JP2008117499A - 光ピックアップ装置および光ディスク装置 - Google Patents

光ピックアップ装置および光ディスク装置 Download PDF

Info

Publication number
JP2008117499A
JP2008117499A JP2006302016A JP2006302016A JP2008117499A JP 2008117499 A JP2008117499 A JP 2008117499A JP 2006302016 A JP2006302016 A JP 2006302016A JP 2006302016 A JP2006302016 A JP 2006302016A JP 2008117499 A JP2008117499 A JP 2008117499A
Authority
JP
Japan
Prior art keywords
laser light
optical
lens
circuit
aberration correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302016A
Other languages
English (en)
Inventor
Masato Ogata
正人 尾形
Katsutoshi Hibino
克俊 日比野
Kenji Asano
賢二 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006302016A priority Critical patent/JP2008117499A/ja
Publication of JP2008117499A publication Critical patent/JP2008117499A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

【課題】収差補正用レンズの基準位置を、部品点数の増大を抑制しつつ円滑かつ精度良く検出できる光ピックアップ装置および光ディスク装置を提供する。
【解決手段】コリメートレンズ105を保持する可動部202に遮光板205を配置する。遮光板205は、コリメートレンズ105が基準位置にあるときには、偏光ビームスプリッタ103を経由してFMD104の受光部(センサ)に照射されるレーザ光の半分を当該受光部(センサ)に対して遮光し、コリメートレンズ105が中立位置および収差補正サーボ時に中立位置から変位される一定の変位範囲にあるときには、偏光ビームスプリッタ103からFMD104に向かうレーザ光をFMD104の受光部(センサ)に対して遮光しないよう形成および配置されている。
【選択図】図1

