JP2003045929A - Method for testing semiconductor integrated circuit - Google Patents

Method for testing semiconductor integrated circuit

Info

Publication number
JP2003045929A
JP2003045929A JP2001231930A JP2001231930A JP2003045929A JP 2003045929 A JP2003045929 A JP 2003045929A JP 2001231930 A JP2001231930 A JP 2001231930A JP 2001231930 A JP2001231930 A JP 2001231930A JP 2003045929 A JP2003045929 A JP 2003045929A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
current
value
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001231930A
Other languages
Japanese (ja)
Inventor
Tetsuji Nagayama
哲治 長山
Koji Inoue
光司 井上
Masatake Sakai
正剛 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001231930A priority Critical patent/JP2003045929A/en
Publication of JP2003045929A publication Critical patent/JP2003045929A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve a testing method on the basis of source current in static state of a semiconductor integrated circuit by which the determination of good or no-good is exactly made even if there are manufacturing variations. SOLUTION: The testing method for making the determination of good or no-good by means of a current test in static state in a wafer level testing step 5 of the semiconductor integrated circuit is characterized in that the reference current value for judging soundness is determined for each product on the basis of characteristic values of a transistor in a basic characteristics measurement step 2 for determination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路の
検査方法に関し、特にCMOS論理回路を構成する半導
体集積回路の静止状態電流試験による良否判定検査の方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a semiconductor integrated circuit, and more particularly to a method for inspecting the quality of a semiconductor integrated circuit constituting a CMOS logic circuit by a quiescent current test.

【0002】[0002]

【従来の技術】近年、LSI等に代表される半導体集積
回路においては、微細化とともに、システムオンチップ
(SoC:いわゆるシステムLSI)のように複雑化、
大規模化してきており、その検査試験方法は複雑になっ
てきている。特にCMOSの大規模集積回路では、その
検査試験方法を簡素化するために、静止状態でのリーク
電流を測定して不良を検出する方法が主流になりつつあ
る。CMOS論理回路では、内部回路あるいは内部ノー
ドの状態遷移時のみ大きな電流が流れ、静止時にはほと
んど電流が流れない性質を有している。静止状態電流試
験法は、この性質を利用して、Iddqと呼ばれる静止
状態電源電流の異常値を検出するテストを行うことによ
って回路異常を検出するものである。CMOS論理回路
では、通常Iddqがほぼ0に近い。異常のないCMO
S論理回路では、内部状態が遷移する時のみ電源電流が
パルス状に流れるのに対して、内部回路に欠陥等を有す
る場合にはIddqは0にならず、静止状態でもリーク
電流が流れる。このリーク電流を検出することでデバイ
スの良否を判定することができる。
2. Description of the Related Art In recent years, semiconductor integrated circuits typified by LSIs have become finer and more complicated, such as system-on-chip (SoC: so-called system LSI).
As the scale is increasing, the inspection and testing methods are becoming complicated. In particular, in a large-scale integrated circuit of CMOS, a method of measuring a leak current in a stationary state to detect a defect is becoming mainstream in order to simplify the inspection test method. A CMOS logic circuit has a property that a large current flows only when the state of an internal circuit or an internal node transits and almost no current flows when it is stationary. The quiescent-state current test method utilizes this property to detect a circuit abnormality by performing a test called Iddq for detecting an abnormal value of a quiescent-state power supply current. In CMOS logic circuits, Iddq is usually close to zero. CMO without abnormality
In the S logic circuit, the power supply current flows in pulses only when the internal state transitions, whereas when the internal circuit has a defect or the like, Iddq does not become 0, and a leak current flows even in a stationary state. The quality of the device can be determined by detecting this leak current.

【0003】しかしながら、Iddqを実際の製品出荷
時の検査に用いるとすると、いくつかの困難に直面す
る。Iddqと密接な関係があるサブスレッショルドリ
ーク電流Ileakを表すと次式のように近似される。
However, when Iddq is used for actual product inspection, some difficulties are encountered. The subthreshold leakage current Ileak having a close relationship with Iddq can be approximated by the following equation.

