JP2008130441A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2008130441A
JP2008130441A JP2006315857A JP2006315857A JP2008130441A JP 2008130441 A JP2008130441 A JP 2008130441A JP 2006315857 A JP2006315857 A JP 2006315857A JP 2006315857 A JP2006315857 A JP 2006315857A JP 2008130441 A JP2008130441 A JP 2008130441A
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
gas
bypass
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006315857A
Other languages
English (en)
Inventor
Yasuaki Tanaka
泰明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006315857A priority Critical patent/JP2008130441A/ja
Publication of JP2008130441A publication Critical patent/JP2008130441A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】低効率運転の際に生成されるポンピング水素を燃料電池スタックの暖機に有効利用する。
【解決手段】燃料電池システム10は、燃料電池スタック20と、燃料電池スタック20の温度が所定値以下である場合に通常運転に比して熱損失の大きい低効率運転により電池運転を制御するコントローラ70と、低効率運転の実施により燃料電池スタック20のカソード極にて生成されるポンピング水素を燃焼させる燃焼器71と、ポンピング水素の燃焼によって得られた熱エネルギーにより燃料電池スタック20を暖機する熱交換系70とを備える。低効率運転による燃料電池スタック20の熱損失に加えて、更にポンピング水素の燃焼反応によって得られた熱エネルギーを利用して燃料電池スタック20を暖機することで、ポンピング水素を有効に利用することができる。
【選択図】図1

Description

本発明は低温始動時に低効率発電運転を実施して燃料電池スタックを暖機する燃料電池システムに関する。
近年、環境問題に対する取り組みの一環として、低公害車の開発が進められており、その中の一つに燃料電池システムを車載電源とする燃料電池車両がある。燃料電池システムは、電解質膜の一方の面にアノード極を配置し、他方の面にカソード極を配置してなる膜−電極接合体に反応ガスを供給することで電気化学反応を起こし、化学エネルギーを電気エネルギーに変換するエネルギー変換システムである。なかでも、固体高分子膜を電解質として用いる固体高分子電解質型燃料電池システムは、低コストでコンパクト化が容易であり、しかも高出力密度を有することから、車載電力源としての用途が期待されている。
燃料電池スタックのガスチャンネル内部には、反応ガスの電気化学反応で生じた生成水や反応ガスを加湿するための加湿水などが残留しており、この残留水を放置したまま発電を停止すると、低温環境下では、残留水が凍結してしまい、膜−電極接合体への反応ガスの拡散が妨げられ、低温始動性が低下する。
このような問題点に鑑み、特開2006−73501号公報には、低温始動時の場面において、燃料電池スタックへの反応ガス供給が不足気味になるよう調整することで、過電圧を意図的に増大せしめて燃料電池スタックを低効率で運転することにより、熱損失を利用して燃料電池スタックを暖機する手法が提案されている。
特開2006−73501号公報
しかし、特開2006−73501号公報に開示されている燃料電池システムでは、低効率運転の際に燃料電池スタックのカソード極に透過してくる水素(ポンピング水素)をエアと混合して希釈し、システム外に排気しているので、燃料電池スタックを暖機する上でポンピング水素が有効には利用されていなかった。
そこで、本発明は低効率運転の際に生成されるポンピング水素を燃料電池スタックの暖機に有効利用できる燃料電池システムを提案することを課題とする。
上記の課題を解決するため本発明に係わる燃料電池システムは、燃料電池スタックと、燃料電池スタックの温度が所定値以下である場合に通常運転に比して熱損失の大きい低効率運転により電池運転を制御する制御手段と、低効率運転の実施により燃料電池スタックのカソード極にて生成されるポンピング水素を燃焼させる燃焼手段と、ポンピング水素の燃焼によって得られた熱エネルギーにより燃料電池スタックを暖機する熱交換系とを備える。