Description

本発明は、光ピックアップ装置および光ディスク装置に関し、特に、レーザ光に生じる波面収差を、レンズを駆動することによって補正する際に用いて好適なものである。
CD(Compact Disc)やDVD(Digital Versatile Disc)にレーザ光を収束させる場合、レーザ光の波長変動や、ディスク基板の厚み変動等に起因して、記録面上におけるレーザ光に波面収差が生じる。現在商品化が進められているBD(ブルーレイディスク)では、CDやDVDよりも高い開口数(NA)が要求されるため、記録面上において生じる波面収差は、CDやDVDの場合よりもかなり顕著なものとなる。このため、特にBDでは、球面収差を抑制するための構成が光ピックアップ装置に必要となる。
波面収差を補正するための方法として、特許文献1に記載の方法が知られている。この方法は、凹レンズと凸レンズを組み合わせたエキスパンダを光ピックアップ装置の光学系に配置し、これら2つのレンズのうち何れか一方を、レーザ光の光軸方向に変位させ、これにより、記録面上における波面収差を補正するものである。なお、この方法では、レンズ駆動源としてステッピングモータが用いられている。収差補正用のレンズは、基準位置から予め決められたステップ数だけ変位され、これにより、収差補正サーボ位置に位置づけられる。その後、このサーボ位置から、再生信号品質が最良となるよう、収差補正用のレンズが光軸方向に微動される。
ここで、光ピックアップ装置には、収差補正用レンズの基準位置を検出するための構成が必要となる。しかし、この構成は、特許文献1には示されていない。一般、収差補正用レンズの基準位置は、LEDとフォトダイオードを対向させたフォトセンサを用いて検出できる。しかし、フォトセンサを用いると、部品点数が増大し、光ピックアップ装置のコストが上昇する。また、フォトセンサは、温度による出力レベルの変動が大きく、また、外形に対する受光部位置の誤差が大きい。このため、フォトセンサを用いる場合には、基準位置の検出に誤差が生じる惧れがある。
特開2003−91847号公報
本発明は、フォトセンサを用いることなく、収差補正用レンズの基準位置を円滑かつ精度良く検出できる光ピックアップ装置および光ディスク装置を提供することを課題とする。
上記課題に鑑み本発明は、以下の特徴を有する。
請求項1の発明は、光ピックアップ装置に関する。ここで、光ピックアップ装置は、レーザ光源と、レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、レーザ光源と対物レンズとの間に配され、且つ、レンズアクチュエータによってレーザ光の光軸方向に変位可能に支持された収差補正用レンズと、レーザ光源から出射されたレーザ光を受光するパワーモニタ用の光検出器と、レーザ光源から出射されたレーザ光を、対物レンズに向かう第1の光路と、光検出器に向かう第2の光路に分割するビームスプリッタと、収差補正用レンズと一体的に配され、且つ、収差補正用レンズを収差補正サーボ位置に位置づけるための基準位置に収差補正用レンズが位置するときに第2の光路を進むレーザ光を光検出器に対して遮光し、収差補正用レンズが基準位置から収差補正サーボ位置に変位することにより第2の光路から退避する遮光板とを有する。
請求項1の発明によれば、パワーモニタ用の光検出器が基準位置検出用のセンサとして共用される。よって、別途、光ピックアップ装置に、基準位置検出用のフォトセンサを配する必要がなく、部品点数の増加とそれによるコストの上昇を抑制することができる。また、パワーモニタ用の光検出器は予め精度良く位置決めされて配置されているため、受光部位置に大きな誤差が生じることはない。よって、本発明によれば、単に遮光板を正規の位置に配置するのみで、精度良く、収差補正用レンズの基準位置を検出することができる。
請求項2の発明は、請求項1に記載の光ピックアップ装置において、前記収差補正用レンズは、レーザ光源から出射されたレーザ光を平行光に変換するコリメートレンズであることを特徴とする。
この発明によれば、コリメートレンズが収差補正用レンズとして共用されるため、部品点数の増加とそれによるコストの上昇を抑制することができる。
請求項3の発明は、請求項1または2に記載の光ピックアップ装置において、前記第1の光路に配され、且つ、レーザ光の進行方向を前記第1の光路と前記第2の光路を含む面内において変更するミラーをさらに備え、前記収差補正用レンズは、該ミラーにて反射された後の第1の光路に配され、該ミラーによって反射されたレーザ光の進行方向は、基準位置に収差補正用レンズが位置するときに遮光板が第2の光路を進むレーザ光を光検出器に対して遮光するよう、第2の光路におけるレーザ光の進行方向に対して所定角度だけ傾いていることを特徴とする。
BD等の次世代DVDに用いる光ピックアップ装置では、性能向上のために、レーザ光源からコリメートレンズまでの光路長が大きく設定される。ここで、この光路を直線状にすると、この光路方向における光ピックアップ装置の寸法が大きくなる。このため、この場合には、ミラーを用いてこの光路を屈曲させる措置が取られる。ここで、屈曲後の光路に収差補正用レンズが配置される場合、屈曲後の光路とパワーモニタ用の光検出器に向かうレーザ光の光路が平行であると、収差補正用レンズの駆動に伴って遮光板が変位しても、その変位方向はパワーモニタ用の光検出器に向かうレーザ光の光路と平行となるため、光検出器に向かうレーザ光を遮光板によって遮光することができない。
請求項3の発明によれば、ミラーによって反射されたレーザ光の進行方向が、第2の光路(パワーモニタ用の光検出器に向かうレーザ光の光路)におけるレーザ光の進行方向に対して所定角度だけ傾くよう設定されるため、基準位置に収差補正用レンズが位置するときに遮光板が第2の光路を進むレーザ光を光検出器に対して遮光することができる。
請求項4の発明は、請求項1ないし3の何れか一項に記載の光ピックアップ装置において、前記光検出器は、遮光板の変位方向に2つの受光領域に分割されていることを特徴とする。
この発明によれば、パワーモニタ用の光検出器に温度による出力レベルの変動が生じても、収差補正用レンズの基準位置を精度良く検出することができる。なお、これについては、以下の実施の形態の項において、図4を参照して説明する。
