JP2008128949A - Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method - Google Patents

Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method Download PDF

Info

Publication number
JP2008128949A
JP2008128949A JP2006317056A JP2006317056A JP2008128949A JP 2008128949 A JP2008128949 A JP 2008128949A JP 2006317056 A JP2006317056 A JP 2006317056A JP 2006317056 A JP2006317056 A JP 2006317056A JP 2008128949 A JP2008128949 A JP 2008128949A
Authority
JP
Japan
Prior art keywords
power supply
supply current
static power
semiconductor device
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006317056A
Other languages
Japanese (ja)
Inventor
Keisuke Okubo
恵輔 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2006317056A priority Critical patent/JP2008128949A/en
Publication of JP2008128949A publication Critical patent/JP2008128949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining value and also detecting failure of static power supply current which can detect abnormality in the static power supply current value with higher sensitivity and reliability, depending on increase and variation range of off-leak current capacity due to process miniaturization. <P>SOLUTION: This method is characterized by comprising a step of running simulations of the static power supply current of a semiconductor device in a plurality of logic states and then obtain an average value IDDgave, variation range a and standard deviation σ of the static power supply current from the results of these simulations, and a process to determine the static power supply current value ΔIDDq of the semiconductor device based on the above-obtained average value IDDgave, variation range a and standard deviation σ of the static power supply current. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

半導体装置の静的電源電流値の異常を試験する、静的電源電流値の試験方法に関するものである。   The present invention relates to a static power supply current value testing method for testing an abnormality of a static power supply current value of a semiconductor device.

半導体装置に含まれるCMOS回路は、構造上、不良が無い場合は直流電流パスが存在しない構成となっており、入力確定後の定常状態には微小のオフリーク電流しか流れない。この為、CMOS回路を使用した半導体装置の内部に、異常な電流リークを生じる故障個所が存在した場合、電源電流値を測定することで正常な状態と区別できる。このことを利用し、半導体装置の定常状態での電流である静的電源電流IDDqを測定することにより、故障の有無を判定しようとする試験が、静的電源電流試験(以下、IDDqテストとも表記する。)である。   A CMOS circuit included in a semiconductor device has a structure in which no DC current path exists when there is no defect, and only a small off-leakage current flows in a steady state after the input is determined. For this reason, if there is a fault location that causes an abnormal current leak in a semiconductor device using a CMOS circuit, it can be distinguished from a normal state by measuring the power supply current value. Using this, the static power supply current IDDq, which is the current in the steady state of the semiconductor device, is measured to determine whether or not there is a failure. ).

ところが、概ね0.18μm以下の設計ルールを用いて製造された半導体装置では、静的電源電流IDDqの値が100μAから数10mAの範囲にある。従って、良否の為の判定値を一律に定めた固定値とし、その判定値から外れた場合を不良とする良否判定方法においては、静的電源電流IDDqの良否判定値が数mA〜数10mA程度に設定される。この為、数mA以上の異常リーク電流を生じる故障しか検出できず、異常リーク電流が微少の場合は故障検出能力が大幅に低下する。   However, in a semiconductor device manufactured using a design rule of approximately 0.18 μm or less, the value of the static power supply current IDDq is in the range of 100 μA to several tens of mA. Therefore, in the pass / fail judgment method in which the judgment value for pass / fail is set to a fixed value that is uniformly determined, and the case where the judgment value deviates from the judgment value is defective, the pass / fail judgment value of the static power supply current IDDq is about several mA to several tens of mA. Set to For this reason, only a fault that generates an abnormal leak current of several mA or more can be detected. If the abnormal leak current is very small, the fault detection capability is greatly reduced.

