JP2020001086A - Surface modification method for light metal casting - Google Patents

Surface modification method for light metal casting Download PDF

Info

Publication number
JP2020001086A
JP2020001086A JP2018125783A JP2018125783A JP2020001086A JP 2020001086 A JP2020001086 A JP 2020001086A JP 2018125783 A JP2018125783 A JP 2018125783A JP 2018125783 A JP2018125783 A JP 2018125783A JP 2020001086 A JP2020001086 A JP 2020001086A
Authority
JP
Japan
Prior art keywords
light metal
metal casting
rotor
casting
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125783A
Other languages
Japanese (ja)
Inventor
内田 圭亮
Yoshiaki Uchida
圭亮 内田
雅志 古川
Masashi Furukawa
雅志 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018125783A priority Critical patent/JP2020001086A/en
Priority to US16/425,207 priority patent/US20200002795A1/en
Priority to CN201910584617.5A priority patent/CN110681975A/en
Publication of JP2020001086A publication Critical patent/JP2020001086A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1215Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1275Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding involving metallurgical change

Abstract

To provide a surface modification method for a light metal casting, which enables a surface to be further refined in a location, particularly requiring strength, of a surface of the light metal casting by a friction stirring process.SOLUTION: A surface modification method for a light metal casting includes a friction stirring process in which the casting is surface-modified by rotating and feed-moving a rotating shaft and a rotor in the state of pressing the rotating shaft and the rotor against a casting surface. The side, on which the rotative direction and feed direction of the rotating shaft and the rotor correspond to each other, is positioned in a part where strength is desired to be increased by modification of the light metal casting. Thus, the rotating shaft and the rotor is feed-moved while being rotated.SELECTED DRAWING: Figure 6

Description

本発明は、軽金属鋳物の表面改質方法に関する。   The present invention relates to a method for modifying a surface of a light metal casting.

アルミニウム合金等の軽金属鋳物における凝固組織の粗大化による素材特性のバラツキや品質低下等を改善するための、摩擦攪拌プロセス(FSP:Friction Stir Processing)を応用した表面改質技術が知られている。特許文献1には、摩擦攪拌プロセスによる軽金属鋳物の表面改質技術において、軽金属鋳物の表面を摩擦攪拌プロセスにより金属組織を微細化する際に、金属組織を改質するための添加材を金属組織に添加する技術が開示されている。   2. Description of the Related Art A surface modification technique using a friction stir process (FSP: Friction Stir Processing) is known to improve the variation in material properties and the deterioration in quality due to coarsening of a solidified structure in a light metal casting such as an aluminum alloy. Patent Literature 1 discloses an additive for modifying a metal structure when a surface of a light metal casting is refined to a metal structure by a friction stir process in a surface modification technique of a light metal casting by a friction stirring process. Is disclosed.

特開2004−255440号公報JP-A-2004-255440

ところで、大きな衝撃を受ける可能性のある部材では、衝撃を受けた際に、設計で意図したように部材が破壊されるのが望ましい。例えば、車両に使用される各部材は、車両が衝突などの衝撃を受けた際に、乗員が受ける衝撃ができるだけ小さくなるように各部材の破壊がされるよう設計されているのが好ましい。   By the way, in a member that may receive a large impact, it is desirable that the member be destroyed when the impact is received, as intended in the design. For example, it is preferable that each member used in the vehicle is designed so that when the vehicle receives an impact such as a collision, the members are broken so that the impact received by the occupant is as small as possible.

車両において、複雑な形状を有する部材は軽金属鋳物で形成される場合が多い。例えば、車両における、サスペンションタワー、リヤサイドメンバー、エンジンのシリンダブロックなどの部材は、軽金属鋳物で形成されている。このような軽金属鋳物で形成された部材についても、衝撃を受けた際に、設計で意図したように部材の破壊が起きるのが望ましい。   In a vehicle, a member having a complicated shape is often formed of a light metal casting. For example, members such as a suspension tower, a rear side member, and a cylinder block of an engine in a vehicle are formed of a light metal casting. It is desirable that a member made of such a light metal casting be destroyed when subjected to an impact as intended by the design.

軽金属鋳物で形成された部材が応力集中しやすい箇所を有する場合、当該箇所において、内部欠陥を含んでいる可能性があり、その場合、強度的に最も弱くなる可能性が高い。例えば、軽金属鋳物で形成された部材が応力集中しやすい溶接箇所を有する場合、衝撃を受けた際に当該溶接箇所の近傍の領域において破壊が生じる可能性が高い。しかしながら、溶接箇所の近傍の領域では、破壊の生じ方を設計的にコントロールすることが困難である。このため、軽金属鋳物で形成される部材が溶接箇所を有する場合、衝撃を受けた際に、溶接箇所の近傍の領域ではなく、破壊の生じ方を設計的にコントロールしやすい箇所で破壊が生じるようにする必要がある。つまり、溶接箇所の近傍の領域における強度を、破壊の生じ方を設計的にコントロールしやすい箇所の強度よりも高める必要がある。こういったことから、軽金属鋳物の表面改質において、強度が特に必要とされる箇所では、そうでない箇所よりも、金属組織の微細化がなされることが望まれる。   When a member formed of a light metal casting has a portion where stress tends to concentrate, there is a possibility that the portion contains an internal defect, and in that case, the strength is most likely to be the weakest. For example, when a member formed of a light metal casting has a welded portion where stress is likely to be concentrated, there is a high possibility that breakage will occur in a region near the welded location when subjected to an impact. However, it is difficult to control the way in which destruction occurs in a region near the welding point in terms of design. Therefore, when a member formed of a light metal casting has a welded portion, when an impact is applied, the destruction occurs not in a region near the welded portion, but in a portion where the manner of occurrence of the destruction is easily designed and controlled. Need to be In other words, it is necessary to increase the strength in the region near the welded portion than the strength of a portion where the manner in which fracture occurs can be easily controlled in design. For these reasons, in the surface modification of the light metal casting, it is desired that the metal structure be refined in places where strength is particularly required, than in places where strength is not required.

