JP7432842B2 - Partial composite steel material and its manufacturing method - Google Patents

Partial composite steel material and its manufacturing method Download PDF

Info

Publication number
JP7432842B2
JP7432842B2 JP2019219381A JP2019219381A JP7432842B2 JP 7432842 B2 JP7432842 B2 JP 7432842B2 JP 2019219381 A JP2019219381 A JP 2019219381A JP 2019219381 A JP2019219381 A JP 2019219381A JP 7432842 B2 JP7432842 B2 JP 7432842B2
Authority
JP
Japan
Prior art keywords
steel material
steel
friction stir
partially
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019219381A
Other languages
Japanese (ja)
Other versions
JP2021088742A (en
Inventor
英俊 藤井
好昭 森貞
祥宏 青木
光陽 大賀
誠 秋月
秀樹 天宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019219381A priority Critical patent/JP7432842B2/en
Publication of JP2021088742A publication Critical patent/JP2021088742A/en
Application granted granted Critical
Publication of JP7432842B2 publication Critical patent/JP7432842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は各種工業分野において使用される鉄鋼材の一部に硬質相を分散させることで、当該箇所の耐摩耗性を向上させた鉄鋼材及びその製造方法に関する。 The present invention relates to a steel material used in various industrial fields, in which a hard phase is dispersed in a part of the steel material to improve the wear resistance of the part, and a method for manufacturing the same.

近年、各種工業分野における製造工程や製品自体の高性能化及び自動生産システムの採用拡大に伴い、機械部品の性能の寿命に関わる耐摩耗性と、機械部品の形状を作りこむための加工性に優れた金属材が切望されている。 In recent years, with the improvement in the performance of manufacturing processes and products themselves in various industrial fields, and the increasing adoption of automated production systems, there has been an increase in wear resistance, which is related to the performance life of mechanical parts, and workability, which is required to create the shape of mechanical parts. Superior metal materials are in high demand.

一般的に、鉄鋼材の耐摩耗性を向上させるためには、セメンタイト相(FeC)よりも硬質な炭化物や窒化物などの硬質相の体積率を高めることが有効である。しかしながら、これらの硬質相を鉄鋼材の全体に分散させると、加工性、靭性及び疲労特性が低下することに加え、希少な金属元素を大量に添加するために経済性も損なう。 Generally, in order to improve the wear resistance of steel materials, it is effective to increase the volume fraction of hard phases such as carbides and nitrides that are harder than the cementite phase (Fe 3 C). However, when these hard phases are dispersed throughout the steel material, workability, toughness, and fatigue properties are reduced, and economic efficiency is also impaired due to the addition of large amounts of rare metal elements.

これに対して、特許文献1(特開2005-272919号公報)では、摩擦攪拌接合法を応用して、アルミニウム合金からなるワークに分散質を分散させることによって当該箇所を複合化することで、局所的に耐摩耗性や潤滑性を向上させる技術が開示されている。 On the other hand, in Patent Document 1 (Japanese Unexamined Patent Publication No. 2005-272919), by applying the friction stir welding method and dispersing the dispersoid in a workpiece made of an aluminum alloy, the part concerned is composited. Techniques for locally improving wear resistance and lubricity have been disclosed.

前記特許文献1に記載の複合材料の製造方法においては、部材全体を諸特性の優れた材質で構成する必要がないので、コストが高騰することを回避することができ、ワークの肉を溶融することなく塑性流動させることができるので、摩擦攪拌後のワークにいわゆるブローホール等の欠陥が発生することがない。また、ワークの低融点成分が気化することがないので、ワークの組成が変化して該ワークが変質することもない。更に、ワークを溶融させることがないので、残留応力を小さくすることができるとともに、ワークの歪を小さくすることができるという利点があり、分散質の種類を適宜選択することによって、所望の特性を向上させることができる、とされている。 In the method for manufacturing a composite material described in Patent Document 1, the entire member does not need to be made of a material with excellent properties, so it is possible to avoid an increase in cost, and it is possible to avoid melting the flesh of the workpiece. Since plastic flow can be achieved without any friction stirring, defects such as so-called blowholes do not occur in the workpiece after friction stirring. Furthermore, since the low melting point components of the workpiece do not vaporize, the composition of the workpiece does not change and the quality of the workpiece does not change. Furthermore, since the workpiece is not melted, it has the advantage of reducing residual stress and distortion of the workpiece. By selecting the type of dispersoid appropriately, desired characteristics can be achieved. It is said that it can be improved.

また、特許文献2(特開2014-172072号公報)では、中・高炭素鋼の表面に対して摩擦攪拌処理を行う工程を含む中・高炭素鋼の表面改質方法が開示されている。また、当該表面改質方法においては、摩擦攪拌処理における中・高炭素鋼の表面温度を、Ac1変態点を超えるようにすることや、Acm変態点を超えるようにすることが開示されている。 Furthermore, Patent Document 2 (Japanese Unexamined Patent Publication No. 2014-172072) discloses a method for surface modification of medium/high carbon steel, which includes a step of performing a friction stir treatment on the surface of medium/high carbon steel. Furthermore, in the surface modification method, it is disclosed that the surface temperature of medium/high carbon steel in friction stir treatment is made to exceed the A c1 transformation point or to exceed the A cm transformation point. There is.

上記特許文献2に記載の表面改質方法においては、摩擦攪拌処理の工程において、炭素鋼の表面温度がAcm変態点を超えるように摩擦攪拌処理を行うことによって、水素脆化を特に抑制することができる、とされている。また、このような処理を行うことによって、炭素鋼の表面の組織を、パーライトとマルテンサイトとを含む組織とすることが可能である、とされている。 In the surface modification method described in Patent Document 2, hydrogen embrittlement is particularly suppressed by performing the friction stirring treatment so that the surface temperature of the carbon steel exceeds the A cm transformation point in the friction stirring treatment step. It is said that it is possible. Further, it is said that by performing such a treatment, it is possible to change the surface structure of carbon steel to a structure containing pearlite and martensite.

特開2005-272919号公報Japanese Patent Application Publication No. 2005-272919 特開2014-172072号公報Japanese Patent Application Publication No. 2014-172072

しかしながら、上記特許文献1に開示されている複合材料の製造方法及び特許文献2に開示されている表面改質方法では、摩擦攪拌処理を施した領域の硬度が著しく上昇し、当該領域を含む金属材の切断、切削加工及び塑性加工が困難となってしまう。その結果、任意の形状を有する金属部材を得ることが難しく、加工コストも大幅に増加してしまう。特に、被処理材が鉄鋼材の場合、摩擦攪拌処理に伴う相変態に起因して母材硬度が大幅に上昇し、これらの問題はより深刻となる。 However, in the composite material manufacturing method disclosed in Patent Document 1 and the surface modification method disclosed in Patent Document 2, the hardness of the area subjected to the friction stir treatment increases significantly, and the hardness of the area containing the area increases significantly. This makes cutting, machining, and plastic working of the material difficult. As a result, it is difficult to obtain a metal member having an arbitrary shape, and processing costs also increase significantly. In particular, when the material to be treated is a steel material, the hardness of the base material increases significantly due to phase transformation accompanying the friction stir treatment, making these problems more serious.