請求項5の発明は、光ディスク装置に関する。この光ディスク装置は、請求項4に記載の光ピックアップ装置を備え、さらに、収差補正用レンズの基準位置を検出する基準位置検出回路を有している。ここで、基準位置検出回路は、光検出器の2つの受光領域から出力される検出信号の差分を演算する演算回路と、演算回路から出力される信号のピークを検出するピーク検出回路とを有している。
この発明は、請求項4における効果を実現するための回路構成を特定するものである。すなわち、この回路構成を用いることによって、請求項4における効果、すなわち、パワーモニタ用の光検出器に温度による出力レベルの変動が生じても、収差補正用レンズの基準位置を精度良く検出できるとの効果を達成することができる。
請求項6の発明は、請求項5に記載の光ディスク装置において、レーザ光源を駆動するレーザ駆動回路と、前記光検出器から出力される信号に基づいてレーザ光源の出力を一定とするための信号を出力するパワー調整回路と、一定レベルのレーザ駆動信号を出力する定駆動回路と、パワー調整回路からの信号と定駆動回路からの信号の何れかをレーザ駆動回路に供給する選択回路とを備え、選択回路は、基準位置の検出動作時には、定駆動回路からの信号を選択回路に供給することを特徴とする。
本発明によれば、基準位置の検出動作時には、定駆動回路からの信号がレーザ駆動回路に供給されるため、パワーモニタ用の光検出器に照射されるレーザ光が遮光板によって遮光されることによりレーザ光源の出力が増大する方向に制御されるとの不都合を回避することができる。
本発明の特徴ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下の実施の形態は、あくまでも、本発明を実現するための一つの例示であって、本発明ないし各構成要件の用語の意義は、以下の実施の形態に記載されたものに制限されるものではない。
以上述べた如く、本発明によれば、収差補正用レンズの基準位置を円滑かつ精度良く検出できる光ピックアップ装置および光ディスク装置を提供することができる。
以下、本発明に係る実施の形態について説明する。なお、本実施の形態は、基板厚0.1mmのBD(ブルーレイディスク)に対してデータを記録再生する光ディスク装置およびその光ピックアップ装置に本発明を適用したものである。
図1に、実施の形態に係る光ピックアップ装置の構成を示す。なお、図1には、対物レンズ108を駆動する対物レンズアクチュエータが図示省略されている。また、同図では、便宜上、反射ミラー106によって対物レンズ108方向に反射された後のレーザ光がY軸方向に進むよう図示されているが、実際は、このレーザ光は、同図のZ軸方向に進む。すなわち、ミラー106は、コリメートレンズ105側からのレーザ光を同図のZ軸方向に反射し、1/4板107と対物レンズ108は、同図のZ軸方向に並ぶよう配置されている。
図示の如く、光ピックアップ装置は、半導体レーザ101と、λ/2板付き回折格子102と、偏光ビームスプリッタ103と、パワーモニタ用光検出器(以下、「FMD」という)104と、コリメートレンズ105と、立ち上げミラー106と、λ/4板107と、対物レンズ108と、アナモレンズ109と、光検出器110と、レンズアクチュエータ200を備えている。
半導体レーザ101は、波長405nm程度のレーザ光を出射する。λ/2板付き回折格子102は、半導体レーザ101からのレーザ光を3ビームに分割するとともに、レーザ光の偏光方向を変化させる。λ/2板付き回折格子102を光軸を軸として回転させることによって、偏光ビームスプリッタ103に入射する際のレーザ光の偏光方向が回転する。λ/2板付き回折格子102の回転位置は、所定光量のレーザ光が偏光ビームスプリッタ103によってFMD104方向に反射される位置に調整される。
偏光ビームスプリッタ103は、λ/2板付き回折格子102側から入射されるレーザ光を、その偏光方向に応じた比率で透過および反射するとともに、コリメートレンズ105側から入射されるレーザ光を同様の比率で反射および透過する。FMD104は、偏光ビームスプリッタ103によって反射されたレーザ光を受光し、受光量に応じて信号を出力する。
コリメートレンズ105は、偏光ビームスプリッタ103側から入射されるレーザ光を平行光に変換する。ここで、コリメートレンズ105は、レンズアクチュエータ200の可動部202に装着されており、可動部202の移動に伴って、光軸方向に移動する。コリメートレンズ105が予め決められた中立位置にあるとき、偏光ビームスプリッタ103側から入射されるレーザ光は平行光に変換される。この中立位置から、コリメートレンズ105を光軸方向に変位させることにより、レーザ光は、平行光から拡散または収束する。これにより、対物レンズ108に入射する際のレーザ光の共役が変化し、その結果、ディスク記録層上におけるレーザ光の波面収差が補正される。
立ち上げミラー106は、コリメートレンズ105側から入射されるレーザ光を対物レンズ108に向かう方向に反射する。λ/4板107は、ディスクへと向かうレーザ光を円偏光に変換するとともに、ディスクからの反射光をディスク入射時の偏光方向に直交する直線偏光に変換する。なお、λ/4板107は、対物レンズ108を保持するホルダ(図示せず)に装着しても良い。
対物レンズ108は、レーザ光をディスク(BD)記録面上に適正に収束できるよう設計されている。アナモレンズ109は、ディスクからの反射光に非点収差を導入する。光検出器110は、受光したレーザ光の強度分布から再生RF信号、フォーカスエラー信号およびトラッキングエラー信号を導出するためのセンサーパターンを有している。
レンズアクチュエータ200は、ベース201と、可動部202と、リードスクリュー機構203と、ステッピングモータ204と、遮光板205を備えている。リードスクリュー機構203は、ベース201の壁部201a、202bに装着され、ステッピングモータ204によって駆動される。また、リードスクリュー機構203のスクリュー部は、可動部202側のギア部に噛合している。したがって、リードスクリュー機構203がステッピングモータ204によって駆動されると、これに伴って、可動部202が、リードスクリュー部の長手方向に変位する。なお、ステッピングモータ204の1ステップ駆動当たりの可動部202の変位量は一定である。
