JP2008133519A - Method for reforming steel material - Google Patents

Method for reforming steel material Download PDF

Info

Publication number
JP2008133519A
JP2008133519A JP2006321661A JP2006321661A JP2008133519A JP 2008133519 A JP2008133519 A JP 2008133519A JP 2006321661 A JP2006321661 A JP 2006321661A JP 2006321661 A JP2006321661 A JP 2006321661A JP 2008133519 A JP2008133519 A JP 2008133519A
Authority
JP
Japan
Prior art keywords
steel material
probe
softened
rotary tool
rotating tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006321661A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
山本  匡昭
Yasushi Ueda
泰 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2006321661A priority Critical patent/JP2008133519A/en
Publication of JP2008133519A publication Critical patent/JP2008133519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a reforming layer to a desired depth from the surface of a steel material and to simply perform this formation at a low cost. <P>SOLUTION: A rotating tool T rotating at high speed is brought into contact with the surface of the steel material W and then, the contact part of the steel material W with the rotating tool T is softened with frictional heat and this softened part is stirred with a probe 2 to reform the steel material W. Since this rotating tool T is composed of a heat-resistant cemented carbide mainly composed of a tungsten carbide, wear hardly occurs, even in the temperature zone of ≥1,000°C where the steel material W is softened. The depth of the reforming layer 3 can be made a desired depth by changing the length of the probe 2 projectingly arranged on the rotating tool T. Further, when performing this treatment in a state the rotating tool T is inclined to the back part in the advancing direction, since a fluid f2 vertically stirring the softened steel material, is generated with the inclined probe 2, stirring with the fluid is more effectively performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、高マンガン鋼等の鉄鋼材料の表面を、高硬度のプローブで摩擦して、その摩擦熱によりその鉄鋼材料を軟化して塑性流動を生じさせ、その塑性流動を生じさせた領域を改質する方法に関する。   In this invention, the surface of a steel material such as high manganese steel is rubbed with a probe having a high hardness, and the steel material is softened by the frictional heat to cause plastic flow, and the region where the plastic flow is generated is determined. The present invention relates to a method for reforming.

工作機械等の摺動部品用の鉄鋼材料として、例えば、高マンガン鋼をはじめとした耐磨耗鋼が広く用いられている。この高マンガン鋼の初期特性としては、素材自体は他の鋼種と比較して硬度がむしろ低く、磨耗しやすいため、上記工作機械等の組み立てに先立って、上記摺動部品の表面層近傍の硬度を向上させるための改質処理がなされる。   As steel materials for sliding parts such as machine tools, wear-resistant steel such as high manganese steel is widely used. As the initial characteristics of this high manganese steel, the material itself is rather low in hardness compared to other steel types and easily wears, so the hardness near the surface layer of the sliding part prior to assembly of the machine tool etc. A reforming process for improving the temperature is performed.

この改質処理として、硬質小粒子を鋼材の表面に衝突させるショットピーニング法が広く用いられている。このショットピーニング法を行なうと、その鋼材の表面層近傍に結晶欠陥が高密度に発生し、この結晶欠陥は、所謂、加工硬化層として作用し、その表面層近傍の硬度を向上させる。この加工硬化層の厚さは、上記硬質小粒子の衝突速度にも依存するが、高々1mm程度と極めて薄く、その加工硬化層の硬度も耐摩耗性を発揮するには不十分なことが多いという問題がある。   As this modification treatment, a shot peening method in which hard small particles collide with the surface of a steel material is widely used. When this shot peening method is performed, crystal defects are generated at a high density in the vicinity of the surface layer of the steel material, and the crystal defects act as a so-called work-hardened layer and improve the hardness in the vicinity of the surface layer. Although the thickness of the work hardened layer depends on the collision speed of the hard small particles, it is extremely thin at most about 1 mm, and the work hardened layer is often insufficient in hardness to exhibit wear resistance. There is a problem.