以上のような従来技術における問題点に鑑み、本発明の目的は、鉄鋼材の任意の領域を部分複合化する方法であって、簡便かつ効率的に所望の最終形状とした後に、部分複合化領域に高硬度及び優れた耐摩耗性を付与できる部分複合化鉄鋼材の製造方法を提供することにある。また、本発明は、良好な加工性を有する部分複合化鉄鋼材を提供することも目的としている。 In view of the above-mentioned problems in the prior art, an object of the present invention is to provide a method for partially composing an arbitrary region of a steel material. An object of the present invention is to provide a method for manufacturing a partially composite steel material that can impart high hardness and excellent wear resistance to a region. Another object of the present invention is to provide a partially composite steel material having good workability.

本発明者は上記目的を達成すべく、鉄鋼材の部分複合化方法について鋭意研究を重ねた結果、摩擦攪拌プロセスの処理温度を鉄鋼材の化学組成で決定されるA点以下又はAcm点以下とすること等が極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventor has conducted intensive research on a method for partially composite steel materials, and as a result, the processing temperature of the friction stir process is determined by the chemical composition of the steel material at A 3 points or less or A cm point. We have found that the following is extremely effective, and have arrived at the present invention.

即ち、本発明は、
硬質相となる添加材を鉄鋼材の表面部位に供給し、前記表面部位に摩擦攪拌プロセスを施すことで前記鉄鋼材の任意の領域に前記添加材を分散させ、
前記摩擦攪拌プロセスの処理温度を前記鉄鋼材の化学組成で決定されるA点以下又はAcm点以下とすること、
を特徴とする部分複合化鉄鋼材の製造方法、を提供する。
That is, the present invention
Supplying an additive that becomes a hard phase to a surface area of a steel material, applying a friction stirring process to the surface area to disperse the additive in any region of the steel material,
setting the processing temperature of the friction stir process to below A3 points or below A cm points determined by the chemical composition of the steel material;
Provided is a method for manufacturing a partially composite steel material characterized by the following.

ここで、摩擦攪拌プロセスの具体的な方法は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の方法で摩擦攪拌プロセスを施すことができる。なお、摩擦攪拌プロセスとは、金属材の固相接合技術である摩擦攪拌接合(FSW:Friction Stir Welding)を金属材の表面改質技術として利用するものである。 Here, the specific method of the friction stirring process is not particularly limited as long as it does not impair the effects of the present invention, and the friction stirring process can be performed by various conventionally known methods. Note that the friction stir process is a process that utilizes friction stir welding (FSW), which is a solid phase welding technology for metal materials, as a surface modification technology for metal materials.

また、鉄鋼材の表面部位への添加材の供給方法についても、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の方法を用いることができる。例えば、摩擦攪拌プロセス用ツールの進行方向前方に専用のノズル等を持いて供給してもよく、予め当該添加材を含むコーティングを施してもよく、摩擦攪拌プロセス用ツールから供給してもよい。ここで、添加材をより確実に鉄鋼材に分散させるためには、鉄鋼材の表面に溝を形成し、当該溝に添加材を充填することが好ましい。 Further, the method of supplying the additive to the surface portion of the steel material is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known methods can be used. For example, a dedicated nozzle or the like may be provided in front of the friction stir process tool in the traveling direction, a coating containing the additive may be applied in advance, or the material may be supplied from the friction stir process tool. Here, in order to more reliably disperse the additive into the steel material, it is preferable to form grooves on the surface of the steel material and fill the grooves with the additive.

鉄鋼材の表面に形成させた溝に添加材を充填し、当該領域に摩擦攪拌プロセスを施す場合、予備工程として、底面に突起を有さない摩擦攪拌プロセス用ツールを用いて摩擦攪拌プロセスを施し、鉄鋼材表面のみに塑性流動を生じさせることで、蓋を形成することが好ましい。当該蓋によって、添加材の分散を目的として底面に突起を有する摩擦攪拌プロセス用ツールを用いて摩擦攪拌プロセスを施す際に、添加材の飛散を抑制することができる。 When filling grooves formed on the surface of a steel material with additives and performing a friction stir process on the area, as a preliminary step, the friction stir process is performed using a friction stir process tool that does not have protrusions on the bottom surface. It is preferable to form the lid by causing plastic flow only on the surface of the steel material. The lid can suppress scattering of the additive when performing a friction stir process using a friction stir process tool having protrusions on the bottom surface for the purpose of dispersing the additive.

また、本発明の部分複合化鉄鋼材の製造方法においては、摩擦攪拌プロセスの処理温度を鉄鋼材の化学組成で決定されるA点以下又はAcm点以下とすることを特徴としている。A点以下又はAcm点以下の温度で摩擦攪拌プロセスを施すことで、オーステナイトに相変態しない領域が形成され、その後、硬質なパーライト、ベイナイト、マルテンサイト及びマッシブフェライト等が形成されない領域が形成されるため、複合化領域の加工性を確保することができる。即ち、部分的な硬化領域の形成を目的とする一般的な鉄鋼材の摩擦攪拌プロセスとは、完全に逆の発想である。 Furthermore, the method for producing a partially composite steel material of the present invention is characterized in that the treatment temperature of the friction stir process is set to below the A3 point or below the Acm point, which is determined by the chemical composition of the steel material. By performing the friction stirring process at a temperature of A 3 points or below or A cm points or below, a region where no phase transformation occurs in austenite is formed, and then a region where hard pearlite, bainite, martensite, massive ferrite, etc. are not formed is formed. Therefore, workability of the composite area can be ensured. That is, the concept is completely opposite to the general friction stirring process for steel materials, which aims to form partially hardened regions.

摩擦攪拌プロセスの処理温度の制御方法は、本発明の効果を損なわない限りにおいて特に限定されず、摩擦攪拌接合及び摩擦攪拌プロセスに関して従来公知の種々の方法を用いればよい。具体的には、摩擦攪拌プロセス用ツールの回転速度、移動速度及び印加荷重によって制御することができ、回転速度の低下、移動速度の増加及び印加荷重の低下によって処理温度を低下させることができる。その他、必要に応じて送風や水、液体窒素又は液体CO等を用いた強制冷却を用いてもよい。 The method of controlling the processing temperature of the friction stir process is not particularly limited as long as it does not impair the effects of the present invention, and various methods conventionally known regarding friction stir welding and friction stir processes may be used. Specifically, it can be controlled by the rotation speed, movement speed, and applied load of the friction stir process tool, and the processing temperature can be lowered by decreasing the rotation speed, increasing the movement speed, and decreasing the applied load. In addition, forced cooling using air blowing, water, liquid nitrogen, liquid CO2 , etc. may be used as necessary.

