a peeled PET substrate.

(軟磁性シートの積層物の作成)
上述の軟磁性シートから剥離PET基材を剥離し、単層の軟磁性シートを取得した。この単層の軟磁性シートを4枚用意し、それらを積層して積層物を得た。
(Create a laminate of soft magnetic sheets)
The peeled PET substrate was peeled from the soft magnetic sheet described above to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.

(軟磁性シートの積層物の仮圧着)
得られた積層物を、ロール温度を70℃に設定したラミネーター(ソニーケミカル&インフォメーションデバイス株式会社製)に、ラインスピード0.5m/分で線圧3.3kgf/cmで5回通して仮圧着を行った。
(Temporary pressure bonding of laminates of soft magnetic sheets)
The obtained laminate was temporarily pressed through a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) set at a roll temperature of 70 ° C. at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm. Went.

(積層型軟磁性シートの作成)
次に、仮圧着した積層物を、真空プレス装置(北川精機製)で24.9kgf/cmの圧力で圧縮し、積層型軟磁性シートを得た。この積層型軟磁性シートの断面図を図2に示す。図2からは、積層界面に空隙がやや多いことがわかる。
(Creation of laminated soft magnetic sheet)
Next, the temporarily press-bonded laminate was compressed with a vacuum press apparatus (manufactured by Kitagawa Seiki) at a pressure of 24.9 kgf / cm 2 to obtain a laminated soft magnetic sheet. A cross-sectional view of the laminated soft magnetic sheet is shown in FIG. FIG. 2 shows that there are slightly more voids at the lamination interface.

比較例2
(軟磁性シートの作成)
実施例1と同様に、剥離PET基材上に100μmの厚さの軟磁性シートを得た。
Comparative Example 2
(Creation of soft magnetic sheet)
As in Example 1, a soft magnetic sheet having a thickness of 100 μm was obtained on a peeled PET substrate.

(軟磁性シートの積層物の作成)
上述の軟磁性シートから剥離PET基材を剥離し、単層の軟磁性シートを取得した。この単層の軟磁性シートを4枚用意し、それらを積層して積層物を得た。
(Create a laminate of soft magnetic sheets)
The peeled PET substrate was peeled from the soft magnetic sheet described above to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.

(軟磁性シートの積層物の仮圧着)
得られた積層物を、ロール温度を70℃に設定したラミネーター(ソニーケミカル&インフォメーションデバイス株式会社製)に、ラインスピード0.5m/分で線圧29.5kgf/cmで5回通して仮圧着を行った。
(Temporary pressure bonding of laminates of soft magnetic sheets)
The obtained laminate is temporarily pressed through a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) whose roll temperature is set to 70 ° C. at a line speed of 0.5 m / min and a linear pressure of 29.5 kgf / cm. Went.

(積層型軟磁性シートの作成)
次に、仮圧着した積層物を、真空プレス装置(北川精機製)で24.9kgf/cmの圧力で圧縮し、比較例2の積層型軟磁性シートを得た。この積層型軟磁性シートの断面図を図3に示す。図3からは、高密度に高配向している場所と低密度で配向不足の場所が存在していることがわかる。
(Creation of laminated soft magnetic sheet)
Next, the temporarily press-bonded laminate was compressed with a vacuum press apparatus (manufactured by Kitagawa Seiki) at a pressure of 24.9 kgf / cm 2 to obtain a laminated soft magnetic sheet of Comparative Example 2. A cross-sectional view of this laminated soft magnetic sheet is shown in FIG. From FIG. 3, it can be seen that there are places with high orientation at high density and places with low density at low orientation.

比較例3
(軟磁性シートの作成)
実施例1と同様に、剥離PET基材上に100μmの厚さの軟磁性シートを得た。
Comparative Example 3
(Creation of soft magnetic sheet)
As in Example 1, a soft magnetic sheet having a thickness of 100 μm was obtained on a peeled PET substrate.