低効率運転による燃料電池スタックの熱損失に加えて、更にポンピング水素の燃焼反応によって得られた熱エネルギーを利用して燃料電池スタックを暖機することで、ポンピング水素を有効に利用することができる。
本発明に係わる燃料電池システムは、燃料電池スタックのカソード極にエアを流すための酸化ガス供給流路と、カソード極から排出されるオフガスを流すための排出流路と、酸化ガス供給流路から分岐して燃料電池スタックをバイパスし排出流路に合流するバイパス流路と、バイパス流路を流れるバイパスエア流量を調整するバイパス弁とを更に備える。制御手段は、ポンピング水素を過不足なく燃焼させるためのバイパスエアが熱交換系に供給されるようにバイパス弁の弁開度を調整する。
熱交換系にてポンピング水素を過不足なく燃焼させることで、ポンピング水素を最大限に有効利用し、燃料電池スタックを迅速に暖機することが可能となる。
ここで、低効率運転は、例えば、エアストイキ比を1.0未満に設定することにより電池運転を実施することである。エアストイキ比を低く設定して低効率運転を実施すると、燃料電池スタックの濃度分極が大きくなるので、水素と酸素との反応によって取り出せるエネルギーのうち熱損失分が増大する。この熱損失は、燃料電池スタックを暖機する作用を有するので、低温始動時などにおいて低効率運転を実施することで、意図的に熱損失を増大させ、暖機時間を短縮できる。
本発明によれば、低効率運転による燃料電池スタックの熱損失に加えて、更にポンピング水素の燃焼反応によって得られた熱エネルギーを利用して燃料電池スタックを暖機することで、ポンピング水素を有効に利用することができる。
以下、各図を参照しながら本発明の実施形態について説明する。
図1は燃料電池車両の車載電源システムとして機能する燃料電池システム10のシステム構成を示す。
燃料電池システム10は、反応ガス(酸化ガス及び燃料ガス)の供給を受けて発電する燃料電池スタック20と、燃料ガスとしての水素ガスを燃料電池スタック20に供給する燃料ガス配管系30と、酸化ガスとしてのエアを燃料電池スタック20に供給する酸化ガス配管系40と、電力の充放電を制御する電力系60と、燃料電池スタック20の温度を調整するための熱交換系70と、システム全体を統括制御するコントローラ90と、を備えている。
燃料電池スタック20は、例えば、複数のセルを直列に積層してなる固体高分子電解質型セルスタックである。セルは、イオン交換膜からなる電解質膜の一方の面にカソード極を有し、他方の面にアノード極を有し、更にカソード極及びアノード極を両側から挟みこむように一対のセパレータを有している。一方のセパレータの燃料ガス流路に燃料ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスが供給され、このガス供給により燃料電池スタック20は発電する。
燃料電池スタック20では、アノード極において(1)式の酸化反応が生じ、カソード極において(2)式の還元反応が生じる。燃料電池スタック20全体としては(3)式の起電反応が生じる。
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
燃料ガス配管系30は、燃料ガス供給源31と、燃料ガス供給源31から燃料電池スタック20のアノード極に供給される燃料ガス(水素ガス)が流れる燃料ガス供給流路35と、燃料電池スタック20から排出される燃料オフガス(水素オフガス)を燃料ガス供給流路35に還流せしめるための循環流路36と、循環流路36内の燃料オフガスを燃料ガス供給流路35に圧送する循環ポンプ37と、循環流路36に分岐接続される排気流路39とを有している。
燃料ガス供給源31は、例えば、高圧水素タンクや水素吸蔵合金などで構成され、高圧(例えば35MPa〜70MPa)の水素ガスを貯留する。遮断弁32を開くと、燃料ガス供給源31から燃料ガス供給流路35に水素ガスが流出する。水素ガスは、レギュレータ33やインジェクタ34により低圧(例えば200kPa程度)に減圧されて、燃料電池スタック20に供給される。
尚、燃料ガス供給源31は、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクとから構成してもよい。
インジェクタ34は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ34は、燃料ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体とを備えている。