そこで、特許文献1には、試験対象の半導体装置の複数の測定ポイントの静的電源電流IDDqの測定値、ばらつきおよび異常なはずれ値に注目し、測定ポイントの静的電源電流値に基づいて測定ポイントをグループ化して測定ポイントグループを設定する測定ポイントグループ化部と、測定ポイントグループのプロセス条件差による静的電源電流値のばらつきの和が最小になる加重平均値を算出する加重平均値算出部と、加重平均値に基づき、静的電源電流値のばらつきの最大値を算出するばらつき値部算出部と、静的電源電流値による測定ポイントグループの良否判定基準を格納する記憶部と、良否判定基準によって半導体装置の良否判定を行う良否判定部とを備えた試験装置に関する技術が開示されている。
特開2005−134255号公報
Therefore, Patent Document 1 focuses on the measured value, variation, and abnormal outlier value of the static power supply current IDDq at a plurality of measurement points of the semiconductor device to be tested, and measures based on the static power supply current value at the measurement point. A measurement point grouping unit that groups points and sets a measurement point group, and a weighted average value calculation unit that calculates a weighted average value that minimizes the sum of variations in static power supply current values due to process condition differences between measurement point groups And a variation value part calculation unit that calculates the maximum value of the variation of the static power supply current value based on the weighted average value, a storage unit that stores the determination criteria for the measurement point group based on the static power supply current value, and the pass / fail determination A technique relating to a test apparatus provided with a pass / fail judgment unit for judging pass / fail of a semiconductor device according to a reference is disclosed.
JP 2005-134255 A

しかしながら、特許文献1では、良否判定を行う為のアルゴリズム作成にプロセスばらつきの評価が必要であり、特許文献1に開示の技術を少量多品種の製品群に適用するには、IDDqテストの条件設定に莫大な時間的コストがかかる。また、プロセス微細化によるオフリーク量の増加に伴い、半導体装置の論理状態によるオフリーク量の変動が大きく、良品判定の妨げになっており、故障検出能力の維持が困難である。   However, in Patent Document 1, it is necessary to evaluate process variations in creating an algorithm for determining pass / fail, and in order to apply the technique disclosed in Patent Document 1 to a product group of a small variety of products, IDDq test condition setting Enormous time costs. Further, along with an increase in the amount of off-leakage due to process miniaturization, the fluctuation in the amount of off-leakage due to the logic state of the semiconductor device is large, which hinders non-defective product determination, and it is difficult to maintain the failure detection capability.

本発明は、上記問題を解決する為になされたものであって、プロセス微細化によるオフリーク電流量の増加と変動幅に対応し、静的電源電流値の異常を高い感度および信頼性で検出可能な静的電源電流の判定値と故障検出方法を提供する。   The present invention has been made to solve the above problems, and can cope with an increase in the amount of off-leakage current due to process miniaturization and a fluctuation range, and can detect anomalies in static power supply current values with high sensitivity and reliability. A determination value of static power supply current and a failure detection method are provided.

上記問題を解決する為に発明者等は、半導体装置の設計用に利用されている汎用性のパワーシミュレーションを利用することに想到した。即ち、製品毎に汎用パワーシミュレーション(消費電力シミュレーションとも呼ばれる。)でオフリーク電流予測値を得て、その複数の論理状態(半導体装置の外部ピンに与えられる信号の組合せをいう。以下、アドレスとも記す。)におけるシミュレーション結果をIDDqテストの判定値に反映させる。そこで、静的電源電流値のシミュレーション結果が、実製品の測定結果と一致しているかどうかを検証した。   In order to solve the above problems, the inventors have come up with the idea of using a versatile power simulation that is used for designing semiconductor devices. That is, for each product, a predicted off-leakage current value is obtained by a general-purpose power simulation (also called power consumption simulation), and a plurality of logic states (a combination of signals given to external pins of a semiconductor device; hereinafter also referred to as an address). The simulation result in.) Is reflected in the judgment value of the IDDq test. Therefore, it was verified whether the simulation result of the static power supply current value matches the measurement result of the actual product.