(軟磁性シートの積層物の作成)
上述の軟磁性シートから剥離PET基材を剥離し、単層の軟磁性シートを取得した。この単層の軟磁性シートを4枚用意し、それらを積層して積層物を得た。この積層型軟磁性シートの断面図を図4に示す。図4からは、空隙(エアー)が多く残っていることがわかる。
(Create a laminate of soft magnetic sheets)
The peeled PET substrate was peeled from the soft magnetic sheet described above to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate. A cross-sectional view of the laminated soft magnetic sheet is shown in FIG. From FIG. 4, it can be seen that a large amount of air gap (air) remains.

(積層型軟磁性シートの作成)
次に、積層物を、仮圧着せずに、真空プレス装置(北川精機製)で24.9kgf/cmの圧力で圧縮し、比較例3の積層型軟磁性シートを得た。
(Creation of laminated soft magnetic sheet)
Next, the laminate was compressed at a pressure of 24.9 kgf / cm 2 with a vacuum press device (manufactured by Kitagawa Seiki) without being temporarily crimped to obtain a laminated soft magnetic sheet of Comparative Example 3.

比較例4
(軟磁性シートの作成)
実施例1と同様に、剥離PET基材上に100μmの厚さの軟磁性シートを得た。
Comparative Example 4
(Creation of soft magnetic sheet)
As in Example 1, a soft magnetic sheet having a thickness of 100 μm was obtained on a peeled PET substrate.

(軟磁性シートの積層物の作成)
上述の軟磁性シートから剥離PET基材を剥離し、単層の軟磁性シートを取得した。この単層の軟磁性シートを4枚用意し、それらを積層して積層物を得た。
(Create a laminate of soft magnetic sheets)
The peeled PET substrate was peeled from the soft magnetic sheet described above to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.

(積層型軟磁性シートの作成)
次に、積層物を、仮圧着せずに、真空プレス装置(北川精機製)で37.4kgf/cmの圧力で圧縮し、比較例4の積層型軟磁性シートを得た。この積層型軟磁性シートの断面図を図5に示す。図5からは、高密度領域と空隙(エアー)領域の部分とがはっきりと分かれていることがわかる。
(Creation of laminated soft magnetic sheet)
Next, the laminate was compressed at a pressure of 37.4 kgf / cm 2 with a vacuum press device (manufactured by Kitagawa Seiki) without provisional pressure bonding, and a laminated soft magnetic sheet of Comparative Example 4 was obtained. A cross-sectional view of this laminated soft magnetic sheet is shown in FIG. From FIG. 5, it can be seen that the high density area and the air gap area are clearly separated.

(評価)
得られた積層型軟磁性シートについて、まず厚さ(t1)と透磁率μ′とを測定した。透磁率は実用的には38以上であることが好ましい。また、85℃、60%Rhの高温高湿環境下に240時間(hr)保持した後の軟磁性シートの厚さ(t2)を測定し、厚み変化率[(t1−t2)×100/t2](%)を算出した。厚み変化率は0に近いほど好ましい(表1中、厚み変化率が2.0未満である場合をG、それ以外をNGとした)。更に、シートのずれの発生率(%)について、シート作成枚数からシート積層ずれを起こした枚数を算出した。得られた結果を表1に示す。
(Evaluation)
For the obtained laminated soft magnetic sheet, first, the thickness (t1) and the magnetic permeability μ ′ were measured. The magnetic permeability is preferably 38 or more practically. Further, the thickness (t2) of the soft magnetic sheet after being held for 240 hours (hr) in a high-temperature and high-humidity environment of 85 ° C. and 60% Rh was measured, and the rate of change in thickness [(t1-t2) × 100 / t2 ] (%) Was calculated. The thickness change rate is preferably closer to 0 (in Table 1, G is the case where the thickness change rate is less than 2.0, and NG is the other case). Further, the sheet misalignment occurrence rate (%) was calculated from the number of sheets prepared and the number of sheets stacked. The obtained results are shown in Table 1.