以上の背景に鑑み、本発明の目的は、摩擦攪拌プロセスにより、軽金属鋳物の表面における強度が特に必要とされる箇所で、より金属組織の微細化がなされるようにすることができる軽金属鋳物の表面改質方法を提供することである。   In view of the above background, an object of the present invention is to provide a light metal casting which can be made to have a finer metallographic structure at locations where strength is particularly required on the surface of the light metal casting by a friction stir process. It is to provide a surface modification method.

本発明は、鋳物の表面に回転軸及び回転子を押圧させた状態で前記回転軸及び回転子を回転かつ送り移動させて当該鋳物を表面改質する摩擦攪拌プロセスによる軽金属鋳物の表面改質方法であって、前記軽金属鋳物における改質によって強度をより高めたい部分に、前記回転軸及び回転子の回転方向と送り方向とが一致する側が来るようにして前記回転軸及び回転子を回転させながら送り移動させるものである。   The present invention relates to a method for modifying a surface of a light metal casting by a friction stir process of rotating and rotating the rotating shaft and the rotor while pressing the rotating shaft and the rotor against the surface of the casting to modify the surface of the casting. And rotating the rotating shaft and the rotor so that the side where the rotating direction and the feeding direction of the rotating shaft and the rotor are coincident comes to a portion where the strength of the light metal casting is desired to be improved by reforming. It is to be fed and moved.

本発明者は、摩擦攪拌を行った表面における、回転軸及び回転子の回転方向と送り方向とが逆になる側(RS)の近傍のよりも回転軸及び回転子の回転方向と送り方向とが一致する側(AS)の近傍の方が、表面の金属組織がより微細化されることを見いだした。軽金属鋳物における改質によって強度をより高めたい部分がASに来るようにすることで、表面改質を実施後の、当該強度をより高めたい部分において、より表面の金属組織の微細化がなされ、強度がより高まるようにすることができる。   The present inventor has proposed that the rotational direction of the rotating shaft and the rotor and the feeding direction are closer to each other than near the side (RS) where the rotating direction and the feeding direction of the rotating shaft and the rotor are opposite to each other on the surface subjected to friction stirring. It was found that the metal structure on the surface was further refined in the vicinity of the side where AS coincided with (AS). By making the portion where the strength is to be increased more by the modification in the light metal casting come to the AS, after performing the surface modification, in the portion where the strength is to be further increased, the metal structure of the surface is further refined, The strength can be made higher.

さらに、前記送り移動を、同じ送り方向に複数回実施し、各回の送り移動は、次の送り移動の経路を前回の送り移動の経路に対して前記回転子の直径以下の所定の幅だけ平行にずらして実施するようにしてもよい。このようにすると、前回の送り移動の経路でASになっていなかった箇所が、次の送り移動の経路、またはそれ以降の送り移動の経路ではASになる。これにより、軽金属鋳物で形成される部材の表面をまんべんなく微細化することができる。   Further, the feed movement is performed a plurality of times in the same feed direction, and in each feed movement, the path of the next feed movement is parallel to the path of the previous feed movement by a predetermined width equal to or less than the diameter of the rotor. It may be carried out by shifting to. In this way, a part that has not been AS on the previous feed movement path becomes AS on the next feed movement path or subsequent feed movement paths. Thereby, the surface of the member formed of the light metal casting can be uniformly refined.

さらに、前記回転軸及び回転子の回転方向と送り方向とが一致する側が前記軽金属鋳物の縁側に来るようにし、前記回転軸及び回転子を前記軽金属鋳物の縁に沿って周回する経路に従って送り移動させるようにしてもよい。軽金属鋳物で形成される部材における、縁側にAS、内側にRSが来るようにすることで、当該縁の近傍の箇所において表面の金属組織が微細化される。これにより、軽金属鋳物で形成される部材の外周の強度をより高めることができる。   Further, the side where the rotation direction and the feed direction of the rotating shaft and the rotor coincide with the feed direction is located on the edge side of the light metal casting, and the feeding movement is performed according to a path orbiting the rotating shaft and the rotor along the edge of the light metal casting. You may make it do. By setting the AS on the edge side and the RS on the inner side in the member formed of the light metal casting, the metal structure on the surface is refined at a location near the edge. Thereby, the strength of the outer periphery of the member formed of the light metal casting can be further increased.

本発明により、摩擦攪拌プロセスにより、軽金属鋳物の表面における強度が特に必要とされる箇所で、より表面の微細化がなされるようにすることができる。   According to the present invention, the surface of the light metal casting can be made finer at places where strength is particularly required by the friction stir process.

