JP2008113055A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2008113055A
JP2008113055A JP2008024605A JP2008024605A JP2008113055A JP 2008113055 A JP2008113055 A JP 2008113055A JP 2008024605 A JP2008024605 A JP 2008024605A JP 2008024605 A JP2008024605 A JP 2008024605A JP 2008113055 A JP2008113055 A JP 2008113055A
Authority
JP
Japan
Prior art keywords
anode
electrolytic capacitor
solid electrolytic
cathode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008024605A
Other languages
Japanese (ja)
Inventor
Naoki Anzai
直樹 安西
Shiyougo Aizawa
昭▲ご▼ 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008024605A priority Critical patent/JP2008113055A/en
Publication of JP2008113055A publication Critical patent/JP2008113055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor in which equivalent series resistance (ESR) can be further reduced compared with conventional methods, and which has good workability and also has good precision at the time of soldering. <P>SOLUTION: The solid electrolytic capacitor is provided with an anode foil having an anode leading-out means, a cathode foil having a cathode leading-out means, and a conducting polymer as a solid electrolyte, wherein at least a part of the anode leading-out means and the cathode leading-out means is composed of a copper wire having an iron core with copper content ratio of 70% or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解コンデンサに係り、特に、固体電解コンデンサの等価直列抵抗(以下、ESRと記す)を低減させると共に、加工性を向上させるべく改良を施した固体電解コンデンサに関するものである。   The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor that has been improved to reduce the equivalent series resistance (hereinafter referred to as ESR) of the solid electrolytic capacitor and improve workability.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔に、鉄を芯材とし銅メッキや錫メッキを施したリード線からなる電極外部接続部とアルミニウムからなる電極箔接続部から構成される電極引き出し手段を接続し、両電極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, for small and large-capacity applications, the anode foil and the cathode foil made of a valve metal such as aluminum are generally made of lead wires made of iron as a core and plated with copper or tin. An electrode lead means comprising an electrode external connection portion and an electrode foil connection portion made of aluminum is connected, and both electrode foils are wound with a separator interposed therebetween to form a capacitor element, and a driving electrolyte is applied to the capacitor element. It is impregnated and has a sealed structure in which a capacitor element is housed in a case made of metal such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(例えば特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (for example, refer to Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

ところで、上記のようなPEDT等の導電性ポリマーを用いた固体電解コンデンサは、固体電解質のインピーダンスが低く、したがって、コンデンサとしてのインピーダンスも低くなり、その分、大リップル電流の要求に答えることができるが、このような大リップル電流を流すと、リード線の発熱が大きくなり、場合によっては、発熱によってリード線が断線するという問題点があった。   By the way, a solid electrolytic capacitor using a conductive polymer such as PEDT as described above has a low impedance of the solid electrolyte, and hence a low impedance as a capacitor, and can meet the demand for a large ripple current accordingly. However, when such a large ripple current is passed, heat generation of the lead wire increases, and in some cases, the lead wire is disconnected due to heat generation.

そこで、本出願人は、さらにインピーダンスが低く、リップル電流が大きくなっても特性の低下しない固体電解コンデンサを提供すべく、陽極引き出し手段と陰極引き出し手段に銅または銅合金を主体とする部材を用いることを提案した。(例えば特許文献2参照)
特開平2−15611号公報 特開2001−44078号
Therefore, the present applicant uses a member mainly composed of copper or a copper alloy in the anode lead-out means and the cathode lead-out means in order to provide a solid electrolytic capacitor having lower impedance and no deterioration in characteristics even when the ripple current is increased. Proposed that. (For example, see Patent Document 2)
JP-A-2-15611 JP 2001-44078 A

しかしながら、上記の発明に従って陽極引き出し手段と陰極引き出し手段に銅または銅合金を主体とする部材を用いた場合に、固体電解コンデンサの製造工程中において、コンデンサ素子をリードフレームに付けて搬送する際に、コンデンサ素子に力が加わると、陽極引き出し手段や陰極引き出し手段が曲がって、次の工程で位置づれを起こす場合があった。   However, when a member mainly composed of copper or a copper alloy is used for the anode lead-out means and the cathode lead-out means in accordance with the above-described invention, when the capacitor element is attached to the lead frame and transported during the manufacturing process of the solid electrolytic capacitor When a force is applied to the capacitor element, the anode pulling means and the cathode pulling means are bent to cause positioning in the next step.