【0004】 Ileak=exp(−Vt(S/ln10)) ここで、VtはMOSFETのしきい値であり、Sはサ
ブスレッショルド係数である。この式からわかるよう
に、Sを例えば80mV/decadeあたりと仮定す
ると、Vtが0.1V変動するとIleakが1〜2桁
変わってしまうということになる。別の見方をすると、
図3に示すように、単一ロットの素子間ならば、比較的
Vtが均一のため判定基準電流値は容易に決められる。
しかし、製品量産時のようにVtに製造バラツキが乗っ
てくると、図4に示すように、判定基準電流値が大きく
変動し全く判定ができない状態に陥ってしまう。従っ
て、製品量産時にも判定できるような静止状態電流試験
の良否判定を行う方法が切望されている。
Ileak = exp (-Vt (S / ln10)) where Vt is the threshold value of the MOSFET and S is the subthreshold coefficient. As can be seen from this equation, assuming that S is around 80 mV / decade, for example, if Vt changes by 0.1 V, Ileak changes by one or two digits. From another perspective,
As shown in FIG. 3, since the Vt is relatively uniform between the elements of a single lot, the judgment reference current value can be easily determined.
However, if the manufacturing variation is added to Vt as in the case of mass production of the product, as shown in FIG. 4, the judgment reference current value fluctuates greatly and the judgment cannot be made at all. Therefore, a method for making a pass / fail judgment of a quiescent current test that can be judged even in mass production of products has been desired.

【0005】[0005]

【発明が解決しようとする課題】上述のごとく、従来の
静止状態電源電流を検出する検査方法において、単一ロ
ットの製品に対しては良否判定基準となる電流値が容易
に決められ、検査の効果が大きいが、量産製品の検査の
際は、製造バラツキによって判定基準値が大きく変動
し、良品を不良と判定して除いたり、逆に不良品を良と
判定してしまったりするおそれが生れる。本発明は、比
較的簡単な方法でこの問題を解決して、製造バラツキが
あっても良否判定が正しく行われる半導体集積回路の静
止状態電源電流に基づいた検査方法の実現を課題とす
る。
As described above, in the conventional inspection method for detecting the quiescent power supply current, the current value serving as the pass / fail judgment standard is easily determined for a single lot of products, and Although the effect is great, when a mass-produced product is inspected, there is a risk that the judgment reference value will fluctuate significantly due to manufacturing variations, and a good product will be judged as defective and removed, or conversely a defective product will be judged as good. Be done. An object of the present invention is to solve this problem by a relatively simple method and to realize an inspection method based on a quiescent state power supply current of a semiconductor integrated circuit in which a quality determination is correctly performed even if there is a manufacturing variation.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するた
め、本発明は、CMOS論理回路を有する半導体集積回
路の静止状態電流試験による検査方法において、その良
否判定基準となる判定基準電流値を、トランジスタの特
性値を基に製品ごとに決定して静止状態電流試験の判定
を行うことを特徴とする。これにより、判定基準電流値
をロットごとに決定し、製造バラツキがあっても良否判
定が的確に行われる半導体集積回路の静止状態電源電流
に基づいた検査方法を実現することができる。
In order to achieve the above object, the present invention provides a judgment reference current value, which is a quality judgment reference, in an inspection method by a quiescent current test of a semiconductor integrated circuit having a CMOS logic circuit. It is characterized in that it is determined for each product based on the characteristic value of the transistor and the quiescent current test is determined. As a result, it is possible to realize the inspection method based on the quiescent power supply current of the semiconductor integrated circuit in which the determination reference current value is determined for each lot and the quality determination is accurately performed even if there is manufacturing variation.

【0007】[0007]

【発明の実施の形態】本発明者は、前述の問題点に鑑み
鋭意検討を行った結果、製品量産時にも静止状態電流試
験の良否判定を行うために、しきい値電圧等のモニター
トランジスタの測定結果を基にチップごとに良否判定値
を決定するのが好適であることを見い出した。本発明
は、この知見に基づいて提案されるもので、CMOS論
理回路の静止状態電流試験において、その良否判定をト
ランジスタ特性値を基に製品ごとに行うことを特徴とす
るものである。本発明では、微小で、なおかつ適正に設
定しないとオーバーキル(良品を不良と判定)や市場不
良品流出(使っているうちに早期に劣化)のおそれがあ
る静止状態電流試験(スタンバイ電流やIddqと呼ば
れるもの)の判定値を、予め測定されたLSIの特性を
代表するトランジスタ特性の値(しきい値やドレイン電
流またはリーク電流)を用いてチップあるいは単位のグ
ループごとに決定するようにするのが最大のポイントで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of intensive studies made by the present inventor in view of the above-mentioned problems, in order to determine the quality of a quiescent current test even during mass production of products, a monitor transistor such as a threshold voltage is used. It has been found that it is preferable to determine the pass / fail judgment value for each chip based on the measurement results. The present invention is proposed based on this finding, and is characterized in that, in a quiescent current test of a CMOS logic circuit, its quality is judged for each product based on a transistor characteristic value. According to the present invention, a static current test (standby current or Iddq) that is minute and may cause overkill (a good product is determined to be defective) or defective product on the market (deteriorates early during use) unless properly set. (Referred to as “the value”) is determined for each chip or group of units by using the value of the transistor characteristic (threshold value, drain current or leak current) representative of the characteristic of the LSI measured in advance. Is the biggest point.