本実施の形態にかかる軽金属鋳物の表面改質方法に用いる摩擦攪拌装置の概略構成を示す図である。It is a figure showing the schematic structure of the friction stirrer used for the surface modification method of the light metal casting concerning this embodiment. 改質前のアルミニウム合金鋳物で形成された部材の表面における金属組織の顕微鏡写真である。It is a microscope picture of the metal structure in the surface of the member formed with the aluminum alloy casting before modification. 摩擦攪拌装置による摩擦攪拌プロセスの概略について説明する模式図である。It is a schematic diagram explaining the outline of the friction stirring process by a friction stirring device. 摩擦攪拌による改質効果の差について説明する模式図である。It is a schematic diagram explaining the difference of the modification effect by friction stirring. 本実施の形態にかかる軽金属鋳物の表面改質方法の特徴点について説明する模式図である。It is a schematic diagram explaining the characteristic point of the surface modification method of the light metal casting concerning this Embodiment. 本実施の形態にかかる軽金属鋳物の表面改質方法の特徴点について説明する模式図である。It is a schematic diagram explaining the characteristic point of the surface modification method of the light metal casting concerning this Embodiment. 本実施の形態にかかる軽金属鋳物の表面改質方法の特徴点について説明する模式図である。It is a schematic diagram explaining the characteristic point of the surface modification method of the light metal casting concerning this Embodiment. 本実施の形態にかかる軽金属鋳物の表面改質方法の流れについて示すフローチャートである。It is a flowchart shown about the flow of the surface modification method of the light metal casting concerning this Embodiment. 回転ツール及びプローブの送り移動のさせ方の別の一例について説明する模式図である。It is a schematic diagram explaining another example of how to make a rotary tool and a probe move. 回転ツール及びプローブの送り移動のさせ方のさらに別の一例について説明する模式図である。It is a mimetic diagram explaining still another example of how to carry out rotation movement of a rotating tool and a probe.

以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。   Hereinafter, the present invention will be described through embodiments of the invention, but the invention according to the claims is not limited to the following embodiments. Also, not all of the configurations described in the embodiments are necessarily indispensable as means for solving the problem. The following description and drawings are appropriately omitted and simplified for clarity of explanation. In the drawings, the same elements are denoted by the same reference numerals, and a repeated description is omitted as necessary.

本実施の形態にかかる軽金属鋳物の表面改質方法は、鋳物の表面に回転軸及び回転子を押圧させた状態で回転軸及び回転子を回転かつ送り移動させて当該鋳物を表面改質する摩擦攪拌プロセスにより軽金属鋳物の表面を改質する方法である。軽金属鋳物は、アルミニウム合金やマグネシウム合金等の軽金属で形成された鋳物ある。軽金属鋳物の表面改質とは、主に、軽金属鋳物の表面における金属組織の微細化することや鋳巣などの内部欠陥を除去することである。まず、本実施の形態にかかる軽金属鋳物の表面改質方法に用いる摩擦攪拌装置について説明する。   The method for modifying the surface of a light metal casting according to the present embodiment includes a method of rotating and rotating the rotating shaft and the rotor while pressing the rotating shaft and the rotor against the surface of the casting to perform frictional modification on the surface of the casting. This is a method of modifying the surface of a light metal casting by a stirring process. The light metal casting is a casting formed of a light metal such as an aluminum alloy or a magnesium alloy. The surface modification of the light metal casting mainly means to make the metal structure finer on the surface of the light metal casting and to remove internal defects such as cavities. First, the friction stirrer used in the method for modifying the surface of a light metal casting according to the present embodiment will be described.

図1は、本実施の形態にかかる軽金属鋳物の表面改質方法に用いる摩擦攪拌装置1の概略構成を示す図である。図1に示すように、摩擦攪拌装置1は、主軸駆動部2と、移動機構3と、回転軸としての回転ツール4と、回転子としてのプローブ5と、を有する。   FIG. 1 is a diagram showing a schematic configuration of a friction stirrer 1 used in a method for modifying a surface of a light metal casting according to the present embodiment. As shown in FIG. 1, the friction stirrer 1 includes a main shaft driving unit 2, a moving mechanism 3, a rotating tool 4 as a rotating shaft, and a probe 5 as a rotator.

主軸駆動部2は、電動モーター(図示せず)によって回転される回転駆動軸(図示せず)を有する。主軸駆動部2は、台座部6に垂直に固定された支柱7に、移動機構3を介して支持されている。台座部6上にはワークテーブル8が配設されている。ワークテーブル8上には、軽金属鋳物で形成される部材であるワークWが静置される。   The spindle drive unit 2 has a rotary drive shaft (not shown) rotated by an electric motor (not shown). The spindle drive unit 2 is supported via a moving mechanism 3 on a column 7 fixed vertically to the pedestal unit 6. A work table 8 is provided on the base 6. A work W, which is a member formed of a light metal casting, is placed on the work table 8.

移動機構3は、昇降押圧機構(図示せず)と、送り移動機構(図示せず)と、を有する。昇降押圧機構は、主軸駆動部2をワークWに対して垂直な方向(すなわち主軸の回転駆動軸の方向)に移動させる。送り移動機構は、主軸駆動部2をワークWに対して水平な送り方向に移動させる。   The moving mechanism 3 has a lifting / lowering mechanism (not shown) and a feed moving mechanism (not shown). The lifting and lowering mechanism moves the spindle drive unit 2 in a direction perpendicular to the workpiece W (that is, in the direction of the rotary drive shaft of the spindle). The feed moving mechanism moves the spindle drive unit 2 in a feed direction that is horizontal with respect to the workpiece W.