図5に、0.13μm設計ルール製品の、IDDqパターンによる測定結果(符号は■印)とシミュレーション結果(符号は○印)とを示した。縦軸に、得られた(または測定された)静的電源電流値IDDqを、横軸に、測定した複数の論理状態に番号をつけたものを示している。また、シミュレーション結果の縦軸を任意の数で倍して補正して、測定結果の縦軸に合わせている。この図5から分かるように、測定結果に対しシミュレーション結果は、得られた(または測定された)静的電源電流値IDDqを倍率補正すれば、論理状態における変動状況を再現できることが確認できた。通常のパワーシミュレータを用いれば、平均値IDDqave、変動幅aおよび標準偏差σが、論理状態によるこれらの変動を表す為のパラメータとして算出できる。   FIG. 5 shows the measurement results (symbols are marked with ■) and simulation results (symbols are marked with ○) of the 0.13 μm design rule product according to IDDq patterns. The vertical axis shows the obtained (or measured) static power supply current value IDDq, and the horizontal axis shows the number of measured logic states. Further, the vertical axis of the simulation result is corrected by multiplying it by an arbitrary number, and is adjusted to the vertical axis of the measurement result. As can be seen from FIG. 5, it was confirmed that the simulation result can reproduce the fluctuation state in the logic state by multiplying the obtained (or measured) static power supply current value IDDq with respect to the measurement result. If a normal power simulator is used, the average value IDDqave, the fluctuation range a, and the standard deviation σ can be calculated as parameters for representing these fluctuations depending on the logical state.

なお、ここで平均値IDDqaveは、全論理状態の静的電源電流値の平均値、変動幅aは論理状態に依存した故障起因では無い静的電源電流値の変動の幅、標準偏差σは論理状態に依存した静的電源電流値の分散性を示している。この内、平均値IDDqaveおよび変動幅aと、各論理状態における静的電源電流値との関係は、図5中に示した通りである。実際の測定結果とシミュレーション結果との比較は、他の数種類の製品でも行ったが、何れも同じ傾向を示した。   Here, the average value IDDqave is the average value of the static power supply current values in all logic states, the fluctuation range a is the fluctuation range of the static power supply current values not caused by the failure depending on the logic state, and the standard deviation σ is the logical value The dispersibility of the static power supply current value depending on the state is shown. Among these, the relationship between the average value IDDqave and the fluctuation range a and the static power supply current value in each logic state is as shown in FIG. The comparison between the actual measurement results and the simulation results was performed for several other types of products, but all showed the same tendency.

さらに、様々なIDDq判定値の設定方法を検討したところ、変動幅aと標準偏差σを基にする方法が適していると判明した。   Furthermore, when various IDDq judgment value setting methods were examined, it was found that a method based on the fluctuation range a and the standard deviation σ was suitable.

上記知見を元になされた本発明の要旨を、以下に示す。
(1)本発明に係る半導体装置の静的電源電流の判定値を定める方法は、半導体装置の静的電源電流を複数の論理状態においてシミュレーションし、このシミュレーションの結果から静的電源電流の平均値、変動幅および標準偏差を得る工程と、前記得られた静的電源電流の平均値、変動幅および標準偏差に基づいて、半導体装置の静的電源電流の判定値を定める工程とを備えたことことを特徴とする。
(2)本発明に係る半導体装置の静的電源電流の判定値を定める方法は、半導体装置の静的電源電流を複数の論理状態においてシミュレーションし、このシミュレーションの結果から静的電源電流の平均値IDDqave、変動幅aおよび標準偏差σを得る工程と、前記得られた静的電源電流の平均値IDDqave、変動幅aおよび標準偏差σに基づいて、下記(ア)式を満足する範囲ΔIDDqを、静的電源電流の判定値と定める工程とを備えたことを特徴とする。
IDDqave−(a+3×σ)≦ΔIDDq≦IDDqave+(a+3×σ) …(ア)
(3)本発明に係る半導体装置の故障検出方法は、上記(1)または(2)に記載の静的電源電流の判定値を定める方法で、予め、判定値を定めておき、その後、半導体装置の静的電源電流を測定し、該測定の結果から静的電源電流の平均値を算出する工程と、前記算出された平均値と前記予め定めた判定値とを比較し、前記平均値が前記判定値の範囲内であれば良品と判定する工程とを備えたことを特徴とする。
The gist of the present invention based on the above findings is shown below.
(1) A method for determining a determination value of a static power supply current of a semiconductor device according to the present invention simulates the static power supply current of a semiconductor device in a plurality of logic states, and calculates an average value of the static power supply current from the result of the simulation. A step of obtaining a fluctuation range and a standard deviation, and a step of determining a determination value of the static power supply current of the semiconductor device based on the obtained average value, fluctuation range and standard deviation of the static power supply current. It is characterized by that.
(2) In the method for determining the determination value of the static power supply current of the semiconductor device according to the present invention, the static power supply current of the semiconductor device is simulated in a plurality of logic states, and the average value of the static power supply current is calculated from the result of the simulation. Based on the obtained IDDqave, fluctuation range a and standard deviation σ, and the average value IDDqave, fluctuation range a and standard deviation σ of the obtained static power supply current, a range ΔIDDq satisfying the following expression (a): And a step of determining and determining a static power supply current.
IDDqave− (a + 3 × σ) ≦ ΔIDDq ≦ IDDqave + (a + 3 × σ) (a)
(3) A failure detection method for a semiconductor device according to the present invention is a method for determining a determination value of a static power supply current as described in (1) or (2) above. Measuring the static power supply current of the device, calculating an average value of the static power supply current from the result of the measurement, comparing the calculated average value with the predetermined determination value, the average value is And a step of determining a non-defective product within the range of the determination value.