可動部202には、遮光板205が装着されている。この遮光板205は、コリメートレンズ105が基準位置(コリメートレンズ105を中立位置に移動させる際の基準となる位置)にあるときには、偏光ビームスプリッタ103を経由してFMD104の受光部(センサ)に照射されるレーザ光の半分を当該受光部(センサ)に対して遮光し、コリメートレンズ105が中立位置および収差補正サーボ時に中立位置から変位される一定の変位範囲にあるときには、偏光ビームスプリッタ103からFMD104に向かうレーザ光をFMD104の受光部(センサ)に対して遮光しないよう形成および配置されている。
ここで、コリメートレンズ105は、基準位置から予め決められたステップ数だけステッピングモータ204が駆動されることにより、中立位置に位置づけられる。したがって、ここでは、コリメートレンズ105の基準位置を精度良く検出する必要がある。
本実施の形態において、かかる基準位置の検出は、偏光ビームスプリッタ103からFMD104に向かうレーザ光を遮光板205が遮光しない位置から遮光する方向へと移動するようレンズアクチュエータ200を駆動し、その際にFMD104から出力される信号を参照することにより行われる。なお、これについては、追って、図3および図4を参照して説明する。
図2は、実施の形態に係る光ディスク装置の回路構成を示す図である。なお、同図には、便宜上、コリメートレンズ105の駆動制御に関連する回路のみが図示され、これら以外の記録系および再生系の回路構成は図示省略されている。
図において、信号増幅回路10は、FMD104および光検出器110から出力される信号を演算および増幅して再生RF信号、フォーカスエラー信号およびトラッキングエラー信号等の各種信号を生成し、これら信号を対応する回路に出力する。マイクロコンピュータ11は、信号増幅回路10から入力されるFMD信号(FMD104からの信号)をAPC(Auto Power Control)回路13および位置検出回路15に供給するとともに、ACC(Auto Current Control)回路12およびAPC回路13から入力される信号のうち何れかをレーザ駆動回路14に出力する。
ACC回路12は、一定レベルの駆動電流をマイクロコンピュータ11に出力する。APC回路13は、信号増幅回路10から入力されたFMD信号と、記録/再生レーザパワーの設定値に応じた基準信号レベルとを比較し、入力されたFMD信号が基準信号レベルに追従することとなるような駆動電流をマイクロコンピュータ11に出力する。レーザ駆動回路14は、ACC回路12およびAPC回路13から出力される駆動電流のうち、マイクロコンピュータ11によって選択された駆動電流に基づいて、光ピックアップ装置内の半導体レーザ101を駆動する。
位置検出回路15は、マイクロコンピュータ11経由で入力されたFMD信号に基づいて、コリメートレンズ105の基準位置を検出し、検出信号をサーボ回路16に出力する。なお、位置検出回路15の構成および基準位置の検出方法については、追って、図3および図4を参照して説明する。
サーボ回路16は、コリメートレンズ105の基準位置検出時に、上記の如く、遮光板205が、偏光ビームスプリッタ103からFMD104に向かうレーザ光を遮光しない位置から遮光する方向に移動するよう、レンズアクチュエータ200を駆動する。このとき、サーボ回路16は、位置検出回路15から検出信号が入力されたタイミングにおけるステッピングモータ204の駆動位置を、コリメートレンズ105の基準位置として設定する。さらに、サーボ回路16は、コリメートレンズ105がこの基準位置から図1(b)の矢印方向に予め決められたステップ数だけ移動するようステッピングモータ204を駆動し、これにより、コリメートレンズ105を中立位置に位置づける。そして、記録/再生動作時には、信号増幅回路10から入力される再生RF信号を随時モニタし、再生RF信号の品質が最良となるよう、この中立位置からコリメートレンズ105を光軸方向に変位させる。
また、サーボ回路16は、信号増幅回路10から入力されるフォーカスエラー信号およびトラッキングエラー信号に基づいて、対物レンズアクチュエータを駆動し、対物レンズ108をフォーカス方向およびトラッキング方向に変位させる。この他、サーボ回路16は、ディスク駆動用のスピンドルモータを駆動制御し、さらに、光ピックアップ装置をディスク上の記録/再生対象位置(ターゲット位置)にアクセスさせる。
図3および図4は、それぞれ、コリメートレンズ105の基準位置の検出方法と、位置検出回路15の構成例を示す図である。なお、図3は、FMD104の受光部を円形のセンサ104aにて構成した場合を示し、図4は、FMD104の受光部を、遮光板205の進行方向に2分割された半円形のセンサ104b、104cにて構成した場合を示している。以下、これらの図面を参照して、コリメートレンズ105の基準位置の検出方法とその構成例について説明する。
まず、図3における検出方法と構成例について説明する。図において、遮光板205が同図(a)に示す状態から矢印方向に移動し、遮光板205の先端部が、順次、A、B、Cの位置に達すると、センサ104aの出力は、同図(b)に示すように変化する。この場合、センサ出力が同図のIthとなる位置、すなわち、遮光板205がセンサ104aの半分を遮光するときの位置がコリメートレンズ105の基準位置に設定される。このとき、上述の位置検出回路15は、同図(c)に示す如く構成され得る。この構成例では、センサ104aからの信号が、レベル比較回路15aによって、閾値レベルIthと比較される。そして、センサ104aからの信号が閾値レベルIthに一致したときに、コリメートレンズ105が基準位置に到達したとされ、そのタイミングにて、基準位置の検出信号が、レベル比較回路15aから図2に示すサーボ回路16に出力される。
