JP2008124355A - Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device - Google Patents

Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device Download PDF

Info

Publication number
JP2008124355A
JP2008124355A JP2006308712A JP2006308712A JP2008124355A JP 2008124355 A JP2008124355 A JP 2008124355A JP 2006308712 A JP2006308712 A JP 2006308712A JP 2006308712 A JP2006308712 A JP 2006308712A JP 2008124355 A JP2008124355 A JP 2008124355A
Authority
JP
Japan
Prior art keywords
resin
conductive
protruding
electronic component
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006308712A
Other languages
Japanese (ja)
Other versions
JP2008124355A5 (en
Inventor
Atsushi Saito
淳 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2006308712A priority Critical patent/JP2008124355A/en
Publication of JP2008124355A publication Critical patent/JP2008124355A/en
Publication of JP2008124355A5 publication Critical patent/JP2008124355A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device, an anisotropic conductive material, a mounting structure and an electrooptic device capable of obtaining high electric reliability by sufficiently deforming a resin without increasing pressurizing force during mounting so much and preventing the breakage of the resin. <P>SOLUTION: The semiconductor device 10 of this invention is characterized in that a void 14S is formed inside a projection body in the semiconductor device provided with a projection electrode P having the projection body 14 composed of the resin and a conductive layer 15 disposed on the projection body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置、異方性導電材、実装構造体、電気光学装置、突起電極の製造方法、異方性導電材の製造方法、及び、電子機器に係り、特に、樹脂で形成された突出体を備えた突起電極、並びに、少なくとも芯が樹脂で形成された導電性粒子を分散させてなる異方性導電材の構造に関する。   The present invention relates to a semiconductor device, an anisotropic conductive material, a mounting structure, an electro-optical device, a method for manufacturing a protruding electrode, a method for manufacturing an anisotropic conductive material, and an electronic device, and more particularly, a protrusion formed of a resin. The present invention relates to a projecting electrode provided with a body and a structure of an anisotropic conductive material in which conductive particles having at least a core formed of a resin are dispersed.

一般に、半導体装置や電気光学装置などにおいては、表面から突出してなる突起電極を用いて基板上などに実装する技術が頻繁に用いられる。例えば、シード電極上にAu/Niめっき等を施すことによって得られる金属バンプ電極は半導体の実装技術において多く用いられている。   In general, in a semiconductor device, an electro-optical device, or the like, a technique of mounting on a substrate or the like using a protruding electrode protruding from the surface is frequently used. For example, a metal bump electrode obtained by applying Au / Ni plating or the like on a seed electrode is often used in semiconductor mounting technology.

ところで、半導体装置を液晶表示パネルのガラス基板上に実装する技術としては、従来、ACF(異方性導電フィルム)を用いた実装方法が多用されてきた。ACFは、未硬化の接着剤中に多数の導電性粒子を分散させたものであり、半導体装置に狭ピッチで配列された多数の突起電極を、これに対応するガラス基板上の多数の対向電極に対して一度に導電接続させるために用いられる。このACFを用いる実装方法では、半導体装置とガラス基板との間にACFを配置し、加熱しながら半導体装置をガラス基板上に加圧することで、ACFの軟化により各突起電極が対応する対向電極に導電性粒子を介して導電接触し、その後、接着剤が熱硬化することで、その導電接触状態が維持される。このACF中に分散される導電性粒子としては、例えば、樹脂よりなる芯の表面上に金属その他の導電層をコーティングしたもの、或いは、微細な導電性粒子を混入した導電性ゴムよりなるもの、などが一般的に用いられる。この方法では、導電性粒子を構成するゴムその他の樹脂が弾性変形することで、コンタクト圧及びコンタクト面積が確保されるようになっている(例えば、以下の特許文献1参照)。   By the way, as a technique for mounting a semiconductor device on a glass substrate of a liquid crystal display panel, a mounting method using an ACF (anisotropic conductive film) has been frequently used. The ACF is obtained by dispersing a large number of conductive particles in an uncured adhesive, and a large number of protruding electrodes arranged at a narrow pitch on a semiconductor device and corresponding to a large number of counter electrodes on a glass substrate. Is used to make a conductive connection at once. In this mounting method using ACF, an ACF is disposed between a semiconductor device and a glass substrate, and the semiconductor device is pressed onto the glass substrate while being heated, whereby each protruding electrode becomes a corresponding counter electrode by softening the ACF. Conductive contact is made through the conductive particles, and then the adhesive is thermally cured to maintain the conductive contact state. As the conductive particles dispersed in the ACF, for example, those obtained by coating a metal or other conductive layer on the surface of a core made of resin, or those made of conductive rubber mixed with fine conductive particles, Are generally used. In this method, the contact pressure and the contact area are secured by elastically deforming rubber and other resins constituting the conductive particles (see, for example, Patent Document 1 below).

一方、上記とは別の実装方法として、樹脂よりなる突出体上に導電層を形成した構造の突起電極を半導体装置に設け、実装時において突起電極の頂部が対向電極に当接することで部分的に押しつぶされた状態とされ、この状態を接着剤によって保持してなる方法も知られている。この方法では、突出体を構成する樹脂が部分的に押しつぶされることでコンタクト圧やコンタクト面積が確保されるようになっている(例えば、以下の特許文献2参照)。
特開平5−182516号公報 特開2005−101527号公報
On the other hand, as a mounting method different from the above, a protruding electrode having a structure in which a conductive layer is formed on a protrusion made of resin is provided in a semiconductor device, and the top of the protruding electrode abuts against the counter electrode during mounting. There is also known a method in which the state is crushed into a solid and this state is held by an adhesive. In this method, the contact pressure and the contact area are ensured by partially crushing the resin constituting the projecting body (see, for example, Patent Document 2 below).
JP-A-5-182516 JP 2005-101527 A

ところで、前述のACFを用いた実装方法や樹脂よりなる突出体を備えた突起電極を用いた実装方法では、樹脂を変形させることでコンタクト圧やコンタクト面積を確保しているため、ガラス基板などの硬質基板上に形成された対向電極に対して半導体装置を実装する場合に特に有効で、安定した導電接続状態を得られるものとなっている。   By the way, in the mounting method using the above-described ACF and the mounting method using the protruding electrode provided with the protruding body made of resin, the contact pressure and the contact area are secured by deforming the resin. This is particularly effective when a semiconductor device is mounted on a counter electrode formed on a hard substrate, and a stable conductive connection state can be obtained.

しかしながら、上記のコンタクト面積は導電性粒子や突起電極を或る程度変形させないと得られないため、実装時において導電性粒子や突起電極が充分に変形しうるだけの加圧力を与える必要があるが、この加圧力が過剰になると樹脂が破断し、その結果、コンタクト圧が確保できなくなったり導電層が破壊されたりすることで、接続抵抗が増大するなどの実装不良が生ずる虞があるという問題点がある。   However, since the above contact area cannot be obtained unless the conductive particles and the protruding electrodes are deformed to some extent, it is necessary to apply a pressing force that can sufficiently deform the conductive particles and the protruding electrodes during mounting. If this pressure is excessive, the resin will break, and as a result, contact pressure may not be secured or the conductive layer may be broken, which may cause mounting defects such as increased connection resistance. There is.

そこで、本発明は上記問題点を解決するものであり、その課題は、実装時における加圧力をそれほど高めなくても樹脂の変形が充分に行われるとともに樹脂の破断を防止することにより、高い電気的信頼性を得ることができる半導体装置、異方性導電材、実装構造体、電気光学装置を実現することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that the resin can be sufficiently deformed without increasing the applied pressure at the time of mounting, and at the same time, by preventing the resin from being broken, It is to realize a semiconductor device, an anisotropic conductive material, a mounting structure, and an electro-optical device that can obtain high reliability.