また、表面実装用として用いる場合、陽極引き出し手段や陰極引き出し手段に力が加わると、リード線がずれて寸法精度が悪くなり、さらに、リフロー時にリード線に力が加わると、リード線がずれて、基板の回路への接続がうまくいかない場合があった。   Also, when used for surface mounting, if a force is applied to the anode lead means or the cathode lead means, the lead wire is displaced and the dimensional accuracy is deteriorated. Further, if a force is applied to the lead wire during reflow, the lead wire is displaced. In some cases, connection to the circuit of the board did not work.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、ESRをさらに低減させることができ、加工性の良好な固体電解コンデンサを提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and an object thereof is to provide a solid electrolytic capacitor that can further reduce ESR and has good workability. It is in.

本発明者等は、上記課題を解決すべく、陽極引き出し手段や陰極引き出し手段を構成する部材の硬さを適切なものとしつつ、ESRを従来よりもさらに低減させることができ、加工性の良好な固体電解コンデンサを得るべく鋭意検討を重ねた。その結果、陽極引き出し手段や陰極引き出し手段として銅の含有率が70%以上の鉄芯を有する銅線を用いることによって、ESRを増大させずに、加工性が良好で、半田実装時の精度も良好な固体電解コンデンサを得ることができることが分かった。   In order to solve the above-mentioned problems, the present inventors have made it possible to further reduce ESR as compared with the prior art while making the hardness of the members constituting the anode lead-out means and the cathode lead-out means appropriate, and good workability Eagerly studied to obtain a solid electrolytic capacitor. As a result, by using a copper wire having an iron core with a copper content of 70% or more as an anode extraction means or a cathode extraction means, workability is good without increasing ESR, and accuracy during solder mounting is also achieved. It was found that a good solid electrolytic capacitor can be obtained.

(電極引き出し手段)
通常、電極引き出し手段は、図1に示すように構成されている。すなわち、アルミニウム等の弁作用金属からなり表面に酸化皮膜層が形成された陽極箔1と、陰極箔2とを、セパレータ3を介して巻回してコンデンサ素子4を形成する。そして、このコンデンサ素子4に3,4−エチレンジオキシチオフェン等の重合性モノマーと酸化剤溶液とを含浸し、コンデンサ素子4中での化学重合反応により生成したPEDT等の導電性ポリマーを固体電解質層としてセパレータ3で保持している。
(Electrode extraction means)
Usually, the electrode lead means is configured as shown in FIG. That is, the capacitor element 4 is formed by winding the anode foil 1 made of a valve action metal such as aluminum and having the oxide film layer formed on the surface thereof, and the cathode foil 2 through the separator 3. Then, this capacitor element 4 is impregnated with a polymerizable monomer such as 3,4-ethylenedioxythiophene and an oxidizing agent solution, and a conductive polymer such as PEDT produced by a chemical polymerization reaction in the capacitor element 4 is solid electrolyte. It is held by the separator 3 as a layer.

また、陽極箔1及び陰極箔2にはそれぞれの電極を外部に接続するための陽極引き出し手段20、陰極引き出し手段10が、ステッチ、超音波溶接等の公知の手段により接続されている。この陽極引き出し手段20は、陽極箔と接続される陽極箔接続部21と、外部との電気的な接続を担う陽極外部接続部(陽極側リード線)22からなり、また、前記陰極引き出し手段10は、陰極箔と接続される陰極箔接続部11と、外部との電気的な接続を担う陰極外部接続部(陰極側リード線)12から構成されている。これらの中で、陰極外部接続部22、陽極外部接続部12が銅の含有率が70%以上の鉄芯を有する銅線であると、アルミニウムからなる電極箔接続部に接合して電極引き出し手段を作成することができ、加工性が良好なので好適である。   Also, anode extraction means 20 and cathode extraction means 10 for connecting the respective electrodes to the outside are connected to anode foil 1 and cathode foil 2 by known means such as stitching or ultrasonic welding. The anode lead-out means 20 includes an anode foil connection portion 21 connected to the anode foil and an anode external connection portion (anode-side lead wire) 22 responsible for electrical connection with the outside. Is composed of a cathode foil connecting portion 11 connected to the cathode foil and a cathode external connecting portion (cathode side lead wire) 12 responsible for electrical connection with the outside. Among these, when the cathode external connection portion 22 and the anode external connection portion 12 are copper wires having an iron core with a copper content of 70% or more, the electrode lead-out means is bonded to the electrode foil connection portion made of aluminum. It is preferable because it can be made and the workability is good.