【0008】以下、本発明にかかる半導体集積回路の検
査方法を添付図面を参照にして詳細に説明する。
A semiconductor integrated circuit inspection method according to the present invention will be described below in detail with reference to the accompanying drawings.

【0009】図1は、本発明の半導体集積回路の製造の
作業フローを示す概念図である。また、図2は、従来の
半導体集積回路の製造の作業フローを示す概念図であ
る。図1および図2で、符号1はウェハ製造工程、符号
2は基礎特性測定工程(1st pellet che
ck:トランジスタ特性の測定を含む)、符号3は生産
向けテストロット工程、符号4は良否判定基準決定工
程、符号5はウェハ状態試験工程(静止状態電流測定を
含む)、符号6は選別(2nd pelletchec
k)工程、符号7はチップ組み立て工程、符号8は出荷
試験工程、符号9は選別(final check)工
程、符号10は出荷工程である。
FIG. 1 is a conceptual diagram showing a work flow for manufacturing a semiconductor integrated circuit according to the present invention. Further, FIG. 2 is a conceptual diagram showing a work flow for manufacturing a conventional semiconductor integrated circuit. 1 and 2, reference numeral 1 is a wafer manufacturing process, and reference numeral 2 is a basic characteristic measuring process (1st pellet che).
ck: includes measurement of transistor characteristics), reference numeral 3 is a production test lot step, reference numeral 4 is a quality determination reference determination step, reference numeral 5 is a wafer state test step (including quiescent state current measurement), reference numeral 6 is selection (2nd) pelletchec
k) step, reference numeral 7 is a chip assembling step, reference numeral 8 is a shipping test step, reference numeral 9 is a final check step, and reference numeral 10 is a shipping step.

【0010】従来は、ウェハ製造工程1で製造されたウ
ェハに対し、生産向けテストロット工程3で把握したバ
ラツキを考慮して良否判定基準工程4で判定基準を決定
し、ウェハ状態試験5で静止状態電流測定などを行っ
て、その結果で選別6を行い、さらにチップ組み立て工
程7で製品化した後、出荷試験8を行ってその結果で選
別9を行って出荷している。本発明では、具体的には前
述のように、しきい値等のトランジスタ特性の値と静止
状態の電流値の間には相関があることを利用し、図1の
ように、図2に示す従来の製造工程でのウェハ状態試験
工程5で静止状態電流の測定を行う前に、トランジスタ
特性等の基礎特性測定工程2を挿人しておいて、その測
定値と事前の生産向けテストロット群で把握したバラツ
キとから、そのロットの良否判定値を求めるようにして
いる。なお、図2には示されてはいないが、既にある基
礎特性の測定工程を利用すれば、本発明でとくに工程が
増えるわけでもなく、簡便であるにもかかわらず効果が
大きいものといえる。
Conventionally, with respect to the wafer manufactured in the wafer manufacturing process 1, the judgment standard is determined in the pass / fail judgment standard process 4 in consideration of the variation grasped in the production test lot process 3, and the wafer state test 5 is stopped. The state current is measured, and the result is used for screening 6, and after the product is manufactured in the chip assembling step 7, a shipping test 8 is carried out, and the result is selected 9 for shipping. In the present invention, specifically, as described above, the fact that there is a correlation between the value of the transistor characteristic such as the threshold value and the current value in the quiescent state is utilized, and as shown in FIG. Before measuring the quiescent current in the wafer state test step 5 in the conventional manufacturing process, the basic characteristic measurement step 2 such as transistor characteristics is inserted, and the measured value and the test lot group for production in advance are inserted. The quality judgment value of the lot is obtained from the variation grasped in. Although not shown in FIG. 2, if the existing basic characteristic measuring step is used, the number of steps is not particularly increased in the present invention, and it can be said that the effect is great even though it is simple.