本発明における摩擦攪拌プロセスとは、(1)摩擦攪拌プロセス用ツールを回転させつつ処理方向に向けて移動させる態様、(2)摩擦攪拌プロセス用ツールを回転させつつ処理位置で移動させない態様、(3)(1)で形成される処理領域を重畳させる態様、(4)(2)で形成される処理領域を重畳させる態様、及び(5)(1)~(4)の処理を任意に組み合わせる態様、が含まれる。 The friction stir process in the present invention includes (1) a mode in which the friction stir process tool is rotated and moved in the processing direction, (2) a mode in which the friction stir process tool is rotated but not moved at the processing position, ( 3) A mode in which the processing areas formed in (1) are overlapped, (4) a mode in which the processing areas formed in (2) are overlapped, and (5) the processes in (1) to (4) are arbitrarily combined. Aspects are included.

また、本発明の部分複合化鉄鋼材の製造方法においては、前記処理温度を前記鉄鋼材の化学組成で決定されるA変態点以下とすること、が好ましい。処理温度を鉄鋼材の化学組成で決定されるA変態点以下とすることで、オーステナイトへの相変態を完全に抑制することができ、硬質なパーライト、ベイナイト、マルテンサイト及びマッシブフェライト等の生成を完全に抑制することができる。その結果、複合化領域のより良好な加工性を確保することができる。 Further, in the method for producing a partially composite steel material of the present invention, it is preferable that the treatment temperature is set to a temperature equal to or lower than the A1 transformation point determined by the chemical composition of the steel material. By keeping the treatment temperature below the A1 transformation point determined by the chemical composition of the steel material, phase transformation to austenite can be completely suppressed and the formation of hard pearlite, bainite, martensite, massive ferrite, etc. can be completely suppressed. As a result, better workability of the composite region can be ensured.

また、本発明の部分複合化鉄鋼材の製造方法においては、前記摩擦攪拌プロセスを施した前記鉄鋼材を所望の機械部品の形状に加工する加工工程と、前記形状に加工した前記鉄鋼材に対して熱処理を施す熱処理工程と、を有すること、が好ましい。良好な加工性を有する部分複合化鉄鋼材を所望の機械部品の形状に加工した後に熱処理を施すことで、高硬度かつ優れた耐摩耗性を有する部分複合化領域が形成された鉄鋼製機械部品を、効率的かつ安価に得ることができる。なお、熱処理条件は、機械部品の必要特性を満足できる熱処理であればよく特に限定されないが、硬質相が基材に固溶しない温度範囲で熱処理することが好ましい。 The method for producing a partially composite steel material of the present invention further includes a processing step of processing the steel material subjected to the friction stir process into the shape of a desired mechanical part, and a step of processing the steel material processed into the shape into It is preferable to have a heat treatment step of performing heat treatment. A steel machine part in which a partially composite region with high hardness and excellent wear resistance is formed by processing a partially composite steel material with good workability into the desired shape of the machine part and then applying heat treatment. can be obtained efficiently and inexpensively. Note that the heat treatment conditions are not particularly limited as long as the heat treatment can satisfy the required characteristics of the mechanical component, but it is preferable to conduct the heat treatment in a temperature range in which the hard phase does not dissolve in the base material.

また、本発明の部分複合化鉄鋼材の製造方法においては、前記添加材にセラミックス材及び/又は、炭素又は窒素と結合することで炭化物又は窒化物を形成する金属材を含むこと、が好ましい。鉄鋼材にセラミックス材を分散させることで、当該領域の硬度及び耐摩耗性を向上させることができる。また、炭素又は窒素と結合することで炭化物又は窒化物を形成する金属材を分散させることで、摩擦攪拌プロセス中及び/又は熱処理によって、炭化物又は窒化物が形成し、複合化領域の硬度及び耐摩耗性を向上させることができる。硬質相の形態は特に限定されないが、粒状又は板状であることが好ましい。 Further, in the method for manufacturing a partially composite steel material of the present invention, it is preferable that the additive material includes a ceramic material and/or a metal material that forms a carbide or nitride by combining with carbon or nitrogen. By dispersing the ceramic material in the steel material, the hardness and wear resistance of the region can be improved. Additionally, by dispersing metal materials that form carbides or nitrides when combined with carbon or nitrogen, carbides or nitrides are formed during the friction stir process and/or by heat treatment, increasing the hardness and resistance of the composite region. Abrasion resistance can be improved. Although the form of the hard phase is not particularly limited, it is preferably granular or plate-like.

セラミックス材としては、鉄鋼材料の相変態により形成されるマルテンサイト相やセメンタイト相よりも硬質な炭化タングステン、炭化モリブデン、窒化チタン及び窒化クロム等を好適に使用することができるが、炭化タングステンを用いることがより好ましい。炭化タングステンを鉄鋼材に分散させることにより、高い硬度を有する炭化タングステンの複合効果に加え、炭化タングステンから分解した炭素が鉄鋼材に供給され、熱処理を施すことによって、当該炭素に起因する析出物の形成や変態相の高硬度化が期待できる。また、炭素や窒素と結合し、硬質な炭化物又は窒化物を形成する金属材としては、タングステン、モリブデン、チタン、ニオブ、ジルコニウム、クロム及びコバルト等を用いることができる。 As the ceramic material, tungsten carbide, molybdenum carbide, titanium nitride, chromium nitride, etc., which are harder than the martensitic phase or cementite phase formed by phase transformation of steel materials, can be preferably used, but tungsten carbide is used. It is more preferable. By dispersing tungsten carbide into steel materials, in addition to the combined effect of tungsten carbide with high hardness, carbon decomposed from tungsten carbide is supplied to the steel materials, and by heat treatment, precipitates caused by the carbon are eliminated. Higher hardness of the formed and transformed phases can be expected. Further, as the metal material that combines with carbon and nitrogen to form a hard carbide or nitride, tungsten, molybdenum, titanium, niobium, zirconium, chromium, cobalt, etc. can be used.

更に、本発明の部分複合化鉄鋼材の製造方法においては、前記鉄鋼材が純鉄、普通鋼、特殊鋼及び鉄基合金のうちのいずれかであること、が好ましい。鉄鋼材の種類については、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の鉄鋼材を用いることができるが、純鉄、普通鋼、特殊鋼及び鉄基合金のうちのいずれかとすることで、部分複合化鉄鋼材を機械部品として好適に使用することができる。 Furthermore, in the method for producing a partially composite steel material of the present invention, it is preferable that the steel material is any one of pure iron, common steel, special steel, and iron-based alloy. The type of steel material is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known steel materials can be used, including pure iron, ordinary steel, special steel, and iron-based alloys. In either case, the partially composite steel material can be suitably used as a mechanical component.