回転ツール4は、主軸駆動部2により回転される円筒状の部材で、円筒の中心軸が主軸駆動部2の回転駆動軸の軸心と一致している。回転ツール4の下端には、ワークWの上面を押圧可能な水平面である押圧面が形成されている。回転ツール4は、例えば、ステンレス鋼などの、ワークWの母材よりも高硬度で高融点の金属材料で形成されている。   The rotary tool 4 is a cylindrical member that is rotated by the spindle drive unit 2, and the center axis of the cylinder coincides with the axis of the rotation drive shaft of the spindle drive unit 2. At the lower end of the rotary tool 4, a pressing surface that is a horizontal surface capable of pressing the upper surface of the work W is formed. The rotating tool 4 is formed of a metal material such as stainless steel, which has a higher hardness and a higher melting point than the base material of the work W.

プローブ5は、回転ツール4よりも径が小さい円筒状の部材で、回転ツール4の押圧面において、押圧面の中心から下方に向かって突出するように固定設置されている。プローブ5の円筒の中心軸は、回転ツール4の円筒の中心軸と同軸になっている。プローブ5は、回転ツール4と同様に、ワークWの母材よりも高硬度で高融点の金属材料で形成されている。なお、プローブ5の円筒側面には、プローブ5を回転させる方向とは逆向きのねじ切りがされていてもよい。このようにする場合、例えば、プローブ5を回転させる方向が時計回りであれば、プローブ5の円筒側面には反時計回りのねじ切りがされる。これにより、ワークWにおける摩擦熱により軟化した箇所の攪拌がより促進されるようにすることができる。   The probe 5 is a cylindrical member having a smaller diameter than the rotary tool 4, and is fixedly installed on the pressing surface of the rotary tool 4 so as to protrude downward from the center of the pressing surface. The center axis of the cylinder of the probe 5 is coaxial with the center axis of the cylinder of the rotary tool 4. The probe 5 is formed of a metal material having a higher hardness and a higher melting point than the base material of the workpiece W, similarly to the rotary tool 4. The cylindrical side surface of the probe 5 may be threaded in a direction opposite to the direction in which the probe 5 is rotated. In this case, for example, if the direction in which the probe 5 is rotated is clockwise, the cylindrical side surface of the probe 5 is threaded counterclockwise. Thereby, the agitation of the portion of the work W softened by the frictional heat can be further promoted.

次に、本実施の形態にかかる、軽金属鋳物の表面改質方法について説明する。なお、以下の説明において、摩擦攪拌装置1の構成については、図1を適宜参照する。   Next, a method for modifying the surface of a light metal casting according to the present embodiment will be described. In the following description, the configuration of the friction stirrer 1 will be appropriately referred to FIG.

図2は、改質前のアルミニウム合金鋳物(ADT10−F)で形成された部材の表面における金属組織の顕微鏡写真である。図2において、黒く見える部分が共晶シリコンである。図2に示すように、アルミニウム合金鋳物で形成された部材では、金属組織において、共晶シリコンが、微細化せずに粗大析出粒子R1として存在している箇所が多数見られる。   FIG. 2 is a micrograph of a metal structure on a surface of a member formed of an aluminum alloy casting before modification (ADT10-F). In FIG. 2, the portion that looks black is eutectic silicon. As shown in FIG. 2, in a member formed of an aluminum alloy casting, many portions where eutectic silicon exists as coarse precipitate particles R <b> 1 without being refined in the metal structure.

図3は、摩擦攪拌装置1による摩擦攪拌プロセスの概略について説明する模式図である。図3に示すように、移動機構3(図1参照)の昇降押圧機構によって回転ツール4及びプローブ5を主軸の回転軸線方向である矢印Aの方向に降下させ、回転ツール4の下端の押圧面によりワークWの上面を押圧した状態で回転ツール4及びプローブ5を矢印Cの向き(時計回り)に高速回転させる。すなわち、回転ツール4及びプローブ5をワークWの母材に摩擦接触させる。このときに発生する摩擦熱により、ワークWの母材である軽金属材料が溶融せず塑性変形する温度域に維持されるので、ワークWの母材が軟化して攪拌される。これにより、ワークWの表面における金属組織の粗大析出粒子(図2参照)が粉砕されて当該金属組織が微細化され、かつ、鋳巣などの内部欠陥も除去される。   FIG. 3 is a schematic diagram illustrating an outline of a friction stir process performed by the friction stir device 1. As shown in FIG. 3, the rotary tool 4 and the probe 5 are lowered in the direction of the arrow A which is the rotation axis direction of the main shaft by the lifting / lowering pressing mechanism of the moving mechanism 3 (see FIG. 1). The rotary tool 4 and the probe 5 are rotated at a high speed in the direction of the arrow C (clockwise) while the upper surface of the workpiece W is pressed. That is, the rotating tool 4 and the probe 5 are brought into frictional contact with the base material of the work W. The frictional heat generated at this time maintains the temperature range in which the light metal material, which is the base material of the work W, does not melt and plastically deforms, so that the base material of the work W is softened and stirred. Thereby, coarse precipitate particles of the metal structure (see FIG. 2) on the surface of the workpiece W are pulverized to make the metal structure finer, and also to remove internal defects such as cavities.