これに対し、図4における構成例では、遮光板205が同図(a)に示す状態から矢印方向に移動し、遮光板205の先端部が、順次、A、B、Cの位置に達すると、センサ104bおよびセンサ104cの出力は、それぞれ、同図(b)に示すように変化する。なお、同図(b)には、センサ104bからの信号を一点鎖線(センサb)で示し、センサ104cからの信号を破線(センサc)で示している。また、センサ104cの信号からセンサ104bの信号を減算した信号を実線(演算値)で示している。
この場合、センサ104cの信号からセンサ104bの信号を減算した信号(演算値)がピークとなる位置、すなわち、遮光板205がセンサ104bのみを完全に遮光するときの位置がコリメートレンズ105の基準位置に設定される。このとき、位置検出回路15は、同図(c)に示す構成とされ得る。この構成例では、センサ104bとセンサ104cからの信号が減算回路15bによって減算され、その減算結果がピーク検出回路15cに入力される。そして、減算回路15bからがピークとなったときに、コリメートレンズ105が基準位置に到達したとされ、そのタイミングにて、基準位置の検出信号が、ピーク検出回路15cから図2に示すサーボ回路16に出力される。
なお、図3に示すように、センサ104aからの信号と閾値レベルIthを比較して基準位置を検出する場合には、センサ104aに温度による出力レベルの変動が生じると、センサ出力が閾値レベルIthに一致するときの遮光板205の位置が、同図(b)の“B”の位置から“A”または“C”の方向にずれることとなり、その結果、コリメートレンズ105の基準位置を誤検出するとの問題が起こり得る。
これに対し、図4の構成例の場合には、センサ104bおよび104cに温度による出力レベルの変動が生じても、センサ104cの信号からセンサ104bの信号を減算した信号(演算値)のピーク位置は、同図(b)の“B”の位置からずれることはない。よって、図4の構成の場合には、コリメートレンズ105の基準位置を精度良く検出することができる。
次に、図5を参照して、実施の形態に係る光ディスク装置の動作フローを説明する。
光ディスク装置にディスクが装着されると、光ピックアップ装置の半導体レーザ101に対しACC回路12から一定電流が供給され、半導体レーザ101から一定パワーのレーザ光が出射される(S101)。次に、遮光板205が図3(a)または図4(a)に示す位置から同図の矢印方向に変位するよう、ステッピングモータ204がサーボ回路16によって駆動される(S102)。このとき、上記図3および図4を参照して説明した如くして、位置検出回路15によってコリメートレンズ105の基準位置が検出される(S103)。そして、基準位置が検出されると(S103:YES)、サーボ回路16によって、当該基準位置から図1(b)の矢印方向に予め決められたステップ数だけコリメートレンズ105が移動され、これにより、コリメートレンズ105が中立位置に位置づけられる(S104)。
しかる後、半導体レーザ101が消灯され、光ディスク装置は、ユーザから記録/再生指令が入力されるまで、待機モードに設定させる(S105、S106)。そして、ユーザから記録/再生指令が入力されると(S106:YES)、マイクロコンピュータ11の設定が、APC回路13からの信号がレーザ駆動回路14に供給される状態に設定された後(S107)、光ピックアップ装置が、記録/再生対象とされる位置(ターゲット位置)に送られる(S108)。そして、フォーカスサーボ、トラッキングサーボおよび収差補正サーボ等の各種サーボがONされた後(S109)、当該ディスクに対する記録/再生動作が実行される(S110、S111)。このとき、コリメートレンズ105は、サーボ回路16によって、再生RF信号の品質が最良となるよう、中立位置から光軸方向に変位される。
その後、当該記録/再生動作を終了する旨の指令がユーザから入力されると(S111:YES)、この指令が、ディスク排出指令に基づくものかが判別される(S112)。ここで、この指令がディスク排出指令に基づくものでなければ(S112:NO)、サーボ回路16によってコリメートレンズ105が中立位置に移動された後、S105に戻り、光ディスク装置は待機モードに設定される。一方、記録/再生動作の終了がディスク排出指令に基づくものであれば(S112:YES)、ディスク排出処理が行われた後、当該ディスクに対する動作が終了される。
以上、本実施の形態によれば、FMD104がコリメートレンズ105の基準位置を検出するためのセンサとして共用されるため、別途、光ピックアップ装置に、基準位置検出用のセンサ等を配する必要がなく、部品点数の増加とそれによるコストの上昇を抑制することができる。また、FMD104は、予め精度良く位置決めされて光学系に配置されるため、FMD104配置後の受光部位置と正規の受光部位置との間に大きな誤差が生じることはない。よって、本実施の形態によれば、遮光板205を正規の位置に配置するのみで、精度良く、コリメートレンズ105の基準位置を検出することができる。また、本実施の形態では、コリメートレンズ105が収差補正用レンズとして共用されるため、部品点数の増加とそれによるコストの上昇を抑制することができる。
なお、コリメートレンズ105の基準位置を検出するための構成として図4の構成を採用する場合には、図3および図4の構成を対比して説明した如く、FMD104の受光部を構成するセンサに温度による出力レベルの変動が生じても、コリメートレンズ105の基準位置を精度良く検出することができる。
さらに、本実施の形態によれば、基準位置の検出動作時には、レーザ駆動回路14に供給される信号が、APC回路13からの信号ではなく、ACC回路12からの信号に設定されるため、基準位置検出動作時にFMD104に照射されるレーザ光が遮光板205によって遮光されることにより半導体レーザ101の出力が増大する方向に制御されるとの不都合を回避することができる。
なお、本発明は、上記実施の形態に限定されるものではなく、また、本発明の実施形態も上記の他、種々の変更が可能である。