斯かる実情に鑑み、本発明の半導体装置は、樹脂よりなる突出体と該突出体上に配置された導電層とを備えた突起電極を有する半導体装置において、前記突出体の内部に空洞が形成されていることを特徴とする。これによれば、突出体の内部に空洞が形成されていることにより、大きな加圧力を加えなくても突起電極が変形しやすくなるため、コンタクト面積を確保しつつ、突出体の破断を防止することが可能になることから、電気的信頼性をより向上させることができる。   In view of such circumstances, the semiconductor device of the present invention is a semiconductor device having a protruding electrode including a protruding body made of a resin and a conductive layer disposed on the protruding body, and a cavity is formed inside the protruding body. It is characterized by being. According to this, since the projecting electrode is easily deformed without applying a large pressing force because the cavity is formed inside the projecting body, the contact body is secured and the projecting body is prevented from being broken. Therefore, electrical reliability can be further improved.

本発明において、前記突出体は、単一の前記空洞の外側を突出形状の外殻が被覆してなることが好ましい。これによれば、突出体の内部に単一の空洞が設けられ、この空洞の外側を突出形状の外殻が被覆することにより、構造が単純であるため、安定した導電接続状態を容易に得ることができる。   In the present invention, it is preferable that the projecting body is formed by covering the outer side of the single cavity with a projecting outer shell. According to this, a single cavity is provided inside the projecting body, and the outer surface of the cavity is covered with the projecting outer shell, so that the structure is simple, and a stable conductive connection state can be easily obtained. be able to.

本発明において、前記突出体は、内部に複数の前記空洞が分散配置されてなることが好ましい。これによれば、複数の空洞が突出体の内部で分散して配置されていることにより、空洞の体積が同じであっても突起電極の剛性がより確保しやすくなり、電極形状も保持しやすくなるため、製造が容易になるとともに、電極形状の崩れによる実装不良の発生を防止できる。   In the present invention, it is preferable that the protrusion has a plurality of the cavities dispersed therein. According to this, since the plurality of cavities are distributed and arranged inside the projecting body, it becomes easier to secure the rigidity of the protruding electrode even when the volume of the cavity is the same, and it is easy to maintain the electrode shape. Therefore, manufacturing is facilitated, and occurrence of mounting defects due to collapse of the electrode shape can be prevented.

次に、本発明の異方性導電材は、未硬化の接着剤中に多数の導電性粒子が分散配置されてなる異方性導電材において、前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする。これによれば、導電性粒子を構成する樹脂の内部に空洞が形成されていることにより、導電性粒子が変形しやすくなるため、実装時における加圧力を大きくしなくても充分なコンタクト面積を確保することが可能になり、しかも、樹脂の破断等による実装不良を防止できる。   Next, the anisotropic conductive material of the present invention is an anisotropic conductive material in which a large number of conductive particles are dispersed and arranged in an uncured adhesive. It is a particle in which a conductive layer is formed on the outer surface or a particle made of a conductive resin, and a cavity is formed inside the resin. According to this, since the voids are formed inside the resin constituting the conductive particles, the conductive particles are likely to be deformed, so that a sufficient contact area can be obtained without increasing the pressure during mounting. In addition, it is possible to prevent mounting defects due to resin breakage or the like.

次に、本発明の実装構造体は、樹脂よりなる突出体及び該突出体上に配置された導電層を備えた突起電極を有する第1電子部品と、前記突起電極に導電接続された対向電極を有する第2電子部品と、前記第1電子部品と前記第2電子部品を接着する接着剤と、を具備する実装構造体において、前記突出体の内部に空洞が形成され、前記突起電極の頂部が前記対向電極により押しつぶされてなることが好ましい。   Next, the mounting structure of the present invention includes a first electronic component having a protruding body made of resin and a protruding electrode having a conductive layer disposed on the protruding body, and a counter electrode conductively connected to the protruding electrode. A mounting structure comprising: a second electronic component comprising: a first electronic component; and an adhesive that bonds the first electronic component and the second electronic component, wherein a cavity is formed inside the protruding body, and the top of the protruding electrode Is preferably crushed by the counter electrode.

また、本発明の別の実装構造体は、表面上に突起電極を有する第1電子部品と、該突起電極に対向する対向電極を有する第2電子部品と、前記突起電極と前記対向電極の間に介在して導電性を付与する導電性粒子と、前記第1電子部品と前記第2電子部品とを接着する接着剤と、を具備する実装構造体において、前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする。   Another mounting structure of the present invention includes a first electronic component having a protruding electrode on a surface thereof, a second electronic component having a counter electrode facing the protruding electrode, and between the protruding electrode and the counter electrode. In a mounting structure comprising conductive particles that impart conductivity by interposing them and an adhesive that adheres the first electronic component and the second electronic component, the conductive particles are formed in a granular shape. It is a particle in which a conductive layer is formed on the outer surface of the resin, or a particle made of a conductive resin, and a cavity is formed inside the resin.

さらに、本発明の電気光学装置は、樹脂よりなる突出体及び該突出体上に配置された導電層を備えた突起電極を有する電子部品と、前記突起電極に導電接続された対向電極を有する電気光学パネルと、前記電子部品と前記電気光学パネルを接着する接着剤と、を具備する電気光学装置において、前記突出体の内部に空洞が形成されてなることを特徴とする。   Furthermore, the electro-optical device according to the present invention includes an electronic component having a protruding body made of a resin and a protruding electrode having a conductive layer disposed on the protruding body, and an electric electrode having a counter electrode conductively connected to the protruding electrode. In an electro-optical device including an optical panel and an adhesive that bonds the electronic component and the electro-optical panel, a cavity is formed inside the protruding body.

また、本発明の別の電気光学装置は、表面上に突起電極を有する電子部品と、該突起電極に対向する対向電極を有する電気光学パネルと、前記突起電極と前記対向電極の間に介在して導電性を付与する導電性粒子と、前記電子部品と前記電気光学パネルとを接着する接着剤と、を具備する電気光学装置において、前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする。   Another electro-optical device of the present invention includes an electronic component having a protruding electrode on a surface, an electro-optical panel having a counter electrode facing the protruding electrode, and the protruding electrode and the counter electrode. In the electro-optical device comprising conductive particles that impart conductivity and an adhesive that bonds the electronic component and the electro-optical panel, the conductive particles are conductive on the outer surface of the resin formed in a granular form. It is a particle formed of a layer or a particle made of a conductive resin, and a cavity is formed inside the resin.

次に、本発明の突起電極の製造方法は、樹脂よりなる突出体と、該突出体上に配置された導電層とを備えた突起電極を有する半導体装置の製造方法において、前記樹脂に発泡剤を混入し、前記樹脂を発泡させることで内部に空洞が形成された前記突出体を構成する工程と、前記突出体上に導電層を形成する工程と、を具備することを特徴とする。   Next, a method for manufacturing a protruding electrode according to the present invention is a method for manufacturing a semiconductor device having a protruding electrode including a protruding body made of a resin and a conductive layer disposed on the protruding body. And a step of forming the projecting body in which a cavity is formed by foaming the resin, and a step of forming a conductive layer on the projecting body.

また、本発明の異方性導電材の製造方法は、未硬化の接着剤中に多数の導電性粒子が分散配置されてなる異方性導電材の製造方法において、前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂中に発泡剤を混入し、前記樹脂を発泡させることで前記樹脂の内部に空洞が形成された前記導電性粒子を形成する工程と、前記接着剤中に前記導電性粒子を分散配置させる工程と、を具備することを特徴とする。   The method for producing an anisotropic conductive material according to the present invention is a method for producing an anisotropic conductive material in which a large number of conductive particles are dispersed and arranged in an uncured adhesive. Particles in which a conductive layer is formed on the outer surface of the formed resin, or particles made of a conductive resin. A foaming agent is mixed in the resin, and the resin is foamed to be inside the resin. The method includes a step of forming the conductive particles in which cavities are formed, and a step of dispersing and arranging the conductive particles in the adhesive.

