JP2008107132A - Foreign matter inspection method and foreign matter inspection system - Google Patents

Foreign matter inspection method and foreign matter inspection system Download PDF

Info

Publication number
JP2008107132A
JP2008107132A JP2006288436A JP2006288436A JP2008107132A JP 2008107132 A JP2008107132 A JP 2008107132A JP 2006288436 A JP2006288436 A JP 2006288436A JP 2006288436 A JP2006288436 A JP 2006288436A JP 2008107132 A JP2008107132 A JP 2008107132A
Authority
JP
Japan
Prior art keywords
light
inspection
foreign matter
sheet
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288436A
Other languages
Japanese (ja)
Inventor
Tomohide Mizukoshi
智秀 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006288436A priority Critical patent/JP2008107132A/en
Publication of JP2008107132A publication Critical patent/JP2008107132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign matter inspection system for accurately inspecting fine foreign matters present on the surface of an inspection target by one foreign matter inspection operation, even if the inspection target is transparent or opaque, and a foreign matter inspection method. <P>SOLUTION: In the foreign matter inspection method for inspecting the foreign matter on the surface of the sheet-like inspection target supported by a support member to be continuously fed by using the foreign matter inspection system, having an inspection light irradiation part, a light detecting part, and an imaging processing part, inspection light is emitted in the tangential direction of the support member and the sheet-like inspection target at an angle of 80-90°, with respect to the normal line at the contact point of the support member and the sheet-like inspection target. The scattered light of the inspection light scattered by irradiating the foreign matter is detected by the light detection part, and the data of the light detection part is analyzed by the imaging processing part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シート状被検査体の表面に存在する異物を検出するための表面検査方法及び異物検査装置に関する。   The present invention relates to a surface inspection method and a foreign matter inspection apparatus for detecting foreign matter existing on the surface of a sheet-like object to be inspected.

従来、シート状材料(例えば、樹脂フィルム、紙、金属板等)を扱う各種製造業において、製品の品質向上、安定性の面から使用する材料及び材料を使用した製品に対して表面の疵、付着した異物、平面性等の製品の性能に影響を与える可能性がある欠陥に付き検査が行われている。   Conventionally, in various manufacturing industries that handle sheet-like materials (for example, resin films, paper, metal plates, etc.), surface defects on products that use materials and materials that are used in terms of product quality improvement and stability, Inspections are performed for defects that may affect the performance of the product, such as adhered foreign matter and flatness.

例えば、昨今、自動車搭載用の液晶ディスプレイ、大型液晶テレビのディスプレイ、携帯電話、ノートパソコン等の普及から液晶表示装置(LCD)、有機物質を使用した有機EL素子の需要が増えてきている。LCDは、従来のCRT表示装置に比べて、省スペース、省エネルギーであることからモニターとして広く使用されている。更にTV用としても普及が進んできている。又、有機EL素子は固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が普及が進んできている。   For example, recently, the demand for liquid crystal display devices (LCD) and organic EL elements using organic substances has increased due to the widespread use of liquid crystal displays mounted on automobiles, large liquid crystal television displays, mobile phones, notebook personal computers, and the like. LCDs are widely used as monitors because they save space and energy compared to conventional CRT display devices. Furthermore, it is also spreading for TV. In addition, organic EL devices are widely used as solid light emitting type inexpensive large-area full-color display devices and writing light source arrays.

この様な液晶表示装置には、偏光板保護フィルム、光学補償フィルム、防眩性フィルム、偏光フィルムや位相差フィルムなどの種々な光学用フィルムとして樹脂フィルムが使用されている。例えば、偏光板は偏光子の両側に光学用フィルムを貼り合せた構成となっている。偏光板は、一定方向の偏波面の光だけを通し、電界による液晶の配向の変化を可視化させる重要な役割を担っている。この光学用フィルムに異物が付着した状態で使用した場合、通す光の偏光方向が一定でなくなり液晶表示装置の性能が大きく左右される危険があるため通常、十分な異物付着検査を行い欠陥がないことを確認した後に使用している。   In such a liquid crystal display device, resin films are used as various optical films such as a polarizing plate protective film, an optical compensation film, an antiglare film, a polarizing film and a retardation film. For example, the polarizing plate has a configuration in which an optical film is bonded to both sides of a polarizer. The polarizing plate plays an important role of allowing only light of a polarization plane in a certain direction to pass through and visualizing changes in the alignment of the liquid crystal due to an electric field. When this optical film is used with foreign matter attached, the polarization direction of light passing therethrough is not constant, and there is a risk that the performance of the liquid crystal display device will be greatly affected. It is used after confirming that.

又、有機EL素子は、基板上に形成された第1電極(陽極又は陰極)と、その上に積層された有機発光物質を含有する有機化合物層(単層部又は多層部)すなわち発光層と、この発光層上に積層された第2電極(陰極又は陽極)とを有する薄膜型の素子である。この様な有機EL素子に電圧を印加すると、有機化合物層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られている。有機EL素子の使用にさいしては湿度の透過を防止し、寿命を延ばすために金属又は金属箔を使用した封止部材により封止された状態で使用されている。これらに使用する封止部材の表面に異物が付着した状態で使用した場合、異物が付着した部分での防湿効果が低下し、有機EL素子の寿命が短くなるため十分な異物付着検査を行い欠陥がないことを確認した後に使用している。   The organic EL element includes a first electrode (anode or cathode) formed on a substrate and an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material stacked thereon, that is, a light emitting layer. A thin film type device having a second electrode (cathode or anode) laminated on the light emitting layer. When a voltage is applied to such an organic EL element, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer. It is known that light is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band. When the organic EL element is used, it is used in a state of being sealed by a sealing member using a metal or metal foil in order to prevent moisture from being transmitted and extend the life. If the surface of the sealing member used for these is used with foreign matter attached, the moisture-proof effect at the part where the foreign matter is attached will be reduced, and the life of the organic EL element will be shortened. It is used after confirming that there is no.

紙材料としては、デジタルカメラからの写真プリント用紙、各種印刷用紙等が挙げられる。通常、写真プリント用紙はプリントの高級感を得るため、紙支持体の表面に塗布により各種加工がなされている。紙支持体の表面に異物が付着した状態で表面を加工した場合、異物により表面性が安定せず製品性能として品質の悪い製品となってしまう。又、加工中に異物が付着した場合の状態で使用した場合、印刷されるものによっては欠陥製品となる危険がある。このため、使用する紙支持体、製品に対して十分な欠陥検査を行い欠陥がないことを確認した後に使用している。   Examples of the paper material include photo print paper from a digital camera, various print papers, and the like. Usually, in order to obtain a high-quality print, photographic print paper is variously processed by coating on the surface of a paper support. When the surface is processed with foreign matter attached to the surface of the paper support, the surface property is not stabilized by the foreign matter, resulting in a product with poor product performance. In addition, when used in a state where foreign matter adheres during processing, there is a risk of becoming a defective product depending on what is printed. For this reason, it is used after carrying out sufficient defect inspection on the paper support and product to be used and confirming that there is no defect.

この様に、使用する支持体、材料及び製品の表面に存在する異物の検査方法の検討がこれまでに各分野でされて来た。例えば、光学的反射手段として、位相供役鏡を使用し、被検査体の異物に照射した検査光を反射し再度、被検査体の異物に照射することで、異物を二回照明することとなり、そのため、異物からの光量がほぼ2倍の量となるため、サブミクロンオーダーの微細な異物等の欠陥を、高いS/N比(Signal to Noise ratio)で安定に検出する方法が知られている(特許文献1参照。)。   Thus, examination of the inspection method of the foreign material which exists in the surface of the support body, material, and product to be used has been carried out until now in each field. For example, a phase serving mirror is used as an optical reflecting means, and the inspection light irradiated to the foreign object on the object to be inspected is reflected and irradiated again on the foreign object on the object to be inspected twice. Therefore, since the amount of light from the foreign matter is almost doubled, a method for stably detecting defects such as fine foreign matter on the order of submicron with a high S / N ratio (Signal to Noise ratio) is known. (See Patent Document 1).

しかしながら、特許文献1に記載の方法は、被検査体に検査光を照射するとき、平面状態で照射するため被検査体に付着した異物からの散乱光に加え、被検査体からの散乱光も加わるため、被検査体の表面状態によっては精度が低下し、微細な異物等の欠陥を安定して検出することが出来なくなる危険がある。   However, the method described in Patent Document 1 irradiates the inspection object with the inspection light. In addition to the scattered light from the foreign matter adhering to the inspection object, the scattered light from the inspection object is also emitted because the irradiation is performed in a flat state. For this reason, there is a risk that accuracy may be lowered depending on the surface state of the object to be inspected, and defects such as fine foreign matter cannot be stably detected.

検査ロールに圧着されて検査部で折り返し走行されるフィルムを、検査ロール上のフィルムに接するように投光器から走査光を投光される。検査ロール上のフィルムを通過した走査光を光電検出することで、フィルムの表面に存在する突起欠陥を確実に検出する異物検出方法が知られている(特許文献2参照。)。   Scanning light is projected from the light projector so that the film which is pressed against the inspection roll and turned back at the inspection section is in contact with the film on the inspection roll. There is known a foreign matter detection method that reliably detects protrusion defects existing on the surface of a film by photoelectrically detecting scanning light that has passed through a film on an inspection roll (see Patent Document 2).