また、本発明に用いられる鉄芯を有する銅線における銅の含有率は70%以上が好ましく、より好ましくは90%以上である。この範囲未満では銅線の抵抗が大きくなって、ESRが上昇する。また、本発明に用いられる鉄芯を有する銅線としては、鉄芯の周囲に環状の銅を接合したものや、鋼線に銅メッキを施したものを用いることができる。   Moreover, 70% or more of the content rate of the copper in the copper wire which has an iron core used for this invention is preferable, More preferably, it is 90% or more. Below this range, the resistance of the copper wire increases and the ESR increases. Moreover, as a copper wire which has an iron core used for this invention, what joined cyclic | annular copper around the iron core, and what gave the copper plating to the steel wire can be used.

ここで、少なくともその一部を銅の含有率が70パーセント以上の鉄芯を有する銅線で構成した本発明に係る陽極引き出し手段や陰極引き出し手段の径は、0.3〜1.1φが好ましく、0.4〜0.65φがより好ましい。この範囲未満ではESRの減少が少なく、この範囲を越えると加工性が悪くなる。さらに、半田付け性を向上させるために、銅の含有率が70%以上の鉄芯を有する銅線を芯材とし、半田メッキ、錫メッキ、鉛メッキ等のメッキを施しても良い。   Here, the diameter of the anode lead-out means or the cathode lead-out means according to the present invention, in which at least part of the copper wire has an iron core with a copper content of 70% or more, is preferably 0.3 to 1.1φ. 0.4 to 0.65φ is more preferable. If it is less than this range, the decrease in ESR is small, and if it exceeds this range, workability deteriorates. Furthermore, in order to improve solderability, a copper wire having an iron core with a copper content of 70% or more may be used as a core material, and plating such as solder plating, tin plating, or lead plating may be performed.

(導電性ポリマー)
本発明に係る固体電解コンデンサにおいては、固体電解質が導電性ポリマーであれば上記の効果が得られるが、特に、導電性ポリマーとしてPEDTを用いた場合には、PEDTのESR特性が低いので、リード線の抵抗分の寄与分が大きくなり、本発明の効果はより大きくなる。
(Conductive polymer)
In the solid electrolytic capacitor according to the present invention, the above-described effect can be obtained if the solid electrolyte is a conductive polymer. In particular, when PEDT is used as the conductive polymer, the ESR characteristic of PEDT is low. The contribution of the resistance of the line is increased, and the effect of the present invention is further increased.

本発明によれば、陽極引き出し手段と陰極引き出し手段の少なくともその一部に、銅の含有率が70%以上の鉄芯を有する銅線を用いることにより、ESRを低減させることができると共に、加工性に優れた固体電解コンデンサを提供することができる。
According to the present invention, ESR can be reduced by using a copper wire having an iron core with a copper content of 70% or more for at least a part of the anode extraction means and the cathode extraction means. It is possible to provide a solid electrolytic capacitor having excellent properties.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。
(実施例1)
表面に酸化皮膜層が形成された陽極箔と陰極箔に、銅の含有率が82%以上である鉄芯を有する銅線からなるリード線を接続し、両電極箔をセパレータを介して巻回して、素子形状が5φ×2.8Lのコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。一方、所定の容器に、EDTとp−トルエンスルホン酸第二鉄の40wt%ブタノール溶液を、その重量比が1:3となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。そして、このコンデンサ素子を120℃の恒温槽内に1時間放置して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。そして、このコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、150℃、120分、8.2Vの電圧印加によってエージングを行い、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は6.3WV、定格容量は120μFである。また、上記電極引き出し手段には錫/鉛メッキを施した。(比較例)リード線として、鉄線を用いた。その他の条件及び工程は実施例1と同様である。
Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.
(Example 1)
A lead wire made of a copper wire having an iron core with a copper content of 82% or more is connected to an anode foil and a cathode foil having an oxide film layer formed on the surface, and both electrode foils are wound through a separator. Thus, a capacitor element having an element shape of 5φ × 2.8 L was formed. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed. On the other hand, a 40 wt% butanol solution of EDT and ferric p-toluenesulfonate is poured into a predetermined container so that the weight ratio is 1: 3, and a mixed solution is prepared. For 10 seconds, the capacitor element was impregnated with EDT and an oxidizing agent. Then, this capacitor element was left in a constant temperature bath at 120 ° C. for 1 hour to cause a polymerization reaction of PEDT in the capacitor element to form a solid electrolyte layer. And this capacitor | condenser element was inserted in the bottomed cylindrical exterior case, the sealing rubber was attached to the opening edge part, and it sealed by the crimping process. Thereafter, aging was performed by applying a voltage of 8.2 V at 150 ° C. for 120 minutes to form a solid electrolytic capacitor. This solid electrolytic capacitor has a rated voltage of 6.3 WV and a rated capacity of 120 μF. The electrode lead-out means was tin / lead plated. (Comparative example) An iron wire was used as a lead wire. Other conditions and steps are the same as in Example 1.