次に、本発明の電子機器は、上記の実装構造体を具備することを特徴とする。また、上記の電気光学装置を搭載したことを特徴とする。電子機器としては、電子時計、携帯電話、パーソナルコンピュータ、カーナビゲーションシステム、テレビジョン受像機などが挙げられる。   Next, an electronic apparatus according to the present invention includes the above-described mounting structure. The electro-optical device described above is mounted. Examples of the electronic device include an electronic watch, a mobile phone, a personal computer, a car navigation system, and a television receiver.

[第1実施形態]
次に、添付図面を参照して本発明の実施形態について詳細に説明する。図1は本実施形態の電子部品、若しくは、半導体装置10の部分平面図、図2は同電子部品、若しくは、半導体装置10の部分縦断面図である。本実施形態では、単結晶シリコン等の半導体基板などで構成される基体11の表面上に、アルミニウム等よりなるベース電極12が形成され、さらに、ベース電極12の一部を露出する開口部13aを有する絶縁層13が酸化シリコンや窒化シリコン等により形成されている。絶縁層13上には突起電極Pが形成されている。この突起電極Pは、以下に詳述する突出体14及び導電層15で構成される。
[First Embodiment]
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a partial plan view of the electronic component or semiconductor device 10 of the present embodiment, and FIG. 2 is a partial vertical sectional view of the electronic component or semiconductor device 10. In the present embodiment, a base electrode 12 made of aluminum or the like is formed on the surface of a base body 11 made of a semiconductor substrate such as single crystal silicon, and an opening 13a exposing a part of the base electrode 12 is formed. The insulating layer 13 is formed of silicon oxide, silicon nitride, or the like. A protruding electrode P is formed on the insulating layer 13. The protruding electrode P includes a protruding body 14 and a conductive layer 15 described in detail below.

絶縁層13上には、上記ベース電極12或いは開口部13aを避けた領域において樹脂よりなる突出体14が形成されている。この突出体14は基体11の表面上より突出した形状を有するものであればよく、図示例のように半球状に限らず、表面に沿った軸線を有する半円柱状、表面と直交する軸線を有する角柱状や円柱状に形成されていてもよい。突出体14は、アクリル樹脂、フェノール樹脂、シリコーン樹脂、ポリイミド樹脂、シリコーン変性ポリイミド樹脂、エポキシ樹脂などの各種樹脂によって形成することができる。さらに、突出体の表面は、後述する導電層15との密着性を高めるために粗面化されていることが好ましい。   On the insulating layer 13, a protrusion 14 made of resin is formed in a region avoiding the base electrode 12 or the opening 13a. The projecting body 14 only needs to have a shape projecting from the surface of the base body 11 and is not limited to a hemispherical shape as illustrated, but a semi-cylindrical shape having an axis along the surface, and an axis perpendicular to the surface. It may be formed in a prismatic shape or a cylindrical shape. The protrusion 14 can be formed of various resins such as an acrylic resin, a phenol resin, a silicone resin, a polyimide resin, a silicone-modified polyimide resin, and an epoxy resin. Furthermore, it is preferable that the surface of the protrusion is roughened in order to improve adhesion with the conductive layer 15 described later.

突出体14の突出量は実装方法や実装部の特性等によって適宜に設定されるが、一般的には5〜1000μmの範囲内であり、半導体装置としては5〜50μm、特に、10〜20μm程度とされることが好ましい。   The protruding amount of the protruding body 14 is appropriately set depending on the mounting method, the characteristics of the mounting portion, and the like, but is generally in the range of 5 to 1000 μm, and is 5 to 50 μm, particularly about 10 to 20 μm as a semiconductor device. It is preferable that

本実施形態において、突出体14の内部には空洞14Sが形成されている。この突出体14には図示例の場合、単一の空洞14Sのみが形成されており、突出体14は空洞14Sの外側を覆う外殻状に構成され、この外殻が突出体14の外形を規定している。このように内部に空洞14Sを備えた突起電極Pは、例えば、ポリスチレン(PS)樹脂に発泡剤としてブタン、ペンタンなどの低級炭化水素を吸収させた発泡性ビーズをマイクロ型等の内部において加熱し、発泡成形したもので構成できる。   In the present embodiment, a cavity 14 </ b> S is formed inside the protrusion 14. In the illustrated example, only a single cavity 14 </ b> S is formed on the protrusion 14, and the protrusion 14 is formed in an outer shell shape that covers the outside of the cavity 14 </ b> S, and this outer shell defines the outer shape of the protrusion 14. It prescribes. In this manner, the protruding electrode P having the cavity 14S inside is heated, for example, in a micro type or the like by foaming beads in which a lower hydrocarbon such as butane or pentane is absorbed as a foaming agent in polystyrene (PS) resin. It can be configured by foam molding.

なお、空洞14Sは、常温(25℃)で常圧(1気圧)若しくはそれに近い内圧(例えば、0.8〜1.2気圧)を有することが好ましい。これによって、実装後において所要のコンタクト圧を確保することができるとともに、温度変化による内圧の変動で突起電極が破断することなどを防止できる。この点は、後述する第2実施形態の空洞14Tについても同様である。   The cavity 14S preferably has a normal pressure (1 atm) or an internal pressure close to it (for example, 0.8 to 1.2 atm) at normal temperature (25 ° C.). As a result, a required contact pressure can be ensured after mounting, and the protruding electrode can be prevented from breaking due to fluctuations in internal pressure due to temperature changes. This also applies to the cavity 14T of the second embodiment described later.

突出体14上には導電層15が形成され、この導電層15は上記開口部13a上まで伸びて、上記ベース電極12に導電接続されている。導電層15の厚みは、一般的には100nm〜1μmの範囲内であるが、特に、300〜800nmの範囲内であることが好ましい。本実施形態において、導電層15は下地層15aと表面導電層15bの2層が積層されてなる積層構造とされている。ここで、下地層15aは導電性素材よりなるものに限られないが、導電性素材で構成されることが好ましく、当該導電性素材としては、例えば、TiW、Cu、Cr、Ni、Pd、Ti、W、NiV等が挙げられる。下地層15aは主として突出体を構成する樹脂との密着性を高めるためのものであるが、ベース電極12を構成する金属素材(例えばアルミニウム)の拡散を防止する拡散防止層としても機能するもの(例えばTiW)であることがより望ましい。下地層15aの厚みは100〜150nm程度であることが望ましい。   A conductive layer 15 is formed on the projecting body 14, and the conductive layer 15 extends to the opening 13 a and is conductively connected to the base electrode 12. The thickness of the conductive layer 15 is generally in the range of 100 nm to 1 μm, but is particularly preferably in the range of 300 to 800 nm. In the present embodiment, the conductive layer 15 has a stacked structure in which two layers of a base layer 15a and a surface conductive layer 15b are stacked. Here, the underlayer 15a is not limited to a conductive material, but is preferably formed of a conductive material. Examples of the conductive material include TiW, Cu, Cr, Ni, Pd, and Ti. , W, NiV and the like. The base layer 15a is mainly for improving the adhesion with the resin constituting the projecting body, but also functions as a diffusion preventing layer for preventing the diffusion of the metal material (for example, aluminum) constituting the base electrode 12 ( For example, TiW) is more desirable. The thickness of the foundation layer 15a is desirably about 100 to 150 nm.