本発明によれば、静的電源電流の判定値を決める為のリファレンスサンプルの評価が不要となるため、多品種の製品の判定基準を一律の基準で設定できる。また、汎用シミュレーションを用いて判定値を定めているので、プロセス上の故障による異常リークの検出が容易であり、かつオフリーク電流の増加による検出感度の劣化を防ぐことができる。   According to the present invention, it is not necessary to evaluate the reference sample for determining the determination value of the static power supply current, so that determination criteria for a wide variety of products can be set on a uniform basis. In addition, since the determination value is determined using general-purpose simulation, it is easy to detect abnormal leakage due to a process failure, and it is possible to prevent detection sensitivity from deteriorating due to an increase in off-leakage current.

パワーシミュレーションによるIDDqテストにおける判定値の設定方法は、以下の通りとした。   The method for setting the judgment value in the IDDq test by power simulation was as follows.

製品の回路情報とプロセスのライブラリ情報を基に、パワーシミュレーションツールを実行し、静的電源電流測定用論理テストパターンによるデバイスの論理状態とオフリーク量を予測する。この予測結果から、全論理状態による平均IDDqと、半導体装置の正常な変動幅a(すなわち、故障起因ではないオフリーク量の変動幅)と、標準偏差σとを計算する。シミュレーションで得られた平均値IDDqに、正常なオフリーク量の変動幅aをプラス側とマイナス側それぞれに加え、これを異常リーク検出の為の基準値とする。さらに、この変動幅aにGuard Bandとして3σをさらに外側へ付加する。このGuard Bandは、装置起因の誤差や測定時のサンプリング誤差などを詳しく解析した結果から、幅3σが妥当と結論づけた。即ち、シミュレーションより予想された静的電源電流の平均値IDDqave、変動幅aおよび標準偏差σに基づいて、下記(ア)式を満足する範囲ΔIDDqを、静的電源電流の判定値と定めた。
IDDqave−(a+3×σ)≦ΔIDDq≦IDDqave+(a+3×σ) …(ア)
その後、試験対象とする半導体装置の数個について、実際にIDDqを測定し、その測定結果から、上記(ア)式で得られた範囲ΔIDDqを倍率補正して、実際に使用する判定値の範囲ΔIDDqとする。
Based on the product circuit information and process library information, the power simulation tool is executed to predict the logic state and off-leakage amount of the device using the static power supply current measurement logic test pattern. From this prediction result, the average IDDq for all logic states, the normal fluctuation range a of the semiconductor device (that is, the fluctuation range of the off-leakage amount not caused by the failure), and the standard deviation σ are calculated. A fluctuation range a of the normal off-leakage amount is added to each of the plus side and the minus side to the average value IDDq obtained by the simulation, and this is used as a reference value for detecting an abnormal leak. Further, 3σ is further added to the fluctuation range a as a guard band. This Guard Band concluded that the width 3σ was appropriate from the results of detailed analysis of errors caused by the equipment and sampling errors during measurement. That is, based on the average value IDDqave, fluctuation range a, and standard deviation σ of the static power supply current predicted from the simulation, a range ΔIDDq that satisfies the following equation (a) was determined as the determination value of the static power supply current.
IDDqave− (a + 3 × σ) ≦ ΔIDDq ≦ IDDqave + (a + 3 × σ) (A)
Then, IDDq is actually measured for several semiconductor devices to be tested, and the range of judgment values actually used is corrected by multiplying the range ΔIDDq obtained by the above equation (A) from the measurement result. Let ΔIDDq.