また、本発明は、
鉄鋼材の任意の領域に硬質粒子が分散した部分複合化領域が形成され、
前記鉄鋼材の炭素含有量が0.2~1.2質量%であり、
前記部分複合化領域のビッカース硬度が前記鉄鋼材のビッカース硬度の3倍以下であること、
を特徴とする部分複合化鉄鋼材、も提供する。
Moreover, the present invention
A partially composite region in which hard particles are dispersed is formed in any region of the steel material,
The carbon content of the steel material is 0.2 to 1.2% by mass,
The Vickers hardness of the partially composited region is not more than three times the Vickers hardness of the steel material;
We also provide partially composite steel materials featuring:

本発明の部分複合化鉄鋼材は、高い硬度と優れた耐摩耗性を有する部分複合化領域が形成された鉄鋼製機械部品を製造するために好適に用いることができ、炭素含有量が0.2~1.2質量%であるにもかかわらず、部分複合化領域のビッカース硬度が鉄鋼材の3倍以下に抑えられている(部分複合化領域の硬度上昇が小さい)。その結果、良好な加工性を有する部分複合化鉄鋼材を所望の機械部品の形状に加工した後に熱処理を施すことで、高硬度かつ優れた耐摩耗性を有する部分複合化領域が形成された鉄鋼製機械部品を、効率的かつ安価に得ることができる。なお、鉄鋼材の炭素含有量は0.2~1.2質量%であることから、十分な強度を有している。 The partially composite steel material of the present invention can be suitably used to manufacture a steel machine part in which a partially composite region having high hardness and excellent wear resistance is formed, and has a carbon content of 0. Even though the content is 2 to 1.2% by mass, the Vickers hardness in the partially composited region is suppressed to three times or less that of the steel material (hardness increase in the partially composited region is small). As a result, by processing the partially composite steel material with good workability into the shape of the desired mechanical part and then applying heat treatment, the steel material has a partially composite region with high hardness and excellent wear resistance. Machine parts can be obtained efficiently and at low cost. Note that since the carbon content of the steel material is 0.2 to 1.2% by mass, it has sufficient strength.

また、本発明の部分複合化鉄鋼材においては、前記硬質粒子が炭化タングステンであること、が好ましい。炭化タングステンの分散により、高い硬度を有する炭化タングステンの複合効果が得られることに加え、炭化タングステンから分解した炭素が鉄鋼材に供給され、熱処理によって形成される析出物や高硬度な変態相によって、部分複合化領域に極めて高い硬度と耐摩耗性が付与される。 Moreover, in the partially composite steel material of the present invention, it is preferable that the hard particles are tungsten carbide. By dispersing tungsten carbide, in addition to obtaining the combined effect of tungsten carbide with high hardness, the carbon decomposed from tungsten carbide is supplied to the steel material, and the precipitates and high hardness transformation phases formed by heat treatment, Extremely high hardness and wear resistance are imparted to the partially composite area.

更に、本発明の部分複合化鉄鋼材においては、前記部分複合化領域における前記硬質粒子の割合が0.5~8体積%であること、が好ましい。硬質粒子の割合が0.5体積%以上であることで、部分複合化領域に高い硬度及び耐摩耗性を付与することができ、8体積%以下とすることで、硬質粒子の凝集領域等に起因する脆化を抑制することができる。 Further, in the partially composited steel material of the present invention, it is preferable that the proportion of the hard particles in the partially composited region is 0.5 to 8% by volume. By setting the proportion of hard particles to 0.5% by volume or more, high hardness and wear resistance can be imparted to the partially composite region, and by setting the proportion to 8% by volume or less, it is possible to impart high hardness and wear resistance to the agglomerated region of hard particles. The resulting embrittlement can be suppressed.

なお、本発明の部分複合化鉄鋼材は、本発明の部分複合化鉄鋼材の製造方法によって好適に製造することができる。 The partially composite steel material of the present invention can be suitably manufactured by the method for producing a partially composite steel material of the present invention.

本発明によれば、鉄鋼材の任意の領域を部分複合化する方法であって、簡便かつ効率的に所望の最終形状とした後に、部分複合化領域に高硬度及び優れた耐摩耗性を付与できる部分複合化鉄鋼材の製造方法を提供することができる。また、本発明によれば、良好な加工性を有する部分複合化鉄鋼材を提供することができる。 According to the present invention, there is provided a method for partially compounding an arbitrary region of a steel material, and after forming the desired final shape simply and efficiently, imparting high hardness and excellent wear resistance to the partially composited region. It is possible to provide a method for manufacturing a partially composite steel material that can be produced. Further, according to the present invention, a partially composite steel material having good workability can be provided.

本発明の部分複合化鉄鋼材の製造方法に関する予備処理の模式図である。FIG. 2 is a schematic diagram of preliminary treatment related to the method for manufacturing a partially composite steel material of the present invention. 本発明の部分複合化鉄鋼材の製造方法に関する摩擦攪拌プロセスの模式図である。FIG. 2 is a schematic diagram of a friction stir process related to the method for manufacturing a partially composite steel material of the present invention. 本発明の部分複合化鉄鋼材の模式図である。FIG. 1 is a schematic diagram of a partially composite steel material of the present invention. 部分複合化鉄鋼材から鉄鋼製機械部品を製造する模式図である。FIG. 2 is a schematic diagram of manufacturing a steel machine part from a partially composite steel material. 実施例で得られた部分複合化領域表面の外観写真である。It is an appearance photograph of the surface of a partially composited region obtained in an example. 実施例で得られた部分複合化領域の断面写真である(エッチングなし)。It is a cross-sectional photograph of a partially composited region obtained in an example (no etching). 実施例で得られた部分複合化領域の断面写真である(エッチングあり)。It is a cross-sectional photograph of a partially composited region obtained in an example (with etching). 実施例で得られた部分複合化領域断面のビッカース硬度の水平分布である。It is a horizontal distribution of Vickers hardness of a cross section of a partially composite region obtained in an example. 比較例で得られた部分複合化領域表面の外観写真である。It is an appearance photograph of the surface of a partially composited region obtained in a comparative example. 比較例で得られた部分複合化領域の断面写真である(エッチングなし)。It is a cross-sectional photograph of a partially composited region obtained in a comparative example (no etching). 比較例で得られた部分複合化領域の断面写真である(エッチングあり)。It is a cross-sectional photograph of a partially composited region obtained in a comparative example (with etching).

以下、図面を参照しながら本発明の部分複合化鉄鋼材及びその製造方法について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, the partially composite steel material of the present invention and its manufacturing method will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or equivalent parts are given the same reference numerals, and redundant descriptions may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions of the illustrated components and their ratios may differ from the actual ones.

(1)部分複合化鉄鋼材の製造方法
ここでは、本発明の部分複合化鉄鋼材の製造方法の一態様として、鉄鋼材の表面に形成した溝に添加材を充填し、当該領域に対して摩擦攪拌プロセスを施す方法について詳細に説明する。
(1) Method for manufacturing partially composite steel materials Here, as one aspect of the method for manufacturing partially composite steel materials of the present invention, grooves formed on the surface of the steel material are filled with an additive material, and the area is The method of applying the friction stir process will be explained in detail.