そこで、加工硬化層の厚さをより厚く、また、その硬度をより高くするために、特許文献1に示す方法が提案されている。この方法は、高マンガン鋼の表面に高い静水圧を負荷する第1工程と、ショットピーニング法によって硬質粒子を上記表面に衝突させる第2工程とからなり、この2段の工程により、表面から4mm程度のより深い領域まで加工変質層が形成され、その加工変質層の硬度は、上記ショットピーニング法を単独で実施した場合と比較して高いものとなる。
特開平10−44043号公報
Therefore, in order to increase the thickness of the work-hardened layer and increase its hardness, a method shown in Patent Document 1 has been proposed. This method includes a first step of applying a high hydrostatic pressure to the surface of the high manganese steel and a second step of causing hard particles to collide with the surface by a shot peening method. A work-affected layer is formed up to a deeper region, and the hardness of the work-affected layer is higher than when the shot peening method is carried out alone.
Japanese Patent Laid-Open No. 10-44043

また、特許文献2に示すように、アルミニウム等の低融点の金属材料に高速で回転させながら接触させるショルダーと、そのショルダーの先端に突出して設けられ、回転軸周りに回転しながら上記金属材料の表面に当接し、その際の摩擦熱で軟化した金属材料に挿入されて、この金属材料を撹拌するプローブとからなる回転工具を用いる改質方法がある。この改質によって、上記撹拌によって生成した析出物や結晶組織の微細化によって軟化領域が改質されるので金属材料表面の硬度の向上を図ることができる。
特開2003−48060号公報
Further, as shown in Patent Document 2, a shoulder that is brought into contact with a low-melting-point metal material such as aluminum while being rotated at a high speed, and is provided so as to protrude from the front end of the shoulder, while rotating around the rotation axis of the metal material. There is a reforming method using a rotating tool that is in contact with a surface and inserted into a metal material softened by frictional heat at that time and a probe for stirring the metal material. By this modification, the softened region is modified by refinement of precipitates and crystal structure generated by the stirring, so that the hardness of the surface of the metal material can be improved.
JP 2003-48060 A

この回転工具は、通常はステンレス鋼等からなり、その回転工具のプローブの長さに対応して、上記金属材料の所望の深さまで改質を行うことができる。また、この改質は、上記プローブを軟化した金属材料に押し付けて挿入し、そのプローブを移動させることによって行われる。   This rotary tool is usually made of stainless steel or the like, and the metal material can be modified to a desired depth corresponding to the length of the probe of the rotary tool. This modification is performed by pressing the probe into a softened metal material and inserting the probe, and moving the probe.

上記の特許文献1に示す方法は、加工硬化層の形成が、静水圧の負荷及びショットピーニング法の2段の工程からなり、それぞれの工程に高価な専用装置が必要であるため、コスト的に高価なものとなる問題がある。   In the method shown in Patent Document 1, the work-hardened layer is formed by two steps of the hydrostatic pressure load and the shot peening method, and an expensive dedicated device is required for each step. There is a problem that becomes expensive.

また、特許文献2に示す方法は、上述したように、専らアルミニウム等の低融点材料に対して適用され、鉄鋼材料に対しては適用されていないのが現状である。これは、上記低融点材料の軟化は300〜400℃程度の低温で起こるのに対して、鉄鋼材料は1000℃以上の高温にならないと軟化せず、その温度では、回転工具自体の強度が低下し、処理中の損傷が著しいためである。   In addition, as described above, the method disclosed in Patent Document 2 is applied only to a low-melting-point material such as aluminum and is not currently applied to a steel material. This is because the softening of the low melting point material occurs at a low temperature of about 300 to 400 ° C., whereas the steel material does not soften unless it reaches a high temperature of 1000 ° C. or more, and at that temperature, the strength of the rotary tool itself decreases. This is because the damage during processing is significant.

そこで、この発明は、高マンガン鋼をはじめとする鉄鋼材料において、改質層を表面から所望の深さまで形成し、しかも、その形成が安価かつ簡便になされるようにすることを課題とする。   Therefore, an object of the present invention is to form a modified layer from a surface to a desired depth in a steel material such as high manganese steel, and to form the modified layer inexpensively and easily.