しかしながら、特許文献2に記載の方法は、比較的大きな5μm以上の異物に対しては有効な方法であるが、波長に近い1μm以下の微小な異物の場合、光の回折効果で差が出難くなり、検出精度が不安定になり安定した異物検出が出来ない場合がある。   However, the method described in Patent Document 2 is an effective method for a relatively large foreign matter of 5 μm or more, but in the case of a fine foreign matter of 1 μm or less close to the wavelength, it is difficult to make a difference due to the light diffraction effect. As a result, the detection accuracy becomes unstable and stable foreign object detection may not be possible.

被検査物の表面に対し、被検査物表面の法線方向に対して所定の照射角度だけ傾いた方向から光を照射して照射領域を形成する照射領域を形成し、照射領域の中央よりも離れた位置に光検出手段を設けて被検査物の表面にある小さいサイズの欠陥を精度よく検出する方法が知られている(特許文献3参照。)。   An irradiation area is formed by irradiating light from a direction inclined by a predetermined irradiation angle with respect to the normal direction of the inspection object surface with respect to the surface of the inspection object, and from the center of the irradiation area. There is known a method for accurately detecting a small size defect on the surface of an inspection object by providing a light detection means at a distant position (see Patent Document 3).

しかしながら、特許文献3に記載の方法は、狭い範囲の欠陥の検出には適しているが、被検査物が大きく、且つ全面の異物の検出を行うことが困難となっている。   However, although the method described in Patent Document 3 is suitable for detecting defects in a narrow range, the inspection object is large and it is difficult to detect foreign matter on the entire surface.

フィルムの1方面に第1の偏向板を、他方面側に第2の偏向板を直交ニコル状態に配置し、第1の偏向板の外側からライン状光源により光を照射し、第2の偏向板を介して通過してきた光をCCDラインセンサで受光し解析することで非常に小さな欠陥であっても、容易に検出することを可能とするフィルムの検査方法が知られている(特許文献4参照。)。しながら、特許文献4に記載の方法は、被検査体が透明若しくは半透明の場合は有効な手段であるが、被検査体が不透明の場合は表面に付着している異物を検出することが出来ない欠点を有している。   A first deflecting plate is arranged on one side of the film and a second deflecting plate is arranged in a crossed Nicol state on the other side, and light is irradiated from the outside of the first deflecting plate by a linear light source. A method for inspecting a film is known that enables even a very small defect to be detected easily by receiving and analyzing light passing through a plate with a CCD line sensor (Patent Document 4). reference.). However, the method described in Patent Document 4 is an effective means when the object to be inspected is transparent or translucent, but can detect foreign matter adhering to the surface when the object to be inspected is opaque. It has a drawback that cannot be done.

この様な状況から、1度の異物検出により被検査体が透明でも不透明であっても、表面に存在す微小な異物を精度よく検査する異物検査装置、異物検査方法の開発が望まれている。
特開平8−304296号公報 特開平8−128967号公報 特開2006−38477号公報 特開2006−47143号公報
Under such circumstances, it is desired to develop a foreign substance inspection apparatus and a foreign substance inspection method for accurately inspecting minute foreign substances existing on the surface even if the object to be inspected is transparent or opaque by detecting the foreign substance once. .
JP-A-8-304296 JP-A-8-128967 JP 2006-38477 A JP 2006-47143 A

本発明は上記状況に鑑みなされたものであり、その目的は、1度の異物検出により被検査体が透明でも不透明であっても、表面に存在する微小な異物を検査する異物検査方法及び異物検査装置を提供することである。   SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and its purpose is to detect a foreign matter on the surface and detect the foreign matter even if the object to be inspected is transparent or opaque by detecting the foreign matter once. It is to provide an inspection device.

本発明の上記目的は、下記の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

1.支持部材により支持され連続的に搬送されるシート状被検査体の表面の異物を、照射部と、受光部と、画像処理部とを有する異物検査装置を使用し、前記異物を検査する異物検査方法において、前記照射部は光源部と、走査部とを有し、前記光源部からの検査光を、前記走査部により、前記支持部材と前記シート状被検査体との接点での法線に対して角度80°〜90°で、前記支持部材と前記シート状被検査体との接線方向に照射し、前記異物に照射され散乱した前記検査光の散乱光を前記受光部で受光し、前記受光部の情報を、前記画像処理部により解析することを特徴とする異物検査方法。   1. Foreign matter inspection for inspecting foreign matter using a foreign matter inspection device having an irradiation unit, a light receiving unit, and an image processing unit for foreign matter on the surface of a sheet-like object to be inspected that is supported and supported continuously by a support member In the method, the irradiating unit includes a light source unit and a scanning unit, and the inspection light from the light source unit is converted to a normal line at a contact point between the support member and the sheet-like object to be inspected by the scanning unit. In contrast, at an angle of 80 ° to 90 °, the support member and the sheet-like object to be inspected are irradiated in a tangential direction, and the scattered light of the inspection light irradiated and scattered by the foreign matter is received by the light receiving unit, A foreign matter inspection method, wherein information on a light receiving unit is analyzed by the image processing unit.

2.前記走査部は光源部からの検査光を、支持部材とシート状被検査体との接点を基準として、該検査光の直径の1%〜30%が、該接点での法線の下方向を照射する様に、接線方向に照射し走査することを特徴とする前記1に記載の異物検査方法。   2. The scanning unit uses the inspection light from the light source unit as a reference with respect to the contact point between the support member and the sheet-like object to be tested, and 1% to 30% of the diameter of the inspection light is below the normal line at the contact point 2. The foreign matter inspection method according to 1 above, wherein irradiation is performed in a tangential direction so as to perform irradiation.

3.前記走査部は、光源部からの検査光を平行光に変換する平行光変換手段と、該検査光の照射方向の対面に、該検査光の照射角度と同じ角度で配置された光学的反射手段とを有し、該光学的反射手段は支持部材とシート状被検査体との接点を通過し、該平行光変換手段で変換された検査光を、接線方向に反射させる様に構成されていることを特徴とする前記1又は2に記載の異物検査方法。   3. The scanning unit includes a parallel light conversion unit that converts inspection light from the light source unit into parallel light, and an optical reflection unit that is disposed on the opposite side of the inspection light irradiation direction at the same angle as the irradiation angle of the inspection light. The optical reflecting means passes through the contact point between the support member and the sheet-like object to be inspected and is configured to reflect the inspection light converted by the parallel light converting means in the tangential direction. 3. The foreign matter inspection method according to 1 or 2 above.

4.前記受光部は、光導棒と光受光素子とを有し、該光導棒は支持部材とシート状被検査体との接点での法線に対して、−60°〜+60°の範囲で、該接点の上部に10mm〜250mmの位置に配設されていることを特徴とする前記1から3の何れか1項に記載の異物検査方法。   4). The light receiving unit includes a light guide and a light receiving element, and the light guide is in a range of −60 ° to + 60 ° with respect to a normal line at a contact point between the support member and the sheet-like object to be inspected. 4. The foreign matter inspection method according to any one of 1 to 3, wherein the foreign matter inspection method is disposed at a position of 10 mm to 250 mm above the contact.

5.前記検査光がレーザ光であり、平行光変換手段により平行光に変換されていることを特徴とする前記1から4の何れか1項に記載の異物検査方法。   5. 5. The foreign matter inspection method according to any one of 1 to 4, wherein the inspection light is laser light and is converted into parallel light by parallel light conversion means.

6.前記異物の高さが、0.02μm〜10μmであることを特徴とする前記1から5の何れか1項に記載の異物検査方法。   6). 6. The foreign matter inspection method according to any one of 1 to 5, wherein a height of the foreign matter is 0.02 μm to 10 μm.

7.支持部材により支持され連続的に搬送されるシート状被検査体の表面の異物を検査する、検査光の照射部と、受光部と、画像処理部とを有する異物検査装置において、前記照射部は光源部と、走査部とを有し、前記光源部からの検査光を、前記走査部により、前記支持部材と前記シート状被検査体との接点での法線に対して角度80°〜90°で、前記支持部材と前記シート状被検査体との接線方向に前記検査光を照射する様に走査し、前記異物に照射され散乱した前記検査光の散乱光を前記受光部で受光し、前記受光部の情報を、前記画像処理部により解析することを特徴とする異物検査装置。   7. In a foreign matter inspection apparatus having an inspection light irradiation unit, a light receiving unit, and an image processing unit that inspects a foreign matter on the surface of a sheet-like object to be inspected that is supported and supported continuously by a support member, the irradiation unit includes: A light source unit and a scanning unit, and the scanning unit emits inspection light from the light source unit at an angle of 80 ° to 90 ° with respect to a normal line at a contact point between the support member and the sheet-like object At this time, scanning is performed so as to irradiate the inspection light in a tangential direction between the support member and the sheet-shaped object to be inspected, and the scattered light of the inspection light irradiated and scattered by the foreign matter is received by the light receiving unit, A foreign matter inspection apparatus, wherein the information of the light receiving unit is analyzed by the image processing unit.

8.前記走査部で検査光を、支持部材とシート状被検査体との接点を基準として、該検査光の直径の1%〜30%が、該接点での法線の下方向を照射する様に、接線方向に照射し走査することを特徴とする前記7に記載の異物検査装置。   8). With respect to the inspection light at the scanning unit, 1% to 30% of the diameter of the inspection light is irradiated in the downward direction of the normal line at the contact point with respect to the contact point between the support member and the sheet-like object to be inspected. 8. The foreign matter inspection apparatus according to 7 above, wherein irradiation is performed in a tangential direction and scanning is performed.