表1から解るように、実施例1の積層型軟磁性シートの場合、真空プレスの前に軟磁性シートの積層物を3段階の圧力条件でラミネーターに通すことによって透磁率μ′を大きくでき、また、85℃、60Rh%、240hrでの厚さの変化も2%以下と小さく抑えられていた。軟磁性シートの断面観察を行っても空気が入っていないことがわかり、積層界面は確認されなかった。なお、積層型軟磁性シートを50枚作製した時のシートの積層ずれによる不良品発生率は0%であった。   As can be seen from Table 1, in the case of the laminated soft magnetic sheet of Example 1, the magnetic permeability μ ′ can be increased by passing the laminate of the soft magnetic sheet through a laminator under three-stage pressure conditions before the vacuum press, Moreover, the change in thickness at 85 ° C., 60 Rh%, and 240 hr was also suppressed to 2% or less. Even when the cross section of the soft magnetic sheet was observed, it was found that air was not contained, and the lamination interface was not confirmed. In addition, when 50 laminated soft magnetic sheets were produced, the defective product occurrence rate due to sheet misalignment was 0%.

比較例1の積層型軟磁性シートの場合、真空プレスの前に軟磁性シートをラミネーターに通すことによって透磁率μ′を大きくできたが、85℃、60Rh%、240hrでのシート厚さの変化が3%以上であり、実施例1と比較して厚みの変化が大きくなった。50枚作製した時にシートのずれは0枚であり、不良品の発生率は0%であった。   In the case of the laminated soft magnetic sheet of Comparative Example 1, the magnetic permeability μ ′ could be increased by passing the soft magnetic sheet through a laminator before vacuum pressing, but the change in sheet thickness at 85 ° C., 60 Rh%, 240 hr. Was 3% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the sheet deviation was 0 sheets, and the occurrence rate of defective products was 0%.

比較例2の積層型軟磁性シートの場合、真空プレスの前に軟磁性シートをラミネーターに通すことによって透磁率μ′を大きくできたが、85℃、60Rh%、240hrでの厚さの変化が2%以上であり、実施例1と比較して厚みの変化が大きくなった。50枚作製した時にシートのずれは12枚であり、不良品の発生率が高かった。   In the case of the laminated soft magnetic sheet of Comparative Example 2, the magnetic permeability μ ′ could be increased by passing the soft magnetic sheet through a laminator before the vacuum press, but the thickness change at 85 ° C., 60 Rh%, 240 hr It was 2% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the sheet shift was 12 sheets, and the incidence of defective products was high.

比較例3の積層型軟磁性シートの場合、真空プレスで圧縮する前にラミネーターに通していないので、図4に示されるように、積層型軟磁性シートを構成する単層の各軟磁性シートの界面に隙間が生じていることがわかる。また、85℃、60Rh%、240hrでの厚さの変化が2%以上であり、実施例1と比較して厚みの変化が大きくなった。なお、50枚作製した時のシートの積層ずれによる不良品発生率は0%であった。   In the case of the laminated soft magnetic sheet of Comparative Example 3, since it was not passed through a laminator before being compressed by a vacuum press, as shown in FIG. 4, each of the single-layer soft magnetic sheets constituting the laminated soft magnetic sheet was It can be seen that there is a gap at the interface. Further, the change in thickness at 85 ° C., 60 Rh%, and 240 hr was 2% or more, and the change in thickness was larger than that in Example 1. In addition, the defective product generation rate due to the misalignment of the sheets when 50 sheets were produced was 0%.

比較例4の積層型軟磁性シートの場合、真空プレスの圧力を大きくすることによって実施例1と同等の透磁率μ′を得ることができ、積層界面での隙間が小さくなっているが、過剰な圧力で圧縮しているので内部に歪が残り、高温高湿環境下で厚みが変化する一要因になっていると考えられる。85℃、60Rh%、240hrでの厚さの変化が2%以上であり、実施例1と比較して大きくなった。なお、50枚作製した時のシートの積層ずれによる不良品発生率は0%であった。   In the case of the laminated soft magnetic sheet of Comparative Example 4, the permeability μ ′ equivalent to that of Example 1 can be obtained by increasing the pressure of the vacuum press, and the gap at the laminated interface is reduced. It is considered that this is a factor that changes the thickness in a high-temperature and high-humidity environment because the compression is performed under a certain pressure. The change in thickness at 85 ° C., 60 Rh%, and 240 hr was 2% or more, which was larger than that in Example 1. In addition, the defective product generation rate due to the misalignment of the sheets when 50 sheets were produced was 0%.