図1及び図2は、本発明の部分複合化鉄鋼材の製造方法の模式図である。図1は予備処理、図2は部分複合化領域を形成させる摩擦攪拌プロセスを示している。鉄鋼材2の耐摩耗性が必要とされる領域4内に凹部6を設け、凹部6に添加材8を充填する。次に、添加材8を充填させた凹部6の幅よりも大きな予備処理摩擦攪拌プロセス用ツール10を回転させつつ下降させ、凹部6を含む鉄鋼材2の表面に押し当てる。これにより、凹部6の周辺の鉄鋼材2が摩擦攪拌によって塑性流動し、当該塑性流動によって凹部6の表面に鉄鋼材2からなる蓋12が形成される。ここで、予備処理摩擦攪拌プロセス用ツール10の底面には突起(プローブ)を設けていない。 FIGS. 1 and 2 are schematic diagrams of the method for manufacturing a partially composite steel material of the present invention. FIG. 1 shows a preliminary treatment, and FIG. 2 shows a friction stir process for forming a partially composite region. A recess 6 is provided in a region 4 of the steel material 2 where wear resistance is required, and the recess 6 is filled with an additive 8. Next, the pretreatment friction stir process tool 10, which is larger in width than the recess 6 filled with the additive 8, is rotated and lowered, and pressed against the surface of the steel material 2 including the recess 6. As a result, the steel material 2 around the recess 6 plastically flows due to friction stirring, and the lid 12 made of the steel material 2 is formed on the surface of the recess 6 due to the plastic flow. Here, no protrusion (probe) is provided on the bottom surface of the pretreatment friction stir process tool 10.

予備処理における摩擦攪拌プロセスの条件は特に限定されないが、鉄鋼材2の化学組成で決定されるA点以上又はAcm点以上とすることで、鉄鋼材2の塑性流動が円滑になり、蓋12を容易に形成することができる。また、処理温度を高くすると予備処理摩擦攪拌プロセス用ツール10の温度は上昇するものの、印加されるプロセス荷重を低減することができる。 The conditions of the friction stir process in the preliminary treatment are not particularly limited, but by setting the A point or more or the A cm point or more, which is determined by the chemical composition of the steel material 2, the plastic flow of the steel material 2 becomes smooth, and the lid 12 can be easily formed. Furthermore, although increasing the processing temperature increases the temperature of the pretreatment friction stir process tool 10, the applied process load can be reduced.

次に、底面に突起を有する摩擦攪拌プロセス用ツール14を用いて、蓋12が形成された凹部6に対して摩擦攪拌プロセスを施すことで、硬質相が分散した部分複合化領域が形成される。摩擦攪拌プロセス用ツール14のプローブの長さは、所望の部分複合化領域の厚さに応じて決定すればよい。 Next, a friction stir process is performed on the recess 6 in which the lid 12 is formed using a friction stir process tool 14 having a protrusion on the bottom surface, thereby forming a partially composite region in which the hard phase is dispersed. . The length of the probe of the friction stir process tool 14 may be determined depending on the desired thickness of the partially composited region.

部分複合化領域を形成させる場合の摩擦攪拌プロセスの処理温度は鉄鋼材2の化学組成で決定されるA点以下又はAcm点以下であり、A点以下とすることがより好ましい。A点以下又はAcm点以下の温度で摩擦攪拌プロセスを施すことで、オーステナイトに相変態しない領域が形成され、硬質なパーライト、ベイナイト、マルテンサイト及びマッシブフェライト等が形成されない領域が形成されるため、複合化領域の加工性を確保することができる。また、処理温度を鉄鋼材2の化学組成で決定されるA変態点以下とすることで、オーステナイトへの相変態を完全に抑制することができ、硬質なパーライト、ベイナイト、マルテンサイト及びマッシブフェライト等の生成を完全に抑制することができる。その結果、複合化領域のより良好な加工性を確保することができる。 The processing temperature of the friction stir process when forming a partially composite region is determined by the chemical composition of the steel material 2 at an A point of 3 or less or an A cm point or less, and more preferably an A of 1 point or less. By performing the friction stirring process at a temperature of A 3 points or below or A cm points or below, a region where austenite does not undergo phase transformation is formed, and a region where hard pearlite, bainite, martensite, massive ferrite, etc. is not formed is formed. Therefore, workability of the composite area can be ensured. In addition, by setting the treatment temperature to below the A1 transformation point determined by the chemical composition of the steel material 2, phase transformation to austenite can be completely suppressed, resulting in hard pearlite, bainite, martensite, and massive ferrite. etc. can be completely suppressed. As a result, better workability of the composite region can be ensured.

ここで、摩擦攪拌プロセス用ツール14の回転速度、移動速度及び印加荷重によって処理温度を制御することができ、特に、回転速度によって効果的に処理温度を制御することができる。摩擦攪拌プロセス用ツール14の材質、形状及びサイズや鉄鋼材2の組成及び組織、凹部6のサイズ及び添加材8の種類等にも依存するが、例えば、超硬合金製でショルダ径が10~15mm程度の摩擦攪拌プロセス用ツール14を用いて炭素鋼に処理を施す場合、回転速度を150rpm以下、好ましくは100rpm以下、より好ましくは80rpm以下とすることで、処理温度をA点以下とすることができる。 Here, the processing temperature can be controlled by the rotation speed, movement speed, and applied load of the friction stir process tool 14, and in particular, the processing temperature can be effectively controlled by the rotation speed. Although it depends on the material, shape and size of the friction stir process tool 14, the composition and structure of the steel material 2, the size of the recess 6 and the type of additive 8, for example, it is made of cemented carbide and has a shoulder diameter of 10~ When treating carbon steel using a friction stir process tool 14 of about 15 mm, the rotation speed is set to 150 rpm or less, preferably 100 rpm or less, more preferably 80 rpm or less, so that the treatment temperature is A1 point or less. be able to.

摩擦攪拌プロセス用ツール14を用いた摩擦攪拌プロセスは複数回行ってもよく、複数回の処理によって硬質相をより均一に分散させることができる。ここで、摩擦攪拌プロセスで形成される攪拌部(部分複合化領域)の組織及び硬質相の分散状況は処理方向に対して左右非対称となる。これに対し、摩擦攪拌プロセス用ツール14の回転方向を逆にして摩擦攪拌プロセスを重畳させるか、摩擦攪拌プロセスの開始位置と終了位置を逆にして摩擦攪拌プロセスを重畳させることにより、当該非対称性を改善することができる。 The friction stirring process using the friction stirring process tool 14 may be performed multiple times, and the hard phase can be more uniformly dispersed by multiple treatments. Here, the structure of the stirred part (partial composite region) formed by the friction stirring process and the state of dispersion of the hard phase are asymmetrical with respect to the processing direction. On the other hand, by reversing the rotational direction of the friction stirring process tool 14 and overlapping the friction stirring process, or by reversing the starting and ending positions of the friction stirring process and overlapping the friction stirring process, the asymmetry can be prevented. can be improved.