上記の課題を解決するため、この発明は、耐熱性を有する超硬合金からなる回転工具の先端に突出してプローブを設け、そのプローブを上記鉄鋼材料に接触させ、その鉄鋼材料を接触に伴う摩擦熱で軟化し、その軟化した部分を上記プローブで撹拌して、上記鉄鋼材料の改質を行なうこととしたのである。   In order to solve the above-described problems, the present invention provides a probe that protrudes from the tip of a rotating tool made of a heat-resistant cemented carbide, contacts the steel material with the probe, and causes the friction of the steel material with the contact. It was softened by heat, and the softened part was stirred with the probe to modify the steel material.

この発明による改質を行うことで、鉄鋼材料の組織が微細化される。また、この微細化とともに、鉄鋼材料中のクロムやマンガン等の添加元素の一部と炭素が結合して炭化物が形成される。この組織の微細化や炭化物の生成により、材料自体の強度及び表面の硬度が向上する。   By performing the modification according to the present invention, the structure of the steel material is refined. Moreover, with this refinement | miniaturization, a part of additive elements, such as chromium in a steel material, manganese, and carbon couple | bond together and a carbide | carbonized_material is formed. The refinement of the structure and the generation of carbides improve the strength and surface hardness of the material itself.

この改質によって、上記プローブの長さに対応した深さまで改質層が形成されるので、プローブの長さを変更することで、その改質層の深さを所望の深さに変えることができる。   As a result of this modification, a modified layer is formed to a depth corresponding to the length of the probe. By changing the length of the probe, the depth of the modified layer can be changed to a desired depth. it can.

上記炭化物の生成量は、上記プローブの移動速度に伴う鉄鋼材料表面の温度上昇及び冷却速度の変化に対応して変化する。   The amount of carbide generated varies in accordance with the temperature rise and the cooling rate of the steel material surface accompanying the moving speed of the probe.

具体的には、移動速度を大きくすると熱の供給源である回転工具が速やかに遠ざかるので、温度上昇は小さくかつ冷却速度は大きくなり、逆に、移動速度を小さくすると温度上昇は大きくかつ冷却速度は小さくなる。この温度上昇を小さくかつ冷却速度を大きくすると上記炭化物の生成量は増加し、温度上昇を大きくかつ冷却速度を小さくすると上記炭化物の生成量は減少することが実験的に確認されている。   Specifically, when the moving speed is increased, the rotary tool that is a heat supply source moves away quickly, so that the temperature rise is small and the cooling speed is large. Conversely, if the moving speed is small, the temperature rise is large and the cooling speed is large. Becomes smaller. It has been experimentally confirmed that when the temperature rise is reduced and the cooling rate is increased, the amount of carbide generated is increased, and when the temperature rise is increased and the cooling rate is reduced, the amount of carbide generated is decreased.

また、上記プローブの移動速度を大きくして温度上昇を小さくかつ冷却速度を大きくすることにより、鉄鋼材料表面の結晶粒が微細化することも実験的に確認されている。   It has also been experimentally confirmed that the crystal grains on the surface of the steel material are refined by increasing the moving speed of the probe to decrease the temperature rise and increase the cooling speed.

この発明に係る鉄鋼材料の改質方法においては、鉄鋼材料の表面に高速回転するプローブを接触させて、上記鉄鋼材料の上記プローブとの接触部分を摩擦熱により軟化し、その軟化した部分をこのプローブで撹拌して上記鉄鋼材料を改質する構成を採用できる。   In the method for reforming a steel material according to the present invention, a probe rotating at high speed is brought into contact with the surface of the steel material, the contact portion of the steel material with the probe is softened by frictional heat, and the softened portion is this A configuration in which the steel material is modified by stirring with a probe can be employed.

図1に示す回転工具Tを用いて、図2に示す構成で鉄鋼材料Wの表面改質を行った。この回転工具Tには、鉄鋼材料Wと接触するショルダー1と、そのショルダー1の先端に突出して設けられ、回転軸周りに回転しながら上記鉄鋼材料Wの表面に当接し、その際に発生した摩擦熱によって軟化した鉄鋼材料Wに挿入されて、その軟化した鉄鋼材料Wを撹拌するプローブ2とが設けられている。   The surface modification of the steel material W was performed with the configuration shown in FIG. 2 using the rotary tool T shown in FIG. The rotary tool T is provided with a shoulder 1 that contacts the steel material W, and is projected from the tip of the shoulder 1, and abuts against the surface of the steel material W while rotating around the rotation axis. A probe 2 is provided which is inserted into the steel material W softened by frictional heat and stirs the softened steel material W.