【0011】[実施例1]本発明を、0.15μmプロ
セスの大規模LSIの試験に用いた例を示す。作業フロ
ーは、図1のように行い、まずウェハ製造試験終了後の
基礎特性の測定工程として、モニタートランジスタ
(L:150nm、W:10μm)のしきい値Vtを測
定して、NMOS:300mV、PMOS:−300m
Vという値を得た。そこで、事前の生産向けテストロッ
ト群(100ロット)のしきい値とIddqの依存関係
を用いてIddqの判定基準値を100μAと定めた。
これにより、本実施例によって適正な選別を行うことが
でき、電流異常起因の市場不良率を十分低いレベルに収
めることができた。
[Embodiment 1] An example in which the present invention is used for testing a large-scale LSI having a 0.15 μm process will be described. The work flow is as shown in FIG. 1. First, as a step of measuring the basic characteristics after completion of the wafer manufacturing test, the threshold Vt of the monitor transistor (L: 150 nm, W: 10 μm) is measured and NMOS: 300 mV. PMOS: -300m
A value of V was obtained. Therefore, the determination reference value of Iddq is set to 100 μA using the dependency relationship between the threshold of the production test lot group (100 lots) and Iddq.
As a result, according to the present embodiment, proper selection can be performed, and the market defect rate due to the current abnormality can be kept at a sufficiently low level.

【0012】[実施例2]本発明を、実施例1と同様、
0.15μmプロセスの大規模LSIの試験に用いた例
を示す。作業フローは図1のように行い、まずウェハ製
造終了後の基礎特性の測定工程として、モニター・トラ
ンジスタ(L:150nm、W:10μm)のドレイン
電流として、NMOS:5.5mA、PMOS:−1.
7mAという値を得た。そこで、事前の生産向けテスト
ロット群(1000ロット)のドレイン電流とIddq
の依存関係を用いてIddqの判定基準値を100μA
と定めた。これにより、本実施例によっても適正な選別
を行うことができ、電流異常起因の市場不良率を十分低
いレベルに収めることができた。
[Second Embodiment] The present invention is similar to the first embodiment.
An example used for testing a large-scale LSI of 0.15 μm process will be shown. The work flow is as shown in FIG. 1. First, as a basic characteristic measurement process after the completion of wafer manufacturing, as a drain current of a monitor transistor (L: 150 nm, W: 10 μm), NMOS: 5.5 mA, PMOS: −1. .
A value of 7 mA was obtained. Therefore, the drain current and Iddq of the pre-production test lot group (1000 lots)
Iddq judgment reference value is 100 μA
I decided. As a result, it is possible to perform proper selection according to the present embodiment as well, and it is possible to keep the market defect rate due to the current abnormality at a sufficiently low level.

【0013】[実施例3]本発明を、実施例1ないし実
施例2と同様、0.15μmプロセスの大規模LSIの
試験に用いた例を示す。作業フローは図1のように行
い、まずウェハ製造終了後の基礎特性の測定工程とし
て、モニタートランジスタ(L:150nm、W:10
μm)のリーク電流値としてNMOS:5nA、PMO
S:−2μAという値を得た。そこで、事前の生産向け
テストロット群(100ロット)のリーク電流値とId
dqの判定基準値を100μAと定めた。これにより、
本実施例によって適性な選別を行うことができ、電流異
常起因の市場不良率を十分低いレベルに収めることがで
きた。
[Embodiment 3] Similar to Embodiments 1 and 2, an example in which the present invention is used for testing a large-scale LSI having a 0.15 μm process will be described. The work flow is as shown in FIG. 1. First, as a basic characteristic measuring process after the completion of wafer manufacturing, a monitor transistor (L: 150 nm, W: 10
μm) leakage current value is NMOS: 5 nA, PMO
A value of S: -2 μA was obtained. Therefore, the leak current value and Id of the test lot group (100 lots) for production in advance are set.
The criterion value for dq was set to 100 μA. This allows
According to this example, proper selection could be performed, and the market defect rate due to current abnormality could be kept at a sufficiently low level.

【0014】以上、本発明を3つの突施例に基づいて説
明したが、当然の事ながら本発明は上述の実施例に限定
されるものでなく、LSIの種類、観測電流や、選択す
るトランジスタ特性の種類等は本発明の趣旨を逸脱しな
い範囲で適宜選択できるのはいうまでもない。本発明を
用いることによって、静止状態電源電流を用いて半導体
集積回路の過不足のない適正な判定を行うことができ、
かつ市場不良を大幅に低減した製品選別を実現すること
ができる。
Although the present invention has been described based on three embodiments, the present invention is not of course limited to the above-mentioned embodiments, and the type of LSI, the observed current, and the transistor to be selected. It goes without saying that the type of characteristics and the like can be appropriately selected without departing from the spirit of the present invention. By using the present invention, it is possible to make an appropriate determination without excess or deficiency of the semiconductor integrated circuit using the quiescent power supply current,
In addition, it is possible to realize product selection with significantly reduced market defects.