上述したように回転ツール4及びプローブ5をワークWに押し当てて高速回転させるとともに、移動機構3の送り移動機構によって回転ツール4を送り方向である矢印Bの方向に移動させる。この結果、ワークWの表層は、摩擦攪拌により回転ツール4の移動経路Lに沿って改質される。すなわち、摩擦攪拌を実施したワークWの表層Waが表面改質される。   As described above, the rotary tool 4 and the probe 5 are pressed against the workpiece W to rotate at high speed, and the rotary tool 4 is moved by the feed moving mechanism of the moving mechanism 3 in the direction of arrow B which is the feed direction. As a result, the surface layer of the work W is reformed along the movement path L of the rotary tool 4 by friction stirring. That is, the surface layer Wa of the work W subjected to the friction stir processing is surface-modified.

図4は、摩擦攪拌による改質効果の差について説明する模式図である。ここで、図4は、図3の矢印Aの方から見た図である。図4において、回転ツール4及びプローブ5の回転方向C(C1)と送り方向Bとが一致する側をAS(Advancing Side)、回転ツール4及びプローブ5の回転方向C(C2)と送り方向Bとが逆になる側をRS(Reatreating Side)とする。本発明者は、摩擦攪拌を行った表面Waにおける、RSの近傍よりもASの近傍の方が、表面の金属組織がより微細化され強度と延性を向上させる効果がより大きくなることを見いだした。   FIG. 4 is a schematic diagram for explaining a difference in a reforming effect by friction stirring. Here, FIG. 4 is a diagram viewed from the arrow A in FIG. In FIG. 4, the side where the rotation direction C (C1) of the rotary tool 4 and the probe 5 coincides with the feed direction B is AS (Advanced Side), and the rotation direction C (C2) of the rotary tool 4 and the probe 5 and the feed direction B. The side opposite to the above is referred to as RS (Recreating Side). The present inventor has found that in the surface Wa subjected to friction stirring, the vicinity of the AS is more refined in the vicinity of the AS than in the vicinity of the RS, and the effect of improving the strength and ductility is greater. .

図5から図7は、本実施の形態にかかる軽金属鋳物の表面改質方法の特徴点について説明する模式図である。ここで、図5は、軽金属鋳物で形成される部材であるワークW1を回転ツール4及びプローブ5の送り方向から見た図である。図6の上段は、ワークW1を回転ツール4及びプローブ5の送り方向から見た図、図6の下段は、ワークW1を回転ツール4及びプローブ5の軸方向から見た図である。図7は、ワークW1を回転ツール4及びプローブ5の送り方向から見た図である。   FIG. 5 to FIG. 7 are schematic diagrams illustrating the features of the method for modifying the surface of a light metal casting according to the present embodiment. Here, FIG. 5 is a view of a workpiece W1 which is a member formed of a light metal casting as viewed from a feed direction of the rotary tool 4 and the probe 5. The upper part of FIG. 6 is a view of the work W1 viewed from the feed direction of the rotary tool 4 and the probe 5, and the lower part of FIG. 6 is a view of the work W1 viewed from the axial direction of the rotary tool 4 and the probe 5. FIG. 7 is a view of the work W1 as viewed from the feed direction of the rotary tool 4 and the probe 5.

図5に示すように、軽金属鋳物で形成される部材であるワークW1が応力集中しやすい溶接箇所S1を有しているとする。溶接箇所S1の近傍の領域S2は内部欠陥を含んでいる可能性が高く、強度的に最も弱くなる可能性が高い。このため、ワークW1が、衝撃を受けた際、溶接箇所S1の近傍の領域S2において破壊が生じる可能性が高い。しかし、溶接箇所S1の近傍の領域S2では、破壊の生じ方を設計的にコントロールすることが困難なため、ワークW1が衝撃を受けた際、少なくとも溶接箇所S1の近傍の領域S2では破壊が生じて欲しくない。このため、溶接箇所S1の近傍の領域S2の強度を、領域S3や領域S4などの領域S2以外の領域の強度よりも高める必要がある。   As shown in FIG. 5, it is assumed that a workpiece W1, which is a member formed of a light metal casting, has a welding portion S1 at which stress is easily concentrated. The region S2 near the welding location S1 is likely to contain internal defects, and is likely to be the weakest in terms of strength. For this reason, when the work W1 receives an impact, there is a high possibility that destruction will occur in the region S2 near the welding location S1. However, in the region S2 near the welding point S1, it is difficult to control how the fracture occurs in terms of design, and therefore, when the work W1 receives an impact, the fracture occurs at least in the region S2 near the welding point S1. I don't want it. For this reason, it is necessary to increase the strength of the region S2 near the welding point S1 than the strength of the region other than the region S2 such as the region S3 and the region S4.