循環流路36には、排気弁38を介して、排気流路39が接続されている。排気弁38は、コントローラ90からの指令によって作動することにより、循環流路36内の不純物を含む燃料オフガスと水分を外部に排出する。排気弁38の開弁により、循環流路36内の水素オフガス中の不純物の濃度が下がり、循環供給される燃料オフガス中の水素濃度が上がる。
希釈器50には、排気弁38及び排気流路39を介して排出される燃料オフガスと、排出流路45を流れる酸化オフガスとが流入し、燃料オフガスを希釈する。希釈化された燃料オフガスの排出音は、マフラー51によって消音され、テールパイプ52を流れて車外に排気される。
酸化ガス配管系40は、燃料電池スタック20のカソード極に供給される酸化ガスが流れる酸化ガス供給流路44と、燃料電池スタック20から排出される酸化オフガスが流れる排出流路45とを有している。
酸化ガス供給流路44には、フィルタ41を介して酸化ガスを取り込むエアコンプレッサ42と、燃料電池スタック20に供給される酸化ガス流量を絞るための絞り弁47と、エアコンプレッサ42により圧送される酸化ガスを加湿するための加湿器43とが設けられている。酸化ガス供給流路44には、酸化ガス供給流路44から分岐し、燃料電池スタック20を迂回して、排出流路45に合流するバイパス流路48が設けられている。バイパス流路48には、酸化ガス供給流路44から分岐してバイパス流路48に分流するエア(以下、バイパスエアと称する。)の流量を調整するためのバイパス弁49が設けられている。
排出流路45には、酸化ガス供給圧を調整するための背圧制御弁46と、酸化ガスを加湿するための加湿器43と、ポンピング水素濃度を計測するための水素センサ80とが設けられている。水素センサ80としては、公知の水素センサ(例えば、水晶振動子の表面に水素ガスを吸着するパラジウムのスパッタリング膜を成膜してなる水素センサ)を適用できる。
尚、絞り弁47、背圧制御弁46、及びバイパス弁49のそれぞれは、電磁的に弁開度を無段階調整できる流量制御弁である。
加湿器43は、多数本の水蒸気透過膜(中空糸膜)から成る水蒸気透過膜束(中空糸膜束)を収容している。水蒸気透過膜の内部には、電池反応により生じた水分を多量に含む高湿潤の酸化オフガス(ウェットガス)が流れる一方で、水上透過膜の外部には、大気から取り込まれた低湿潤の酸化ガス(ドライガス)が流れる。酸化ガスと酸化オフガスとの間で水蒸気透過膜を隔てて水分交換が行われることにより、酸化ガスを加湿することができる。
電力系60は、DC/DCコンバータ61、バッテリ62、トラクションインバータ63、及びトラクションモータ64を備えている。DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62からの直流電圧を昇圧してトラクションインバータ63に出力する機能と、燃料電池スタック20又はトラクションモータ64からの直流電圧を降圧してバッテリ62に充電する機能と、を有する。DC/DCコンバータ61のこれらの機能により、バッテリ62の充放電が制御される。また、DC/DCコンバータ61による電圧変換制御により、燃料電池スタック20の運転ポイント(出力電圧、出力電流)が制御される。
バッテリ62は、電力の蓄電及び放電が可能な蓄電装置であり、ブレーキ回生時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ62としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が好適である。
トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64は、例えば、三相交流モータであり、燃料電池車両の動力源を構成する。
熱交換系70は、通常運転時には、電気化学反応により発熱する燃料電池スタック20を冷却する一方で、低温始動時には、燃料電池スタック20を暖機する機能を有するものであり、ラジエータ74又は燃焼器71のうち何れか一方と、燃料電池スタック20との間に冷媒を循環させるための冷媒流路73と、冷媒流路73に沿って冷媒を流すための循環ポンプ72とを備える。冷媒流路73には、三方弁75が取り付けられており、運転状態に応じて冷媒流路を変更できるよう構成されている。三方弁75は、通常運転時には、ラジエータ74と燃料電池スタック20との間に冷媒が循環するよう弁切り替えを行う一方で、低温始動時には、燃焼器71と燃料電池スタック20との間で冷媒が循環するよう弁切り替えを行う。冷媒流路73には、燃料電池スタック20の内部温度を反映する冷媒温度を検出するための温度センサ76が設けられている。