表面導電層15bは、後述する対向電極との接触抵抗が小さいなど、電極表面としての好適な機能を有する導電性素材で構成される。このような導電性素材としては、例えば、Au、Ag,Cu、Ptなどが挙げられる。表面導電層15bとしては、上記の導電接続性以外に、耐食性が良好な素材(Au,Ptなど)であることがさらに望ましい。表面導電層15bの厚みは300〜600nm程度であることが好ましい。   The surface conductive layer 15b is made of a conductive material having a suitable function as an electrode surface, such as a low contact resistance with a counter electrode described later. Examples of such a conductive material include Au, Ag, Cu, and Pt. The surface conductive layer 15b is more preferably a material having good corrosion resistance (Au, Pt, etc.) in addition to the above conductive connectivity. The thickness of the surface conductive layer 15b is preferably about 300 to 600 nm.

なお、上記のようにして形成された突起電極Pを図示例では一つのみ描いてあるが、通常、電子部品(半導体装置)の実装面上には複数の突起電極Pが配列された形で形成される。この場合、複数の突起電極Pをそれぞれ突出体14及び導電層15が独立して形成された形で配列させてもよいが、例えば、共通の突出体14を配列方向に延在した形状とし、この突出体14上に複数の導電層15を配列形成したものであっても構わない。この場合、共通の突出体14の内部に共通の空洞14Sを一体に形成してもよく、また、突起電極Pごとに別々の空洞14Sを形成してもよい。   Although only one protruding electrode P formed as described above is drawn in the illustrated example, a plurality of protruding electrodes P are usually arranged on the mounting surface of the electronic component (semiconductor device). It is formed. In this case, the plurality of protruding electrodes P may be arranged in a form in which the protruding body 14 and the conductive layer 15 are independently formed. For example, the common protruding body 14 has a shape extending in the arrangement direction, A plurality of conductive layers 15 may be arrayed on the protruding body 14. In this case, a common cavity 14S may be integrally formed inside the common protrusion 14, or a separate cavity 14S may be formed for each protruding electrode P.

なお、本実施形態の場合、下地層15a(TiW)はベース電極12(Al)と表面導電層15b(Au)との間に介在し、熱処理等によってベース電極12の原子(Al原子)が表面導電層15b内へ拡散することを防止する拡散防止膜としても機能する。   In the case of the present embodiment, the base layer 15a (TiW) is interposed between the base electrode 12 (Al) and the surface conductive layer 15b (Au), and atoms (Al atoms) of the base electrode 12 are surfaced by heat treatment or the like. It also functions as a diffusion preventing film that prevents diffusion into the conductive layer 15b.

次に、図3を参照して、上記の電子部品若しくは半導体装置10を他の電子部品若しくは電気光学装置20に実装してなる実装構造体の構成について説明する。他の電子部品若しくは電気光学装置20は、ガラス等の硬質基板などで構成される基板21上にアルミニウム等よりなる対向電極22が形成され、この対向電極22以外の表面が酸化シリコン等よりなる絶縁層23で被覆されてなる。   Next, with reference to FIG. 3, the structure of a mounting structure formed by mounting the electronic component or semiconductor device 10 on another electronic component or electro-optical device 20 will be described. In another electronic component or electro-optical device 20, a counter electrode 22 made of aluminum or the like is formed on a substrate 21 made of a hard substrate such as glass, and the surface other than the counter electrode 22 is insulated with silicon oxide or the like. It is covered with a layer 23.

上記の実装構造体においては、突起電極Pの頂部は対向電極21と導電接触した状態で押しつぶされている。突起電極Pの頂部が対向電極21により押しつぶされると、突出体14の内部の空洞14Sも一部がつぶされた状態とされる。このとき、突出体14の内部に空洞14Sが設けられていることで、突起電極Pは従来よりも容易に変形し、その結果、より小さな加圧力(従来の実装時の加圧力の10〜30%程度、例えば、突起電極P一つ当たり1g程度の荷重)でも突起電極Pと対向電極21との間に充分なコンタクト面積を確保することができる。また、突起電極Pの頂部の変形量を確保した場合でも突出体14の破断が防止されるため、実装不良の発生が回避され、実装構造体の電気的信頼性を向上させることができる。   In the mounting structure described above, the top of the protruding electrode P is crushed in a conductive contact with the counter electrode 21. When the top of the protruding electrode P is crushed by the counter electrode 21, the cavity 14S inside the protruding body 14 is also partially crushed. At this time, since the cavity 14S is provided inside the protruding body 14, the protruding electrode P is deformed more easily than the conventional one, and as a result, a smaller applied pressure (10 to 30 of the applied pressure at the time of conventional mounting). %, For example, a load of about 1 g per protruding electrode P), a sufficient contact area can be secured between the protruding electrode P and the counter electrode 21. In addition, even when the deformation amount of the top portion of the protruding electrode P is ensured, the protrusion 14 is prevented from being broken, so that the occurrence of mounting failure can be avoided and the electrical reliability of the mounting structure can be improved.

このような実装構造体を形成するには、電子部品若しくは半導体装置10と他の電子部品若しくは電気光学装置20との間に未硬化の接着剤(絶縁樹脂)シートを配置し、加圧しながら加熱することで、接着剤を一時的に軟化させて突起電極Pを対向電極21に当接させ、加圧力によって突起電極Pの頂部を押しつぶした状態とし、この状態で接着剤30を硬化させることで、電子部品若しくは半導体装置10と他の電子部品若しくは電気光学装置20を相互に接着固定する。   In order to form such a mounting structure, an uncured adhesive (insulating resin) sheet is disposed between the electronic component or semiconductor device 10 and another electronic component or electro-optical device 20, and heated while being pressed. By temporarily softening the adhesive, the protruding electrode P is brought into contact with the counter electrode 21, the top of the protruding electrode P is crushed by the applied pressure, and the adhesive 30 is cured in this state. The electronic component or semiconductor device 10 and another electronic component or electro-optical device 20 are bonded and fixed to each other.

[第2実施形態]
次に、図4を参照して本発明に係る第2実施形態の電子部品若しくは半導体装置10′について説明する。この第2実施形態は、第1実施形態の構成に対し突出体14′の構造が異なるだけで、他の構成は全て同様であるので、第1実施形態と同様の部分には同一符号を付し、それらの説明は省略する。
[Second Embodiment]
Next, an electronic component or semiconductor device 10 'according to a second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment only in the structure of the projecting body 14 'and is the same in all other configurations. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals. These descriptions are omitted.

本実施形態では、突出体14′が第1実施形態の突出体14と同様の外形を有するが、その内部に複数の空洞(ボイド)14Tが分散配置されている点で、第1実施形態とは異なる。このような突出体14′についても、発泡剤を混入したベース樹脂をマイクロ型等の内部において加熱し、発泡成形したもので形成することができる。   In the present embodiment, the projecting body 14 'has the same outer shape as the projecting body 14 of the first embodiment. However, the projecting body 14' is different from the first embodiment in that a plurality of voids 14T are dispersedly arranged therein. Is different. Such a protrusion 14 'can also be formed by foaming and molding a base resin mixed with a foaming agent inside a micro mold or the like.

本実施形態の突出体14′では、第1実施形態よりも小さな複数の空洞14Tが内部に分散しているため、一般的には空洞14Tの体積比率は小さくなるが、剛性が高くなり、変形部分も突出体14′の全体に均等に発生するので、突出体14′のつぶれ状態が安定し、実装時における突出体14′の崩れ等に起因して実装不良が生ずる可能性を低減できる。   In the protrusion 14 'of the present embodiment, since a plurality of cavities 14T smaller than those in the first embodiment are dispersed inside, generally, the volume ratio of the cavities 14T is reduced, but the rigidity is increased and the deformation is increased. Since the portion also occurs uniformly on the entire protrusion 14 ', the collapsed state of the protrusion 14' is stabilized, and the possibility of occurrence of mounting failure due to the collapse of the protrusion 14 'during mounting or the like can be reduced.