そこで、本実施の形態にかかる軽金属鋳物の表面改質方法では、図6に示すように、溶接箇所S1の近傍の領域S2に回転ツール4及びプローブ5の回転方向と送り方向とが一致する側であるASが来るようにする。すなわち、ワークW1における改質によって強度をより高めたい部分に、回転ツール4及びプローブ5の回転方向と送り方向とが一致する側であるASが来るようにする。このとき、回転ツール4及びプローブ5の回転方向と送り方向とが逆になる側であるRSは領域S3に来る。このように回転ツール4及びプローブ5をセッティングして回転ツール4及びプローブ5を回転させながら送る。   Therefore, in the method for modifying the surface of a light metal casting according to the present embodiment, as shown in FIG. 6, a side where the rotation direction and the feed direction of the rotary tool 4 and the probe 5 coincide with the area S2 near the welding point S1. To be the AS. That is, the AS on the side where the rotation direction of the rotary tool 4 and the probe 5 coincides with the feed direction comes to a portion where the strength of the work W1 is to be increased by the reforming. At this time, the RS on the side where the rotation direction and the feed direction of the rotating tool 4 and the probe 5 are opposite to each other comes to the region S3. Thus, the rotary tool 4 and the probe 5 are set, and the rotary tool 4 and the probe 5 are sent while being rotated.

図7は、図5及び図6を参照して説明した軽金属鋳物の表面改質方法を実施した後の、ワークW1の表面における金属組織の顕微鏡写真である。ここで、ワークW1はアルミニウム合金鋳物(ADT10−F)である。図7では、摩擦攪拌を実施したワークW1の表層Waにおける、溶接箇所S1の近傍の領域S2の金属組織の顕微鏡写真をP1に示す。また、摩擦攪拌を実施したワークW1の表層Waにおける、領域S3の金属組織の顕微鏡写真をP2に、領域S4の金属組織の顕微鏡写真をP3に示す。図7のP1、P2、P3において、黒く見える部分が共晶シリコンである。   FIG. 7 is a photomicrograph of the metal structure on the surface of the workpiece W1 after the method for modifying the surface of a light metal casting described with reference to FIGS. 5 and 6 is performed. Here, the work W1 is an aluminum alloy casting (ADT10-F). In FIG. 7, P1 shows a micrograph of a metal structure in a region S2 near the welding point S1 in the surface layer Wa of the work W1 on which the friction stir processing has been performed. Further, a micrograph of the metal structure of the region S3 in the surface layer Wa of the work W1 subjected to the frictional stirring is shown in P2, and a micrograph of the metal structure in the region S4 is shown in P3. In P1, P2, and P3 in FIG. 7, the portions that appear black are eutectic silicon.

図7に示すように、領域S2の金属組織の顕微鏡写真であるP1では、領域S3の金属組織の顕微鏡写真であるP2や領域S4の金属組織の顕微鏡写真であるP3と比べて、共晶シリコンがより微細に分布していることが確認できる。領域S3は摩擦攪拌を行った際にRSの方にあった領域であるが、図2に示すワークW1の母材と比べれば金属組織が微細化されているものの、微細化が十分になされていない箇所も多く見られる。領域S2と領域S3との間にある領域S4は、領域S3より金属組織が微細化されているが、領域S2よりは金属組織が微細化されていない。   As shown in FIG. 7, P1 which is a micrograph of the metal structure in the region S2 is eutectic silicon compared to P2 which is a micrograph of the metal structure in the region S3 and P3 which is a micrograph of the metal structure in the region S4. Can be confirmed to be more finely distributed. The region S3 is a region which was located in the direction of the RS when the friction stir processing was performed. However, although the metal structure is refined as compared with the base material of the work W1 shown in FIG. 2, the refinement is sufficiently performed. There are many places that do not exist. The metal structure of the region S4 between the region S2 and the region S3 is finer than that of the region S3, but the metal structure is not finer than that of the region S2.

このように、本実施の形態にかかる軽金属鋳物の表面改質方法を実施した後の、ワークW1の表面における強度が特に必要とされる箇所である領域S2において、領域S2以外の領域である領域S3や領域S4よりも、より表面の微細化がなされ、強度がより高まるようにすることができる。   As described above, in the region S2 where the strength is particularly required on the surface of the work W1 after the surface modification method of the light metal casting according to the present embodiment, the region other than the region S2 The surface can be made finer and the strength can be further increased as compared with S3 and the region S4.

図8は、本実施の形態にかかる軽金属鋳物の表面改質方法の流れについて示すフローチャートである。図8に示すように、まず、回転ツール4及びプローブ5の回転方向と送り方向とが一致する側であるASが、軽金属鋳物における改質によって強度をより高めたい部分に来るように、ワークに対し、回転ツール4及びプローブ5の位置決めをする(ステップS1)。続いて、回転ツール4及びプローブ5を、回転させながら軽金属鋳物の表面に押圧させる(ステップS2)。続いて、所定の経路に沿って回転ツール4及びプローブ5を送り移動させる(ステップS3)。   FIG. 8 is a flowchart showing the flow of the method for modifying the surface of a light metal casting according to the present embodiment. As shown in FIG. 8, first, the AS, which is the side where the rotation direction of the rotary tool 4 and the probe 5 coincides with the feed direction, comes to a part where the strength is to be further increased by the reforming of the light metal casting. On the other hand, the rotation tool 4 and the probe 5 are positioned (Step S1). Subsequently, the rotating tool 4 and the probe 5 are pressed against the surface of the light metal casting while rotating (Step S2). Subsequently, the rotary tool 4 and the probe 5 are fed and moved along a predetermined path (step S3).