本発明の製造方法では、軟磁性シート形成用の軟磁性組成物として特定のものを使用し、それから形成された薄い軟磁性シートの積層物に対する加熱パターンと圧力印加パターンに関し、熱硬化が進行しない温度で低、中、高と3段階の線圧力で仮圧着し、続いて熱硬化が進行する温度で面圧力で本圧着する。このため、高温あるいは高温高湿環境下でも積層型軟磁性シート厚の変化を抑制することができ、結果的に透磁率を低下させないようにできる。また、この軟磁性シートは、非接触式ICカードやICタグなどのRFIDシステム等における磁束収束体として、あるいは一般の電波吸収体として有用である。即ち、RFID用フレキシブルシールド材、携帯用デジタルカメラ等の電子機器のノイズ電磁波吸収体として有用である。   In the manufacturing method of the present invention, a specific soft magnetic composition for forming a soft magnetic sheet is used, and the heat curing does not proceed with respect to the heating pattern and the pressure application pattern for the laminate of thin soft magnetic sheets formed therefrom. Temporary pressure bonding is performed at three levels of linear pressure, ie, low, medium, and high, followed by main pressure bonding at a surface pressure at a temperature at which thermosetting proceeds. For this reason, a change in the thickness of the laminated soft magnetic sheet can be suppressed even in a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability can be prevented from decreasing. Further, this soft magnetic sheet is useful as a magnetic flux converging body in an RFID system such as a non-contact type IC card or IC tag, or as a general electromagnetic wave absorber. That is, it is useful as a noise electromagnetic wave absorber for electronic devices such as RFID flexible shield materials and portable digital cameras.

実施例1の積層型軟磁性シートの断面の電子顕微鏡写真である。2 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Example 1. FIG. 比較例1の積層型軟磁性シートの断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Comparative Example 1. 比較例2の積層型軟磁性シートの断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Comparative Example 2. 比較例3の積層型軟磁性シートの断面の電子顕微鏡写真である。4 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Comparative Example 3. 比較例4の積層型軟磁性シートの断面の電子顕微鏡写真である。6 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Comparative Example 4.

Claims (5)

積層型軟磁性シートの製造方法であって、以下の工程(A)〜(D):
(A)少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥離基材上に塗布し、軟磁性組成物の硬化反応が実質的に生じない温度T1で乾燥し、剥離基材を取り除いて硬化性軟磁性シートを取得する工程;
(B)該硬化性軟磁性シートを2以上用意し、それらを積層して積層物を取得する工程;
(C)得られた積層物を、硬化反応が実質的に生じない温度T2において、線圧を印加するラミネーターにて線圧力P1、線圧力P2及び線圧力P3(但し、P1<P2<P3)で順次圧縮する工程; 及び
(D)続いて硬化反応が生ずる温度T3において、圧縮された積層物を、面圧を印加するプレス機で圧縮して積層型軟磁性シートを得る工程
を有することを特徴とする製造方法。
A method for producing a laminated soft magnetic sheet, comprising the following steps (A) to (D):
(A) A soft magnetic composition obtained by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is formed on a release substrate. Applying, drying at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur, removing the release substrate, and obtaining a curable soft magnetic sheet;
(B) preparing two or more of the curable soft magnetic sheets and laminating them to obtain a laminate;
(C) At a temperature T2 at which the curing reaction does not substantially occur, the obtained laminate is subjected to linear pressure P1, linear pressure P2, and linear pressure P3 (note that P1 <P2 <P3) at a laminator that applies linear pressure. And (D) a step of compressing the compressed laminate with a press machine that applies a surface pressure to obtain a laminated soft magnetic sheet at a temperature T3 at which a curing reaction subsequently occurs. A featured manufacturing method.
P1が2〜10kgf/cmであり、P2が10〜20kgf/cmであり、P3が20〜50kgf/cmであり、面圧が10〜60kgf/cmである請求項1記載の製造方法。 P1 is 2~10kgf / cm, P2 is 10~20kgf / cm, P3 is 20~50kgf / cm, the manufacturing method according to claim 1, wherein the surface pressure is 10~60kgf / cm 2. T1が50〜90℃であり、T2が70〜130℃であり、T3が140〜200℃である請求項1または2記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein T1 is 50 to 90 ° C, T2 is 70 to 130 ° C, and T3 is 140 to 200 ° C. 工程(C)におけるラミネーターのラインスピードが0.1〜5m/分である請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein a line speed of the laminator in the step (C) is 0.1 to 5 m / min. 工程(C)及び(D)において、積層物の両面のそれぞれに剥離シートを配置し、剥離シートを解して圧縮を行う請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein in steps (C) and (D), a release sheet is disposed on each of both surfaces of the laminate, and the release sheet is released and compressed.
JP2007260495A 2006-10-31 2007-10-04 Method for producing laminated soft magnetic sheet Active JP4775593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260495A JP4775593B2 (en) 2006-10-31 2007-10-04 Method for producing laminated soft magnetic sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006295289 2006-10-31
JP2006295289 2006-10-31
JP2007260495A JP4775593B2 (en) 2006-10-31 2007-10-04 Method for producing laminated soft magnetic sheet