表1に、0.13μm設計ルールの製品のシミュレーションを元に計算した結果を示す。この値を元に、範囲ΔIDDqの設定状況を図示したものが、図1である。実際に不良と判定されるオフリーク電流は、範囲ΔIDDqの外側になる。   Table 1 shows the calculation results based on the simulation of the product with the 0.13 μm design rule. FIG. 1 illustrates the setting state of the range ΔIDDq based on this value. The off-leakage current that is actually judged as defective is outside the range ΔIDDq.

Figure 2008128949
Figure 2008128949

この判定範囲ΔIDDqを判定値とし、後は、通常行われている方法で、IDDqテストを行い不良品を検出する。   This determination range ΔIDDq is used as a determination value, and thereafter, an IDDq test is performed by a usual method to detect defective products.

なお、予測に使用する論理状態の数(アドレスカウントとも呼ばれる。)は、試験対象とする半導体装置の故障率によって、適宜適当な個数を決める。   Note that the number of logical states used for prediction (also referred to as address count) is appropriately determined according to the failure rate of the semiconductor device to be tested.

本発明に係る故障検出方法を用いた例の結果を、表2に示す。対象製品は、設計ルール0.13μmの量産品で、60個についての試験を行った。比較の為に、従来例として一律の閾値で判定する方法による結果も、併せて示す。この製品は、論理状態依存によるオフリーク電流の変動幅aが大きく、従来例の方法ではIDDqテストができなかったものである。しかし、本発明によると、IDDq単独の不良が劇的に解消し、製品のいわゆるオーバーキルを抑制できることが明らかになった。   Table 2 shows the results of an example using the failure detection method according to the present invention. The target products were mass-produced products with a design rule of 0.13 μm, and 60 were tested. For comparison, a result obtained by a method using a uniform threshold as a conventional example is also shown. This product has a large fluctuation range a of the off-leakage current depending on the logic state, and the IDDq test cannot be performed by the conventional method. However, according to the present invention, it has become clear that the defect of IDDq alone can be solved dramatically and the so-called overkill of the product can be suppressed.

Figure 2008128949
Figure 2008128949

次に、テスト品質の観点から、本発明例によりIDDq不良を示したサンプルについてIDDqシグネチャを採取し、図2に示した。縦軸が、実際に測定したIDDqの最大値とアドレス平均値の差の絶対値を示し、横軸は、実際に測定した全アドレスにおける静的電源電流の平均値を示している。◇印がFunction不良、■印がFunction合格を示し、さらに図2中の実線は、本発明によるテスト限界値で、この線以下の領域がIDDq合格(Pass)、この線より上の領域がIDDq不良(Fail)となる。この図2より、IDDq不良と判定された半導体装置は、良品と判定されたものに比べ、異常なオフリーク電流値を示していることが分かった。よって、本発明による試験結果は、オーバーキルを行ってはおらず、不良品を検出していることが確認できた。なお、図2中の実線より下の領域にある◇印のサンプルは、本発明によるテストではIDDq合格(Pass)であるが、Functionテストにおいて最終的に不良と判定される。   Next, from the viewpoint of test quality, an IDDq signature was collected for a sample showing an IDDq failure according to the present invention, and is shown in FIG. The vertical axis indicates the absolute value of the difference between the actually measured maximum value of IDDq and the average address value, and the horizontal axis indicates the average value of the static power supply current at all actually measured addresses. ◇ mark indicates Function failure, ■ mark indicates Function pass, and the solid line in Fig. 2 is the test limit value according to the present invention, the area below this line is IDDq pass (Pass), and the area above this line is IDDq It becomes defective. From FIG. 2, it was found that the semiconductor device determined to be IDDq defective showed an abnormal off-leakage current value compared to that determined to be non-defective. Therefore, the test result according to the present invention confirmed that a defective product was detected without overkill. Note that the sample marked with 印 in the region below the solid line in FIG. 2 passes IDDq (Pass) in the test according to the present invention, but is finally determined to be defective in the Function test.

