JP2008122674A - 光モジュールの製造方法 - Google Patents

光モジュールの製造方法 Download PDF

Info

Publication number
JP2008122674A
JP2008122674A JP2006306541A JP2006306541A JP2008122674A JP 2008122674 A JP2008122674 A JP 2008122674A JP 2006306541 A JP2006306541 A JP 2006306541A JP 2006306541 A JP2006306541 A JP 2006306541A JP 2008122674 A JP2008122674 A JP 2008122674A
Authority
JP
Japan
Prior art keywords
light
optical fiber
emitting element
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306541A
Other languages
English (en)
Inventor
Akira Miyamae
章 宮前
Nobuhiro Naito
信宏 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006306541A priority Critical patent/JP2008122674A/ja
Publication of JP2008122674A publication Critical patent/JP2008122674A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光モジュール製造時の調芯精度を向上させること
【解決手段】発光素子と、光ファイバの一端を支持するコネクタ部品と、を含む光モジュールの製造方法であって、上記発光素子を上記コネクタ部品に取り付ける第1工程と、上記コネクタ部品に上記光ファイバの一端を取り付け、上記発光素子を発光させる第2工程と、上記光ファイバの他端からの出射光の光強度を計測する第3工程と、上記光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する第4工程と、上記第4工程において計測された光強度の値を上記第3工程において計測された光強度の値で除算することによって結合比を算出する第5工程と、上記第5工程において算出された上記結合比に基づいて、上記発光素子と上記コネクタ部品との取り付け精度を判定する第6工程と、を含む。
【選択図】図12

Description

本発明は、光通信に用いられる光モジュールの製造技術に関する。
発光素子と、光ファイバを支持するコネクタ部品とを備え、光ファイバを装着して用いられる光モジュールを製造する際には、発光素子とコネクタ部品とを調芯(光軸合わせ)をする必要がある。具体的には、発光素子の場合であれば、コネクタ部品に光ファイバを装着するとともに、発光素子を発光させ、その出射光を光ファイバの一端側に入射させる。そして、光ファイバの他端からの出射光の強度を計測し、光結合効率が最も高くなる位置に発光素子とコネクタ部品が固定される。このとき、光ファイバのコア面積が大きい場合には、発光素子とコネクタ部品とを相対的に移動させながら光量(出射光強度)を観測すると明りょうなピークを持たない台形状のトレランスカーブが得られる。このため、光結合効率が最大となるように調芯をしようとすると、台形状のトレランスカーブの平坦な頂上部の任意位置で調芯されてしまうことから、調芯精度にばらつきが生じていた。特に、発光素子とコネクタ部品とを調芯、固定した後においては、調芯精度の評価(調芯誤差、光軸ずれ等の測定)を行うことが非常に困難であった。
特開2005−77436号公報
本発明は、光モジュール製造時における調芯精度を容易に判断することが可能な技術を提供することを目的とする。
本発明に係る光モジュールの製造方法は、発光素子と、光ファイバの一端を支持するコネクタ部品と、を含む光モジュールの製造方法であって、
上記発光素子を上記コネクタ部品に取り付ける第1工程と、
上記コネクタ部品に上記光ファイバの一端を取り付け、上記発光素子を発光させる第2工程と、
上記光ファイバの他端からの出射光の光強度を計測する第3工程と、
上記光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する第4工程と、
上記第4工程において計測された光強度の値を上記第3工程において計測された光強度の値で除算することによって結合比を算出する第5工程と、
上記第5工程において算出された上記結合比に基づいて、上記発光素子と上記コネクタ部品との取り付け精度を判定する第6工程と、
を含む。
かかる方法によれば、発光素子とコネクタ部品との相対的な位置関係に対する結合比の依存性を予め求めておけば、以後の光モジュールの製造時においては、発光素子をコネクタ部品に取り付けた後に、光ファイバの他端からの光強度の計測値に基づいて結合比を求め、この結合比を指標として簡便に発光素子とコネクタ部品との取り付け精度(すなわち調芯精度)を判定することができる。