9.前記走査部は、光源部からの検査光を平行光に変換する平行光変換手段と、該検査光の照射方向の対面に、該検査光の照射角度と同じ角度で配置された光学的反射手段とを有し、該光学的反射手段は支持部材とシート状被検査体との接点を通過し、該平行光変換手段で変換された検査光を、接線方向に反射させる様に構成されていることを特徴とする前記7又は8に記載の異物検査装置。   9. The scanning unit includes a parallel light conversion unit that converts inspection light from the light source unit into parallel light, and an optical reflection unit that is disposed on the opposite side of the inspection light irradiation direction at the same angle as the irradiation angle of the inspection light. The optical reflecting means passes through the contact point between the support member and the sheet-like object to be inspected and is configured to reflect the inspection light converted by the parallel light converting means in the tangential direction. The foreign matter inspection apparatus according to 7 or 8, wherein

10.前記受光部は、光導棒と光受光素子とを有し、該光導棒は支持部材とシート状被検査体との接点での法線に対して、−60°〜+60°の範囲で該接点の上部に10mm〜250mmの位置に配設されていることを特徴とする前記7から9の何れか1項に記載の異物検査装置。   10. The light receiving portion includes a light guide and a light receiving element, and the light guide is in the range of −60 ° to + 60 ° with respect to the normal line at the contact between the support member and the sheet-like object to be inspected. 10. The foreign matter inspection apparatus according to any one of 7 to 9, wherein the foreign matter inspection apparatus is disposed at a position of 10 mm to 250 mm in an upper portion of the head.

11.前記検査光がレーザ光であることを特徴とする前記7から10の何れか1項に記載の異物検査装置。   11. 11. The foreign matter inspection apparatus according to any one of 7 to 10, wherein the inspection light is laser light.

12.前記異物の高さが、0.02μm〜10μmであることを特徴とする前記7から11の何れか1項に記載の異物検査装置。   12 The foreign matter inspection apparatus according to any one of 7 to 11, wherein the height of the foreign matter is 0.02 μm to 10 μm.

1度の異物検出により被検査体が透明でも不透明であっても、表面に存在する微小な異物を検査する異物検査装置及び異物検査方法を提供することが出来、高品質の製品の生産、異物検査作業の効率化、精度の高い異物検査が可能となった。   Even if the object to be inspected is transparent or opaque by detecting the foreign matter once, it is possible to provide a foreign matter inspection apparatus and foreign matter inspection method for inspecting the minute foreign matter existing on the surface. The efficiency of inspection work and high-precision inspection of foreign objects are now possible.

本発明の実施の形態を図1〜図5を参照しながら説明するが、本発明はこれらに限定されるものではない。   Embodiments of the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited thereto.

図1は異物検査装置の模式図である。尚、本図は連続的に搬送されるシート状被検査体の表面の異物を検出する異物検査装置を示している。   FIG. 1 is a schematic diagram of a foreign matter inspection apparatus. This figure shows a foreign substance inspection apparatus for detecting foreign substances on the surface of a sheet-like object to be continuously conveyed.

図中、1は異物検査装置を示す。異物検査装置1は支持部材2により支持され連続的に搬送される帯状のシート状被検査体3の上にある異物に検査光を照射する照射部101と、異物に照射された検査光の散乱光を受光する受光部102と、受光部102からの情報を処理する画像処理部103とを有している。   In the figure, reference numeral 1 denotes a foreign substance inspection apparatus. The foreign object inspection apparatus 1 includes an irradiation unit 101 that irradiates inspection light onto a foreign object on a belt-like sheet-like object 3 that is supported by a support member 2 and is continuously conveyed, and scattering of inspection light applied to the foreign object. A light receiving unit 102 that receives light and an image processing unit 103 that processes information from the light receiving unit 102 are provided.

照射部101は、光源部101aと、走査部101bとを有している。光源部101aは光源101a1と、光源101a1からの検査光を集光するシリンダレンズ、コリメータレンズ等から構成されている光源光学系101a2を有している。走査部101bは、光源部101aからの検査光を線状に集光するポリゴンミラー101b1と、線状に集光された検査光を平行光に変換する平行光変換手段101b2と、平行光変換手段101b2により平行光に変換された検査光を反射する光学的反射手段101b3とを有している。ポリゴンミラー101b1が等速回転することで検査光が走査され、平行光変換手段101b2によりシート状被検査体3に集光される様になっている。照射部101は、シート状被検査体の幅に合わせ複数台を配設することが可能となっている。尚、本図はポリゴンミラーを使用した場合を示しているが、ポリゴンミラーを使用せず、直接レーザ光を平行光変換手段101b2に照射して、シート状の光とする方法であってもよい。   The irradiation unit 101 includes a light source unit 101a and a scanning unit 101b. The light source unit 101a includes a light source optical system 101a2 including a light source 101a1 and a cylinder lens, a collimator lens, and the like that collect inspection light from the light source 101a1. The scanning unit 101b includes a polygon mirror 101b1 that condenses the inspection light from the light source unit 101a in a line, a parallel light conversion unit 101b2 that converts the inspection light collected in a line into parallel light, and a parallel light conversion unit. And an optical reflecting means 101b3 for reflecting the inspection light converted into parallel light by 101b2. The inspection light is scanned by rotating the polygon mirror 101b1 at a constant speed, and is condensed on the sheet-like object 3 by the parallel light conversion means 101b2. A plurality of irradiation units 101 can be arranged in accordance with the width of the sheet-like object to be inspected. Although this figure shows a case where a polygon mirror is used, a method may be used in which the parallel light converting means 101b2 is directly irradiated with laser light to form sheet-like light without using the polygon mirror. .

平行光変換手段101b2としてはとくに限定はなく、例えば放物面鏡(パラボラミラー)、fθレンズ等が挙げられる。本図は、fθレンズを使用した場合を示している。   The parallel light conversion unit 101b2 is not particularly limited, and examples thereof include a parabolic mirror (parabolic mirror), an fθ lens, and the like. This figure shows a case where an fθ lens is used.

光学的反射手段101b3としては、支持部材2により支持された帯状のシート状被検査体3の支持部材2と帯状のシート状被検査体3との接点での接線を通過した検査光を反射し接線上の異物に再照射出来れば特に限定はなく、例えば平面鏡、位相供役鏡等が挙げられる。本図は、平面鏡を使用した場合を示している。光学的反射手段101b3は検査光の照射方向の対面する位置に、検査光の照射角度と同じ角度で配置することが好ましい。   As the optical reflecting means 101b3, the inspection light passing through the tangent at the contact point between the support member 2 of the belt-like sheet-like object 3 supported by the support member 2 and the belt-like sheet-like object 3 is reflected. If it can re-irradiate the foreign material on a tangent, there will be no limitation in particular, For example, a plane mirror, a phase serving mirror, etc. are mentioned. This figure has shown the case where a plane mirror is used. It is preferable that the optical reflecting means 101b3 is disposed at a position facing the irradiation direction of the inspection light at the same angle as the irradiation angle of the inspection light.

この様に光学的反射手段により接線を通過した検査光を反射し接線の上の異物に再照射することで、検査光の光量を2倍にすることなく2倍の散乱光量が得られ異物検出の精度が向上する。   In this way, by reflecting the inspection light that has passed through the tangent by the optical reflection means and re-irradiating the foreign matter on the tangential line, the amount of scattered light can be doubled without doubling the amount of inspection light. Improves accuracy.

照射部101から、支持部材2により支持され連続的に搬送される帯状のシート状被検査体3の支持部材2と、シート状被検査体3との接線方向に向けて検査光が走査しながら照射される。接線方向に向けて検査光を照射し走査することで、検査光の帯状のシート状被検査体3の搬送方向の照射領域を狭くすることが出来、シート状被検査体からの散乱光を抑えることが出来、接線の上にある異物からの散乱光のS/N比を高めることが可能となる。   While the inspection light scans from the irradiation unit 101 toward the tangential direction of the support member 2 of the belt-like sheet-like object 3 supported by the support member 2 and continuously conveyed, and the sheet-like object 3. Irradiated. By irradiating and scanning the inspection light in the tangential direction, it is possible to narrow the irradiation region of the inspection light in the transport direction of the belt-like sheet-like object 3 and suppress scattered light from the sheet-like object. It is possible to increase the S / N ratio of scattered light from a foreign substance on the tangent line.

帯状のシート状被検査体3の搬送速度は、異物検出精度、異物検出効率等を考慮し、1m/min〜10m/minが好ましい。検査光の走査速度は帯状のシート状被検査体3の搬送速度と、検査光の直径の大きさから適宜決めることが好ましい。   The conveyance speed of the strip-shaped inspected object 3 is preferably 1 m / min to 10 m / min in consideration of foreign object detection accuracy, foreign object detection efficiency, and the like. The scanning speed of the inspection light is preferably determined as appropriate based on the conveyance speed of the strip-shaped inspected sheet 3 and the diameter of the inspection light.

光源101aとしては半導体レーザが使用される。使用される半導体レーザとしては、波長が550〜780nmの可視領域、830nm以上の赤外領域、波長が408nm〜470nmの紫外領域のレーザが挙げられる。レーザに使用する素子としては、半導体レーザ、ガスレーザ、固体レーザ等が挙げられる。レーザ出力としては、5mW〜250mWが好ましい。   A semiconductor laser is used as the light source 101a. Examples of the semiconductor laser used include lasers in a visible region having a wavelength of 550 to 780 nm, an infrared region having a wavelength of 830 nm or more, and an ultraviolet region having a wavelength of 408 to 470 nm. Examples of the element used for the laser include a semiconductor laser, a gas laser, and a solid-state laser. The laser output is preferably 5 mW to 250 mW.