[第3実施形態]
次に、図5を参照して本発明に係る第3実施形態について説明する。この実施形態では、電子部品若しくは半導体装置10″が他の電子部品若しくは電気光学パネル20″に対して異方性導電材30′を介して実装されている。なお、この実施形態においても、上記第1実施形態と同様の部分には同一符合を付し、それらの説明は省略する。
[Third Embodiment]
Next, a third embodiment according to the present invention will be described with reference to FIG. In this embodiment, an electronic component or semiconductor device 10 ″ is mounted on another electronic component or electro-optical panel 20 ″ via an anisotropic conductive material 30 ′. Also in this embodiment, the same reference numerals are given to the same parts as those in the first embodiment, and description thereof will be omitted.

電子部品若しくは半導体装置10″においては、基板11上にベース電極12が形成され、これ以外の表面が絶縁層13によって被覆されている。ベース電極12上にはAu/Niめっき層等により構成される金属バンプ電極で構成される突起電極14″が設けられている。一方、他の電子部品若しくは電気光学パネル20″においては、ガラス等の硬質基板などで構成される基板21上に対向電極22が形成され、この対向電極22以外の表面が絶縁層23で被覆されている。   In the electronic component or semiconductor device 10 ″, a base electrode 12 is formed on a substrate 11, and the other surface is covered with an insulating layer 13. The base electrode 12 is composed of an Au / Ni plating layer or the like. A protruding electrode 14 ″ made of a metal bump electrode is provided. On the other hand, in another electronic component or electro-optical panel 20 ″, a counter electrode 22 is formed on a substrate 21 made of a hard substrate such as glass, and the surface other than the counter electrode 22 is covered with an insulating layer 23. ing.

本実施形態では、異方性導電材30′として、熱硬化性樹脂(絶縁樹脂)によって構成される未硬化の接着剤31中に多数の微細な導電性粒子32が分散されたものを用いている。この異方性導電材30′は、ACF(異方性導電フィルム)と呼ばれるシート状のものであっても、或いは、液状(スラリー状)のものであってもよい。   In the present embodiment, as the anisotropic conductive material 30 ′, a material in which a large number of fine conductive particles 32 are dispersed in an uncured adhesive 31 made of a thermosetting resin (insulating resin) is used. Yes. The anisotropic conductive material 30 ′ may be a sheet-like material called ACF (anisotropic conductive film) or a liquid (slurry) material.

上記異方性導電材30′中の導電性粒子32は、ジビニルベンゼン樹脂、ベンゾグアナミン樹脂、アクリル樹脂等の樹脂よりなる芯材32aと、この芯材32aの表面を覆うAu等の導電層32bとを有するものであり、芯材32aの内部には空洞32Sが設けられている。図示例の場合、芯材32aには球状の単一の空洞(気泡)32Sのみが設けられ、芯材32aは空洞32Sの周囲を取り囲む球状の外殻で構成されている。もっとも、芯材32aの内部に複数の空洞(気泡)を分散配置したものであってもよい。   The conductive particles 32 in the anisotropic conductive material 30 'include a core material 32a made of a resin such as divinylbenzene resin, benzoguanamine resin, acrylic resin, and a conductive layer 32b such as Au covering the surface of the core material 32a. A cavity 32S is provided inside the core member 32a. In the illustrated example, the core member 32a is provided with only a single spherical cavity (bubble) 32S, and the core member 32a is formed of a spherical outer shell surrounding the cavity 32S. However, a plurality of cavities (bubbles) may be dispersedly arranged inside the core member 32a.

このような芯材32aは、例えば、発泡剤を混入したビーズ状の樹脂材料を蒸気などで加熱し、発泡成形することで形成できる。また、このようにして形成した芯材32aの表面に無電解めっき法等によって金属を析出させることで導電層32bを生成させることができる。   Such a core material 32a can be formed by, for example, heating a bead-shaped resin material mixed with a foaming agent with steam or the like and performing foam molding. Moreover, the conductive layer 32b can be produced | generated by depositing a metal by the electroless-plating method etc. on the surface of the core material 32a formed in this way.

なお、空洞32Sは、常温(25℃)で常圧(1気圧)若しくはそれに近い内圧(例えば、0.8〜1.2気圧)を有することが好ましい。これによって、実装後において所要のコンタクト圧を確保することができるとともに、温度変化による内圧の変動で導電性粒子が破断することなどを防止できる。この点は、後述する第4実施形態の空洞32S′についても同様である。   The cavity 32S preferably has normal pressure (1 atm) or an internal pressure close to it (for example, 0.8 to 1.2 atm) at normal temperature (25 ° C.). As a result, a required contact pressure can be ensured after mounting, and the conductive particles can be prevented from breaking due to variations in internal pressure due to temperature changes. This also applies to a cavity 32S ′ according to a fourth embodiment described later.

本実施形態では、突起電極14″と対向電極22との間に上記の導電性粒子32が介在することで、両者が導電接続されている。導電性粒子32は内部に空洞32Sを有することで容易に変形し、押しつぶされた状態とされる。したがって、実装時の加圧力を高めなくても導電性粒子32を変形させることができるので、コンタクト面積を充分に確保することができるとともに、導電性粒子32の破断を回避することができる。   In the present embodiment, the conductive particles 32 are interposed between the protruding electrode 14 ″ and the counter electrode 22, so that they are conductively connected. The conductive particles 32 have a cavity 32S inside. Therefore, the conductive particles 32 can be deformed without increasing the applied pressure during mounting, so that a sufficient contact area can be ensured and the conductive material 32 can be electrically conductive. Breaking of the conductive particles 32 can be avoided.

本実施形態の実装構造体を製造するには、電子部品若しくは半導体装置10″を異方性導電材30′を介して他の電子部品若しくは電気光学パネル20″に対向配置させ、加熱しながら加圧することで、接着剤31を軟化させて突起電極14″が導電性粒子32を介して対向電極22に当接するようにし、導電性粒子32を弾性変形させた状態で、接着剤31を熱硬化させて導電接続状態を保持する。   In order to manufacture the mounting structure of the present embodiment, the electronic component or semiconductor device 10 ″ is disposed opposite to the other electronic component or electro-optical panel 20 ″ via the anisotropic conductive material 30 ′ and heated while being heated. By pressing, the adhesive 31 is softened so that the protruding electrode 14 ″ contacts the counter electrode 22 through the conductive particles 32, and the adhesive 31 is thermally cured in a state where the conductive particles 32 are elastically deformed. Thus, the conductive connection state is maintained.

[第4実施形態]
次に、図6を参照して本発明に係る第4実施形態について説明する。この実施形態は基本的に第3実施形態と同様の電子部品若しくは半導体装置10″を他の電子部品若しくは電気光学パネル20″に実装するものであるが、異方性導電材30″のみが異なるので、同一部分には同一符合を付し、それらの説明は省略する。
[Fourth Embodiment]
Next, a fourth embodiment according to the present invention will be described with reference to FIG. In this embodiment, basically the same electronic component or semiconductor device 10 ″ as in the third embodiment is mounted on another electronic component or electro-optical panel 20 ″, but only the anisotropic conductive material 30 ″ is different. Therefore, the same reference numerals are given to the same parts, and explanations thereof are omitted.

本実施形態の異方性導電材30″は、第3実施形態と同様の接着剤31中に多数の導電性粒子32′を分散させたものである。導電性粒子32′は、導電性樹脂(すなわち、樹脂中に多数の微細な導電性粉を分散させたもの)で構成されている。特に導電性樹脂としては弾力性に富んだ導電性ゴムを用いることが好ましい。また、この導電性粒子32′の内部には空洞32S′が設けられ、空洞32S′を形成しない場合に比べて小さな加圧力でも容易に変形するように構成されている。   An anisotropic conductive material 30 ″ of this embodiment is obtained by dispersing a large number of conductive particles 32 ′ in an adhesive 31 similar to that of the third embodiment. The conductive particles 32 ′ are made of a conductive resin. (That is, a resin in which a large number of fine conductive powders are dispersed in a resin.) It is particularly preferable to use a conductive rubber having high elasticity as the conductive resin. A cavity 32S 'is provided inside the particle 32', and is configured to be easily deformed even with a small applied pressure as compared with the case where the cavity 32S 'is not formed.