好ましくは、
上記第3工程および第4工程は、上記光ファイバの他端から離間させて配置された光検出器を用いて光強度を計測しており、
上記第4工程は、上記光ファイバの他端と上記光検出器との相互間距離を上記第3工程における当該相互間距離よりも長くすることにより上記一部成分の光強度を計測する。
これによれば、比較的簡単な構成の装置を用いて第3工程及び第4工程を行うことができる。
本発明に係る他の光モジュールの製造方法は、発光素子と、光ファイバの一端を支持するコネクタ部品と、を含む光モジュールの製造方法であって、
上記発光素子と上記コネクタ部品とを仮に組み合わせ、上記コネクタ部品に上記光ファイバの一端を取り付けた状態で上記発光素子を発光させ、上記発光素子と上記コネクタ部品との相対的配置を相互に直交する三軸方向のそれぞれについて移動させて上記光ファイバの他端からの出射光の強度を計測し、上記三軸方向の各々についての上記出射光の強度の最大値、中心値又は平均値のうち少なくとも1つを求める第1工程と、
上記発光素子を上記コネクタ部品に取り付ける第2工程と、
上記光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する第3工程と、
上記第3工程において計測された光強度の値を上記第1工程において求めた上記最大値、上記中心値又は上記平均値で除算することにより規格化出力を算出する第4工程と、
上記第4工程において算出した上記規格化出力に基づいて、上記発光素子と上記コネクタ部品との取り付け精度を判定する第5工程と、
を含む。
かかる方法によれば、発光素子とコネクタ部品との相対的な位置関係に対する規格化出力の依存性を予め求めておけば、以後の光モジュールの製造時においては、発光素子とコネクタ部品の調芯時に併せて出射光強度の最大値等を求め、発光素子をコネクタ部品に取り付けた後に光ファイバの他端からの光強度の計測値に基づいて規格化出力を求めることにより、この規格化出力を指標として簡便に発光素子とコネクタ部品との取り付け精度(調芯精度)を判定することができる。
上記の各本発明において、上記光ファイバはマルチモードファイバであることがより好ましい。
これにより、マルチモードファイバの使用を前提としている光モジュールの調芯精度を向上し得る。また、結合比又は規格化出力の指標としての精度が向上する。
上記の各本発明において、上記出射光の光軸を含む一部成分は、上記光ファイバの他端からの出射光のうちの狭放射角成分であることが好ましい。
以下、本発明の実施の形態について図面を参照しながら説明する。
(第1の実施形態)
図1は、光モジュールの詳細構成を説明する断面図である。本実施形態の光モジュールは、発光素子11を内蔵するカンパッケージ10とコネクタ部品20とを位置合わせし、接着剤18を用いて固定して構成されている。図示のように本実施形態の光モジュールは、光ファイバ100の一端を取り付け可能に構成されている。本例では、光ファイバ100の一端にはフェルール101が装着されており、コネクタ部品20はこのフェルール101を支持する。
カンパッケージ10は、発光素子11を金属等からなる筐体14によりパッケージングして構成されている。発光素子11は、例えばマルチモード発光するVCSEL(Vertical Cavity Surface Emitting Diode)である。この発光素子11は、リード線を介して端子12と電気的に接続されており、当該端子12を通じて外部から駆動信号の供給を受ける。筐体14は開口を有し、当該開口にはガラス窓13が取り付けられている。発光素子11からの出射光はガラス窓13を通して放出される。
コネクタ部品20は、カンパッケージ10を支持する孔状の支持部21と、発光素子10から出射する光を集光して光ファイバ100の一端に導くレンズ22と、光ファイバ100の一端が装着され、これを支持するスリーブ部23と、を備える。本実施形態のコネクタ部品20は、透明樹脂を用いて射出成形法により一体成形されている。また本例では、光ファイバ100の一端にはフェルール101が装着されており、当該フェルール101がスリーブ部23に挿入される。ここで、光ファイバ100は、例えばコア径50μm、クラッド径125μm、NA0.21のGI(Graded Index)マルチモードファイバである。レンズ22は、発光素子10と光軸を合わせ、当該発光素子10と光ファイバ100の一端との相互間に配置されている。図示のように、本実施形態ではこのレンズ22はコネクタ部品20と一体に成形されているが、レンズ22とコネクタ部品20とは別個に分離して構成されてもよい。
図2は、一実施形態の光モジュール製造用の調芯装置の構成を説明する側面図である。図2に示す調芯装置1は、コネクタ部品20が載置される支持部102と、カンパッケージ10が載置される支持部103と、支持部103を一方向へ振動させるための振動発生部104と、ステージ108をx、y、zの各方向へ自在に移動させるためのマイクロメータ105、106、107と、カンパッケージ10に駆動信号を供給するための駆動ユニット109と、給電ユニット109に電力供給を行うための給電ケーブル110と、を含んで構成される。振動発生部104は、例えばピエゾ振動板などの公知手段を用いて構成される。