受光部102は、支持部材2により支持された帯状のシート状被検査体3の接線方向に照射された検査光により照射された接線上にある異物4からの散乱光Cと、平面鏡101b3により反射された検査光により再照射された接線上にある異物4からの散乱光C′とを受光する光導棒102aと光受光素子102bとを有している。散乱光C(C′)は光導棒102aで受光され、光受光素子102bで信号検出し、画像処理部103で画像処理されることで異物の大きさ、異物の位置が解析することが可能となっている。本図に示される光受光素子としてはしくに限定はなく、例えば光電子増倍管(PMT)、CCDカメラ、フォトダイオード(PD)等が挙げられる。本図では、光電子増倍管を使用している場合を示している。   The light receiving unit 102 is reflected by the scattered light C from the foreign matter 4 on the tangent irradiated by the inspection light irradiated in the tangential direction of the strip-shaped sheet-like object 3 supported by the support member 2 and the plane mirror 101b3. And a light receiving element 102b for receiving the scattered light C ′ from the foreign matter 4 on the tangent line re-irradiated with the inspection light. Scattered light C (C ′) is received by the light rod 102a, detected by the light receiving element 102b, and subjected to image processing by the image processing unit 103, thereby enabling analysis of the size and position of the foreign matter. It has become. The light receiving element shown in this figure is not particularly limited, and examples thereof include a photomultiplier tube (PMT), a CCD camera, and a photodiode (PD). This figure shows a case where a photomultiplier tube is used.

光導棒102aは、帯状のシート状被検査体3の幅方向で、且つ、支持部材2により支持された帯状のシート状被検査体3の接線と平行に支持部材2の上方に配設されている。   The light rod 102a is disposed above the support member 2 in the width direction of the belt-like sheet-like object 3 and parallel to the tangent of the belt-like sheet-like object 3 supported by the support member 2. Yes.

尚、本図では受光部102に光導棒102aを使用した場合を示しているが、一次元型CCDカメラ(ラインセンサ)であっても勿論構わない。光導棒に使用する材質としては、アクリル樹脂、石英ガラス等が挙げられ、特に好ましい材質としてはアクリル樹脂が挙げられる。   In the drawing, the light guide 102a is used for the light receiving unit 102, but a one-dimensional CCD camera (line sensor) may of course be used. Examples of the material used for the light rod include acrylic resin and quartz glass, and particularly preferable material is acrylic resin.

本図に示される異物検査装置1を使用し、帯状のシート状被検査体3の上の異物を検出する方法に付き説明する。光源101aから照射された検査光Aは等速回転するポリゴンミラー101b1により線状に集光され、平行光変換手段のfθレンズ101b2により平行光Bに変換される。平行光Bは、支持部材2により支持され、連続的に搬送されるシート状被検査体3と、支持部材2との接線方向に走査しながら照射される。シート状被検査体3が搬送され表面に付着している異物4がシート状被検査体3と、支持部材2との接線に来たとき、異物4は検査光に照射され、照射された検査光である平行光Bの一部はB異物4にぶつかり散乱光Cとなる。一方、他の検査光である平行光Bは、平行光Bと対面する位置に配置(検査光の照射角度と同じ角度で配置)された光学的反射手段の平面鏡101b3により反射され、平行光B′として再度、異物4を照射し、検査光である平行光Bの一部は異物4により散乱光C′となる。   A method for detecting foreign matter on the belt-like sheet-like object 3 using the foreign matter inspection apparatus 1 shown in this figure will be described. The inspection light A emitted from the light source 101a is condensed into a linear shape by a polygon mirror 101b1 rotating at a constant speed, and converted into parallel light B by an fθ lens 101b2 of parallel light conversion means. The parallel light B is irradiated while scanning in the tangential direction between the support member 2 and the sheet-like object to be inspected 3 that is supported by the support member 2 and continuously conveyed. When the foreign object 4 transported and adhered to the surface of the sheet-like object 3 comes to the tangent line between the sheet-like object 3 and the support member 2, the foreign object 4 is irradiated with the inspection light and irradiated. Part of the parallel light B, which is light, collides with the B foreign matter 4 and becomes scattered light C. On the other hand, the parallel light B, which is another inspection light, is reflected by the plane mirror 101b3 of the optical reflecting means disposed at a position facing the parallel light B (arranged at the same angle as the irradiation angle of the inspection light). ′ Is again irradiated with the foreign matter 4, and a part of the parallel light B as inspection light becomes scattered light C ′ by the foreign matter 4.

散乱光Cと散乱光C′は光導棒102aにより受光され光受光素子102bにより信号検出し、画像処理部103で画像処理されることで異物の大きさ、異物の位置が解析される。本図に示される帯状のシート状被検査体3としては、透明でも不透明であっても使用することが可能である。   The scattered light C and scattered light C ′ are received by the light guide 102 a, detected by the light receiving element 102 b, and subjected to image processing by the image processing unit 103, thereby analyzing the size of the foreign matter and the position of the foreign matter. The strip-like sheet-like object 3 shown in this figure can be used regardless of whether it is transparent or opaque.

本図に示される異物検査装置1を使用し、支持部材2により支持され連続的に搬送される帯状のシート状被検査体3の支持部材2と、帯状のシート状被検査体3との接線方向に向けて検査光を照射し、帯状のシート状被検査体3の上の異物を検出することで次の効果が挙げられる。
1.接線方向に検査光を照射することで、ノイズとなる散乱光を抑えることが可能となり、接線の上に存在する異物からの散乱光を効率良く分けられS/N比を高めることが可能となり微小の異物を精度良く検出することが可能となった。
2.検査光と対面する位置に光学的反射手段を配設することで、検査光の有効利用が出来、低出力のレーザでも精度よく異物を検出することが可能となった。
Using the foreign substance inspection apparatus 1 shown in the figure, the tangent line between the support member 2 of the belt-like sheet-like object 3 supported by the support member 2 and continuously conveyed and the belt-like sheet-like object 3 The following effects can be obtained by irradiating the inspection light in the direction and detecting the foreign matter on the strip-shaped inspected sheet 3.
1. By irradiating inspection light in the tangential direction, it becomes possible to suppress scattered light that becomes noise, and it is possible to efficiently scatter scattered light from foreign substances existing on the tangent line, and to increase the S / N ratio. It has become possible to accurately detect foreign matter.
2. By disposing the optical reflecting means at the position facing the inspection light, the inspection light can be effectively used, and it is possible to detect foreign matter with high accuracy even with a low-power laser.

図2は図1の概略平面図である。   FIG. 2 is a schematic plan view of FIG.

図中、Qは光導棒102aの幅を示す。幅Qは、検査範囲、受光した光の損失等を考慮し、帯状のシート状被検査体3幅に対して110%〜120%が好ましい。Rは平面鏡101b3の幅を示す。幅Rは、検査範囲の確保、検査精度、工程のレイアウト等を考慮し、帯状のシート状被検査体3の幅に対して100%〜120%が好ましい。他の符号は図1と同義である。   In the figure, Q indicates the width of the light guide 102a. The width Q is preferably 110% to 120% with respect to the width of the strip-shaped sheet-like object 3 in consideration of the inspection range, the loss of received light, and the like. R indicates the width of the plane mirror 101b3. The width R is preferably 100% to 120% with respect to the width of the strip-shaped sheet-like object 3 in consideration of securing the inspection range, inspection accuracy, process layout, and the like. Other reference numerals are the same as those in FIG.

図3は図1のD−D′に沿った概略断面図である。   FIG. 3 is a schematic sectional view taken along the line DD ′ of FIG.

θ1は支持部材2とシート状被検査体3の接点5の上部に配設されている光導棒102aの中心と、接点5での法線Eとの角度を示す。角度θ1は、接点5での法線Eに対して、微小異物の散乱光の角度、微小異物の散乱光の受光効率等を考慮し、−60°〜+60°であることが好ましい。尚、法線Eに対して−60°とは、図面で法線Eの左側に光導棒102aが位置する場合を示し、法線Eに対して+60°とは、図面で法線Eの右側に光導棒102aが位置する場合を示す。即ち、0°とは法線E上に光導棒102aが位置する場合を示す。   θ1 represents an angle between the center of the light rod 102a disposed above the contact 5 of the support member 2 and the sheet-like object 3 and the normal E at the contact 5. The angle θ1 is preferably −60 ° to + 60 ° with respect to the normal E at the contact point 5 in consideration of the angle of the scattered light of the minute foreign matter, the light receiving efficiency of the scattered light of the minute foreign matter, and the like. Note that −60 ° with respect to the normal E indicates that the light rod 102a is located on the left side of the normal E in the drawing, and + 60 ° with respect to the normal E indicates that the right side of the normal E in the drawing. Shows the case where the light rod 102a is located. In other words, 0 ° indicates a case where the light rod 102a is positioned on the normal line E.

光導棒102aの直径は、散乱光の受光効率、受光した散乱光の損失、外乱光の受光、検出部での検出性等を考慮し、30mm〜60mmであることが好ましい。   The diameter of the light rod 102a is preferably 30 mm to 60 mm in consideration of the light receiving efficiency of scattered light, the loss of the received scattered light, the reception of disturbance light, the detectability at the detection unit, and the like.