Publications (3)

Publication Number Publication Date
JP2008135713A true JP2008135713A (en) 2008-06-12
JP2008135713A5 JP2008135713A5 (en) 2010-06-24
JP4775593B2 JP4775593B2 (en) 2011-09-21

Family

ID=39560305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260495A Active JP4775593B2 (en) 2006-10-31 2007-10-04 Method for producing laminated soft magnetic sheet

Country Status (1)

Country Link
JP (1) JP4775593B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026356A (en) * 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
WO2016052498A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Soft-magnetic flat powder and process for producing same
KR20190117491A (en) * 2017-02-28 2019-10-16 산요오도꾸슈세이꼬 가부시키가이샤 Soft magnetic flat powder having high permeability and high weather resistance and soft magnetic resin composition containing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176823A (en) * 1986-01-30 1987-08-03 Mitsui Mining & Smelting Co Ltd Method of molding laminated sheet for thermoforming
JPH05269912A (en) * 1991-08-22 1993-10-19 Minnesota Mining & Mfg Co <3M> Metal fibermat/polymer composite
JP2000101284A (en) * 1998-09-24 2000-04-07 Sony Corp Electromagnetic wave absorbing body and manufacture thereof
JP2003191320A (en) * 2001-12-25 2003-07-08 Sumitomo Chem Co Ltd Easy-to-peel molded body
JP2003229694A (en) * 2002-02-05 2003-08-15 Sony Corp Electromagnetic wave absorbent and its manufacturing method
JP2004140322A (en) * 2002-08-20 2004-05-13 Alps Electric Co Ltd Electric wave absorber and manufacturing method of the same
JP2006073949A (en) * 2004-09-06 2006-03-16 Showa Denko Kk Electromagnetic wave absorber
JP2006128649A (en) * 2004-09-30 2006-05-18 Nitta Ind Corp Electromagnetic compatibility suppressor and method of manufacturing the same
WO2006059771A1 (en) * 2004-12-03 2006-06-08 Nitta Corporation Electromagnetic interference inhibitor, antenna device and electronic communication apparatus
JP2006202266A (en) * 2004-12-20 2006-08-03 Toppan Forms Co Ltd Contactless data receiver/transmitter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176823A (en) * 1986-01-30 1987-08-03 Mitsui Mining & Smelting Co Ltd Method of molding laminated sheet for thermoforming
JPH05269912A (en) * 1991-08-22 1993-10-19 Minnesota Mining & Mfg Co <3M> Metal fibermat/polymer composite
JP2000101284A (en) * 1998-09-24 2000-04-07 Sony Corp Electromagnetic wave absorbing body and manufacture thereof
JP2003191320A (en) * 2001-12-25 2003-07-08 Sumitomo Chem Co Ltd Easy-to-peel molded body
JP2003229694A (en) * 2002-02-05 2003-08-15 Sony Corp Electromagnetic wave absorbent and its manufacturing method
JP2004140322A (en) * 2002-08-20 2004-05-13 Alps Electric Co Ltd Electric wave absorber and manufacturing method of the same
JP2006073949A (en) * 2004-09-06 2006-03-16 Showa Denko Kk Electromagnetic wave absorber
JP2006128649A (en) * 2004-09-30 2006-05-18 Nitta Ind Corp Electromagnetic compatibility suppressor and method of manufacturing the same
WO2006059771A1 (en) * 2004-12-03 2006-06-08 Nitta Corporation Electromagnetic interference inhibitor, antenna device and electronic communication apparatus
JP2006202266A (en) * 2004-12-20 2006-08-03 Toppan Forms Co Ltd Contactless data receiver/transmitter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026356A (en) * 2011-07-19 2013-02-04 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
WO2016052498A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Soft-magnetic flat powder and process for producing same
JP2016072577A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Soft magnetic flat powder and method for manufacturing the same
KR20170061679A (en) * 2014-10-02 2017-06-05 산요오도꾸슈세이꼬 가부시키가이샤 Soft-magnetic flat powder and process for producing same
TWI664648B (en) * 2014-10-02 2019-07-01 日商山陽特殊製鋼股份有限公司 Soft magnetic flat powder and manufacturing method thereof
US10586637B2 (en) 2014-10-02 2020-03-10 Sanyo Special Steel Co., Ltd. Soft magnetic flattened powder and method for producing the same
KR102339361B1 (en) * 2014-10-02 2021-12-13 산요오도꾸슈세이꼬 가부시키가이샤 Soft-magnetic flat powder and process for producing same
KR20190117491A (en) * 2017-02-28 2019-10-16 산요오도꾸슈세이꼬 가부시키가이샤 Soft magnetic flat powder having high permeability and high weather resistance and soft magnetic resin composition containing the same
KR102369150B1 (en) 2017-02-28 2022-02-28 산요오도꾸슈세이꼬 가부시키가이샤 Soft magnetic flat powder having high magnetic permeability and high weather resistance, and soft magnetic resin composition containing the same