コントローラ90は、CPU、ROM、RAM、及び入出力インタフェースを備えるコンピュータシステムであり、燃料電池システム10の各部を制御する。例えば、コントローラ90は、イグニッションスイッチ(図示せず)から出力される起動信号を受信すると、燃料電池システム10の運転を開始し、アクセルセンサ(図示せず)から出力されるアクセル開度信号や、車速センサ(図示せず)から出力される車速信号などを基に、システム全体の要求電力を求める。システム全体の要求電力は、車両走行電力と補機電力との合計値である。補機電力には、例えば、車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
そして、コントローラ90は、燃料電池スタック20とバッテリ62の出力電力の配分を決定し、燃料電池スタック20の発電量が目標電力に一致するように、エアコンプレッサ42の回転数やインジェクタ34の弁開度を調整し、燃料電池スタック20への反応ガス供給量を調整するとともに、DC/DCコンバータ61を制御して燃料電池スタック20の出力電圧を調整することにより燃料電池スタック20の運転ポイント(出力電圧、出力電流)を制御する。更に、コントローラ90は、アクセル開度に応じた目標車速が得られるように例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をトラクションインバータ63に出力し、トラクションモータ64の出力トルク、及び回転数を制御する。
図2は燃料電池スタック20の出力特性(I−V特性)を示す。
同図において、実線は通常運転時の出力特性を示し、破線は低効率運転時の出力特性を示す。通常運転時には、燃料電池スタック20の電力損失を抑えて高い発電効率が得られるように、コントローラ90は、エアストイキ比を1.0以上に設定して燃料電池スタック20への反応ガス供給量を制御する。エアストイキ比とは、酸素余剰率をいい、水素と過不足なく反応するのに必要な酸素に対して供給酸素がどれだけ余剰であるかを示す。
これに対し、低効率運転時には、燃料電池スタック20の電力損失を高めて低い発電効率が得られるように、コントローラ90は、エアストイキ比を1.0未満に設定して燃料電池スタック20への反応ガス供給量を制御する。エアストイキ比を低く設定して低効率運転を実施すると、濃度分極が大きくなるので、水素と酸素との反応によって取り出せるエネルギーのうち熱損失(電力損失)が増大する。低効率運転は、例えば、低温始動時などの場面において、熱損失を意図的に増大させることによって、燃料電池スタック20を迅速に暖機するための手段として利用される。
ところで、通常運転時には、エアストイキ比は1.0以上に設定されており、カソード極への酸化ガス供給が十分である。そのため、カソード極では、上述の(2)式が進行し、酸素、水素イオン、及び電子から水が生成される。
一方、低効率運転時には、エアストイキ比は1.0未満に設定されており、カソード極への酸化ガス供給が不足している。カソード極では、酸化ガスの不足量に応じて(4)式が進行し、水素イオンと電子とが結合して水素が生成される。このように乖離した水素イオンと電子とがカソード極にて再結合することによって生成される水素をポンピング水素と称する。
2H++2e- → H2 …(4)
図3は低温始動処理ルーチンを示すフローチャートである。
コントローラ90は、イグニッションスイッチ(図示せず)から出力される起動信号を受信すると、まず、温度センサ76の検出値を読み取り、冷媒温度Tが閾値温度T0を下回っているか否かを判定する(ステップ301)。閾値温度T0は、低効率運転を実施するか否かを判断する基準となる温度であり、例えば、0℃付近の温度に設定される。
冷媒温度Tが閾値温度T0を下回っていない場合には(ステップ301;NO)、低効率運転を実施する必要がないので、コントローラ90は、本処理ルーチンを抜け、通常始動処理ルーチン(図示せず)を実施する。
一方、冷媒温度Tが閾値温度T0を下回っている場合には(ステップ301;YES)、コントローラ90は、絞り弁47の弁開度を絞り込むことにより、エアストイキ比を1.0未満に設定し、低効率運転を実施する(ステップ302)。低効率運転の実施により生じた熱損失(熱エネルギー)によって、燃料電池スタック20は暖機される。
コントローラ90は、水素センサ80の検出値を読み取ることによって、低効率運転の実施により排出流路45に流出してくるポンピング水素の水素濃度を検出する(ステップ303)。
そして、コントローラ90は、ポンピング水素を燃焼させるために必要かつ十分な酸素の化学量論を燃焼反応式に基づいて算出し、更にその算出された化学量論に基づいてバイパスエア流量を算出する(ステップ304)。