予備処理摩擦攪拌プロセス用ツール10及び摩擦攪拌プロセス用ツール14の材質は、例えば、タングステンカーバイト(WC)、コバルト(Co)、ニッケル(Ni)からなる超硬合金、コバルト(Co)基合金、イリジウム(Ir)、タングステン(W)等の高融点金属及びその合金、またはSi及びPCBN等のセラミックスからなるものとすることができる。 The materials of the pretreatment friction stir process tool 10 and the friction stir process tool 14 include, for example, a cemented carbide made of tungsten carbide (WC), cobalt (Co), and nickel (Ni), a cobalt (Co)-based alloy, It can be made of high melting point metals such as iridium (Ir) and tungsten (W) and their alloys, or ceramics such as Si 3 N 4 and PCBN.

摩擦攪拌プロセス用ツール14を用いた摩擦攪拌プロセスを施した鉄鋼材2を所望の機械部品の形状に加工した後、部分複合化領域を含む領域に対して熱処理を施すことで、高硬度かつ優れた耐摩耗性を有する部分複合化領域が形成された鉄鋼製機械部品を、効率的かつ安価に得ることができる。なお、熱処理条件は、機械部品の必要特性を満足できる熱処理であればよく特に限定されないが、硬質相が鉄鋼材2に固溶しない温度範囲で熱処理することが好ましい。 After processing the steel material 2 that has been subjected to the friction stir process using the friction stir process tool 14 into the shape of the desired mechanical part, heat treatment is applied to the region including the partially composite region, resulting in high hardness and excellent It is possible to efficiently and inexpensively obtain a steel machine component in which a partially composite region having wear resistance is formed. Note that the heat treatment conditions are not particularly limited as long as the heat treatment can satisfy the required characteristics of the mechanical component, but it is preferable to conduct the heat treatment in a temperature range in which the hard phase does not dissolve in the steel material 2.

熱処理の方法は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の熱処理方法を用いることができるが、レーザ焼入れ、高周波誘導加熱焼入れ及び火炎焼入れ等の局所的な焼入れ処理を用いて部分複合化領域に対して熱処理を施すことで、最小限のエネルギー消費で高硬度領域を得ることができる。 The heat treatment method is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known heat treatment methods can be used, including local hardening treatments such as laser hardening, high-frequency induction heating hardening, and flame hardening. By applying heat treatment to the partially composited region using the method, a high hardness region can be obtained with minimal energy consumption.

(2)部分複合化鉄鋼材
図3は、本発明の部分複合化鉄鋼材の模式図である。部分複合化鉄鋼材20は、鉄鋼材2を基材とし、部分複合化領域22を有している。また、図4に、部分複合化鉄鋼材20から鉄鋼製機械部品30を製造する模式図を示す。なお、鉄鋼製機械部品30は部分複合化領域22を刃先とする工業用刃物である。
(2) Partially Composite Steel Material FIG. 3 is a schematic diagram of the partially composite steel material of the present invention. The partially composited steel material 20 uses the steel material 2 as a base material and has a partially composited region 22 . Further, FIG. 4 shows a schematic diagram of manufacturing a steel machine part 30 from the partially composite steel material 20. Note that the steel machine component 30 is an industrial cutter having the partially composite region 22 as a cutting edge.

鉄鋼材2の炭素含有量は0.2~1.2質量%であり、硬質粒子が分散しているにもかかわらず、部分複合化領域22のビッカース硬度は鉄鋼材2の3倍以下に抑えられている。その結果、良好な加工性を有する部分複合化鉄鋼材20を鉄鋼製機械部品30の形状に加工した後に熱処理を施すことで、高硬度かつ優れた耐摩耗性を有する部分複合化領域22を刃先とする鉄鋼製機械部品30を、効率的かつ安価に得ることができる。なお、鉄鋼材2の炭素含有量は0.2~1.2質量%であることから、工業用刃物の基材として十分な強度を有している。 Although the carbon content of the steel material 2 is 0.2 to 1.2% by mass and the hard particles are dispersed, the Vickers hardness of the partially composite region 22 is suppressed to less than three times that of the steel material 2. It is being As a result, by heat-treating the partially composite steel material 20 with good workability into the shape of the steel machine part 30, the partially composite region 22 with high hardness and excellent wear resistance is formed at the cutting edge. A steel machine component 30 having the following properties can be obtained efficiently and at low cost. Note that since the carbon content of the steel material 2 is 0.2 to 1.2% by mass, it has sufficient strength as a base material for industrial cutlery.

部分複合化領域22に分散する硬質粒子は炭化タングステンであることが好ましい。炭化タングステンの分散により、高い硬度を有する炭化タングステンの複合効果が得られることに加え、炭化タングステンから分解した炭素が鉄鋼材2に供給され、熱処理によって形成される析出物や高硬度な変態相によって、部分複合化領域22に極めて高い硬度と耐摩耗性が付与される。 The hard particles dispersed in the partially composited region 22 are preferably tungsten carbide. By dispersing tungsten carbide, in addition to obtaining the combined effect of tungsten carbide with high hardness, carbon decomposed from tungsten carbide is supplied to the steel material 2, and the precipitates formed by heat treatment and the highly hard transformed phase , extremely high hardness and wear resistance are imparted to the partially composite region 22.

また、部分複合化領域22における硬質粒子の割合は0.5~8体積%であることが好ましい。硬質粒子の割合が0.5体積%以上であることで、部分複合化領域22に高い硬度及び耐摩耗性を付与することができ、8体積%以下とすることで、硬質粒子の凝集領域等に起因する脆化を抑制することができる。 Further, the proportion of hard particles in the partially composite region 22 is preferably 0.5 to 8% by volume. When the ratio of hard particles is 0.5% by volume or more, high hardness and wear resistance can be imparted to the partially composite region 22, and when the ratio is 8% by volume or less, hard particle agglomeration regions, etc. embrittlement caused by this can be suppressed.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 Although typical embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all such design changes are included within the technical scope of the present invention. It will be done.

≪実施例≫
200mm×100mm×2mmの鋼板(Fe-0.8質量%C)の中央に幅0.5mm×長さ200mm×深さ1mmの溝状の凹部を設け、当該凹部に平均粒径1.0μmの炭化タングステン粉末を充填した。
≪Example≫
A groove-shaped recess with a width of 0.5 mm, a length of 200 mm, and a depth of 1 mm was provided in the center of a 200 mm x 100 mm x 2 mm steel plate (Fe-0.8 mass % C), and a groove-like recess with an average grain size of 1.0 μm was provided in the recess. Filled with tungsten carbide powder.