図3は、上述した調芯装置1を含んで構成される一実施形態の調芯システムの構成を説明するブロック図である。図3に示す本実施形態の調芯システムは、調芯装置1と、この調芯装置1の給電ユニット109に対して給電ケーブル110を介して電力を供給する電源2と、調芯対象となる光モジュールに取り付けられた光ファイバ100の他端側からの出射光の光強度を計測する光パワーディテクタ3と、この光パワーディテクタ3による計測値を適宜増幅するとともに、増幅後の計測値をディジタル信号に変換するアンプ4と、アンプ4から入力されるディジタル信号に基づいて所定の情報処理(詳細は後述)を行うとともに、情報処理の結果(あるいは処理過程)を表示する情報処理装置5と、を含んで構成されている。ここで、本実施形態の調芯装置1は、手動調芯と自動調芯のいずれにも対応可能に構成されており、自動調芯を行うために、情報処置装置5から調芯装置1へ信号がフィードバックされている。
図4及び図5は、調芯時の光量分布について説明する図である。図4では縦軸がy軸方向の変位量、横軸がz軸方向の変位量にそれぞれ対応しており、図5では縦軸がy軸方向の変位量、横軸がx軸方向の変位量にそれぞれ対応している。各図では、ほぼ等しい光量の範囲が等高線状に描かれている。各図に示されるように、光量分布は、x、y軸方向の直径が約8μm、z軸方向が約90μmの回転楕円体となる。この回転楕円体の中はほとんど光量変化がないが、経時変化や温度ドリフト等による位置ずれのマージンを確保するためには、この回転楕円体の中心に調芯されることが望まれる。
図6は、X軸方向についてのトレランスカーブ(X、Y=0)の一例を示すグラフである。図7は、X軸方向についての結合比(詳細は後述)の一例を示すグラフである。図8は、Z軸方向についてのトレランスカーブ(X、Y=0)の一例を示すグラフである。図9は、Z軸方向についての結合比の一例を示すグラフである。図6及び図8における縦軸は「光強度Po」を示し、横軸はカンパッケージ10のコネクタ部品20に対する相対的な位置(X軸方向又はZ軸方向)を示す。図7及び図9における縦軸は「結合比」を示し、横軸はカンパッケージ10のコネクタ部品20に対する相対的な位置(X軸方向又はZ軸方向)を示す。なお、Y軸方向についてのトレランスカーブ及び結合比は図6及び図7に示すX軸方向についてのものと同様であるため、ここでは図示を省略する。
光ファイバ100としてマルチモードファイバを用いた場合にはそのコア径が大きいために、X、Y、Z軸ともにトレランスカーブが広く、その頂上が台形状の平坦形状をしているため光量ピークが不明瞭となる。図6、図8の各図において「normal」と示す曲線がこの台形状のトレランスカーブの一例である。これに対して、光ファイバ100の他方端からの出射光に絞りをかけ、当該出射光のうちの光軸を含む一部成分だけを受光した場合には、トレランスカーブの形状をより光量ピークが明瞭な状態に変化させることができる。図6、図8の各図において「絞り」と示す曲線がこの台形上のトレランスカーブの一例である。ここで、出射光の一部成分について図10を用いて説明する。図10は、光ファイバ100の他端から出射する放射光の光軸Lを通る断面を模式的に示す図である。光ファイバ100の他端(出射点P)から出射する放射光は、図示のように光軸Lを基準とした放射角θ2(例えば12°程度)で拡がる。このとき、放射光のうち放射角θ1(例えば4°〜8°程度)を有する一部成分(狭放射角成分)のみが受光されるように出射光に対して絞りをかけることにより、上記のように光量ピークが明瞭なトレランスカーブが得られる。
図11は、出射光に絞りをかけ、一部成分を選択的に受光可能な光パワーディテクタ3の構成例を示すブロック図である。図11(a)及び図11(b)に示す光パワーディテクタ3は、光ファイバ100の他端に取り付けられたフェルール30と、このフェルール30を支持する支持体32と、光ファイバ100の他端と所定距離だけ離間して配置された光検出器34と、この光検出器34を上記の光軸Lと平行な一方向に自在に移動させるスライド機構36と、光検出器34等の全体を囲む筐体(遮光ケース)40と、を含んで構成される。光検出器34と光ファイバ100の他端との相互間距離をスライド機構36を用いて適宜設定することにより、絞りをかけない場合の出射光の強度と絞りをかけた場合の出射光の強度のいずれも容易に計測することができる。
具体的には、光ファイバ100の他端と光検出器34の受光面38との距離d(図10参照)は、以下の式(1)のように設定される。ここで、受光面38が円形であり、その径をrとする。
d=r/2tanθ ・・・(1)