Sは光導棒102aの中心と接点5との距離を示し、距離Sは微小異物の散乱光の角度微小異物の散乱光の受光効率、光導棒の直径、散乱光の強度等を考慮し、10mm〜250mmであることが好ましい。   S represents the distance between the center of the light rod 102a and the contact point 5, and the distance S is the angle of the scattered light of the minute foreign matter, taking into consideration the light receiving efficiency of the scattered light of the minute foreign matter, the diameter of the light rod, the intensity of the scattered light, etc. It is preferable that it is -250mm.

θ2は支持部材2とシート状被検査体3の接点5におけるシート状被検査体3の接線方向に照射される検査光の角度を示す。角度θ2は、接点5での法線に対して、80°〜90°に設定されている。角度が80°未満の場合は、被検査体が透明体の場合、被検査体の内部での反射及び裏面反射により、ノイズが増加、精度良く異物が検出されなくなるため好ましくない。角度が90°を超える場合は、検査光が接線方向に届かないため、接線上にある異物の検出が出来なくなるため好ましくない。   θ2 indicates the angle of the inspection light irradiated in the tangential direction of the sheet-like object 3 at the contact 5 between the support member 2 and the sheet-like object 3. The angle θ <b> 2 is set to 80 ° to 90 ° with respect to the normal line at the contact 5. When the angle is less than 80 °, when the object to be inspected is a transparent body, noise is increased due to reflection inside the object to be inspected and reflection from the back surface, and foreign matter is not detected with high accuracy. When the angle exceeds 90 °, the inspection light does not reach in the tangential direction, and therefore, it is not preferable because it is impossible to detect foreign matter on the tangent.

θ3は検査光と対面する位置に配置された光学的反射手段の角度を示す。角度θ3は、接線方向に照射される検査光を正確に接線上の異物に反射させるため、接点5での法線に対して、接線方向に照射される検査光の角度θ2と同じであることが必要である。   θ3 represents the angle of the optical reflecting means arranged at the position facing the inspection light. The angle θ3 is the same as the angle θ2 of the inspection light irradiated in the tangential direction with respect to the normal line at the contact point 5 in order to accurately reflect the inspection light irradiated in the tangential direction to the foreign matter on the tangential line. is required.

Tはfθレンズ101b2の表面と接点5との距離を示し、距離Tは検査光(レーザ光)のスポット径、焦点深度、装置の大きさ等を考慮し、10mm〜300mmであることが好ましい。   T represents the distance between the surface of the fθ lens 101b2 and the contact 5, and the distance T is preferably 10 mm to 300 mm in consideration of the spot diameter of the inspection light (laser light), the focal depth, the size of the apparatus, and the like.

Uは平面鏡101b3の反射面と接点5との距離を示し、距離Uは反射光の集光、反射光の強度、装置の大きさ等を考慮し、50mm〜200mmであることが好ましい。他の符号は図1と同義である。   U indicates the distance between the reflecting surface of the plane mirror 101b3 and the contact 5, and the distance U is preferably 50 mm to 200 mm in consideration of the concentration of the reflected light, the intensity of the reflected light, the size of the apparatus, and the like. Other reference numerals are the same as those in FIG.

図4は図2のZで示される部分の拡大概略図である。   FIG. 4 is an enlarged schematic view of a portion indicated by Z in FIG.

図中、Vは検査光の径を示す。径Vは、異物検出精度、異物の大きさ、異物に対する照射効率等を考慮し、10μm〜500μmが好ましい。   In the figure, V indicates the diameter of the inspection light. The diameter V is preferably 10 μm to 500 μm in consideration of the foreign matter detection accuracy, the size of the foreign matter, the irradiation efficiency with respect to the foreign matter, and the like.

fθレンズ101c(図1を参照)により平行光Bに変換された検査光は、シート状被検査体3と支持部材2との接線方向に照射され、接点5のシート状被検査体3の上に存在する異物4を照射するが、検査光が照射する範囲は、接点5での法線Eの接点5からの下方向の距離Wと、上方の距離Xを同時に照射することが好ましい。下方向の距離Wは、被検査体が透明体の場合の内部反射に伴うノイズ、被検査体の搬送時の位置変動等を考慮し、照射する検査光の径Vの1%〜30%が好ましい。上方の距離Xは、検査光の径Vから下方向の距離Wを差し引いた距離となる。接線方向に照射するとは、距離Xと、距離Wとで示される照射範囲で接線方向に向けて照射することを言う。   The inspection light converted into the parallel light B by the fθ lens 101c (see FIG. 1) is irradiated in the tangential direction between the sheet-like inspection object 3 and the support member 2, and on the sheet-like inspection object 3 at the contact point 5. However, it is preferable to irradiate the downward distance W of the normal line E from the contact 5 and the upper distance X at the same time. The distance W in the downward direction is 1% to 30% of the diameter V of the inspection light to be irradiated in consideration of noise caused by internal reflection when the object to be inspected is a transparent body, position variation during transportation of the object to be inspected, and the like. preferable. The upper distance X is a distance obtained by subtracting the downward distance W from the diameter V of the inspection light. Irradiating in the tangential direction means irradiating in the tangential direction within the irradiation range indicated by the distance X and the distance W.

異物4の高さは、偏光板保護フィルム、光学補償フィルム、防眩性フィルム、偏光フィルムや位相差フィルムなどの種々な高機能性が要求される光学用フィルムの機能性維持を考慮し、0.02μm〜10μmが好ましい。   The height of the foreign material 4 is 0 in consideration of maintaining the functionality of optical films that require various high functions such as polarizing plate protective films, optical compensation films, antiglare films, polarizing films and retardation films. 0.02 μm to 10 μm is preferable.

図5は断面形状が異なる支持部材で支持されたシート状被検査体の状態を示す概略断面図である。図5(a)は断面形状が円形の支持部材で支持されたシート状被検査体の状態を示す概略断面図である。図5(b)は断面形状が三角形でシート状被検査体を支持する部分がR形状を有する支持部材で支持されたシート状被検査体の状態を示す概略断面図である。   FIG. 5 is a schematic cross-sectional view showing a state of a sheet-like object to be inspected supported by support members having different cross-sectional shapes. Fig.5 (a) is a schematic sectional drawing which shows the state of the sheet-like to-be-inspected object supported by the support member with a circular cross-sectional shape. FIG. 5B is a schematic cross-sectional view showing a state of the sheet-like object to be inspected, in which the cross-sectional shape is a triangle and the portion that supports the sheet-like object is supported by a support member having an R shape.

図5(a)で示される支持部材2に付き説明する。支持部材2を回転可能とすることでシート状被検査体3を連続的に搬送しながら支持部材2とシート状被検査体3との接点5でシート状被検査体3の上にある異物を異物検査装置1(図1を参照)で検出することが可能となる。支持部材2の直径は、検査精度、シート状被検査体に対するダメージ等を考慮し、80mm〜300mmが好ましい。   A description will be given of the support member 2 shown in FIG. By allowing the support member 2 to be rotated, the sheet-like object to be inspected 3 can be continuously conveyed while the contact member 5 between the support member 2 and the sheet-like object to be inspected 3 removes foreign matter on the sheet-like object to be examined 3. It can be detected by the foreign object inspection apparatus 1 (see FIG. 1). The diameter of the support member 2 is preferably 80 mm to 300 mm in consideration of inspection accuracy, damage to the sheet-like object to be inspected, and the like.

θ4は支持部材2の中心とシート状被検査体3が支持部材2に接触する点と、シート状被検査体3が支持部材2から離れる点とを結んだ線に挟まれる角度(抱き角)を示す。抱き角θ4は、シート状被検査体の検査時平面性、シート状被検査体へのダメージ等を考慮し、60°〜270°が好ましい。   θ4 is an angle (holding angle) sandwiched by a line connecting the center of the support member 2 and the point where the sheet-like object 3 is in contact with the support member 2 and the point where the sheet-like object 3 is separated from the support member 2. Indicates. The holding angle [theta] 4 is preferably 60 [deg.] To 270 [deg.] In consideration of the flatness during inspection of the sheet-like object to be examined, damage to the sheet-like object to be examined, and the like.

図5(b)で示される支持部材2′に付き説明する。支持部材2′は、断面形状が三角形でシート状被検査体を支持する部分がR形状を有する形状をしている。本図に示される支持部材2′はシート状被検査体3′を固定し、支持部材2′とシート状被検査体3′との接点5′でシート状被検査体3′の上にある異物を異物検査装置1(図1を参照)で検出する場合に適している。支持部材2′のシート状被検査体3′を支持する部分のRは、図5(a)で示される支持部材2の直径と同じである。   The support member 2 'shown in FIG. The support member 2 'has a triangular cross-sectional shape and a portion that supports the sheet-like object to be inspected has an R shape. The support member 2 'shown in the figure fixes the sheet-like object 3' and is located on the sheet-like object 3 'at the contact point 5' between the support member 2 'and the sheet-like object 3'. This is suitable for detecting foreign matter with the foreign matter inspection apparatus 1 (see FIG. 1). R of the portion of the support member 2 ′ that supports the sheet-like object 3 ′ is the same as the diameter of the support member 2 shown in FIG.