実施例1および2とは別の製品についても、同様に、本発明に係る故障検出方法を用いた例を示す。量産品100個を試験した結果を、表3に示す。比較の為に、従来例として一律の閾値で判定する方法による結果も合わせて示す。被測定製品は、従来例の方法にて、IDDqテストを行っていたものである。IDDqテストでは、従来例の方法でも本発明の方法でも、IDDq不良が多発して試験が行えないという不具合は出なかった。IDDq不良に着目すると、従来法では良品判定されたサンプル1個が、本発明では不良判定された。そこで、このサンプルについて、欠陥性の不良なのか、テスト方法に起因するオーバーキルなのかを調査した。   An example using the failure detection method according to the present invention is also shown for products other than the first and second embodiments. Table 3 shows the results of testing 100 mass-produced products. For comparison, the result of a determination method using a uniform threshold is also shown as a conventional example. The product to be measured has been subjected to the IDDq test by the conventional method. In the IDDq test, neither the conventional method nor the method of the present invention caused a problem that the test could not be performed due to frequent IDDq defects. Focusing on IDDq defects, one sample that was determined to be non-defective by the conventional method was determined to be defective in the present invention. Therefore, it was investigated whether this sample was defective or overkill caused by the test method.

Figure 2008128949
Figure 2008128949

IDDq不良と判定されたサンプルについて、IDDqシグネチャを採取した結果を、図3に示した。縦軸が、実際に測定したIDDqの最大値とアドレス平均値の差の絶対値を示し、横軸は、実際に測定した全アドレスにおける静的電源電流の平均値を示している。◇印がFunction不良、■印がFunction合格を示し、さらに図3中の実線は、本発明によるIDDqテスト限界値で、この線以下の領域がIDDq合格(Pass)、この線より上の領域がIDDq不良(Fail)となる。この図3より、本発明に係る方法でIDDq不良とされたサンプルは、オーバーキルでは無く、欠陥性の不良サンプルである可能性の高いことが示された。この結果から、従来例の方法では検出できなかった欠陥を検出していると考えられ、歩留り損失だけでなく、テスト品質の点からも有効な判定方法であることが明らかになった。   FIG. 3 shows the result of collecting the IDDq signature for the sample determined to be IDDq defective. The vertical axis indicates the absolute value of the difference between the actually measured maximum value of IDDq and the average address value, and the horizontal axis indicates the average value of the static power supply current at all actually measured addresses. The ◇ mark indicates Function failure, the ■ mark indicates Function pass, and the solid line in Fig. 3 is the IDDq test limit value according to the present invention, the area below this line is IDDq pass (Pass), and the area above this line is IDDq failure (Fail). From FIG. 3, it was shown that the sample determined to be IDDq defective by the method according to the present invention is not overkill but likely to be a defective defective sample. From this result, it was considered that a defect that could not be detected by the conventional method was detected, and it became clear that this is an effective determination method not only in terms of yield loss but also in terms of test quality.

本発明に係る故障検出方法を量産適用し、ロット歩留り(符号は■)とIDDq不良率(符号は○)の推移を調査した。この推移結果を図4に示す。縦軸は、右がIDDq単独の不良率、左がロット歩留まりを、それぞれ%で示している。横軸は、量産ロット名として便宜上1から順番に割り当てた番号を示している。本製品は、実施例3と同様に、一律の閾値で判定する方法によりIDDqテストを行っていたものである。一律の閾値で判定する方法を適用していた期間では、プロセスの変動によってオフリーク電流の増減が起こり、一律の閾値設定を原因とするIDDq不良による低歩留りが発生していた。しかし、本発明の適用後は、IDDq不良による低歩留りの発生は抑制され、テスト条件のミスマッチによる歩留り損失を低減できることが明らかになった。   The failure detection method according to the present invention was applied to mass production, and the transition of lot yield (sign is ■) and IDDq defect rate (sign is ○) was investigated. The transition result is shown in FIG. The vertical axis shows the defect rate of IDDq alone on the right and the lot yield on the left in%. The horizontal axis indicates numbers assigned in order from 1 for convenience as mass production lot names. This product was subjected to the IDDq test by a method of judging with a uniform threshold value as in Example 3. During the period in which the method using the uniform threshold was applied, the off-leakage current increased or decreased due to process variations, and a low yield due to IDDq failure caused by the uniform threshold setting occurred. However, after the application of the present invention, it has been clarified that the occurrence of low yield due to IDDq failure is suppressed and the yield loss due to mismatch of test conditions can be reduced.