したがって、スライド機構36を用いて、距離dを上記のr/2tanθ2、又はそれ以下に設定することにより、出射光に絞りをかけない状態で当該出射光を受光面38に入射させることができる。それにより、上記した絞りなしのトレランスカーブ(「normal」のトレランスカーブ)が得られる。また、スライド機構36を用いて、距離dを上記のr/2tanθ1、又はそれ以上に設定することにより、出射光に絞りをかけ、出射光の一部成分のみを受光面38に入射させることができる。それにより、上記した光量ピークの明瞭なトレランスカーブ(「絞り」のトレランスカーブ)が得られる。以下に、具体的な数値例を挙げる。例えば、受光面38の径rが13mmであるとすると、放射光のうち放射角θ1が4°の一部成分を受光面38に入射させる際の距離dは約93mmとなる。同様に、放射光のうち放射角θ1が6°の一部成分を受光面38に入射させる際の距離dは約62mmとなる。同様に、放射光のうち放射角θ1が8°の一部成分を受光面38に入射させる際の距離dは約46mmとなる。
次に、図7及び図9に示した「結合比」について詳細に説明する。光ファイバ100の他端からの出射光の光強度のうち、絞りなしのもの(図6及び図7の「normal」曲線参照)と絞りありのもの(図6及び図8の「絞り」曲線参照)との比を算出したものを、本実施形態では「結合比」と定義している。すなわち、絞りありの光強度(すなわち出射光の光軸を含む一部成分の光強度)を、絞りなしの光強度で除算することにより規格化した値が本実施形態で定義する「結合比」である。この結合比をX軸方向及びZ軸方向の各々について図示したのが図7及び図9である。各図の縦軸に示すように、結合比は0〜1の値をとる。このような結合比を予め求めておくことにより、以後の光モジュールの製造時においては、カンパッケージ10とコネクタ部品20との取り付け精度を簡単に判定することができる。具体的には、カンパッケージ10とコネクタ部品20とを組み立てた後に、コネクタ部品20に光ファイバ100の一端を取り付けるとともにカンパッケージ10内の発光素子11を発光させる。そして、光ファイバ100の他端側で上記のようにして、絞りあり/絞りなしのそれぞれの状態における出射光の光強度を測定し、結合比を算出する。この結合比の算出結果が例えば0.75(75%)であったとすると、上記図7に示すデータに基づき、X軸方向のずれが±3.5μmであることが分かる(図7中の点線参照)。同様に、結合比の算出結果が0.75である場合には、上記図9に示すデータに基づき、Z軸方向のずれが±35μmであることが分かる(図9中の点線参照)。図示を省略するが、Y軸方向についても同様である。換言すると、X軸方向、Y軸方向、Z軸方向のそれぞれについてのずれの許容範囲を定めるとそれに対応する結合比が定まる(図7及び図9参照)。よって、上記のようなカンパッケージ10とコネクタ部品20との相対的な位置関係に対する結合比の依存性を予め求めておけば、以後の光モジュールの製造時には、絞りあり/絞りなしのそれぞれの出射光の光強度に基づいて算出される結合比を指標として用い、この結合比が所定数値(例えば、0.7)より大きいか否かを判断するという簡便な工程により、カンパッケージ10とコネクタ部品20との取り付け位置精度を評価し、良品を選別することが可能となる。これにより、量産性が格段に向上する。
以下に、本実施形態の光モジュールの製造方法の流れを説明する。図12は、光モジュールの製造方法を説明するためのフローチャートである。
カンパッケージ10(すなわち発光素子11)をコネクタ部品20に取り付ける(ステップS10)。具体的には、上記の調芯装置1(図2、3参照)を用いる。まず、コネクタ部品20を支持部102に載置するとともにカンパッケージ10を支持部103に載置する(図2参照)。次に、調芯装置1により、カンパッケージ10とコネクタ部品20との調芯(位置決め)を行い、その後これらを相互に固定する。具体的には、上述した図1に示したように、カンパッケージ10とコネクタ部品20とが接着剤18を用いて固定される。
次に、コネクタ部品20に光ファイバ100の一端を取り付け、カンパッケージ10に内蔵された発光素子11を発光させる(ステップS11)。発光素子11からの出射光は、コネクタ部品20と一体成形されたレンズ22によって集光されて光ファイバ100の一端に入射し、光ファイバ100を伝搬し、光ファイバ100の他端から出射する。発光素子11を発光させるための給電は上記のように端子12を介して行われる。
次に、光パワーディテクタ3を用いて、光ファイバ100の他端からの出射光の光強度(第1の光強度)を計測する(ステップS12)。ここでは、上記のように絞りをかけない状態状態での光強度が計測される(図11(A)参照)。光パワーディテクタ3によって計測された光強度の検出信号はアンプ4によって適宜増幅され、情報処理装置5に取り込まれる。
次に、光パワーディテクタ3を用いて、光ファイバ100の他端からの出射光の光強度のうち当該出射光の光軸を含む一部成分の光強度(第2の光強度)を計測する(ステップS13)。ここでは、上記のように光ファイバ100の他端と光検出器34との相互間距離を上記工程における当該相互間距離よりも長くすることによって絞りをかけた状態状態での光強度が計測される(図11(B)参照)。光パワーディテクタ3によって計測された光強度の検出信号はアンプ4によって適宜増幅され、情報処理装置5に取り込まれる。なお、ステップS12とステップS13を入れ換えてもよい。