この回転工具Tは、1000℃以上の高温においても、軟化した鉄鋼材料Wを撹拌しうるだけの機械強度を有する必要があり、このような特性を有する素材として、タングステンカーバイド系の耐熱性を有する超硬合金が採用できる。   The rotary tool T needs to have a mechanical strength that can stir the softened steel material W even at a high temperature of 1000 ° C. or higher, and has a tungsten carbide heat resistance as a material having such characteristics. Cemented carbide can be used.

さらに具体的には、回転工具Tは、タングステンカーバイドの微粉末と、結合剤として作用するコバルトの粉末とを混合し、これを回転工具Tの形状の型枠に充填して成形し、さらに焼結によってこれを焼き固めることで作成される。この他に、クロムカーバイド、タンタルカーバイド、バナジウムカーバイド等の炭化物を添加することによって、回転工具Tが高温にさらされた際の耐酸化性を向上することができる。   More specifically, the rotary tool T is formed by mixing a fine powder of tungsten carbide and cobalt powder acting as a binder, filling the mold into a mold of the shape of the rotary tool T, and further forming the powder. It is created by baking and solidifying this. In addition to this, by adding carbides such as chromium carbide, tantalum carbide, vanadium carbide, it is possible to improve the oxidation resistance when the rotary tool T is exposed to a high temperature.

この表面改質においては、鉄鋼材料Wの表面に高速回転する回転工具Tのプローブを押し付け、押し付けた部分の鉄鋼材料Wを摩擦熱で軟化させる。このプローブ2が軟化した鉄鋼材料Wに挿入されると、ショルダー1が直接鉄鋼材料Wに接触し、この回転工具Tと鉄鋼材料Wとの接触面積が増大するため、摩擦熱の発生量が増大し、上記軟化がより速やかになされる。   In this surface modification, the probe of the rotary tool T that rotates at high speed is pressed against the surface of the steel material W, and the pressed steel material W is softened by frictional heat. When the probe 2 is inserted into the softened steel material W, the shoulder 1 is in direct contact with the steel material W, and the contact area between the rotary tool T and the steel material W increases, so the amount of frictional heat generated increases. In addition, the softening is performed more quickly.

このプローブ2が鉄鋼材料Wに挿入された状態でこの回転工具Tを所定速度vで移動させると、軟化した鉄鋼材料Wがプローブ2によって撹拌され、微細化組織や炭化物が導入された改質層3が形成される。   When the rotary tool T is moved at a predetermined speed v in a state where the probe 2 is inserted into the steel material W, the softened steel material W is stirred by the probe 2 and a modified layer in which a refined structure or carbide is introduced. 3 is formed.

この工程によって形成される改質層3の深さは上記回転工具Tのプローブ2の長さに依存し、そのプローブ2の長さを長くすると、その長さに対応する深さまで改質層3が形成される。   The depth of the modified layer 3 formed by this process depends on the length of the probe 2 of the rotary tool T, and when the length of the probe 2 is increased, the modified layer 3 reaches a depth corresponding to the length. Is formed.

この回転工具Tは上記鉄鋼材料Wの表面に垂直に立てた状態で使用すると、この回転工具Tのプローブ2によって生じる流動は、図3(a)に示すように、このプローブ2を中心とした水平面内での回転流動f1が主流となり、軟化した上記鉄鋼材料Wを上下方向に撹拌する流動はあまり生じない。   When the rotary tool T is used in a state where it stands upright on the surface of the steel material W, the flow generated by the probe 2 of the rotary tool T is centered on the probe 2 as shown in FIG. The rotational flow f1 in the horizontal plane becomes the main flow, and the flow of stirring the softened steel material W in the vertical direction does not occur much.