コントローラ90は、ステップ304にて算出されたバイパスエア流量をバイパス流路48に流すために、絞り弁47とバイパス弁49のそれぞれの弁開度を調整し、分流制御を実施する(ステップ305)。絞り弁47における圧力損失と、バイパス弁49における圧力損失との比率に応じて、酸化ガス供給流路44を流れるエア流量と、バイパス流路48を流れるバイパスエア流量との流量比が制御される。
燃焼器71には、ポンピング水素に加えて、燃焼反応に必要かつ十分なバイパスエアが流れ込むので、ポンピング水素を過不足なく燃焼させることができる。燃焼器71の燃焼反応によって得られた熱エネルギーは、燃料電池スタック20と燃焼器71との間を循環する冷媒を昇温し、更には冷媒と燃料電池スタック20との間の熱伝導によって燃料電池スタック20を暖機する。
このように、低効率運転による燃料電池スタック20の熱損失に加えて、更にポンピング水素の燃焼反応によって得られた熱エネルギーを利用して燃料電池スタック20を暖機することで、従来は排気されていたポンピング水素の有効利用が可能になる上に、暖機時間の短縮も実現できる。
発明の実施形態を通じて説明された実施例は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができ、本発明は上述した実施形態の記載の記載に限定されるものではない。
例えば、熱交換系70は、ポンピング水素の燃焼によって得られた熱エネルギーを利用して燃料電池スタック20を暖機できる構成を有していればよく、上述の構成に限られるものではない。熱交換系70は、燃料電池スタック20に供給される反応ガス(燃焼ガス又は酸化ガスの何れか一方又は両者)を、ポンピング水素の燃焼によって得られた熱エネルギーを利用して昇温させる構成を有していても良い。
またステップ303では、コントローラ90は、水素センサ80の検出値を読み取ることによって、ポンピング水素濃度を検出するものとしたが、上述の(3)式に基づいてポンピング水素濃度を推定してもよい。
また上述の実施形態では、燃料電池システム10を車載電源システムとして用いる利用形態を例示したが、燃料電池システム10の利用形態はこの例に限られるものではない。例えば、燃料電池システム10を燃料電池車両以外の移動体(ロボット、船舶、航空機等)の電力源として搭載してもよい。また、本実施形態に係わる燃料電池システム10を住宅やビル等の発電設備(定置用発電システム)として用いてもよい。
本実施形態に係わる燃料電池システムのシステム構成図である。 燃料電池スタックのI−V特性を示すグラフである。 本実施形態に係わる低温始動処理ルーチンを示すフローチャートである。
符号の説明
10…燃料電池システム 20…燃料電池スタック 30…燃料ガス配管系 31…燃料ガス供給源 32…遮断弁 33…レギュレータ 34…インジェクタ 35…燃料ガス供給流路 40…酸化ガス配管系 41…フィルタ 42…エアコンプレッサ 43…加湿器 44…酸化ガス供給流路 45…排出流路 46…背圧制御弁 47…絞り弁 48…バイパス流路 49…バイパス弁 60…電力系 61…DC/DCコンバータ 62…バッテリ 63…トラクションインバータ 64…トラクションモータ 70…熱交換系 71…燃焼器 72…循環ポンプ 80…水素センサ 90…コントローラ

Claims (3)

  1. 燃料電池スタックと、
    前記燃料電池スタックの温度が所定値以下である場合に通常運転に比して熱損失の大きい低効率運転により電池運転を制御する制御手段と、
    前記低効率運転の実施により前記燃料電池スタックのカソード極にて生成されるポンピング水素を燃焼させる燃焼手段と、
    前記ポンピング水素の燃焼によって得られた熱エネルギーにより前記燃料電池スタックを暖機する熱交換系と、
    を備える燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記燃料電池スタックのカソード極にエアを流すための酸化ガス供給流路と、
    前記カソード極から排出されるオフガスを流すための排出流路と、
    前記酸化ガス供給流路から分岐して前記燃料電池スタックをバイパスし前記排出流路に合流するバイパス流路と、
    前記バイパス流路を流れるバイパスエア流量を調整するバイパス弁と、
    を更に備え、
    前記制御手段は、前記ポンピング水素を過不足なく燃焼させるためのバイパスエアが前記熱交換系に供給されるように前記バイパス弁の弁開度を調整する、燃料電池システム。
  3. 請求項1又は請求項2に記載の燃料電池システムであって、
    前記低効率運転は、エアストイキ比を1.0未満に設定することにより電池運転を実施することである、燃料電池システム。