たとえば、上記実施の形態では、図1に示す如く、半導体レーザ101から立ち上げミラー106までの間の光路を曲げることなく、レーザ光を直線状の光路に沿って直進させるようにしたが、たとえば、偏光ビームスプリッタ103とコリメートレンズ105の間にミラーを配置し、これにより、レーザ光の光路を曲げるようにしても良い。
すなわち、BD等の次世代DVDに用いる光ピックアップ装置では、性能向上のために、一般に、半導体レーザ101からコリメートレンズ105までの光路長が大きく設定される。この場合、この光路を直線状に構成すると、この光路方向における光ピックアップ装置の寸法が大きくなってしまう。このため、この種の光ピックアップ装置で、ミラーを用いてこの光路を屈曲させる構成とする場合がある。
ここで、この構成をとる場合には、通常、ミラーによって屈曲された後の光路にコリメートレンズ105が配置される。ここで、屈曲後の光路と、偏光ビームスプリッタ103からFMD104に向かうレーザ光の光路が平行であると、このレーザ光の光路方向とコリメートレンズ105の駆動方向が平行となってしまう。こうなると、コリメートレンズ105の駆動に伴って遮光板205が変位しても、その変位方向はFMD104に向かうレーザ光の光路と平行となるため、最早、FMD104に向かうレーザ光を遮光板205によって遮光することはできなくなる。これを避けるために、屈曲後の光路は、FMD104に向かうレーザ光の光路に対し、所定角度だけ傾ける必要がある。
図6は、この場合の構成例を示す図である。同図(a)は、光ピックアップ装置の光学系の上面図、同図(b)は、立ち上げミラー106から対物レンズ108までの光学系部分を示す図である。なお、図において、図1と同一要素には同一符号が付されている。また、同図(a)には、コリメートレンズ105を駆動するレンズアクチュエータ200の構成が図示省略されている。
なお、この構成例は、BD/DVD/CD用の互換型光ピックアップ装置に本発明を適用したものである。ただし、本発明に係る収差補正手段は、BD用光学系のみに適用されている。このため、便宜上、CD用光学系とDVD用光学系は、図中、破線で示され、以下では、これら光学系に関する説明は割愛する。なお、CD用光学系とDVD用光学系にも、本発明に係る収差補正手段を適宜適用可能である。
この構成例では、図1に示す構成に比べ、偏光ビームスプリッタ103とコリメートレンズ105の間にミラー120が配置され、このミラー120によって、レーザ光の光路が、同図のX−Y平面に平行な方向に曲げられている。ここで、偏光ビームスプリッタ103からミラー120に入射する際のレーザ光の光軸と、ミラー120によって反射された後のレーザ光の光軸との間の角度は、105度程度に設定されている。
図7は、図6の構成例におけるレンズアクチュエータ200の配置例を示す図である。同図(a)はコリメートレンズ105が基準位置に位置するときの図、同図(b)はコリメートレンズ105が収差補正動作時の位置に位置するときの図である。なお、図において、図1と同一要素には同一符号が付されている。
図示の如く、遮光板205は、上記図1の場合と同様、コリメートレンズ105が基準位置にあるとき(同図(a)参照)には、偏光ビームスプリッタ103を経由してFMD104の受光部(センサ)に照射されるレーザ光の半分をFMD104の受光部(センサ)に対して遮光し、コリメートレンズ105が中立位置および収差補正サーボ時に中立位置から変位される一定の変位範囲にあるとき(同図(b)参照)には、偏光ビームスプリッタ103からFMD104に向かうレーザ光をFMD104の受光部(センサ)に対して遮光しないよう形成および配置されている。
この構成例においても、上記図1の構成例の場合と同様にして、コリメートレンズ105の基準位置が検出される。よって、上記図1の構成例の場合と同様の効果が奏される。
この他、上記実施の形態では、コリメートレンズ105の基準位置を検出する際、遮光板205がレーザ光を遮光しない位置から遮光する位置に向かうよう、コリメートレンズ105を駆動するようにしたが、これに代えて、遮光板205がFMD104の受光部(センサ)に対してレーザ光を完全に遮光する位置から遮光しない位置に向かうよう、コリメートレンズ105を駆動するようにしても良い。この場合、遮光板205は、その先端部が図3(a)および図4(a)における“C”の位置から、順次“B”、“A”の位置へと到達するよう移動される。このときのセンサ出力は、図3(b)および図4(b)と同様である。よって、位置検出回路15の構成も、図3(c)および図4(c)のままとされる。
また、上記実施の形態では、コリメートレンズ105を収差補正用レンズとして共用するようにしたが、コリメートレンズ105とは別に収差補正用レンズを配置するようにすることもできる。ただし、この場合には、上記実施の形態に比べ、部品点数が増加し、また、コストも上昇する。
この他、上記実施の形態では、特に、BD用の光ピックアップ装置およびそれを内蔵する光ディスク装置を例示したが、たとえばHDDVD等の他のディスクに対応する光ピックアップ装置および光ディスク装置に本発明を適用することも可能である。
本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
実施の形態に係る光ピックアップ装置の構成を示す図 実施の形態に係る光ディスク装置の回路構成を示す図 実施の形態に係るコリメートレンズの基準位置を検出する方法を示す図 実施の形態に係るコリメートレンズの基準位置を検出する方法を示す図 実施の形態に係る光ディスク装置の動作フローを示す図 実施の形態に係る光ピックアップ装置の変更例を示す図 実施の形態に係る光ピックアップ装置の変更例を示す図
符号の説明
101 半導体レーザ(レーザ光源)
103 偏光ビームスプリッタ(ビームスプリッタ)
104 FMD(パワーモニタ用光検出器)
105 コリメートレンズ(収差補正用レンズ)
108 対物レンズ
120 ミラー
200 レンズアクチュエータ
205 遮光板
11 マイクロコンピュータ(選択回路)
12 ACC回路(定駆動回路)
13 APC回路(パワー調整回路)
14 レーザ駆動回路
15 位置検出回路(基準位置検出回路)
16 サーボ回路