図9は、回転ツール4及びプローブ5の送り移動のさせ方の別の一例(図6とは別の一例)について説明する模式図である。ここで、図9の上段は回転ツール4及びプローブ5の送り方向から見た図、図9の下段は回転ツール4及びプローブ5の軸方向から見た図である。図9に示すように、回転ツール4及びプローブ5の送り移動を、同じ送り方向Bに複数回実施し、各回の送り移動は、次の送り移動の経路L2を前回の送り移動の経路L1に対してプローブ5の直径D以下の所定の幅Jだけ平行にずらして実施するようにしてもよい。このようにすると、前回の送り移動の経路L1でASになっていなかった箇所が、次の送り移動の経路L2、またはそれ以降の送り移動の経路ではASになるので、ワークWの表面をまんべんなく微細化することができる。   FIG. 9 is a schematic diagram illustrating another example (an example different from FIG. 6) of a method of moving the rotary tool 4 and the probe 5 in a feed movement. Here, the upper part of FIG. 9 is a view as seen from the feed direction of the rotary tool 4 and the probe 5, and the lower part of FIG. 9 is a view as seen from the axial direction of the rotary tool 4 and the probe 5. As shown in FIG. 9, the feed movement of the rotary tool 4 and the probe 5 is performed a plurality of times in the same feed direction B, and each feed movement is performed by changing the path L2 of the next feed movement to the path L1 of the previous feed movement. Alternatively, the probe 5 may be shifted in parallel by a predetermined width J equal to or less than the diameter D of the probe 5. In this way, the portion that was not AS in the previous feeding movement path L1 becomes AS in the next feeding movement path L2 or the subsequent feeding movement path, so that the surface of the workpiece W is evenly distributed. It can be miniaturized.

図10は、回転ツール4及びプローブ5の送り移動のさせ方のさらに別の一例(図6、図9とは別の一例)について説明する模式図である。ここで、図10は、回転ツール4及びプローブ5の軸方向から見た図である。図10に示すように、回転ツール4及びプローブ5の回転方向と送り方向とが一致する側であるASが軽金属鋳物で形成される部材であるワークW2の縁M側に来るようにし、回転ツール4及びプローブ5を、縁Mに沿って周回する経路L3に従って送り移動させるようにしてもよい。このように、ワークW2における縁MにAS、内側にRSが来るようにすることで、縁Mの近傍の箇所において表面の金属組織が微細化される。これにより、ワークW2の外周の強度をより高めることができる。   FIG. 10 is a schematic diagram illustrating still another example (an example different from FIGS. 6 and 9) of a method of moving the rotary tool 4 and the probe 5 in a feed movement. Here, FIG. 10 is a diagram viewed from the axial direction of the rotating tool 4 and the probe 5. As shown in FIG. 10, the rotating tool 4 and the probe 5 are arranged such that the AS where the rotation direction and the feed direction coincide with each other comes to the edge M side of the workpiece W2 which is a member formed of light metal casting. The probe 4 and the probe 5 may be fed and moved according to a path L3 circling along the edge M. In this way, by setting the AS to the edge M and the RS to the inside of the work W2, the metal structure on the surface is refined at a position near the edge M. Thereby, the strength of the outer periphery of the work W2 can be further increased.

以上、本発明を上記実施形態に即して説明したが、本発明は上記実施の形態の構成にのみ限定されるものではなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得る各種変形、修正、組み合わせを含むことは勿論である。   As described above, the present invention has been described with reference to the above embodiments. However, the present invention is not limited only to the configuration of the above embodiments, and those skilled in the art will be within the scope of the claims of the present application. Of course, it includes various variations, modifications, and combinations that can be made.

1 摩擦攪拌装置
2 主軸駆動部
3 移動機構
4 回転ツール
5 プローブ
6 台座部
7 支柱
8 ワークテーブル
W、W1、W2 ワーク
DESCRIPTION OF SYMBOLS 1 Friction stirrer 2 Spindle drive part 3 Moving mechanism 4 Rotary tool 5 Probe 6 Pedestal part 7 Post 8 Work table W, W1, W2 Work

Claims (3)