次に、上記工程において計測された第2の光強度の値を上記工程において計測された第1の光強度の値で除算することによって結合比を算出する(ステップS14)。本実施形態では、この結合比を求める演算は情報処理装置5において行われる。演算結果は、例えば情報処理装置5に備わった表示部に表示される。
次に、上記工程において算出された結合比に基づいて、カンパッケージ10(すなわち発光素子11)とコネクタ部品20との取り付け精度を判定する(ステップS15)。具体的には、上述したように結合比が所定値以上であるか否かを判定する。本実施形態では、この取り付け精度の判定は情報処理装置5において行われる。本工程により、一定の取り付け精度を有する光モジュールを選別することができる。例えば、結合比75%(0.75)という基準を設けて合否判定をした場合には、光軸ずれ量をX軸方向及びY軸方向については±3.5μm以内、Z軸方向については±35μm以内、という規格を保証することができる。
このように第1の実施形態によれば、カンパッケージ10(すなわち発光素子11)とコネクタ部品20との相対的な位置関係に対する結合比の変化を予め用意しておけば、以後の光モジュールの製造時においては、結合比を指標として用いて簡便に発光素子11とコネクタ部品20との取り付け精度(調芯精度)を判定し、良品を選別することができる。これにより、量産性が格段に向上する。
(第2の実施形態)
上述した第1の実施形態では、発光素子とコネクタ部品との調芯精度を判定する指標として「結合比」を用いていたが、次に説明する他の指標を用いることによっても簡便に調芯精度を判定することができる。なお、本実施形態においても、光モジュールの構造、調芯装置および調芯システムの構成、のそれぞれについては上記第1の実施形態と同様であるため、説明を省略する。
次に、本実施形態において指標として用いられる「規格化出力」について説明する。本実施形態における「規格化出力」は以下のようにして求められる。まず、カンパッケージ10(すなわち発光素子11)とコネクタ部品20とを仮に組み合わせ、上述したX軸方向、Y軸方向、Z軸方向のそれぞれについてのトレランスカーブ(図6、図8の「normal」曲線参照)の計測する。また、これに併せて、三軸方向(XYZ各軸方向)の各々についての出射光の強度の最大値、中心値又は平均値のいずれかを求めておく。次に、調芯装置1によって調芯をして、カンパッケージ10(すなわち発光素子11)をコネクタ部品20に取り付ける。次に、コネクタ部品20に光ファイバ100の一端を取り付けた状態で発光素子11を発光させ、光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する。そして、この一部成分の光強度を上記の最大値等のいずれかで除算することによって規格化する。
図13は、X軸方向についてのカンパッケージ10とコネクタ部品20との相対的な位置関係に対する規格化出力の一例を示す。図14は、Z軸方向についてのカンパッケージ10とコネクタ部品20との相対的な位置関係に対する規格化出力の一例を示す。なお、Y軸方向については図13と同様であるため図示を省略する。図示されているのは、最大値を用いて規格化を行った一例であるが、中心値又は平均値であっても同様である。
上記のようなカンパッケージ10とコネクタ部品20との相対的な位置関係に対する規格化出力の依存性を予め求めておけば、以後の光モジュールの製造時には、絞りありの状態における出射光の光強度に基づいて算出される規格化出力を指標として用いることができる。具体的には、この規格化出力が所定数値(例えば、0.7)より大きいか否かを判断するという簡便な工程により、カンパッケージ10とコネクタ部品20との取り付け位置精度を評価し、良品を選別することが可能となる。これにより、量産性が格段に向上する。例えば、規格化出力の算出結果が0.745(74.5%)であったとすると、上記図13に示すデータに基づき、X軸方向のずれが±3.5μmであることが分かる(図13中の点線参照)。同様に、結合比の算出結果が0.745である場合には、上記図14に示すデータに基づき、Z軸方向のずれが±35μmであることが分かる(図14中の点線参照)。図示を省略するが、y軸方向についても同様である。換言すると、x軸方向、y軸方向、z軸方向のそれぞれについてのずれの許容範囲を定めるとそれに対応する結合比が定まる(図13及び図14参照)。
以下に、本実施形態の光モジュールの製造方法の流れを説明する。図15は、光モジュールの製造方法を説明するためのフローチャートである。