JP2006315857A 2006-11-22 2006-11-22 燃料電池システム Pending JP2008130441A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315857A JP2008130441A (ja) 2006-11-22 2006-11-22 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315857A JP2008130441A (ja) 2006-11-22 2006-11-22 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008130441A true JP2008130441A (ja) 2008-06-05

Family

ID=39556067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315857A Pending JP2008130441A (ja) 2006-11-22 2006-11-22 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2008130441A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361513A (zh) * 2022-01-13 2022-04-15 潍柴动力股份有限公司 一种氢燃料电池发动机加热氢气的系统和方法
JP2022142606A (ja) * 2021-03-16 2022-09-30 本田技研工業株式会社 暖機システム
WO2023220432A3 (en) * 2022-05-13 2024-01-11 Zeroavia Ltd Start up method and apparatus to pre-heat fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142606A (ja) * 2021-03-16 2022-09-30 本田技研工業株式会社 暖機システム
JP7213287B2 (ja) 2021-03-16 2023-01-26 本田技研工業株式会社 暖機システム
CN114361513A (zh) * 2022-01-13 2022-04-15 潍柴动力股份有限公司 一种氢燃料电池发动机加热氢气的系统和方法
CN114361513B (zh) * 2022-01-13 2024-04-16 潍柴动力股份有限公司 一种氢燃料电池发动机加热氢气的系统和方法
WO2023220432A3 (en) * 2022-05-13 2024-01-11 Zeroavia Ltd Start up method and apparatus to pre-heat fuel cell

Similar Documents

Publication Publication Date Title
KR101859803B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
JP5007927B2 (ja) 燃料電池システム
JP4656539B2 (ja) 燃料電池システム
JP4789018B2 (ja) 燃料電池システム
JP6187774B2 (ja) 燃料電池システム及び燃料電池システムの運転制御方法
JP5476408B2 (ja) 燃料電池システム
JP4492824B2 (ja) 燃料電池システム
WO2009084448A1 (ja) 燃料電池システム
JP2008226591A (ja) 燃料電池システム
JP2008147139A (ja) 燃料電池システム
WO2008142972A1 (ja) 燃料電池システム
JP2008282659A (ja) 燃料電池システム
JP5294097B2 (ja) 燃料電池システム
JP2007141744A (ja) 燃料電池システム
JP5558909B2 (ja) 電力供給システム
US8092947B1 (en) Fuel cell system
JP2009152131A (ja) 燃料電池システム
JP2009004243A (ja) 燃料電池システム
JP4337104B2 (ja) 燃料電池システム
JP5105222B2 (ja) 燃料電池システム
JP2008130441A (ja) 燃料電池システム
JP2021128908A (ja) 燃料電池システム
JP2021128907A (ja) 燃料電池システム
JP5773278B2 (ja) 燃料電池システム及びその制御方法
JP5229523B2 (ja) 燃料電池システム