本実施形態では第3実施形態と同様の作用効果を得ることができるが、さらに、導電性粒子32′を導電性樹脂で構成しているため、第3実施形態のように芯材32aの表面に導電層32bを形成する必要がないことから、異方性導電材30″をより容易に製造することが可能になる。   In the present embodiment, the same effects as in the third embodiment can be obtained. However, since the conductive particles 32 ′ are made of a conductive resin, the surface of the core material 32 a as in the third embodiment. Therefore, the anisotropic conductive material 30 ″ can be more easily manufactured.

[電気光学装置の構成]
次に、図7を参照して、本発明の実装構造体及び電気光学装置の実施形態について詳細に説明する。図7は電気光学装置の一例を示す概略斜視図である。
[Configuration of electro-optical device]
Next, an embodiment of the mounting structure and the electro-optical device of the present invention will be described in detail with reference to FIG. FIG. 7 is a schematic perspective view showing an example of an electro-optical device.

本実施形態の電気光学装置100は、液晶表示体(液晶パネル)を備えた液晶装置であり、ガラス等よりなる透明な基板110と120をシール材130で貼り合わせ、基板110と120の間に液晶を配置したものである。シール材130は駆動領域Aを取り囲むように形成され、液晶を注入する開口部130aが封止材131によって閉鎖されている。   The electro-optical device 100 according to the present embodiment is a liquid crystal device including a liquid crystal display (liquid crystal panel). A transparent substrate 110 and 120 made of glass or the like are bonded together with a sealing material 130, and the substrate 110 and 120 are interposed between them. A liquid crystal is arranged. The sealing material 130 is formed so as to surround the drive region A, and an opening 130 a for injecting liquid crystal is closed by a sealing material 131.

基板110は、ガラスやプラスチック等の基材111の内面上に、AlやAg等の金属その他の反射性材料からなる反射層、カラーフィルタ、絶縁膜、ITO(インジウムスズ酸化物)等の透明導電体からなる電極116、ポリイミド樹脂等からなる配向膜等を必要に応じて適宜に積層したものである。   The substrate 110 is formed on the inner surface of a base material 111 such as glass or plastic, a reflective layer made of a metal or other reflective material such as Al or Ag, a color filter, an insulating film, or a transparent conductive material such as ITO (indium tin oxide). An electrode 116 made of a body, an alignment film made of polyimide resin, or the like is appropriately laminated as necessary.

一方、基板120は、ガラスやプラスチック等の基材121の内面上に、配線122及びこれに接続された素子(TFD等の二端子非線形素子、或いは、TFT等の三端子非線形素子)、絶縁層、透明導電体からなる電極、ポリイミド樹脂等からなる配向膜等を必要に応じて適宜に積層したものである。   On the other hand, the substrate 120 is formed on the inner surface of a base material 121 such as glass or plastic, with a wiring 122 and an element connected thereto (two-terminal nonlinear element such as TFD or three-terminal nonlinear element such as TFT), insulating layer In addition, an electrode made of a transparent conductor, an alignment film made of polyimide resin, or the like is appropriately laminated as necessary.

基板110上に設けられた電極と、基板120上に設けられた電極とが平面的に交差する領域は、両電極に挟まれた液晶の配向状態を独立して制御可能な画素を構成し、図示の駆動領域A内には複数の画素が縦横に配列された状態とされている。   A region where the electrode provided on the substrate 110 and the electrode provided on the substrate 120 intersect in a plane constitutes a pixel capable of independently controlling the alignment state of the liquid crystal sandwiched between both electrodes, In the illustrated drive region A, a plurality of pixels are arranged vertically and horizontally.

また、基板120は、基板110の外形より外側に張り出した基板張出部120Tを有し、この基板張出部120T上に液晶駆動回路などを内蔵した半導体装置135が実装されている。この半導体装置135は、上記電極116及び配線122に導電接続され、基板張出部120T上に引き出された配線117、118に導電接続されている。また、基板張出部120Tの端部には半導体装置135に導電接続された入力端子136が設けられ、この入力端子136は、基板張出部120Tの端部に実装された配線基板(例えばフレキシブル配線基板)137に形成された配線(図示せず)に導電接続されている。   The substrate 120 has a substrate overhanging portion 120T that protrudes outward from the outer shape of the substrate 110, and a semiconductor device 135 incorporating a liquid crystal driving circuit or the like is mounted on the substrate overhanging portion 120T. The semiconductor device 135 is conductively connected to the electrode 116 and the wiring 122, and is conductively connected to the wirings 117 and 118 drawn out on the substrate extension 120T. Further, an input terminal 136 that is conductively connected to the semiconductor device 135 is provided at the end of the board extension 120T, and this input terminal 136 is a wiring board (for example, a flexible board) mounted on the end of the board extension 120T. Conductive connection is made to wiring (not shown) formed on a wiring board 137.

さらに、基板110と120の間には絶縁樹脂等で構成されるスペーサ(図示せず)が介在し、このスペーサが両基板の間隔を規制している。このスペーサはいずれか一方の基板に固定した状態で形成されることが好ましい。さらに、基板110,120の外面上には必要に応じて位相差板及び偏光板(図示せず)が貼着等の方法で配置される。   Further, a spacer (not shown) made of an insulating resin or the like is interposed between the substrates 110 and 120, and this spacer regulates the distance between the two substrates. This spacer is preferably formed in a state of being fixed to one of the substrates. Further, a retardation plate and a polarizing plate (not shown) are disposed on the outer surfaces of the substrates 110 and 120 as necessary by a method such as sticking.

上記の半導体装置135には、上記の電子部品(半導体装置)の実施形態において形成された突起電極P又は14″が形成され、この突起電極P又は14″が基板張出部120T上に形成された配線117,118の先端に設けられた対向電極(接続パッド)に導電接続されている。   The semiconductor device 135 is provided with the protruding electrode P or 14 ″ formed in the embodiment of the electronic component (semiconductor device), and the protruding electrode P or 14 ″ is formed on the substrate overhanging portion 120T. The wirings 117 and 118 are conductively connected to a counter electrode (connection pad) provided at the tip.

半導体装置135に突起電極Pが形成される場合には、半導体装置135を熱硬化性樹脂よりなる接着剤30を介して基板張出部120Tに対して加圧しつつ加熱し、接着剤30を軟化させながら突起電極Pを対向電極に押し付け、突起電極Pの突出体13の頂部を変形させる。その後、接着剤30が熱硬化することにより、突起電極Pと対向電極との導電接続状態が維持される。   When the protruding electrode P is formed on the semiconductor device 135, the semiconductor device 135 is heated while being pressed against the substrate overhanging portion 120T via the adhesive 30 made of a thermosetting resin, thereby softening the adhesive 30. Then, the protruding electrode P is pressed against the counter electrode, and the top of the protruding body 13 of the protruding electrode P is deformed. Thereafter, the adhesive 30 is thermally cured, so that the conductive connection state between the protruding electrode P and the counter electrode is maintained.

また、半導体装置135に突起電極14″が形成される場合には、半導体装置135を熱硬化性樹脂よりなる接着剤31と導電性粒子32、32′を含む異方性導電材30′、30″を介して基板張出部120Tに対して加圧しつつ加熱し、接着剤31を軟化させながら突起電極14″を導電性粒子32、32′を介して対向電極に押し付け、導電性粒子32、32′を変形させる。その後、接着剤31が熱硬化することにより、突起電極14″と対向電極との導電接続状態が維持される。   Further, when the protruding electrode 14 ″ is formed on the semiconductor device 135, the anisotropic conductive material 30 ′, 30 including the adhesive 31 made of a thermosetting resin and the conductive particles 32, 32 ′ is formed on the semiconductor device 135. ”While pressing the substrate overhanging portion 120T with pressure and pressing the protruding electrode 14 ″ against the counter electrode through the conductive particles 32 and 32 ′ while softening the adhesive 31. Then, the adhesive 31 is thermally cured to maintain the conductive connection state between the protruding electrode 14 ″ and the counter electrode.