Claims (6)

  1. レーザ光源と、
    前記レーザ光源から出射されたレーザ光を記録媒体上に収束させる対物レンズと、
    前記レーザ光源と前記対物レンズとの間に配され、且つ、レンズアクチュエータによって前記レーザ光の光軸方向に変位可能に支持された収差補正用レンズと、
    前記レーザ光源から出射されたレーザ光を受光するパワーモニタ用の光検出器と、
    前記レーザ光源から出射されたレーザ光を前記対物レンズに向かう第1の光路と、前記光検出器に向かう第2の光路に分割するビームスプリッタと、
    前記収差補正用レンズと一体的に配され、且つ、前記収差補正用レンズを収差補正サーボ位置に位置づけるための基準位置に前記収差補正用レンズが位置するときに前記第2の光路を進むレーザ光を前記光検出器に対して遮光し、前記収差補正用レンズが前記基準位置から前記収差補正サーボ位置に変位することにより前記第2の光路から退避する遮光板と、
    を有することを特徴とする光ピックアップ装置。
  2. 請求項1に記載の光ピックアップ装置において、
    前記収差補正用レンズは、前記レーザ光源から出射されたレーザ光を平行光に変換するコリメートレンズである、
    ことを特徴とする光ピックアップ装置。
  3. 請求項1または2に記載の光ピックアップ装置において、
    前記第1の光路に配され、且つ、前記レーザ光の進行方向を前記第1の光路と前記第2の光路を含む面内において変更するミラーをさらに備え、
    前記収差補正用レンズは、該ミラーにて反射された後の前記第1の光路に配され、
    該ミラーによって反射されたレーザ光の進行方向は、前記基準位置に前記収差補正用レンズが位置するときに前記遮光板が前記第2の光路を進むレーザ光を前記光検出器に対して遮光するよう、前記第2の光路におけるレーザ光の進行方向に対して所定角度だけ傾いている、
    ことを特徴とする光ピックアップ装置。
  4. 請求項1ないし3の何れか一項に記載の光ピックアップ装置において、
    前記光検出器は、前記遮光板の変位方向に2つの受光領域に分割されている、
    ことを特徴とする光ピックアップ装置。
  5. 請求項4に記載の光ピックアップ装置を備える光ディスク装置であって、
    前記収差補正用レンズの基準位置を検出する基準位置検出回路を有し、
    該基準位置検出回路は、
    前記2つの受光領域から出力される検出信号の差分を演算する演算回路と、
    前記演算回路から出力される信号のピークを検出するピーク検出回路とを有する、
    ことを特徴とする光ディスク装置。
  6. 請求項5に記載の光ディスク装置において、
    前記レーザ光源を駆動するレーザ駆動回路と、
    前記光検出器から出力される信号に基づいて前記レーザ光源の出力を一定とするための信号を出力するパワー調整回路と、
    一定レベルのレーザ駆動信号を出力する定駆動回路と、
    前記パワー調整回路からの信号と前記定駆動回路からの信号の何れかを前記レーザ駆動回路に供給する選択回路とを備え、
    前記選択回路は、前記基準位置の検出動作時には、前記定駆動回路からの信号を前記選択回路に供給する、
    ことを特徴とする光ディスク装置。
JP2006302016A 2006-11-07 2006-11-07 光ピックアップ装置および光ディスク装置 Pending JP2008117499A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302016A JP2008117499A (ja) 2006-11-07 2006-11-07 光ピックアップ装置および光ディスク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302016A JP2008117499A (ja) 2006-11-07 2006-11-07 光ピックアップ装置および光ディスク装置