鋳物の表面に回転軸及び回転子を押圧させた状態で前記回転軸及び回転子を回転かつ送り移動させて当該鋳物を表面改質する摩擦攪拌プロセスによる軽金属鋳物の表面改質方法であって、
前記軽金属鋳物における改質によって強度をより高めたい部分に、前記回転軸及び回転子の回転方向と送り方向とが一致する側が来るようにして前記回転軸及び回転子を回転させながら送り移動させる、軽金属鋳物の表面改質方法。
A method for modifying the surface of a light metal casting by a friction stir process of rotating and rotating the rotating shaft and the rotor while pressing the rotating shaft and the rotor on the surface of the casting to modify the surface of the casting.
To the portion of the light metal casting that is desired to increase the strength by reforming, the feed is performed while rotating the rotary shaft and the rotor so that the side where the rotation direction and the feed direction of the rotary shaft and the rotor coincide with each other comes. Surface modification method for light metal castings.
前記送り移動を、同じ送り方向に複数回実施し、
各回の送り移動は、次の送り移動の経路を前回の送り移動の経路に対して前記回転子の直径以下の所定の幅だけ平行にずらして実施する、請求項1に記載の軽金属鋳物の表面改質方法。
The feed movement is performed a plurality of times in the same feed direction,
2. The surface of the light metal casting according to claim 1, wherein each feed movement is performed by shifting a path of a next feed movement in parallel with a path of a previous feed movement by a predetermined width equal to or less than a diameter of the rotor. Reforming method.
前記回転軸及び回転子の回転方向と送り方向とが一致する側が前記軽金属鋳物の縁側に来るようにし、前記回転軸及び回転子を前記軽金属鋳物の縁に沿って周回する経路に従って送り移動させる、請求項1に記載の軽金属鋳物の表面改質方法。   The side where the rotation direction and the feeding direction of the rotating shaft and the rotor coincide with each other comes to the edge side of the light metal casting, and the rotating shaft and the rotor are fed and moved according to a path orbiting along the edge of the light metal casting. The method for modifying a surface of a light metal casting according to claim 1.
JP2018125783A 2018-07-02 2018-07-02 Surface modification method for light metal casting Pending JP2020001086A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018125783A JP2020001086A (en) 2018-07-02 2018-07-02 Surface modification method for light metal casting
US16/425,207 US20200002795A1 (en) 2018-07-02 2019-05-29 Surface modification method for light metal casting
CN201910584617.5A CN110681975A (en) 2018-07-02 2019-07-01 Surface modification method of light metal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125783A JP2020001086A (en) 2018-07-02 2018-07-02 Surface modification method for light metal casting

Publications (1)

Publication Number Publication Date
JP2020001086A true JP2020001086A (en) 2020-01-09

Family

ID=69007531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125783A Pending JP2020001086A (en) 2018-07-02 2018-07-02 Surface modification method for light metal casting

Country Status (3)

Country Link
US (1) US20200002795A1 (en)
JP (1) JP2020001086A (en)
CN (1) CN110681975A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112338348B (en) * 2020-09-22 2021-07-30 燕山大学 Light high-strength part surface layer damage repairing device based on stirring friction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050139640A1 (en) * 2003-12-29 2005-06-30 Kay Robert M. Multi-pass friction stir welding
JP2006093125A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Current collecting plate of secondary battery, and electrode assembly and secondary battery having the same
JP2007107039A (en) * 2005-10-13 2007-04-26 Osaka Industrial Promotion Organization Method for modifying alloy formed body and alloy formed body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229556B2 (en) * 1996-12-25 2001-11-19 昭和電工株式会社 Surface modification of aluminum castings
JP4605489B2 (en) * 1999-12-27 2011-01-05 マツダ株式会社 Surface treatment method and engine casting cylinder head
GB2405609B (en) * 2002-07-08 2006-05-31 Honda Motor Co Ltd Manufacturing method of butt joint, butt joint, manufacturing method of bent member and friction stir joining method
JP6192040B2 (en) * 2013-08-08 2017-09-06 国立大学法人大阪大学 Fitting manufacturing method and composite material manufacturing method
CN104107978A (en) * 2014-07-17 2014-10-22 上海交通大学 Method for improving strength and plasticity of dissimilar material stir friction welding joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050139640A1 (en) * 2003-12-29 2005-06-30 Kay Robert M. Multi-pass friction stir welding
JP2006093125A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Current collecting plate of secondary battery, and electrode assembly and secondary battery having the same
JP2007107039A (en) * 2005-10-13 2007-04-26 Osaka Industrial Promotion Organization Method for modifying alloy formed body and alloy formed body

Also Published As

Publication number Publication date
CN110681975A (en) 2020-01-14
US20200002795A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
JP5069428B2 (en) Friction stir welding equipment
US20020158109A1 (en) Method of processing metal members
JP4573108B2 (en) Welding method
KR102460557B1 (en) Repair/modification method of metal-based substrates
JP2007007728A (en) Apparatus and method for friction stir welding
CN103108720A (en) System for using high rotary speed for minimizing the load during friction stir welding
Kumari et al. Friction stir welding by using counter-rotating twin tool
JP2012183565A (en) Friction stir welding method and welding jig
JP2020001086A (en) Surface modification method for light metal casting
JP2005161382A (en) Spot-welding method for metallic member and device therefor
JP2001032058A (en) Method for modifying surface of metallic material
Kumar et al. Strengthening effects of tool-mounted ultrasonic vibrations during friction stir lap welding of Al and Mg alloys
US20060208032A1 (en) Manufacture of specialized alloys with specific properties
KR20020003372A (en) Surface treating method, and treating member therefor
JP5431426B2 (en) Ni-base alloy large member, Ni-base alloy welded structure using Ni-base alloy large member, and manufacturing method thereof
JP2008133519A (en) Method for reforming steel material
Ravi et al. Influence of tool rotational speed on the mechanical and microstructure properties of friction stir welded Al-B4C MMCs
JP4457330B2 (en) Surface treatment method and engine cylinder head
EP3572180B1 (en) Method of laser welding of metal plates
JP2013082007A (en) Method for manufacturing tool for friction stir welding
US5965037A (en) Inert gas electric arc welding process and torch for use therein
JP4605489B2 (en) Surface treatment method and engine casting cylinder head
JP6897024B2 (en) Joining method
KR102433561B1 (en) Deburing tool for friction stir welding device
JP2014105379A (en) Ni-BASED ALLOY, FRICTION STIR WELDING TOOL USING THE SAME, AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220517