範囲ΔIDDqの設定状況を示した説明図である。It is explanatory drawing which showed the setting condition of range (DELTA) IDDq. 量産品のIDDqシグネチャから求めた、実際に測定したIDDqの最大値とアドレス平均値の差の絶対値と、実際に測定した全アドレスにおける静的電源電流の平均値との関係を示した図である。This figure shows the relationship between the absolute value of the difference between the actual measured IDDq maximum value and the address average value obtained from the mass-produced IDDq signature, and the average value of the static power supply current at all measured addresses. is there. 別の量産品のIDDqシグネチャから求めた、実際に測定したIDDqの最大値とアドレス平均値の差の絶対値と、実際に測定した全アドレスにおける静的電源電流の平均値との関係を示した図である。Shown is the relationship between the absolute value of the actual measured IDDq maximum value and the average address value obtained from the IDDq signature of another mass-produced product, and the average static power supply current value at all actual measured addresses. FIG. 本発明適用前後における量産ロットのロット歩留りとIDDq不良率の推移を示した図である。FIG. 6 is a diagram showing a transition of a lot yield and an IDDq defect rate of a mass production lot before and after application of the present invention. 0.13μm設計ルール製品の、IDDqパターンによる測定結果とシミュレーション結果とを示した図である。It is the figure which showed the measurement result and simulation result by IDDq pattern of a 0.13 micrometer design rule product.

Claims (3)

半導体装置の静的電源電流を複数の論理状態においてシミュレーションし、このシミュレーションの結果から静的電源電流の平均値、変動幅および標準偏差を得る工程と、
前記得られた静的電源電流の平均値、変動幅および標準偏差に基づいて、半導体装置の静的電源電流の判定値を定める工程とを備えたことを特徴とする、半導体装置の静的電源電流の判定値を定める方法。
A step of simulating a static power supply current of a semiconductor device in a plurality of logic states, and obtaining an average value, a fluctuation range, and a standard deviation of the static power supply current from the result of the simulation;
And a step of determining a determination value of the static power supply current of the semiconductor device based on the obtained average value, fluctuation range and standard deviation of the static power supply current. A method for determining the current judgment value.
半導体装置の静的電源電流を複数の論理状態においてシミュレーションし、このシミュレーションの結果から静的電源電流の平均値IDDqave、変動幅aおよび標準偏差σを得る工程と、
前記得られた静的電源電流の平均値IDDqave、変動幅aおよび標準偏差σに基づいて、下記(ア)式を満足する範囲ΔIDDqを、静的電源電流の判定値と定める工程とを備えたことを特徴とする、半導体装置の静的電源電流の判定値を定める方法。
IDDqave−(a+3×σ)≦ΔIDDq≦IDDqave+(a+3×σ) …(ア)
A step of simulating a static power supply current of a semiconductor device in a plurality of logic states, and obtaining an average value IDDqave, a fluctuation range a, and a standard deviation σ of the static power supply current from a result of the simulation;
And a step of determining a range ΔIDDq satisfying the following equation (a) as a determination value of the static power supply current based on the obtained average value IDDqave, fluctuation range a, and standard deviation σ of the static power supply current. A method for determining a determination value of a static power supply current of a semiconductor device.
IDDqave− (a + 3 × σ) ≦ ΔIDDq ≦ IDDqave + (a + 3 × σ) (a)
請求項1または2に記載の静的電源電流の判定値を定める方法で、予め、判定値を定めておき、
その後、半導体装置の静的電源電流を測定し、該測定の結果から静的電源電流の平均値を算出する工程と、
前記算出された平均値と前記予め定めた判定値とを比較し、前記平均値が前記判定値の範囲内であれば良品と判定する工程とを備えたことを特徴とする半導体装置の故障検出方法。
In the method for determining the determination value of the static power supply current according to claim 1 or 2, the determination value is determined in advance,
Then, measuring the static power supply current of the semiconductor device, calculating the average value of the static power supply current from the measurement results,
A failure detection of a semiconductor device, comprising: comparing the calculated average value with the predetermined determination value, and determining that the average value is within a range of the determination value, and determining that it is a non-defective product Method.
JP2006317056A 2006-11-24 2006-11-24 Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method Pending JP2008128949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317056A JP2008128949A (en) 2006-11-24 2006-11-24 Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317056A JP2008128949A (en) 2006-11-24 2006-11-24 Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method