【0015】[0015]

【発明の効果】以上説明したように本発明の請求項1の
発明は、半導体集積回路の静止状態電流試験による検査
方法おいて、その良否判定基準となる基準電流値をトラ
ンジスタの特性値を基に製品ごとに決定して判定を行う
ことを特徴とする。これにより、製造ロットごとのバラ
ツキを考慮にいれた過不足のない適正な判定を行うこと
ができ、オーバーキルや市場不良を大幅に低減した製品
選別が可能な半導体集積回路の検査方法を実現すること
ができる。
As described above, according to the invention of claim 1 of the present invention, in the inspection method by the quiescent current test of the semiconductor integrated circuit, the reference current value serving as the pass / fail judgment criterion is based on the characteristic value of the transistor. It is characterized in that it is determined for each product and judged. As a result, it is possible to make an appropriate judgment without excess or deficiency in consideration of the variation between manufacturing lots, and to realize a semiconductor integrated circuit inspection method capable of product selection with significantly reduced overkill and market defects. be able to.

【0016】本発明の請求項2の発明は、良否判定基準
となる判定基準電流値を予め測定したトランジスタの代
表的な特性値に準じて変更することを特徴とする。これ
により、トランジスタの特性値から静止状態電流の最適
な判定基準電流値を選ぶことができ、オーバーキルや市
場不良を大幅に低減した製品選別が可能な半導体集積回
路の検査方法を実現することができる。
The invention according to claim 2 of the present invention is characterized in that the judgment reference current value serving as the quality judgment reference is changed according to a typical characteristic value of the transistor measured in advance. As a result, it is possible to select the optimum reference current value for the quiescent current from the transistor characteristic values, and to realize a semiconductor integrated circuit inspection method that enables product selection with significantly reduced overkill and market defects. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体集積回路の製造作業フローを示
す概念図。
FIG. 1 is a conceptual diagram showing a manufacturing work flow of a semiconductor integrated circuit of the present invention.

【図2】従来の半導体集積回路の製造作業フローを示す
概念図。
FIG. 2 is a conceptual diagram showing a manufacturing work flow of a conventional semiconductor integrated circuit.

【図3】単一ロットでの静止状態電流に対するチップ分
布を示す図。
FIG. 3 is a diagram showing a chip distribution with respect to a quiescent current in a single lot.

【図4】製造段階での複数ロットでの静止状態電流に対
するチップ分布を示す図。
FIG. 4 is a view showing a chip distribution with respect to a quiescent current in a plurality of lots in a manufacturing stage.

【符号の説明】[Explanation of symbols]

1…ウェハ製造工程、2…基礎特性測定工程、3…生産
向けテストロット工程、4…良否判定基準決定工程、5
…ウェハ状態試験工程、6…選別工程、7…チップ組み
立て工程、8…出荷試験工程、9…選別工程、10…出
荷工程。
1 ... Wafer manufacturing process, 2 ... Basic characteristic measuring process, 3 ... Production test lot process, 4 ... Pass / fail judgment standard determining process, 5
... Wafer state test process, 6 ... Sorting process, 7 ... Chip assembly process, 8 ... Shipping test process, 9 ... Sorting process, 10 ... Shipping process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/8238 H01L 27/08 321Z 27/092 (72)発明者 酒井 正剛 福岡県福岡市早良区百道浜2丁目3番2号 ソニーセミコンダクタ九州株式会社内 Fターム(参考) 2G003 AA10 AB01 AF06 AH02 2G132 AA01 AB00 AC03 AD01 AG09 AL12 4M106 AA01 AA07 AB01 BA14 CA04 CA32 CA56 CA70 5F048 AB10 AC03 BA01 BB14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/8238 H01L 27/08 321Z 27/092 (72) Inventor Masago Sakai 2 Hyakudohama, Sawara-ku, Fukuoka-shi, Fukuoka C-No. 3-2 Sony Semiconductor Kyushu Co., Ltd. F term (reference) 2G003 AA10 AB01 AF06 AH02 2G132 AA01 AB00 AC03 AD01 AG09 AL12 4M106 AA01 AA07 AB01 BA14 CA04 CA32 CA56 CA70 5F048 AB10 AC03 BA01 BB14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CMOS論理回路を含む半導体集積回路
の静止状態電流試験による検査方法において、 その良否判定基準となる判定基準電流値を、トランジス
タの特性値を基に製品ごとに決定して静止状態電流試験
の判定を行うことを特徴とする半導体集積回路の検査方
法。
1. In a method for inspecting a semiconductor integrated circuit including a CMOS logic circuit by a quiescent state current test, a judgment reference current value serving as a pass / fail judgment standard is determined for each product based on a characteristic value of a transistor, and a quiescent state is determined. A method for inspecting a semiconductor integrated circuit, which comprises determining a current test.
【請求項2】 前記良否判定基準となる判定基準電流値
を、予め測定したトランジスタの代表的な特性値に準じ
て変更することを特徴とする請求頂1に記載の半導体集
積回路の検査方法。
2. The method for inspecting a semiconductor integrated circuit according to claim 1, wherein the judgment reference current value serving as the quality judgment reference is changed according to a typical characteristic value of the transistor measured in advance.
JP2001231930A 2001-07-31 2001-07-31 Method for testing semiconductor integrated circuit Pending JP2003045929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231930A JP2003045929A (en) 2001-07-31 2001-07-31 Method for testing semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231930A JP2003045929A (en) 2001-07-31 2001-07-31 Method for testing semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2003045929A true JP2003045929A (en) 2003-02-14