それに対して、この回転工具Tを垂直軸に対して、その進行方向の後方に傾斜角φだけ傾いた状態で使用すると、図3(b)に示すように、このプローブ2を中心とした傾斜角φだけ傾いた面内での回転流動f1が主流となる。この回転流動f1が水平面から傾斜した面内で生じるため、水平方向の流動のみならず、軟化した上記鉄鋼材料Wを上下方向に撹拌する流動f2も生じ、それによって、この流動による撹拌がより効率的になされる。   On the other hand, when the rotary tool T is used in a state where it is inclined with respect to the vertical axis by an inclination angle φ rearward in the advancing direction, as shown in FIG. The rotational flow f1 in the plane inclined by the angle φ becomes the mainstream. Since this rotational flow f1 occurs in a plane inclined from the horizontal plane, not only a horizontal flow but also a flow f2 that stirs the softened steel material W in the vertical direction is generated, whereby stirring by this flow is more efficient. Made.

また、この回転工具Tは4トン程度の非常に高い圧力で鉄鋼材料Wに押し付けられるため、回転工具Tのショルダー1が鉄鋼材料Wにめり込む。このめり込みは回転工具Tを移動させる際に抵抗となり、この負荷によって回転工具Tのショルダー1に損傷が生じやすい。そこで、回転工具Tを進行方向の後方に傾斜させると、進行方向の前方におけるショルダー1の鉄鋼材料Wへのめり込みが減少するため回転工具Tの移動がスムーズとなり、ショルダー1の損傷が防止される。   Further, since the rotary tool T is pressed against the steel material W with a very high pressure of about 4 tons, the shoulder 1 of the rotary tool T is recessed into the steel material W. This indentation becomes resistance when the rotary tool T is moved, and the shoulder 1 of the rotary tool T is easily damaged by this load. Therefore, when the rotary tool T is inclined rearward in the traveling direction, the shoulder 1 is not sunk into the steel material W in the front in the traveling direction, so that the rotary tool T moves smoothly and damage to the shoulder 1 is prevented.

この進行方向の前方におけるめり込みの解消には、回転工具Tを少なくとも0.5度は進行方向の後方に傾斜させるのが好ましい。また、この傾斜角を大きくすると進行方向の前方におけるめり込みは一層解消されるが、進行方向の後方においてショルダー1の鉄鋼材料Wへの押付け圧力が強くなり、摩擦熱の発生量が増大する。摩擦熱の発生量が増大すると、鉄鋼材料Wが局所的に高温となり、上述したように炭化物の生成量が減少して表面の硬度が低下する。そのため、回転工具Tの傾斜角は5度よりも小さくするのが好ましい。   In order to eliminate the stagnation in the forward direction, it is preferable that the rotary tool T is inclined backward in the forward direction by at least 0.5 degrees. Further, when the inclination angle is increased, the sag in the front in the traveling direction is further eliminated, but the pressing pressure of the shoulder 1 against the steel material W is increased in the rear in the traveling direction, and the amount of generated frictional heat is increased. When the generation amount of frictional heat increases, the steel material W becomes locally high in temperature, and as described above, the amount of carbide generated decreases and the surface hardness decreases. Therefore, it is preferable to make the inclination angle of the rotary tool T smaller than 5 degrees.

例えば、この回転工具Tをその進行方向の後方に3度傾斜させて処理を行うと、図4に示すように、上記鉄鋼材料Wの表層部から底層部まで、軟化した全ての領域に亘って、黒いコントラストで示す均質な改質層3が形成されることが確認できた。   For example, when the rotary tool T is processed by inclining 3 degrees backward in the traveling direction, as shown in FIG. 4, the entire surface of the steel material W is softened from the surface layer portion to the bottom layer portion. It was confirmed that a homogeneous modified layer 3 having a black contrast was formed.