Publications (1)

Publication Number Publication Date
JP2008128949A true JP2008128949A (en) 2008-06-05

Family

ID=39554901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317056A Pending JP2008128949A (en) 2006-11-24 2006-11-24 Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method

Country Status (1)

Country Link
JP (1) JP2008128949A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114770A (en) * 1987-10-28 1989-05-08 Nec Corp Testing device for logic ic
JPH01282478A (en) * 1988-05-10 1989-11-14 Mitsubishi Electric Corp Inspection of article
JP2000206174A (en) * 1999-01-14 2000-07-28 Matsushita Electric Ind Co Ltd Method for inspecting semiconductor device
JP2001021609A (en) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp Method of inspecting semiconductor integrated circuit
JP2002107404A (en) * 2000-10-02 2002-04-10 Sony Corp Non-defective article determination method for cmos integrated circuit
JP2003045929A (en) * 2001-07-31 2003-02-14 Sony Corp Method for testing semiconductor integrated circuit
JP2005098925A (en) * 2003-09-26 2005-04-14 Matsushita Electric Ind Co Ltd Failure detection method for semiconductor device, and failure-detecting apparatus therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114770A (en) * 1987-10-28 1989-05-08 Nec Corp Testing device for logic ic
JPH01282478A (en) * 1988-05-10 1989-11-14 Mitsubishi Electric Corp Inspection of article
JP2000206174A (en) * 1999-01-14 2000-07-28 Matsushita Electric Ind Co Ltd Method for inspecting semiconductor device
JP2001021609A (en) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp Method of inspecting semiconductor integrated circuit
JP2002107404A (en) * 2000-10-02 2002-04-10 Sony Corp Non-defective article determination method for cmos integrated circuit
JP2003045929A (en) * 2001-07-31 2003-02-14 Sony Corp Method for testing semiconductor integrated circuit
JP2005098925A (en) * 2003-09-26 2005-04-14 Matsushita Electric Ind Co Ltd Failure detection method for semiconductor device, and failure-detecting apparatus therefor

Similar Documents

Publication Publication Date Title
JP3940718B2 (en) Test device, pass / fail criteria setting device, test method and test program
KR100267463B1 (en) Method of measurement of yield loss chips and poor chips classified by a type according to defected chips on the wafer
US7283918B2 (en) Apparatus for analyzing fault of semiconductor integrated circuit, method for the same, and computer readable medium for the same
US11688052B2 (en) Computer assisted weak pattern detection and quantification system
US7617427B2 (en) Method and apparatus for detecting defects in integrated circuit die from stimulation of statistical outlier signatures
JP2008002900A (en) Screening method, system, and program for semiconductor devices
US20020180477A1 (en) Method for testing a semiconductor integrated circuit
JP2009264736A (en) Substrate inspecting apparatus
JP2012047675A (en) Inspection device
JP2007240376A (en) Method and device for inspecting stationary power source current of semiconductor integrated circuit
CN101210932B (en) Method for promoting defect detection reliability
JP5025524B2 (en) Test apparatus, test system, and test method
JP2008128949A (en) Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method
US6239605B1 (en) Method to perform IDDQ testing in the presence of high background leakage current
TWI618937B (en) Integrated circuit test method
JP5018474B2 (en) Semiconductor device test apparatus and semiconductor device test method
JP2013120875A (en) Semiconductor wafer test method
JP3696009B2 (en) Semiconductor test apparatus, semiconductor test method, and recording medium
US20090206870A1 (en) Method for analyzing ic devices and wafers
JP3282235B2 (en) Test method for integrated circuits
JP3139543B2 (en) Method of specifying faulty block in CMOS LSI having multiple faults
JP2007248200A (en) Maintenance system and method of semiconductor testing device
JP2006214860A (en) Inspection method and device for semiconductor integrated circuit
JP2004257815A (en) Inspection method of semiconductor integrated circuit and semiconductor integrated circuit device
JP2001074804A (en) Testing apparatus and testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830