カンパッケージ10(すなわち発光素子11)とコネクタ部品20とを仮に組み合わせ、コネクタ部品20に光ファイバ100の一端を取り付けた状態で発光素子11を発光させ、カンパッケージ10とコネクタ部品20との相対的配置を相互に直交する三軸方向のそれぞれについて移動させて光ファイバの他端からの出射光の強度を計測する。すなわち、三軸方向のそれぞれについてのトレランスカーブを求める。そして、当該三軸方向の各々についての出射光の強度の最大値、中心値又は平均値のうち少なくとも1つを求める(ステップS20)。具体的には、この最大値等を求める演算処理は情報処理装置5において行われる。なお、調芯装置1が同等の情報処理機能を有する場合には、調芯装置1において最大値等を求める演算を行ってもよい。求められた最大値等は、情報処理装置5に備わったメモリ等の記憶手段(図示せず)によって記憶される。
次に、カンパッケージ10(すなわち発光素子11)をコネクタ部品20に取り付ける(ステップS21)。本工程は、上記した第1の実施形態におけるステップS10(図12参照)と同様にして行われる。
次に、コネクタ部品20に光ファイバ100の一端を取り付け、カンパッケージ10に内蔵された発光素子11を発光させる(ステップS22)。本工程についても、上記した第1の実施形態におけるステップ11(図12参照)と同様にして行われる。
次に、光パワーディテクタ3を用いて、光ファイバ100の他端からの出射光の光強度のうち当該出射光の光軸を含む一部成分の光強度を計測する(ステップS23)。ここでは、第1の実施形態の場合と同様、光ファイバ100の他端と光検出器34との相互間距離を上記工程における当該相互間距離よりも長くすることによって絞りをかけた状態状態での光強度が計測される(図11(B)参照)。光パワーディテクタ3によって計測された光強度の検出信号はアンプ4によって適宜増幅され、情報処理装置5に取り込まれる。
次に、上記工程において計測された光強度(光軸を含む一部成分の光強度)の値を上記工程において求めた最大値、中心値又は平均値で除算することにより規格化出力を算出する(ステップS24)。本実施形態では、この規格化出力を求める演算は情報処理装置5において行われる。演算結果は、例えば情報処理装置5に備わった表示部に表示される。
次に、上記工程において算出された規格化出力に基づいて、カンパッケージ10(すなわち発光素子11)とコネクタ部品20との取り付け精度を判定する(ステップS25)。具体的には、上述したように規格化出力が所定値以上であるか否かを判定する。本実施形態では、この取り付け精度の判定は情報処理装置5において行われる。本工程により、一定の取り付け精度を有する光モジュールを選別することができる。
以上のように第2の実施形態によれば、カンパッケージ10(すなわち発光素子11)とコネクタ部品20との相対的な位置関係に対する規格化出力の変化を予め用意しておけば、以後の光モジュールの製造時においては、規格化出力を指標として用いて簡便に発光素子11とコネクタ部品20との取り付け精度(調芯精度)を判定し、良品を選別することができる。これにより、量産性が格段に向上する。
なお、本発明は上述した各実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態では、缶封止された発光素子とコネクタ部品との位置決めについて説明していたが、缶封止されていない形態の発光素子であっても本発明を適用することが可能である。
また、上記の各実施形態では、スライド機構36を用いて光検出器34の位置を移動させ、光ファイバ100の他端と光検出器34との相互間距離を可変に設定するように光パワーディテクタ3を構成することにより、光ファイバ100の他端からの出射光の一部成分を抽出していたが、他の構成を有する光パワーディテクタを採用することもできる。
図16は、光パワーディテクタの他の構成例を説明する概略断面図である。図16に示す光パワーディテクタ3aは、アダプタ部130、光検出器132、光絞り部材134を含んで構成される。本例では、光ファイバ100の他端にはFCコネクタが装着されており、このFCコネクタが光パワーディテクタ3aの端部に取り付けられる。光検出器132は、光ファイバ100の他端側に配置されており、光ファイバ100の他端から出射する放射光を受光面136において受光し、受光強度に応じた電気信号を出力する。光絞り部材136は、光ファイバ100の他端と光検出器132との相互間に配置され、光ファイバ100から出射する放射光のうち光軸を含む一部成分を通過させる。
図17は、光絞り部材134について詳細に説明する図である。図17では、光ファイバ100の他端から出射する放射光の光軸Lを通る断面が模式的に示されている。光ファイバ100の他端(出射点P)から出射する放射光は、図示のように光軸Lを基準とした放射角θ2(例えば12°程度)で拡がる。このとき、光絞り部材134は、光ファイバから出射する放射光のうち光軸L付近の一部成分、具体的には図示のように放射角θ1(例えば4°〜8°程度)の成分を通過させ、放射角がθ1より大きい成分(外縁成分)については遮蔽する。これにより、放射光のうち放射角θ1を有する一部成分が受光面136に入射する。光絞り部材134を通過させる一部成分の放射角θ1は、光絞り部材134の開口の径の大小、光ファイバ100の他端(出射点P)と光絞り部材34との相互間距離、などを適宜調整することによって設定される。この光絞り部材134を装着しない場合には絞りなしの状態で光ファイバ100の他端からの出射光の強度を計測することができ、光絞り部材134を装着した場合には絞りありの状態で光ファイバ100の他端からの出射光の強度を計測することができる。