この改質層3を走査電子顕微鏡で詳細に観察したところ、図5にその一例を示すように、1μm程度の大きさに微細化された鉄鋼材料の結晶粒4と、同じく1μm程度の炭化物5が観察され、この領域の硬度をビッカース硬度計で測定したところ、大幅に硬度が向上していることが確認された。これは、微細結晶粒4及び炭化物5の析出によるものと考えられる。   When this modified layer 3 was observed in detail with a scanning electron microscope, as shown in FIG. 5, for example, crystal grains 4 of the steel material refined to a size of about 1 μm and carbides 5 of the same size of about 1 μm. When the hardness in this region was measured with a Vickers hardness tester, it was confirmed that the hardness was greatly improved. This is considered due to the precipitation of the fine crystal grains 4 and the carbides 5.

表1に、回転工具Tの傾斜角φ、移動速度及び回転数を変化させたときの、溝欠陥の発生の有無、炭化物の生成状況、ビッカース硬さ、及び、これらを勘案した総合評価の結果をまとめた。ここでいう傾斜角φは、上記と同様に、回転工具Tの進行方向の後方への傾斜を意味する。   Table 1 shows the presence or absence of the occurrence of groove defects, the formation of carbides, Vickers hardness, and the results of comprehensive evaluation taking these into consideration when the inclination angle φ, the moving speed and the rotational speed of the rotary tool T are changed. Summarized. Here, the inclination angle φ means the backward inclination of the rotary tool T in the traveling direction, as described above.

いずれの傾斜角φで処理を行った場合においても、移動速度及び回転数によっては、溝欠陥が発生することがあることが明らかとなった。この溝欠陥とは、プローブ2を移動させた際にプローブ2の移動方向に連なって生じる、溝状の空洞欠陥のことをいい、その発生原因は十分には解明されていないが、処理の際の鉄鋼材料の温度等が関係していると推定されている。この溝欠陥が生じると改質層3の均質性が損なわれるので、この発生を抑制する必要がある。   It has been clarified that a groove defect may occur depending on the moving speed and the number of rotations when processing is performed at any inclination angle φ. This groove defect means a groove-like cavity defect that occurs continuously in the direction of movement of the probe 2 when the probe 2 is moved, and the cause of its occurrence has not been fully clarified. It is presumed that the temperature of steel materials is related. If this groove defect occurs, the homogeneity of the modified layer 3 is impaired, and it is necessary to suppress this occurrence.

傾斜角φが3度又は5度の場合は、移動速度が50mm/分の条件において溝欠陥が発生した。また、傾斜角φが0.5度の場合は、移動速度が25mm/分の条件において、回転数が130〜150rpmの際に溝欠陥が発生したが、回転数を100〜120rpmに低下すると溝欠陥は消滅した。   When the inclination angle φ was 3 degrees or 5 degrees, a groove defect occurred under the condition that the moving speed was 50 mm / min. Further, when the inclination angle φ is 0.5 degree, a groove defect occurs when the rotational speed is 130 to 150 rpm under the condition of a moving speed of 25 mm / min. However, when the rotational speed is reduced to 100 to 120 rpm, the groove The defect disappeared.

また、炭化物の生成状況に関しては、傾斜角φが0.5度で、移動速度が10〜25mm/分の条件において、軟化が生じた改質部の全体において均一に炭化物が生成していることが確認できた。   In addition, regarding the generation status of carbide, carbide is uniformly generated in the entire reformed portion where softening has occurred under the condition that the inclination angle φ is 0.5 degrees and the moving speed is 10 to 25 mm / min. Was confirmed.

さらに、ビッカース硬さに関しては、炭化物が改質部の全体において均一に確認されたものにおいて、高硬度を有していることが確認できた。   Furthermore, regarding the Vickers hardness, it was confirmed that the carbide had a high hardness in the case where the carbide was confirmed uniformly in the entire modified portion.

以上の溝欠陥の有無、炭化物の生成状況、及び、ビッカース硬さの結果を総合的に勘案すると、傾斜角φが0.5度、移動速度が25mm/分、及び、回転数が100〜120rpmの条件で処理したものが、耐摩耗性の観点において最も良好であると結論付けることができた。   Taking into account the above-mentioned presence or absence of groove defects, the formation of carbides, and the results of Vickers hardness, the inclination angle φ is 0.5 degrees, the moving speed is 25 mm / min, and the rotational speed is 100 to 120 rpm. It was possible to conclude that the product treated under the above conditions was the best in terms of wear resistance.