次に、図1に示す態様で、直径12mmの円柱状の超硬合金製予備処理摩擦攪拌プロセス用ツール(底面の突起なし)を用い、炭化タングステン粉末を充填した凹部に予備摩擦攪拌プロセスを施し、凹部の表面に蓋を形成させた。摩擦攪拌プロセス条件は、ツール回転速度を275rpm、移動速度を250mm/min、印加荷重を2100kgとした。 Next, in the manner shown in Fig. 1, a pretreatment friction stir process tool made of cylindrical cemented carbide with a diameter of 12 mm (without protrusions on the bottom) was used to perform a preliminary friction stir process on the recess filled with tungsten carbide powder. , a lid was formed on the surface of the recess. The friction stir process conditions were a tool rotation speed of 275 rpm, a moving speed of 250 mm/min, and an applied load of 2100 kg.

次に、図2に示す態様で、直径12mmの円柱状の超硬合金製摩擦攪拌プロセス用ツール(底面に長さ1.8mm、直径4mmの突起を有する)を用い、蓋を形成させた凹部に摩擦攪拌プロセスを施した。摩擦攪拌プロセス条件は、ツール回転速度を100rpm、移動速度を100mm/min、印加荷重を3500kgとした。 Next, in the manner shown in Fig. 2, a cylindrical cemented carbide friction stir process tool with a diameter of 12 mm (having a protrusion of 1.8 mm in length and 4 mm in diameter on the bottom) was used to form a recess with a lid. was subjected to a friction stir process. The friction stir process conditions were a tool rotation speed of 100 rpm, a moving speed of 100 mm/min, and an applied load of 3500 kg.

摩擦攪拌プロセスを施した部分複合化領域表面の外観写真を図5に示す。クラック等は認められず、良好な表面状態となっている。部分複合化領域の断面写真を図6に、2%ナイタルでエッチングを施した部分複合化領域の断面写真を図7に、それぞれ示す。図6の断面写真から、炭化タングステン粉末が僅かに凝集している領域は存在するが、処理部に欠陥等は認められず、良好な部分複合化領域が形成されていることが確認できる。また、図7の断面写真から、良好な攪拌領域(攪拌部)が形成されていることが確認できる。なお、摩擦攪拌プロセスのツール回転速度を100rpmと極めて小さな値に設定したことで、摩擦攪拌プロセスの処理温度が鋼板(Fe-0.8質量%C)のAcm未満になったと考えられる。 Figure 5 shows an external photograph of the surface of the partially composited region subjected to the friction stir process. No cracks were observed and the surface was in good condition. A cross-sectional photograph of the partially composite region is shown in FIG. 6, and a cross-sectional photograph of the partially composite region etched with 2% nital is shown in FIG. From the cross-sectional photograph in FIG. 6, it can be seen that although there is a region where the tungsten carbide powder is slightly aggregated, no defects are observed in the treated area, and a good partially composite region is formed. Further, from the cross-sectional photograph in FIG. 7, it can be confirmed that a good stirring region (stirring portion) was formed. It is believed that by setting the tool rotation speed in the friction stir process to an extremely small value of 100 rpm, the treatment temperature in the friction stir process became less than A cm of the steel plate (Fe-0.8 mass % C).

部分複合化領域断面のビッカース硬度の水平分布を図8に示す。部分複合化領域の硬度は炭化タングステン粒子の分散等によって上昇しているが、母材のビッカース硬度200HVに対して600HV未満となっており、部分複合化領域のビッカース硬度は母材の3倍以下となっている。なお、硬度測定は荷重:0.1kgf、荷重負荷時間:15sとした。測定位置は最表面から深さ0.5mmとし、当該深さにおける水平方向の硬度プロファイルを測定した。 FIG. 8 shows the horizontal distribution of Vickers hardness in the cross section of the partially composite region. Although the hardness of the partially composite region has increased due to the dispersion of tungsten carbide particles, it is less than 600 HV compared to the Vickers hardness of the base material of 200 HV, and the Vickers hardness of the partially composite region is less than three times that of the base material. It becomes. The hardness was measured under a load of 0.1 kgf and a loading time of 15 seconds. The measurement position was 0.5 mm deep from the outermost surface, and the horizontal hardness profile at this depth was measured.

≪比較例≫
超硬合金製摩擦攪拌プロセス用ツールを用いた摩擦攪拌プロセスの条件を、ツール回転速度を300rpm、移動速度を100mm/min、印加荷重を2000kgとしたこと以外は実施例と同様にして、部分複合化領域を形成させた。
≪Comparative example≫
The conditions for the friction stir process using a cemented carbide friction stir process tool were the same as in the example except that the tool rotation speed was 300 rpm, the moving speed was 100 mm/min, and the applied load was 2000 kg. The area formed was

部分複合化領域表面の外観写真を図9に示す。また、部分複合化領域の断面写真を図10に、2%ナイタルでエッチングを施した部分複合化領域の断面写真を図11に、それぞれ示す。部分複合化領域の中心に、摩擦攪拌プロセスの処理温度が高温になったことに起因する大きな割れが生じている。ツール回転速度を300rpmとしたことで、摩擦攪拌プロセスの処理温度が鋼板(Fe-0.8質量%C)のA点を超えたものと考えらえる。 FIG. 9 shows an external photograph of the surface of the partially composited region. Further, a cross-sectional photograph of the partially composite region is shown in FIG. 10, and a cross-sectional photograph of the partially composite region etched with 2% nital is shown in FIG. 11, respectively. A large crack occurs in the center of the partially composited region due to the high temperature of the friction stir process. It is thought that by setting the tool rotation speed to 300 rpm, the processing temperature of the friction stir process exceeded the A3 point of the steel plate (Fe-0.8 mass % C).

部分複合化領域断面のビッカース硬度の水平分布を図8に示す。部分複合化領域の硬度は炭化タングステン粒子の分散及び母材の相変態に起因して大幅に上昇し、母材のビッカース硬度200HVに対して800HV以上となっている。 FIG. 8 shows the horizontal distribution of Vickers hardness in the cross section of the partially composite region. The hardness of the partially composite region increases significantly due to the dispersion of tungsten carbide particles and the phase transformation of the base material, and is now 800 HV or more compared to the Vickers hardness of the base material of 200 HV.

2・・・鉄鋼材、
4・・・耐摩耗性が必要とされる領域、
6・・・凹部、
8・・・添加材、
10・・・予備処理摩擦攪拌プロセス用ツール、
12・・・蓋、
14・・・摩擦攪拌プロセス用ツール、
20・・・部分複合化鉄鋼材、
22・・・部分複合化領域、
30・・・鉄鋼製機械部品。
2...Steel materials,
4... Area where wear resistance is required,
6... recess,
8...Additive material,
10...Pretreatment friction stir process tool,
12... Lid,
14...Tool for friction stir process,
20...partially composite steel material,
22... Partial composite area,
30... Steel machine parts.