光モジュールの詳細構成を説明する断面図である。 光モジュール製造用の調芯装置の構成を説明する側面図である。 調芯システムの構成を説明するブロック図である。 調芯時の光量分布について説明する図である。 調芯時の光量分布について説明する図である。 x軸方向についてのトレランスカーブの一例を示すグラフである。 x軸方向についての結合比の一例を示すグラフである。 z軸方向についてのトレランスカーブの一例を示すグラフである。 z軸方向についての結合比の一例を示すグラフである。 光ファイバの他端から出射する放射光の光軸Lを通る断面を模式的に示す図である。 出射光に絞りをかけ、一部成分を選択的に受光可能な光パワーディテクタの構成例を示すブロック図である。 光モジュールの製造方法を説明するためのフローチャートである。 指標として用いられる「規格化出力」について説明する図である。 指標として用いられる「規格化出力」について説明する図である。 光モジュールの製造方法を説明するためのフローチャートである。 光パワーディテクタの他の構成例を説明する概略断面図である。 光絞り部材について詳細に説明する図である。
符号の説明
1…調芯装置、2…電源、3…光パワーディテクタ、4…アンプ、5…情報処理装置、10…カンパッケージ、11…発光素子、12…端子、13…ガラス窓、14…筐体、18…接着剤、20…コネクタ部品、21…支持部、22…レンズ、23…スリーブ部、30…フェルール、32…支持体、34…光検出器、36…スライド機構、100…光ファイバ

Claims (5)

  1. 発光素子と、光ファイバの一端を支持するコネクタ部品と、を含む光モジュールの製造方法であって、
    前記発光素子を前記コネクタ部品に取り付ける第1工程と、
    前記コネクタ部品に前記光ファイバの一端を取り付け、前記発光素子を発光させる第2工程と、
    前記光ファイバの他端からの出射光の光強度を計測する第3工程と、
    前記光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する第4工程と、
    前記第4工程において計測された光強度の値を前記第3工程において計測された光強度の値で除算することによって結合比を算出する第5工程と、
    前記第5工程において算出された前記結合比に基づいて、前記発光素子と前記コネクタ部品との取り付け精度を判定する第6工程と、
    を含む、光モジュールの製造方法。
  2. 請求項1において、
    前記第3工程および第4工程は、前記光ファイバの他端から離間させて配置された光検出器を用いて光強度を計測しており、
    前記第4工程は、前記光ファイバの他端と前記光検出器との相互間距離を前記第3工程における当該相互間距離よりも長くすることにより前記一部成分の光強度を計測する、
    光モジュールの製造方法。
  3. 発光素子と、光ファイバの一端を支持するコネクタ部品と、を含む光モジュールの製造方法であって、
    前記発光素子と前記コネクタ部品とを仮に組み合わせ、前記コネクタ部品に前記光ファイバの一端を取り付けた状態で前記発光素子を発光させ、前記発光素子と前記コネクタ部品との相対的配置を相互に直交する三軸方向のそれぞれについて移動させて前記光ファイバの他端からの出射光の強度を計測し、前記三軸方向の各々についての前記出射光の強度の最大値、中心値又は平均値のうち少なくとも1つを求める第1工程と、
    前記発光素子を前記コネクタ部品に取り付ける第2工程と、
    前記光ファイバの他端からの出射光のうち当該出射光の光軸を含む一部成分の光強度を計測する第3工程と、
    前記第3工程において計測された光強度の値を前記第1工程において求めた前記最大値、前記中心値又は前記平均値で除算することにより規格化出力を算出する第4工程と、
    前記第4工程において算出した前記規格化出力に基づいて、前記発光素子と前記コネクタ部品との取り付け精度を判定する第5工程と、
    を含む、光モジュールの製造方法。
  4. 請求項1又は請求項3のいずれかにおいて、
    前記光ファイバは、マルチモードファイバである、光モジュールの製造方法。
  5. 請求項1又は請求項3のいずれかにおいて、
    前記出射光の光軸を含む一部成分は、前記光ファイバの他端からの出射光のうちの狭放射角成分である、光モジュールの製造方法。
JP2006306541A 2006-11-13 2006-11-13 光モジュールの製造方法 Pending JP2008122674A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306541A JP2008122674A (ja) 2006-11-13 2006-11-13 光モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306541A JP2008122674A (ja) 2006-11-13 2006-11-13 光モジュールの製造方法