Publications (1)

Publication Number Publication Date
JP2008117499A true JP2008117499A (ja) 2008-05-22

Family

ID=39503285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302016A Pending JP2008117499A (ja) 2006-11-07 2006-11-07 光ピックアップ装置および光ディスク装置

Country Status (1)

Country Link
JP (1) JP2008117499A (ja)

Similar Documents

Publication Publication Date Title
US7260032B2 (en) Focal point adjusting method, and optical pickup device
JP2011096329A (ja) 光ピックアップ装置
JP2006155839A (ja) 光ピックアップの駆動装置、光学部品及び物体の駆動機構
US7643395B2 (en) Diffraction element and optical pick-up apparatus having the same
US20080181088A1 (en) Optical disc apparatus
WO2007069612A1 (ja) 光ヘッドおよび光情報装置
US8000187B2 (en) Optical disc device
US8081556B2 (en) Optical pickup apparatus
US8024749B2 (en) Optical pickup and optical disc apparatus with improved slide base
JP2008117499A (ja) 光ピックアップ装置および光ディスク装置
JP2008103037A (ja) 光ピックアップ装置及びそれを備える光ディスク装置
US20060023609A1 (en) Optical pickup apparatus, optical recording and reproducing apparatus and optical recording and reproducing method
US8675460B2 (en) Optical disc device
JP4650550B2 (ja) 光ピックアップ装置
JP2009116937A (ja) ピックアップ装置等
JP2007080442A (ja) 光ピックアップおよび光ディスク装置
JP2005100481A (ja) 光ディスク装置
JP2008123605A (ja) 光ピックアップ装置
US8300514B2 (en) Optical pickup device
JP2008293601A (ja) 光ピックアップ装置
JP4956325B2 (ja) 光ピックアップ
KR100646433B1 (ko) 광픽업장치
JP4989305B2 (ja) 光ピックアップ
JP2006155716A (ja) 光ディスク装置及び光ディスクのチルト補正方法
JP2012178201A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302