θ4′は支持部材2′のシート状被検査体3′を支持する部分のRの中心とシート状被検査体3′が支持部材2′に接触する点と、シート状被検査体3′が支持部材2′から離れる点とを結んだ線に挟まれる角度(抱き角)を示す。角度(抱き角)θ4′は、図5(a)で示される角度(抱き角)θ4と同じである。   θ4 ′ is the center of the portion R of the support member 2 ′ that supports the sheet-like object 3 ′, the point where the sheet-like object 3 ′ contacts the support member 2 ′, and the sheet-like object 3 ′. The angle (holding angle) between the lines connecting the points away from the support member 2 'is shown. The angle (holding angle) θ4 ′ is the same as the angle (holding angle) θ4 shown in FIG.

尚、図5(b)で示される支持部材2′を使用する場合、シート状被検査体3′を止めた状態で検査することが好ましい。但し、支持部材2′と擦れることで疵が付いても構わない場合は搬送しながらの検査も可能である。本図に示される支持部材2′を使用し搬送しながら異物検出を行う場合、シート状被検査体3′としては、透明或いは不透明の帯状のシート状被検査体3′を使用することが可能である。又、止めて異物検出を行う場合、透明或いは不透明の枚葉のシート状被検査体3′使用することが好ましい。   In addition, when using support member 2 'shown by FIG.5 (b), it is preferable to test | inspect in the state which stopped the sheet-like to-be-inspected object 3'. However, in the case where wrinkles may occur due to rubbing with the support member 2 ', inspection while transporting is also possible. When foreign matter detection is performed while transporting using the support member 2 'shown in this figure, a transparent or opaque belt-like sheet-like object 3' can be used as the sheet-like object 3 '. It is. When foreign matter detection is performed after stopping, it is preferable to use a transparent or opaque sheet-like inspection object 3 '.

本発明に係わるシート状被検査体に付き説明する。本発明に係わるシート状被検査体は特に限定はないが、使用上、微細な異物の付着で製品性能に影響を与えるシート状被検査体に対して特に有効である。例えば液晶表示装置(LCD)に使用する光学用フィルム、有機EL素子の封止に使用する封止フィルム等が挙げられる。   The sheet-like object to be inspected according to the present invention will be described. The sheet-like object to be inspected according to the present invention is not particularly limited, but is particularly effective for a sheet-like object to be inspected that affects the product performance due to the adhesion of fine foreign matters. For example, the film for optics used for a liquid crystal display device (LCD), the sealing film used for sealing of an organic EL element, etc. are mentioned.

光学用フィルムとしては、透明で優れた物理的、機械的性質を持ち、温湿度に対する寸度変化が小さい樹脂、例えば、セルロース樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ノルボルネン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリエステル樹脂等から作製されたフィルムが挙げられる。   As an optical film, a transparent resin having excellent physical and mechanical properties and a small dimensional change with respect to temperature and humidity, such as cellulose resin, polycarbonate resin, polyarylate resin, polysulfone resin, polyethersulfone resin, norbornene Examples include films made from resins, polystyrene resins, polyacrylate resins, polyester resins, and the like.

有機EL素子の封止に使用するフィルム状の封止部材としては、熱可塑性樹脂フィルム材料を基材とし、バリア層に金属箔を積層した多層構成となっている。基材としては、例えばエチレンテトラフルオロエチル共重合体(ETFE)、高密度ポリエチレン(HDPE)、延伸ポリプロピレン(0PP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、延伸ナイロン(ONy)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリイミド、ポリエーテルスチレン(PES)など一般の包装用フィルムに使用されている熱可塑性樹脂フィルム材料等を使用することが出来る。又、これら熱可塑性樹脂フィルムは、必要に応じて異種フィルムと共押出しで作った多層フィルム、延伸角度を変えて貼り合せて作った多層フィルム等も当然使用出来る。更に必要とする物性を得るために使用するフィルムの密度、分子量分布を組合せて作ることも当然可能である。   The film-like sealing member used for sealing the organic EL element has a multilayer structure in which a thermoplastic resin film material is used as a base material and a metal foil is laminated on a barrier layer. Examples of the base material include ethylene tetrafluoroethyl copolymer (ETFE), high density polyethylene (HDPE), stretched polypropylene (0PP), polystyrene (PS), polymethyl methacrylate (PMMA), stretched nylon (ONy), polyethylene terephthalate. Thermoplastic resin film materials used for general packaging films such as (PET), polycarbonate (PC), polyimide, and polyether styrene (PES) can be used. As these thermoplastic resin films, a multilayer film produced by coextrusion with a different film, a multilayer film produced by bonding with different stretching angles, etc. can be used as required. Further, it is naturally possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties.

熱可塑性樹脂フィルムの場合は、蒸着法やコーティング法でバリア層を形成する必要がある。バリア層としては、例えば無機蒸着膜、金属箔が挙げられる。無機蒸着膜としては薄膜ハンドブックp879〜p901(日本学術振興会)、真空技術ハンドブックp502〜p509、p612、p810(日刊工業新聞社)、真空ハンドブック増訂版p132〜p134(ULVAC 日本真空技術K.K)に記載されている如き無機膜が挙げられる。例えば、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2、Cr23、Sixy(x=1、y=1.5〜2.0)、Ta23、ZrN、SiC、TiC、PSG、Si34、単結晶Si、アモルファスSi、W、等が用いられる。又、金属箔の材料としては、例えばアルミニウム、銅、ニッケルなどの金属材料や、ステンレス、アルミニウム合金などの合金材料を用いることが出来るが、加工性やコストの面でアルミニウムが好ましい。膜厚は、1〜100μm程度、好ましくは10μm〜50μm程度が望ましい。又、製造時の取り扱いを容易にするために、ポリエチレンテレフタレート、ナイロンなどのフィルムを予めラミネートしておいてもよい。可撓性封止部材に樹脂フィルムを使用する場合、液状シール剤と接触する側に熱可塑性接着性樹脂層を有することが好ましい。 In the case of a thermoplastic resin film, it is necessary to form a barrier layer by vapor deposition or coating. Examples of the barrier layer include an inorganic vapor deposition film and a metal foil. As inorganic vapor deposition films, thin film handbooks p879-p901 (Japan Society for the Promotion of Science), vacuum technology handbooks p502-p509, p612, p810 (Nikkan Kogyo Shimbun), vacuum handbook revised editions p132-p134 (ULVAC Nippon Vacuum Technology Inorganic films as described in (1). For example, In, Sn, Pb, Au , Cu, Ag, Al, Ti, a metal such as Ni, MgO, SiO, SiO 2, Al 2 O 3, GeO, NiO, CaO, BaO, Fe 2 O 3, Y 2 O 3 , TiO 2 , Cr 2 O 3 , Si x O y (x = 1, y = 1.5 to 2.0), Ta 2 O 3 , ZrN, SiC, TiC, PSG, Si 3 N 4 , single Crystalline Si, amorphous Si, W, etc. are used. Moreover, as a material of the metal foil, for example, a metal material such as aluminum, copper, or nickel, or an alloy material such as stainless steel or an aluminum alloy can be used, but aluminum is preferable in terms of workability and cost. The film thickness is about 1 to 100 μm, preferably about 10 to 50 μm. In order to facilitate handling during production, a film such as polyethylene terephthalate or nylon may be laminated in advance. When a resin film is used for the flexible sealing member, it is preferable to have a thermoplastic adhesive resin layer on the side in contact with the liquid sealing agent.

更に、バリア層の上に保護層を設けてもよい。保護層の膜厚は、バリア層の耐ストレスクラッキング性、耐電気的絶縁性、シール剤層として使用する場合は接着性(接着力、段差追従性)等を考慮し、100nm〜200μmが好ましい。保護層としてはJIS K 7210規定のメルトフローレートが5〜20g/10minである熱可塑性樹脂フィルムが好ましく、更に好ましくは、6〜15g/10min以下の熱可塑性樹脂フィルムを用いることが好ましい。これは、メルトフローレートが5(g/10min)以下の樹脂を用いると、各電極の取り出し電極の段差により生じる隙間部を完全に埋めることが出来ず、20(g/10min)以上の樹脂を用いると引っ張り強さや耐ストレスクラッキング性、加工性などが低下するためである。熱可塑性樹脂フィルムは、上記数値を満たすものであれば特に限定されるものではないが、例えば機能性包装材料の新展開株式会社東レリサーチセンター記載の高分子フィルムである低密度ポリエチレン(LDPE)、HDPE、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン、未延伸ポリプロピレン(CPP)、OPP、ONy、PET、セロハン、ポリビニルアルコール(PVA)、延伸ビニロン(OV)、エチレン−酢酸ビニル共重合体(EVOH)、エチレン−プロピレン共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、塩化ビニリデン(PVDC)等の使用が可能である。これらの熱可塑性樹脂フィルムの中で特にLDPE、LLDPE及びメタロセン触媒を使用して製造したLDPE、LLDPE、又、これらフィルムとHDPEフィルムの混合使用したフィルムを使用することが好ましい。   Further, a protective layer may be provided on the barrier layer. The thickness of the protective layer is preferably 100 nm to 200 μm in consideration of stress cracking resistance, electrical insulation resistance of the barrier layer, adhesiveness (adhesive force, step following ability), etc. when used as a sealing agent layer. As the protective layer, a thermoplastic resin film having a JIS K 7210 standard melt flow rate of 5 to 20 g / 10 min is preferable, and a thermoplastic resin film of 6 to 15 g / 10 min or less is more preferably used. This is because if a resin with a melt flow rate of 5 (g / 10 min) or less is used, the gap formed by the steps of the extraction electrode of each electrode cannot be completely filled, and a resin of 20 (g / 10 min) or more cannot be filled. This is because if used, the tensile strength, stress cracking resistance, workability and the like are lowered. The thermoplastic resin film is not particularly limited as long as it satisfies the above numerical values. For example, low-density polyethylene (LDPE), which is a polymer film described in Toray Research Center, Inc., a new development of functional packaging materials, HDPE, linear low density polyethylene (LLDPE), medium density polyethylene, unstretched polypropylene (CPP), OPP, ONy, PET, cellophane, polyvinyl alcohol (PVA), stretched vinylon (OV), ethylene-vinyl acetate copolymer ( EVOH), ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, vinylidene chloride (PVDC), and the like can be used. Among these thermoplastic resin films, it is particularly preferable to use LDPE, LLDPE produced by using LDPE, LLDPE and a metallocene catalyst, or a film using a mixture of these films and HDPE films.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

実施例1
次に示す条件でシート状被検査体としてセルロースアセテートプロピオネートフィルム(光学用フィルム)を製造した。
Example 1
A cellulose acetate propionate film (optical film) was produced as a sheet-like object under the following conditions.