Publications (1)

Publication Number Publication Date
JP2008122674A true JP2008122674A (ja) 2008-05-29

Family

ID=39507484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306541A Pending JP2008122674A (ja) 2006-11-13 2006-11-13 光モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP2008122674A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125731A1 (ja) * 2010-03-31 2011-10-13 株式会社オートネットワーク技術研究所 光通信モジュール及び光通信モジュールの製造方法
WO2023013136A1 (ja) * 2021-08-04 2023-02-09 ソニーグループ株式会社 測定システム、測定器およびケーブル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125731A1 (ja) * 2010-03-31 2011-10-13 株式会社オートネットワーク技術研究所 光通信モジュール及び光通信モジュールの製造方法
JP2011215304A (ja) * 2010-03-31 2011-10-27 Autonetworks Technologies Ltd 光通信モジュール及び光通信モジュールの製造方法
WO2023013136A1 (ja) * 2021-08-04 2023-02-09 ソニーグループ株式会社 測定システム、測定器およびケーブル

Similar Documents

Publication Publication Date Title
KR20180130519A (ko) 광학 서브어셈블리의 광전자 디바이스로의 광학 정렬
CN103792638B (zh) 光学传感器
CN104335018B (zh) 激光功率传感器
US20100098374A1 (en) Optoelectronic component based on premold technology
JP2007178852A (ja) 光配線基板及びこれを用いた光モジュール
EP2541575B1 (en) Method for fixing lens section in optical sensor and optical sensor
KR101760156B1 (ko) 광 콜리메이터 및 이를 이용한 광 커넥터
US7593104B2 (en) Method for manufacturing optical module, positioning apparatus, evaluation method and evaluation apparatus for evaluating optical module
JP6331196B2 (ja) 光学素子、照射光学系、集光光学系および光導波路検査装置
US20070009208A1 (en) Coupling region for optical systems
JP2008122674A (ja) 光モジュールの製造方法
CN109084685B (zh) 共焦位移传感器
JP2000261836A (ja) 光学プローブアッセンブリを較正する方法及び装置
JP2007155973A (ja) 光モジュールの調芯方法、光モジュールの製造方法
US8531656B2 (en) Method and apparatus for measuring exit angle of optical fiber
CA2363369A1 (en) Semiconductor laser module and method of making the same
KR20210029136A (ko) 온도 측정 센서, 온도 측정 시스템, 및 온도 측정 방법
JP2015117947A (ja) スポットサイズ測定方法およびその装置
EP2031427B1 (en) Optical terminal
JP2012237819A (ja) 光モジュール用フォルダ
US20110096563A1 (en) Method, device, and system for controlling encircled flux
JP2007333415A (ja) 光モジュールの評価方法および評価装置
CN113227861A (zh) 具有硅透镜的多通道模式转换器
JP2007086177A (ja) 受発光デバイス測定装置
JP2010066562A (ja) 光ファイバ位置決め方法