[比較結果]
上記の方法により得られた実施例及び比較例について、初期特性を調べたところ表1に示すような結果が得られた。
[表1]

Figure 2008113055
[Comparison result]
The initial characteristics of the examples and comparative examples obtained by the above method were examined, and the results shown in Table 1 were obtained.
[Table 1]
Figure 2008113055

表1から明らかなように、リード線として銅の含有率が82%である鉄芯を有する銅線を用いた実施例1のESRは、鉄線を用いた比較例の約86.1%に低減した。静電容量は実施例1と比較例に差は認められなかった。   As is clear from Table 1, the ESR of Example 1 using a copper wire having an iron core with a copper content of 82% as the lead wire is reduced to about 86.1% of the comparative example using the iron wire. did. There was no difference in capacitance between Example 1 and Comparative Example.

本発明が対象とするコンデンサ素子の一例を示す分解斜視図The exploded perspective view which shows an example of the capacitor | condenser element which this invention makes object

符号の説明Explanation of symbols

1…陽極箔
2…陰極箔
3…セパレータ
4…コンデンサ素子
10…陰極引き出し手段
11…陰極箔接続部
12…陰極外部接続部
20…陽極引き出し手段
21…陽極箔接続部
22…陽極外部接続部
DESCRIPTION OF SYMBOLS 1 ... Anode foil 2 ... Cathode foil 3 ... Separator 4 ... Capacitor element 10 ... Cathode extraction means 11 ... Cathode foil connection part 12 ... Cathode external connection part 20 ... Anode extraction means 21 ... Anode foil connection part 22 ... Anode external connection part

Claims (3)

陽極引き出し手段を有する陽極箔と、陰極引き出し手段を有する陰極箔と、固体電解質として導電性ポリマーを備える固体電解コンデンサにおいて、
前記陽極引き出し手段と陰極引き出し手段の少なくともその一部が、銅の含有率が70%以上の鉄芯を有する銅線から構成されていることを特徴とする固体電解コンデンサ
In a solid electrolytic capacitor comprising an anode foil having an anode lead means, a cathode foil having a cathode lead means, and a conductive polymer as a solid electrolyte,
A solid electrolytic capacitor characterized in that at least a part of the anode lead-out means and the cathode lead-out means is composed of a copper wire having an iron core with a copper content of 70% or more.
前記導電性ポリマーが、チオフェン誘導体の重合体であることを特徴とする請求項1記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the conductive polymer is a polymer of a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 2, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2008024605A 2008-02-04 2008-02-04 Solid electrolytic capacitor Pending JP2008113055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008024605A JP2008113055A (en) 2008-02-04 2008-02-04 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008024605A JP2008113055A (en) 2008-02-04 2008-02-04 Solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002093921A Division JP2003297676A (en) 2002-03-29 2002-03-29 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2008113055A true JP2008113055A (en) 2008-05-15

Family

ID=39445364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024605A Pending JP2008113055A (en) 2008-02-04 2008-02-04 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2008113055A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489127A (en) * 1990-08-02 1992-03-23 Toranosuke Kawaguchi Wire material having high tensile strength and high electrical conductivity and production thereof
JP2001110683A (en) * 1999-08-03 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP2002083738A (en) * 2000-06-23 2002-03-22 Matsushita Electric Ind Co Ltd Lead wire for capacitor, solid electrolytic capacitor, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489127A (en) * 1990-08-02 1992-03-23 Toranosuke Kawaguchi Wire material having high tensile strength and high electrical conductivity and production thereof
JP2001110683A (en) * 1999-08-03 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP2002083738A (en) * 2000-06-23 2002-03-22 Matsushita Electric Ind Co Ltd Lead wire for capacitor, solid electrolytic capacitor, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US8083920B2 (en) Method for manufacturing solid electrolytic capacitor
JP6223800B2 (en) Method for forming solid electrolytic capacitor
JP6142292B2 (en) Solid electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP5321964B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4748726B2 (en) Solid electrolytic capacitor
US8882857B2 (en) Solid electrolytic capacitor and method for manufacturing the same
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008113055A (en) Solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284181A (en) Solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2003297676A (en) Solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP2001044078A (en) Solid electrolytic capacitor
JP4474886B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003297684A (en) Solid electrolytic capacitor and its producing method
JP5054573B2 (en) Solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4560875B2 (en) Manufacturing method of solid electrolytic capacitor
JP6341654B2 (en) Solid electrolytic capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A131 Notification of reasons for refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102