[電子機器]
最後に、上述の電気光学装置100を電子機器に搭載してなる構成例について説明する。図8は、本発明に係る電子機器の一実施形態であるノート型パーソナルコンピュータを示している。このパーソナルコンピュータ200は、複数の操作ボタン201aや他の操作装置201bを備えた本体部201と、この本体部201に接続され、表示画面202aを備えた表示部202とを備えている。図示例の場合、本体部201と表示部202は開閉可能に構成されている。表示部202の内部には上述の電気光学装置(液晶装置)100が内蔵されており、表示画面202aに所望の表示画像が表示されるようになっている。この場合、パーソナルコンピュータ200の内部には、上記電気光学装置100を制御する表示制御回路が設けられる。この表示制御回路は、電気光学装置100の半導体装置135内に設けられる駆動回路(液晶ドライバ回路など)に対して所定の制御信号を送り、その表示態様を決定するように構成されている。
[Electronics]
Finally, a configuration example in which the above-described electro-optical device 100 is mounted on an electronic device will be described. FIG. 8 shows a notebook personal computer which is an embodiment of the electronic apparatus according to the present invention. The personal computer 200 includes a main body unit 201 including a plurality of operation buttons 201a and other operation devices 201b, and a display unit 202 connected to the main body unit 201 and including a display screen 202a. In the case of the illustrated example, the main body unit 201 and the display unit 202 are configured to be openable and closable. The above-described electro-optical device (liquid crystal device) 100 is built in the display unit 202, and a desired display image is displayed on the display screen 202a. In this case, a display control circuit for controlling the electro-optical device 100 is provided inside the personal computer 200. The display control circuit is configured to send a predetermined control signal to a drive circuit (liquid crystal driver circuit or the like) provided in the semiconductor device 135 of the electro-optical device 100 to determine the display mode.

なお、本発明に係る電子機器としては、図8に示す電子機器の他に、液晶テレビ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワークステーション、テレビ電話、POS端末機などが挙げられる。そして、これらの各種電子機器の表示部として本発明に係る電気光学装置を用いることができる。 尚、本発明の半導体装置、実装構造体、電気光学装置、電子機器、及び、電子部品の製造方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では突起電極Pを設けた半導体装置について説明したが、上記半導体装置の代わりに、半導体装置以外の任意の電子部品を同様に構成して、実装構造体を構成してもよい。   In addition to the electronic device shown in FIG. 8, examples of the electronic device according to the present invention include a liquid crystal television, a car navigation device, a pager, an electronic notebook, a calculator, a workstation, a videophone, and a POS terminal. The electro-optical device according to the present invention can be used as a display unit of these various electronic devices. The semiconductor device, the mounting structure, the electro-optical device, the electronic apparatus, and the electronic component manufacturing method of the present invention are not limited to the above-described illustrated examples, and do not depart from the gist of the present invention. Of course, various changes can be made. For example, in the above embodiment, the semiconductor device provided with the protruding electrode P has been described. However, instead of the semiconductor device, any electronic component other than the semiconductor device may be configured similarly to form a mounting structure. .

第1実施形態の突起電極の構造を示す概略部分平面図。FIG. 3 is a schematic partial plan view showing the structure of the protruding electrode according to the first embodiment. 第1実施形態の突起電極の構造を示す概略部分断面図。FIG. 3 is a schematic partial cross-sectional view showing the structure of the protruding electrode according to the first embodiment. 第1実施形態の実装構造体を示す概略部分縦断面図。FIG. 3 is a schematic partial longitudinal sectional view showing the mounting structure according to the first embodiment. 第2実施形態の突起電極の構造を示す概略部分断面図。The schematic fragmentary sectional view which shows the structure of the protruding electrode of 2nd Embodiment. 第3実施形態の実装構造体を示す概略部分縦断面図。The general | schematic fragmentary longitudinal cross-section which shows the mounting structure of 3rd Embodiment. 第4実施形態の実装構造体を示す概略部分縦断面図。The general | schematic fragmentary longitudinal cross-section which shows the mounting structure of 4th Embodiment. 電気光学装置の構造を示す概略斜視図。1 is a schematic perspective view showing a structure of an electro-optical device. 電子機器の構造を示す概略斜視図。The schematic perspective view which shows the structure of an electronic device.

符号の説明Explanation of symbols

10、10″…電子部品若しくは半導体装置、11…基板、12…ベース電極、13…絶縁層、14…突出体、14S、14T…空洞、15…導電層、P…突起電極、20、20″…他の電子部品若しくは電気光学パネル、21…基板、22…対向電極、23…絶縁層、30…接着剤、30′、30″…異方性導電材、31…接着剤、32、32′…導電性粒子、32S、32S′…空洞 DESCRIPTION OF SYMBOLS 10, 10 "... Electronic component or semiconductor device, 11 ... Board | substrate, 12 ... Base electrode, 13 ... Insulating layer, 14 ... Projection body, 14S, 14T ... Cavity, 15 ... Conductive layer, P ... Projection electrode, 20, 20" ... Other electronic components or electro-optical panels, 21 ... Substrate, 22 ... Counter electrode, 23 ... Insulating layer, 30 ... Adhesive, 30 ', 30 "... Anisotropic conductive material, 31 ... Adhesive, 32, 32' ... Conductive particles, 32S, 32S '... cavities

Claims (12)