(使用樹脂)
セルロースアセテートプロピオネート(アセチル基の置換度が1.38、プロピオニル基の置換度が1.30、数平均分子量80000、残留硫酸含有量(硫黄元素として)が50ppm)
(ペレットの作製)
セルロースアセテートプロピオネートを120℃で1時間乾燥空気中で熱処理し、乾燥空気中で室温まで放冷した。乾燥した後、下記の組成物をヘンシェルミキサーで混合後、押出し機を用い加熱してペレットを作製し放冷した。
(Used resin)
Cellulose acetate propionate (acetyl group substitution degree 1.38, propionyl group substitution degree 1.30, number average molecular weight 80000, residual sulfuric acid content (as sulfur element) 50 ppm)
(Preparation of pellets)
Cellulose acetate propionate was heat-treated in dry air at 120 ° C. for 1 hour and allowed to cool to room temperature in dry air. After drying, the following composition was mixed with a Henschel mixer and then heated using an extruder to produce pellets and allowed to cool.

(組成物)
セルロースアセテートプロピオネート 90質量部
グリセリントリベンゾエート 10質量部
チヌビン928(チバスペシャルティケミカルズ(株)製、紫外線吸収剤)
2質量部
IRGANOX1010(チバスペシャルティケミカルズ(株)製、酸化防止剤)
0.2質量部
GSY−P101(堺化学(株)製、酸化防止剤) 0.2質量部
スミライザーGS(住友化学(株)製、酸化防止剤) 0.2質量部
(セルロースアセテートプロピオネートフィルムの作製)
作製したペレットを熱風乾燥器を用いて105℃で2時間乾燥させて水分を除去した。この後、リップ幅1.5mのコートハンガータイプのTダイを有する単軸押出し機(三菱重工業株式会社製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン)を用い、冷却引取り部で冷却し回収部で巻き芯に巻き取り、膜厚80μm、長さ1000mのセルロースアセテートプロピオネートフィルムを作製した。尚、押出し条件としては、クリーン度クラス100の環境で、ペレットの溶融温度230℃、スクリュー回転40rpm/min、押出し量50kg/minで行った。
(Composition)
Cellulose acetate propionate 90 parts by mass Glycerin tribenzoate 10 parts by mass Tinuvin 928 (manufactured by Ciba Specialty Chemicals Co., Ltd., UV absorber)
2 parts by mass IRGANOX 1010 (manufactured by Ciba Specialty Chemicals, antioxidant)
0.2 parts by mass GSY-P101 (manufactured by Sakai Chemical Co., Ltd., antioxidant) 0.2 parts by mass Sumilizer GS (manufactured by Sumitomo Chemical Co., Ltd., antioxidant) 0.2 parts by mass (cellulose acetate propionate) Production of film)
The produced pellets were dried at 105 ° C. for 2 hours using a hot air dryer to remove moisture. Then, using a single screw extruder having a coat hanger type T die with a lip width of 1.5 m (Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide) A cellulose acetate propionate film having a film thickness of 80 μm and a length of 1000 m was prepared by winding it around a winding core at the collecting section. Extrusion conditions were performed in an environment of cleanliness class 100 at a pellet melting temperature of 230 ° C., screw rotation of 40 rpm / min, and extrusion rate of 50 kg / min.

(表面異物検査)
準備したセルロースアセテートプロピオネートフィルムの全長を、図1に示す異物検査装置で表1に示す様に支持部材とセルロースアセテートプロピオネートフィルムとの接点におけるセルロースアセテートプロピオネートフィルムの上の異物に照射される検査光の角度θ2(図3を参照)を変えて異物検出試験No.101〜105を行い、下記に示す評価ランクに従って評価した結果を表1に示す。照射される検査光の角度は支持部材と防湿フィルムの接点での法線に対する角度を示す。
(Surface foreign matter inspection)
The total length of the prepared cellulose acetate propionate film is converted into foreign matter on the cellulose acetate propionate film at the contact point between the support member and the cellulose acetate propionate film as shown in Table 1 using the foreign matter inspection apparatus shown in FIG. By changing the angle θ2 (see FIG. 3) of the inspection light to be irradiated, the foreign object detection test No. Table 1 shows the results of performing 101 to 105 and evaluating according to the evaluation rank shown below. The angle of the inspection light to be irradiated indicates an angle with respect to the normal line at the contact point between the support member and the moisture-proof film.

尚、異物検査条件は次の条件で行った。セルロースアセテートプロピオネートフィルムの搬送速度5m/minとし、検査光の走査速度は、10面のポリゴンミラーを回転数30000rpmで行った。支持部材は直径は260mmの図5(a)に示される支持部材を使用し、支持部材へのセルロースアセテートプロピオネートフィルムの抱き角θ4(図5を参照)を210°とした。検査光の光源は、素子としてガリウム砒素を使用し、波長408nmの半導体レーザ(直径12μm)をレーザ出力5mWとした。fθレンズの表面と接点との距離は10cmとし、平面鏡の反射面と接点との距離は10cmとした。平面鏡の高さを10mmとし、平面鏡の幅はセルロースアセテートプロピオネートフィルムの幅に対して100%とした。平面鏡の角度θ3(図3を参照)は照射される検査光の角度に合わせて配置した。検査光(レーザ光)の照射範囲は、接点での法線の接点からの下方向の距離W(図4を参照)を検査光(レーザ光)の径の10%とした。   The foreign matter inspection conditions were as follows. The conveyance speed of the cellulose acetate propionate film was set to 5 m / min, and the scanning speed of the inspection light was a 10-side polygon mirror at a rotational speed of 30000 rpm. The support member used was the support member shown in FIG. 5A having a diameter of 260 mm, and the holding angle θ4 (see FIG. 5) of the cellulose acetate propionate film to the support member was 210 °. As a light source for inspection light, gallium arsenide was used as an element, and a semiconductor laser having a wavelength of 408 nm (diameter: 12 μm) was set to have a laser output of 5 mW. The distance between the surface of the fθ lens and the contact point was 10 cm, and the distance between the reflecting surface of the plane mirror and the contact point was 10 cm. The height of the plane mirror was 10 mm, and the width of the plane mirror was 100% with respect to the width of the cellulose acetate propionate film. The angle θ3 (see FIG. 3) of the plane mirror was arranged according to the angle of the inspection light to be irradiated. The irradiation range of the inspection light (laser light) was such that the downward distance W (see FIG. 4) from the normal contact point at the contact point was 10% of the diameter of the inspection light (laser light).

光導棒の配設位置は、支持部材とセルロースアセテートプロピオネートフィルムの接点での法線に対して、0°(法線上に配設してあることを意味する)で、光導棒の中心と接点との距離は100mmとした。光導棒は、アクリル樹脂製で、幅はセルロースアセテートプロピオネートフィルムの幅に対して120%とした。光導棒の直径は、60mmのものを使用した。尚、検出された異物の高さに対する検証は、検出された箇所を(株)キーエンス製 デジタルマイクロスコープで測定して確認した。   The arrangement position of the light rod is 0 ° (meaning that the light rod is disposed on the normal line) with respect to the normal line at the contact point between the support member and the cellulose acetate propionate film. The distance from the contact point was 100 mm. The light rod was made of acrylic resin, and the width was 120% with respect to the width of the cellulose acetate propionate film. The diameter of the light rod was 60 mm. In addition, the verification with respect to the height of the detected foreign material was confirmed by measuring the detected location with a digital microscope manufactured by Keyence Corporation.

(異物検査の評価ランク)
○:異物の検出が出来た
△:異物の検出が不安定
×:異物の検出が不可能
(Evaluation rank for foreign matter inspection)
○: Foreign object detected △: Foreign object detection is unstable ×: Foreign object cannot be detected

Figure 2008107132
Figure 2008107132

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例2
(シート状被検査体の準備)
実施例1と同じ方法でセルロースアセテートプロピオネートフィルム(光学用フィルム)を製造した。
Example 2
(Preparation of sheet-like object to be inspected)
A cellulose acetate propionate film (optical film) was produced in the same manner as in Example 1.

(表面異物検査)
準備したセルロースアセテートプロピオネートフィルムの全長を、図1に示す異物検査装置で表2に示す様に受光部に使用する光導棒の設置位置を変えて異物検出試験No.201〜213を行い、実施例1と同じ評価ランクに従って評価した結果を表2に示す。
(Surface foreign matter inspection)
The total length of the prepared cellulose acetate propionate film was changed by changing the installation position of the light rod used in the light receiving part as shown in Table 2 in the foreign matter inspection apparatus shown in FIG. Table 2 shows the results of performing 201 to 213 and evaluating according to the same evaluation rank as in Example 1.