この最適処理条件は、鉄鋼材料の厚さ、回転工具Tのプローブ2の長さ等が変わると、処理時における鉄鋼材料の温度上昇及び冷却速度が変わるため、常に上記処理条件であるとは限らない。   This optimum processing condition is not always the above processing condition because the temperature rise and cooling rate of the steel material during processing change when the thickness of the steel material, the length of the probe 2 of the rotary tool T, and the like change. Absent.

一方、表面改質を行わなかったものは表面近傍に炭化物が存在しないためビッカース硬さが低く、耐摩耗性の観点において劣ると結論付けることができた。   On the other hand, it can be concluded that those not subjected to surface modification have low Vickers hardness because there is no carbide near the surface and are inferior in terms of wear resistance.

一実施例における回転工具の斜視図The perspective view of the rotary tool in one Example 一実施例における回転工具を用いた表面改質を示す作用図Action diagram showing surface modification using a rotating tool in one embodiment 一実施例において回転工具の回転による鉄鋼材料の流動を示す作用図で、(a)は回転工具を垂直に立てた場合、(b)は回転工具を傾斜させた場合In one Example, it is an effect | action figure which shows the flow of the steel material by rotation of a rotary tool, (a) when a rotary tool is stood | rightened vertically, (b) when a rotary tool is inclined 一実施例における回転工具を用いた表面改質を行なった高マンガン鋼の断面の光学顕微鏡写真で、(a)は表層部、(b)は中層部、(c)は底層部であり、(d)は各写真の撮影位置を示す図In the optical microscope photograph of the cross section of the high manganese steel which performed the surface modification using the rotary tool in one Example, (a) is a surface layer part, (b) is a middle layer part, (c) is a bottom layer part, d) is a diagram showing the shooting position of each photo 一実施例における回転工具を用いた表面改質を行なった高マンガン鋼の断面の走査電子顕微鏡写真Scanning electron micrograph of a cross section of a high manganese steel subjected to surface modification using a rotary tool in one example

符号の説明Explanation of symbols

2 プローブ
T 回転工具
W 鉄鋼材料
2 Probe T Rotary tool W Steel material

Claims (4)

鉄鋼材料(W)の表面に高速回転する回転工具(T)の先端に突出して設けられたプローブ(2)を接触させて、上記鉄鋼材料(W)の上記プローブ(2)との接触部分を摩擦熱により軟化し、その軟化した部分にこのプローブ(2)を挿入して撹拌し、上記鉄鋼材料(W)を改質する鉄鋼材料(W)の改質方法。   A probe (2) protruding from the tip of a rotating tool (T) that rotates at high speed is brought into contact with the surface of the steel material (W), so that the contact portion of the steel material (W) with the probe (2) A method for modifying a steel material (W), which is softened by frictional heat, and the probe (2) is inserted into the softened portion and stirred to modify the steel material (W). 上記回転工具(T)の素材として、タングステンカーバイドとコバルトを含む、耐熱性を有する超硬合金を用いた請求項1に記載の鉄鋼材料(W)の改質方法。   The method for modifying a steel material (W) according to claim 1, wherein a heat-resistant cemented carbide containing tungsten carbide and cobalt is used as a material of the rotary tool (T). 上記回転工具(T)の回転軸を、この回転工具(T)の進行方向の後方に垂直軸から0.5〜5度傾けた状態で上記鉄鋼材料(W)の改質を行う請求項1又は2に記載の鉄鋼材料(W)の改質方法。   The steel material (W) is reformed in a state where the rotating shaft of the rotating tool (T) is inclined 0.5 to 5 degrees from the vertical axis to the rear in the traveling direction of the rotating tool (T). Alternatively, the method for reforming a steel material (W) according to 2. 請求項1から3のいずれかに記載した改質方法にて改質が行われた鉄鋼材料。   A steel material modified by the reforming method according to any one of claims 1 to 3.
JP2006321661A 2006-11-29 2006-11-29 Method for reforming steel material Pending JP2008133519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321661A JP2008133519A (en) 2006-11-29 2006-11-29 Method for reforming steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321661A JP2008133519A (en) 2006-11-29 2006-11-29 Method for reforming steel material