Also Published As

Publication number Publication date
JP4775593B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
US8864929B2 (en) Method for manufacturing laminated soft-magnetic sheet
JP4807523B2 (en) Sheet-like soft magnetic material and method for producing the same
KR101076555B1 (en) Sheet-form soft-magnetic material and process for producing the same
JP4854690B2 (en) Magnetic sheet and manufacturing method thereof
JP6297281B2 (en) Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminated circuit board, and position detection device
EP3151253B1 (en) Soft magnetic resin composition and soft magnetic film
WO2015049993A1 (en) Soft magnetic particle powder, soft magnetic resin composition, soft magnetic film, soft magnetic film laminated circuit board, and position detection device
KR101321511B1 (en) Manufacturing method of electromagnetic wave absortion sheet integrated with coverlay and elctromagnetic wave absortion sheet thereby
JP2009027145A (en) Magnetic sheet, process for producing the same, antenna, and portable communications equipment
KR20160126188A (en) Electro magnetic shielding sheet and manufacturing method of the same
JP2016006822A (en) Composite magnetic substance
JP2010153542A (en) Electromagnetic wave suppression sheet and method of manufacturing the same
JP4968481B2 (en) Method for producing laminated soft magnetic sheet
JP4775593B2 (en) Method for producing laminated soft magnetic sheet
JP2013026324A (en) Composite magnetic body
WO2016088826A1 (en) Composite-type electromagnetic wave suppression body
JP2009295671A (en) Magnetic sheet and method for manufacturing the same
JP5282921B2 (en) Method for producing laminated soft magnetic sheet
WO2014132879A1 (en) Soft magnetic thermosetting film and soft magnetic film
KR101384250B1 (en) Magnetic flexible sheet with dual materials and the method for manufacturing the same
KR102572806B1 (en) Ferrite laminate and noise suppression sheet
EP3059744B1 (en) Soft magnetic particle powder, soft magnetic resin composition, soft magnetic film, soft magnetic film laminated circuit board, and position detection device
KR101413210B1 (en) Composite for shielding electromagnetic interference, manufacturing method of the same, and sheet comprising with the same
JP5102704B2 (en) Magnetic sheet and method for producing magnetic sheet
JP6297314B2 (en) Soft magnetic thermosetting film and soft magnetic film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4775593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250