樹脂よりなる突出体と該突出体上に配置された導電層とを備えた突起電極を有する半導体装置において、前記突出体の内部に空洞が形成されていることを特徴とする半導体装置。   A semiconductor device having a projecting electrode including a projecting body made of resin and a conductive layer disposed on the projecting body, wherein a cavity is formed inside the projecting body. 前記突出体は、単一の前記空洞の外側を突出形状の外殻が被覆してなることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the projecting body is formed by covering an outer side of the single cavity with a projecting outer shell. 前記突出体は、内部に複数の前記空洞が分散配置されてなることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the protrusion has a plurality of the cavities distributed therein. 未硬化の接着剤中に多数の導電性粒子が分散配置されてなる異方性導電材において、前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする異方性導電材。   In an anisotropic conductive material in which a large number of conductive particles are dispersed and disposed in an uncured adhesive, the conductive particles are particles in which a conductive layer is formed on the outer surface of a resin formed in a granular form, or An anisotropic conductive material, wherein the anisotropic conductive material is a particle made of a conductive resin, and a cavity is formed inside the resin. 樹脂よりなる突出体及び該突出体上に配置された導電層を備えた突起電極を有する第1電子部品と、前記突起電極に導電接続された対向電極を有する第2電子部品と、前記第1電子部品と前記第2電子部品を接着する接着剤と、を具備する実装構造体において、
前記突出体の内部に空洞が形成されてなることを特徴とする実装構造体。
A first electronic component having a protruding electrode made of a resin and a protruding electrode provided with a conductive layer disposed on the protruding body; a second electronic component having a counter electrode conductively connected to the protruding electrode; In a mounting structure comprising an electronic component and an adhesive that bonds the second electronic component,
A mounting structure comprising a cavity formed in the protrusion.
表面上に突起電極を有する第1電子部品と、該突起電極に対向する対向電極を有する第2電子部品と、前記突起電極と前記対向電極の間に介在して導電性を付与する導電性粒子と、前記第1電子部品と前記第2電子部品とを接着する接着剤と、を具備する実装構造体において、
前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする実装構造体。
A first electronic component having a protruding electrode on the surface; a second electronic component having a counter electrode opposed to the protruding electrode; and conductive particles that are interposed between the protruding electrode and the counter electrode to provide conductivity. A mounting structure comprising: an adhesive that bonds the first electronic component and the second electronic component;
The conductive particles are particles in which a conductive layer is formed on the outer surface of a resin formed in a granular form, or particles made of a conductive resin, and a cavity is formed inside the resin. Implementation structure to be
樹脂よりなる突出体及び該突出体上に配置された導電層を備えた突起電極を有する電子部品と、前記突起電極に導電接続された対向電極を有する電気光学パネルと、前記電子部品と前記電気光学パネルを接着する接着剤と、を具備する電気光学装置において、
前記突出体の内部に空洞が形成されてなることを特徴とする電気光学装置。
An electronic component having a protruding body made of resin and a protruding electrode provided with a conductive layer disposed on the protruding body, an electro-optical panel having a counter electrode conductively connected to the protruding electrode, the electronic component and the electric In an electro-optical device comprising an adhesive for bonding an optical panel,
An electro-optical device, wherein a cavity is formed inside the protrusion.
表面上に突起電極を有する電子部品と、該突起電極に対向する対向電極を有する電気光学パネルと、前記突起電極と前記対向電極の間に介在して導電性を付与する導電性粒子と、前記電子部品と前記電気光学パネルとを接着する接着剤と、を具備する電気光学装置において、
前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂の内部に空洞が形成されていることを特徴とする電気光学装置。
An electronic component having a protruding electrode on the surface; an electro-optical panel having a counter electrode opposed to the protruding electrode; conductive particles that are interposed between the protruding electrode and the counter electrode to impart conductivity; and In an electro-optical device comprising: an adhesive that bonds an electronic component and the electro-optical panel;
The conductive particles are particles in which a conductive layer is formed on the outer surface of a resin formed in a granular form, or particles made of a conductive resin, and a cavity is formed inside the resin. An electro-optical device.
樹脂よりなる突出体と、該突出体上に配置された導電層とを備えた突起電極を有する半導体装置の製造方法において、
前記樹脂に発泡剤を混入し、前記樹脂を発泡させることで内部に空洞が形成された前記突出体を構成する工程と、
前記突出体上に導電層を形成する工程と、
を具備することを特徴とする突起電極の製造方法。
In a method for manufacturing a semiconductor device having a protruding electrode including a protruding body made of a resin and a conductive layer disposed on the protruding body,
Mixing the foaming agent into the resin, and forming the protrusion with a cavity formed therein by foaming the resin;
Forming a conductive layer on the protruding body;
A method for producing a protruding electrode, comprising:
未硬化の接着剤中に多数の導電性粒子が分散配置されてなる異方性導電材の製造方法において、
前記導電性粒子は粒状に形成された樹脂の外面に導電層が形成されてなる粒子、或いは、導電性の樹脂よりなる粒子であり、前記樹脂中に発泡剤を混入し、前記樹脂を発泡させることで前記樹脂の内部に空洞が形成された前記導電性粒子を形成する工程と、
前記接着剤中に前記導電性粒子を分散配置させる工程と、
を具備することを特徴とする異方性導電材の製造方法。
In the method for producing an anisotropic conductive material in which a large number of conductive particles are dispersed and arranged in an uncured adhesive,
The conductive particles are particles in which a conductive layer is formed on the outer surface of a resin formed in a granular form, or particles made of a conductive resin, and a foaming agent is mixed in the resin to foam the resin. Forming the conductive particles in which cavities are formed in the resin,
A step of dispersing and arranging the conductive particles in the adhesive;
The manufacturing method of the anisotropic electrically-conductive material characterized by comprising.
請求項5又は6に記載の実装構造体を具備することを特徴とする電子機器。   An electronic apparatus comprising the mounting structure according to claim 5. 請求項7又は8に記載の電気光学装置を搭載したことを特徴とする電子機器。   An electronic apparatus comprising the electro-optical device according to claim 7.
JP2006308712A 2006-11-15 2006-11-15 Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device Withdrawn JP2008124355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308712A JP2008124355A (en) 2006-11-15 2006-11-15 Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308712A JP2008124355A (en) 2006-11-15 2006-11-15 Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device

Publications (2)

Publication Number Publication Date
JP2008124355A true JP2008124355A (en) 2008-05-29
JP2008124355A5 JP2008124355A5 (en) 2010-09-16

Family

ID=39508764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308712A Withdrawn JP2008124355A (en) 2006-11-15 2006-11-15 Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device

Country Status (1)

Country Link
JP (1) JP2008124355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114127A (en) * 2009-11-26 2011-06-09 Seiko Epson Corp Semiconductor device, electronic component and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243231A (en) * 1992-03-03 1993-09-21 Matsushita Electric Ind Co Ltd Electronic part mounting connecting body and manufacture thereof
JP2006066809A (en) * 2004-08-30 2006-03-09 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP2006261177A (en) * 2005-03-15 2006-09-28 Citizen Watch Co Ltd Semiconductor device and its manufacturing process and packaging structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243231A (en) * 1992-03-03 1993-09-21 Matsushita Electric Ind Co Ltd Electronic part mounting connecting body and manufacture thereof
JP2006066809A (en) * 2004-08-30 2006-03-09 Renesas Technology Corp Semiconductor device and manufacturing method thereof
JP2006261177A (en) * 2005-03-15 2006-09-28 Citizen Watch Co Ltd Semiconductor device and its manufacturing process and packaging structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114127A (en) * 2009-11-26 2011-06-09 Seiko Epson Corp Semiconductor device, electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4784304B2 (en) Electronic component, method for manufacturing electronic component, circuit board, and electronic device
JP3671192B2 (en) Insulating layered prismatic bump, chip-on-glass product using the bump, and method of manufacturing prismatic bump with insulating layer on the IC chip surface
CN110444110B (en) Electronic component and display device
TWI557208B (en) An anisotropic conductive film, an anisotropic conductive film manufacturing method, a method for manufacturing a connecting body, and a connecting method
TW567368B (en) Liquid crystal device and manufacturing method thereof
US9786686B2 (en) Display device
KR100622170B1 (en) Method of mounting electronic component, structure for mounting electronic component, electronic component module, and electronic apparatus
CN101183652A (en) Wiring substrate, method of manufacturing wiring substrate, and electronic apparatus
WO2021103352A1 (en) Display apparatus
US8400438B2 (en) Driving apparatus, display apparatus having the driving apparatus with non-conductive adhesive film and method of manufacturing the display apparatus
JP2007165745A (en) Mounting structure, electrooptical device and electronic equipment
JP2008124355A (en) Semiconductor device, anisotropic conductive material, mounting structure, electrooptic device, manufacturing method of projection electrode, manufacturing method of anisotropic conductive material, and electronic device
JP2007250825A (en) Connection structure of substrate and its manufacturing method
JP2009081416A (en) Semiconductor device, semiconductor mounting structure, and electro-optical device
JP4305547B2 (en) Mounting structure, electro-optical device, electronic device, and manufacturing method of mounting structure
KR100927507B1 (en) Method of manufacturing semiconductor devices, mounting structures, electro-optical devices, electronic devices and electronic components
JP3975142B2 (en) Semiconductor chip mounting structure
JP2017003708A (en) Liquid crystal display device
US20230290751A1 (en) Anisotropic conductive film and display device including same
JP3617495B2 (en) Semiconductor element connection structure, liquid crystal display device and electronic apparatus
JP2011233624A (en) Semiconductor element and electronic apparatus including the semiconductor element
JP2006237484A (en) Semiconductor chip, its manufacturing method and indicating panel
KR20220106049A (en) Display device and manufacturing method thereof
JP2001215524A (en) Liquid crystal device and its manufacturing method
JP4844738B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110811