Publications (1)

Publication Number Publication Date
JP2008133519A true JP2008133519A (en) 2008-06-12

Family

ID=39558562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321661A Pending JP2008133519A (en) 2006-11-29 2006-11-29 Method for reforming steel material

Country Status (1)

Country Link
JP (1) JP2008133519A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027920A (en) * 2011-06-21 2013-02-07 Hitachi Ltd Heat resistant alloy member, method for manufacturing the same, and method for repairing the same
JP2014062314A (en) * 2012-09-03 2014-04-10 Sumitomo Electric Ind Ltd Hard material, method for manufacturing hard material, cutting tool, and frictional agitation joining tool
JP2014077174A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Hard material, method for manufacturing hard material, cutting tool, and friction stir welding tool
JP2014105369A (en) * 2012-11-28 2014-06-09 Hitachi Constr Mach Co Ltd Surface treatment method by friction stir processing and shoe for caterpillar band manufactured by the method
JP2014162971A (en) * 2013-02-27 2014-09-08 Jfe Bars & Shapes Corp Steel for friction stirring process and high strength steel member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027920A (en) * 2011-06-21 2013-02-07 Hitachi Ltd Heat resistant alloy member, method for manufacturing the same, and method for repairing the same
JP2014062314A (en) * 2012-09-03 2014-04-10 Sumitomo Electric Ind Ltd Hard material, method for manufacturing hard material, cutting tool, and frictional agitation joining tool
JP2014077174A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Hard material, method for manufacturing hard material, cutting tool, and friction stir welding tool
JP2014105369A (en) * 2012-11-28 2014-06-09 Hitachi Constr Mach Co Ltd Surface treatment method by friction stir processing and shoe for caterpillar band manufactured by the method
JP2014162971A (en) * 2013-02-27 2014-09-08 Jfe Bars & Shapes Corp Steel for friction stirring process and high strength steel member

Similar Documents

Publication Publication Date Title
JP2008133519A (en) Method for reforming steel material
KR102460557B1 (en) Repair/modification method of metal-based substrates
TWI391199B (en) Friction stir method
KR101297479B1 (en) Tool for friction stir welding, method of welding with the same, and processed object obtained by the same
JP4792271B2 (en) Method for modifying alloy compact and alloy compact
US20190061046A1 (en) Devices, systems, and methods for increased wear resistance during low temperature friction stir processing
US11986901B2 (en) Friction stir welding tool and friction stir welding method
JP6889233B2 (en) Abrasion resistant film layer, its formation method, cutter ring of roller cutter for shield machine, roller cutter for shield machine and shield machine
JP2017094474A (en) Cutter made of cemented carbide and manufacturing method thereof
JP2007237258A (en) Tool for friction stir welding, welding method using the same tool, and workpiece obtained by the same method
CN106794548B (en) The plastic processing method of magnesium alloy
CN111940888B (en) Rotary tool for friction stir welding and friction stir welding method
JP2008132505A (en) Rotary tool and method for manufacturing composite material using the same
US11534854B2 (en) Friction stir welding tool and friction stir welding method
JP2011140060A (en) Tool for friction stirring treatment and contact material for vacuum valve
JP5289990B2 (en) Method for modifying the surface of a round shaft and reformer used therefor
JP2007237259A (en) Tool for friction stir welding, its manufacturing method, welding method using the same tool, and workpiece obtained by the same method
US20180207746A1 (en) Friction stir welding method
KR20160041485A (en) Method of modifying of metal structure using friction stir process
JP7432842B2 (en) Partial composite steel material and its manufacturing method
JP6329351B2 (en) Friction stir tool
JP2020001086A (en) Surface modification method for light metal casting
KR20090067435A (en) Surface reforming apparatus of continuous casting and surface reforming method thereof
US10071440B2 (en) Device for producing metal member
JP2017094476A (en) Scissors made of cemented carbide and manufacturing method thereof