Claims (3)

硬質相となる添加材を鉄鋼材の表面部位に供給し、前記表面部位に摩擦攪拌プロセスを施すことで前記鉄鋼材の任意の領域に前記添加材を分散させ、
前記摩擦攪拌プロセスの処理温度を前記鉄鋼材の化学組成で決定されるA点以下又はAcm点以下とし、
前記摩擦攪拌プロセスを施した前記鉄鋼材を所望の機械部品の形状に加工する加工工程と、
前記形状に加工した前記鉄鋼材に対して熱処理を施す熱処理工程と、を有し、
前記加工工程において、前記摩擦攪拌プロセスによって形成された複合化領域を加工し、
前記添加材を炭化タングステン又は炭化モリブデンとすること、
を特徴とする鉄鋼製機械部品の製造方法。
Supplying an additive that becomes a hard phase to a surface area of a steel material, applying a friction stirring process to the surface area to disperse the additive in any region of the steel material,
The processing temperature of the friction stir process is set to below A 3 points or below A cm points determined by the chemical composition of the steel material,
a processing step of processing the steel material subjected to the friction stir process into the shape of a desired mechanical part;
a heat treatment step of performing heat treatment on the steel material processed into the shape,
In the processing step, processing the composite region formed by the friction stir process ,
The additive material is tungsten carbide or molybdenum carbide;
A method for manufacturing steel machine parts, characterized by:
前記処理温度を前記鉄鋼材の化学組成で決定されるA変態点以下とすること、
を特徴とする請求項1に記載の鉄鋼製機械部品の製造方法。
setting the treatment temperature to be below the A1 transformation point determined by the chemical composition of the steel material;
The method for manufacturing a steel machine component according to claim 1, characterized in that:
前記鉄鋼材が純鉄、普通鋼、特殊鋼及び鉄基合金のうちのいずれかであること、
を特徴とする請求項1又は2に記載の鉄鋼製機械部品の製造方法。
The steel material is any one of pure iron, ordinary steel, special steel, and iron-based alloy;
The method for manufacturing a steel machine component according to claim 1 or 2 , characterized in that:
JP2019219381A 2019-12-04 2019-12-04 Partial composite steel material and its manufacturing method Active JP7432842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219381A JP7432842B2 (en) 2019-12-04 2019-12-04 Partial composite steel material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219381A JP7432842B2 (en) 2019-12-04 2019-12-04 Partial composite steel material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021088742A JP2021088742A (en) 2021-06-10
JP7432842B2 true JP7432842B2 (en) 2024-02-19

Family

ID=76219459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219381A Active JP7432842B2 (en) 2019-12-04 2019-12-04 Partial composite steel material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7432842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4351198A1 (en) 2021-05-26 2024-04-10 Ntt Docomo, Inc. Terminal, wireless communication method, and base station

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530791A (en) 2004-03-24 2007-11-01 エスアイアイ・メガダイアモンド・インコーポレーテッド Solid state processing of materials by friction stir processing and friction stir mixing
WO2009041665A1 (en) 2007-09-27 2009-04-02 Osaka City Method for refining texture of ferrous material, and ferrous material and blade having microscopic texture
WO2011118784A1 (en) 2010-03-25 2011-09-29 地方独立行政法人大阪市立工業研究所 Method for forming metal membrane
JP2017094474A (en) 2015-11-27 2017-06-01 株式会社Amc Cutter made of cemented carbide and manufacturing method thereof
JP2018153848A (en) 2017-03-17 2018-10-04 国立大学法人大阪大学 Weld part modification method
JP2019195858A (en) 2018-05-08 2019-11-14 株式会社Amc Cemented carbide round blade and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775894B2 (en) * 1997-07-30 2006-05-17 昭和電工株式会社 Method for local modification of base material
KR20200082716A (en) * 2018-12-31 2020-07-08 울산대학교 산학협력단 Manufacture method for a composite matrerial

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530791A (en) 2004-03-24 2007-11-01 エスアイアイ・メガダイアモンド・インコーポレーテッド Solid state processing of materials by friction stir processing and friction stir mixing
WO2009041665A1 (en) 2007-09-27 2009-04-02 Osaka City Method for refining texture of ferrous material, and ferrous material and blade having microscopic texture
WO2011118784A1 (en) 2010-03-25 2011-09-29 地方独立行政法人大阪市立工業研究所 Method for forming metal membrane
JP2017094474A (en) 2015-11-27 2017-06-01 株式会社Amc Cutter made of cemented carbide and manufacturing method thereof
JP2018153848A (en) 2017-03-17 2018-10-04 国立大学法人大阪大学 Weld part modification method
JP2019195858A (en) 2018-05-08 2019-11-14 株式会社Amc Cemented carbide round blade and its manufacturing method

Also Published As

Publication number Publication date
JP2021088742A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US20200291496A1 (en) Extremely high conductivity low cost steel
JP2024019397A (en) Low temperature hardenable steels with excellent machinability
RU2569271C1 (en) Welding of steel sheets by friction with mixing
Arai Thermoreactive deposition/diffusion process for surface hardening of steels
JP6132841B2 (en) Hot formed pre-welded steel parts with extremely high mechanical resistance and method of production
Montealegre et al. Surface treatments by laser technology
WO2017022184A1 (en) Friction bonding method
Wang et al. Effect of nitrogen alloying on the microstructure and abrasive impact wear resistance of Fe-Cr-C-Ti-Nb hardfacing alloy
CN113649594B (en) Hot isostatic pressing method for manufacturing 24CrNiMo alloy steel through laser additive manufacturing
JP2007530791A5 (en)
Cao et al. Microstructure evolutions of graded high-vanadium tool steel composite coating in-situ fabricated via atmospheric plasma beam alloying
Li et al. Interface phase evolution during laser cladding of Ni-Cu alloy on nodular cast iron by powder pre-placed method
Zhang Research on microstructure and property of TiC-Co composite material made by laser cladding
EP2546374A1 (en) Steel for extrusion tools
CN105925979A (en) Iron-based titanium carbide laser cladding material
JP7432842B2 (en) Partial composite steel material and its manufacturing method
Sadhu et al. Performance of additive manufactured Stellite 6 tools in friction stir processing of CuCrZr sheet
CN116855852A (en) Precipitation strengthening type high-temperature-resistant martensitic steel and preparation method and application thereof
JP5454132B2 (en) Surface melting method, surface modified steel slab, processed product
Colaco et al. Laser cladding of stellite 6 on steel substrates
Leiro Microstructure analysis of wear and fatigue in austempered high-Si steels
JP5455009B2 (en) Tool steel surface treatment method and tool steel surface-treated by the method
KR940008938B1 (en) Production of anticorrosive and antiwearing alloy
CN112004961A (en) Article having a protective layer of nitrogen alloy and method of producing the same
CN115323272A (en) Ferritic steel alloy powder for laser additive repair of shaft parts and application method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R151 Written notification of patent or utility model registration

Ref document number: 7432842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151