Family

ID=19063918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231930A Pending JP2003045929A (en) 2001-07-31 2001-07-31 Method for testing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2003045929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096140B2 (en) 2003-10-30 2006-08-22 Kabushiki Kaisha Toshiba Test system, test method and test program for an integrated circuit by IDDQ testing
JP2008002900A (en) * 2006-06-21 2008-01-10 Nec Electronics Corp Screening method, system, and program for semiconductor devices
JP2008128949A (en) * 2006-11-24 2008-06-05 Kawasaki Microelectronics Kk Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096140B2 (en) 2003-10-30 2006-08-22 Kabushiki Kaisha Toshiba Test system, test method and test program for an integrated circuit by IDDQ testing
CN100437131C (en) * 2003-10-30 2008-11-26 株式会社东芝 Testing device, device for setting standard to judge if qualified or not, testing method and program
JP2008002900A (en) * 2006-06-21 2008-01-10 Nec Electronics Corp Screening method, system, and program for semiconductor devices
JP2008128949A (en) * 2006-11-24 2008-06-05 Kawasaki Microelectronics Kk Method for determining static power supply current value of semiconductor device and failure detection method of semiconductor device using the above method

Similar Documents

Publication Publication Date Title
US7539893B1 (en) Systems and methods for speed binning of integrated circuits
US7594149B2 (en) In-situ monitor of process and device parameters in integrated circuits
US6714032B1 (en) Integrated circuit early life failure detection by monitoring changes in current signatures
US5889408A (en) Delta IDDQ testing
US7096140B2 (en) Test system, test method and test program for an integrated circuit by IDDQ testing
US7512915B2 (en) Embedded test circuit for testing integrated circuits at the die level
JP2002277503A (en) Semiconductor integrated circuit device
JP2004006857A (en) Integrated circuit chip and its fabricating method
JP3726711B2 (en) Semiconductor device
US5889409A (en) Leakage tracking device sample for IDDQ measurement and defect resolution
JP2008002900A (en) Screening method, system, and program for semiconductor devices
JP2007240376A (en) Method and device for inspecting stationary power source current of semiconductor integrated circuit
US6681193B2 (en) Method for testing a CMOS integrated circuit
JP2003045929A (en) Method for testing semiconductor integrated circuit
US6445002B1 (en) SRAM-based semiconductor integrated circuit testing element
US6239605B1 (en) Method to perform IDDQ testing in the presence of high background leakage current
Mahfuzul et al. On-chip detection of process shift and process spread for silicon debugging and model-hardware correlation
Chien et al. An extended building-in reliability methodology on evaluating SRAM reliability by wafer-level reliability systems
US6718524B1 (en) Method and apparatus for estimating state-dependent gate leakage in an integrated circuit
JP2008078266A (en) Semiconductor device, measuring method of characteristic of element to be measured and control system for characteristic of semiconductor device
US7023230B1 (en) Method for testing IDD at multiple voltages
JP2907278B2 (en) Semiconductor device and test method thereof
Kapur et al. Manufacturing test of SoCs
US20090206870A1 (en) Method for analyzing ic devices and wafers
CN110299179B (en) Dynamic power analysis using per memory instance activity customization