尚、異物検査条件は次の条件で行った。セルロースアセテートプロピオネートフィルムの搬送速度5m/minとし、検査光の走査速度は、10面のポリゴンミラーを回転数30000rpmで行った。支持部材の直径は260mmの図5(a)に示される支持部材を使用し、支持部材へのセルロースアセテートプロピオネートフィルムの抱き角θ4(図5を参照)を210°とした。検査光の光源は、素子としてガリウム砒素を使用し、波長408nmの半導体レーザ(直径12μm)をレーザ出力5mWとした。fθレンズの表面と接点との距離は10cmとし、平面鏡の反射面と接点との距離は10cmとした。平面鏡の高さを10mmとし、平面鏡の幅はセルロースアセテートプロピオネートフィルムの幅に対して100%とした。平面鏡の角度θ3(図3を参照)は照射される検査光の角度に合わせて配置した。検査光(レーザ光)の照射範囲は、接点での法線の接点からの下方向の距離Wを検査光(レーザ光)の径の10%とした。照射される検査光の角度θ2(図3を参照)は90°とした。尚、照射される検査光の角度は支持部材とセルロースアセテートプロピオネートフィルムの接点での法線に対する角度を示す。   The foreign matter inspection conditions were as follows. The conveyance speed of the cellulose acetate propionate film was set to 5 m / min, and the scanning speed of the inspection light was a 10-side polygon mirror at a rotational speed of 30000 rpm. The support member shown in FIG. 5A having a diameter of 260 mm was used, and the holding angle θ4 (see FIG. 5) of the cellulose acetate propionate film to the support member was 210 °. As a light source for inspection light, gallium arsenide was used as an element, and a semiconductor laser having a wavelength of 408 nm (diameter: 12 μm) was set to have a laser output of 5 mW. The distance between the surface of the fθ lens and the contact point was 10 cm, and the distance between the reflecting surface of the plane mirror and the contact point was 10 cm. The height of the plane mirror was 10 mm, and the width of the plane mirror was 100% with respect to the width of the cellulose acetate propionate film. The angle θ3 (see FIG. 3) of the plane mirror was arranged according to the angle of the inspection light to be irradiated. The irradiation range of the inspection light (laser light) was such that the downward distance W from the normal contact point at the contact point was 10% of the diameter of the inspection light (laser light). The angle θ2 of the irradiated inspection light (see FIG. 3) was 90 °. In addition, the angle of the test | inspection light irradiated shows the angle with respect to the normal line in the contact point of a supporting member and a cellulose acetate propionate film.

光導棒は、アクリル樹脂製で、幅はセルロースアセテートプロピオネートフィルムの幅に対して120%とした。光導棒の直径は、60mmのものを使用した。尚、検出された異物の高さに対する検証は、検出された箇所を(株)キーエンス製 デジタルマイクロスコープで測定して確認した。   The light rod was made of acrylic resin, and the width was 120% with respect to the width of the cellulose acetate propionate film. The diameter of the light rod was 60 mm. In addition, the verification with respect to the height of the detected foreign material was confirmed by measuring the detected location with a digital microscope manufactured by Keyence Corporation.

Figure 2008107132
Figure 2008107132

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例3
(シート状被検査体の準備)
実施例1と同じ方法でセルロースアセテートプロピオネートフィルム(光学用フィルム)を製造した。
Example 3
(Preparation of sheet-like object to be inspected)
A cellulose acetate propionate film (optical film) was produced in the same manner as in Example 1.

(表面異物検査)
準備したセルロースアセテートプロピオネートフィルムの全長を、図1に示す異物検査装置で図4に示す検査光の照射範囲(接点での法線の接点から下方向の距離W)を表3に示す様に変えて異物検出試験No.301〜307を行い、実施例1と同じ評価ランクに従って評価した結果を表3に示す。尚、接点での法線の接点から下方向の距離Wは、検査光(レーザ光)の径に対する割合(%)を示す。
(Surface foreign matter inspection)
Table 3 shows the entire length of the prepared cellulose acetate propionate film, and the irradiation range (downward distance W from the normal contact point at the contact point) shown in FIG. 4 with the foreign substance inspection apparatus shown in FIG. The foreign matter detection test No. Table 3 shows the results of performing 301 to 307 and evaluating according to the same evaluation rank as in Example 1. Note that the downward distance W from the normal contact point at the contact point indicates a ratio (%) to the diameter of the inspection light (laser light).

尚、異物検査条件は次の条件で行った。セルロースアセテートプロピオネートフィルムの搬送速度5m/minとし、検査光の走査速度は、10面のポリゴンミラーを回転数30000rpmで行った。支持部材の直径は260mmの図5(a)に示される支持部材を使用し、支持部材へのセルロースアセテートプロピオネートフィルムの抱き角θ4(図5を参照)を210°とした。検査光の光源は、素子としてガリウム砒素を使用し、波長408nmの半導体レーザ(直径12μm)をレーザ出力5mWとした。fθレンズの表面と接点との距離は10cmとし、平面鏡の反射面と接点との距離は10cmとした。平面鏡の高さを10mmとし、平面鏡の幅はセルロースアセテートプロピオネートフィルムの幅に対して100%とした。平面鏡の角度θ3(図3を参照)は照射される検査光の角度に合わせて配置した。照射される検査光の角度θ2(図3を参照)は90°とした。尚、照射される検査光の角度は支持部材とセルロースアセテートプロピオネートフィルムの接点での法線に対する角度を示す。光導棒の配設位置は、支持部材とセルロースアセテートプロピオネートフィルムの接点での法線に対して、0°(法線上に配設してあることを意味する)で、光導棒の中心と接点との距離は100mmとした。光導棒は、アクリル樹脂製で、幅はセルロースアセテートプロピオネートフィルムの幅に対して120%とした。光導棒の直径は、60mmのものを使用した。尚、検出された異物の高さに対する検証は、検出された箇所を(株)キーエンス製 デジタルマイクロスコープで測定して確認した。   The foreign matter inspection conditions were as follows. The conveyance speed of the cellulose acetate propionate film was set to 5 m / min, and the scanning speed of the inspection light was a 10-side polygon mirror at a rotational speed of 30000 rpm. The support member shown in FIG. 5A having a diameter of 260 mm was used, and the holding angle θ4 (see FIG. 5) of the cellulose acetate propionate film to the support member was 210 °. As a light source for inspection light, gallium arsenide was used as an element, and a semiconductor laser having a wavelength of 408 nm (diameter: 12 μm) was set to have a laser output of 5 mW. The distance between the surface of the fθ lens and the contact point was 10 cm, and the distance between the reflecting surface of the plane mirror and the contact point was 10 cm. The height of the plane mirror was 10 mm, and the width of the plane mirror was 100% with respect to the width of the cellulose acetate propionate film. The angle θ3 (see FIG. 3) of the plane mirror was arranged according to the angle of the inspection light to be irradiated. The angle θ2 of the irradiated inspection light (see FIG. 3) was 90 °. In addition, the angle of the test | inspection light irradiated shows the angle with respect to the normal line in the contact point of a supporting member and a cellulose acetate propionate film. The arrangement position of the light rod is 0 ° (meaning that the light rod is disposed on the normal line) with respect to the normal line at the contact point between the support member and the cellulose acetate propionate film. The distance from the contact point was 100 mm. The light rod was made of acrylic resin, and the width was 120% with respect to the width of the cellulose acetate propionate film. The diameter of the light rod was 60 mm. In addition, the verification with respect to the height of the detected foreign material was confirmed by measuring the detected location with a digital microscope manufactured by Keyence Corporation.

Figure 2008107132
Figure 2008107132

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例4
(シート状被検査体の準備)
厚さ12μm、幅1000mm、長さ500mのPETフィルムを基材とし、防湿層として厚さ6μmのアルミ箔を接着剤で貼着した防湿フィルムを準備した。尚、アルミ箔の接着は、クリーン度クラス100の環境で行った。
Example 4
(Preparation of sheet-like object to be inspected)
A moisture-proof film was prepared in which a PET film having a thickness of 12 μm, a width of 1000 mm, and a length of 500 m was used as a base material and an aluminum foil having a thickness of 6 μm was adhered as an moisture-proof layer with an adhesive. The aluminum foil was bonded in an environment of cleanliness class 100.

(表面異物検査)
準備した防湿フィルムの防湿層の全長を、図1に示す異物検査装置で表4に示す様に支持部材と防湿フィルムとの接点における防湿フィルムの上の異物に照射される検査光の角度θ2(図3を参照)を変えて異物検出試験No.401〜405を行い、実施例1と同じ評価ランクに従って評価した結果を表4に示す。照射される検査光の角度は支持部材と防湿フィルムの接点での法線に対する角度を示す。
(Surface foreign matter inspection)
As shown in Table 4, the entire length of the moisture-proof layer of the prepared moisture-proof film is measured by using the foreign substance inspection apparatus shown in Table 4 as follows. (See FIG. 3) Table 4 shows the results of performing 401 to 405 and evaluating according to the same evaluation rank as in Example 1. The angle of the inspection light to be irradiated indicates an angle with respect to the normal line at the contact point between the support member and the moisture-proof film.

尚、異物検査条件は次の条件で行った。防湿フィルムの搬送速度5m/minとし、検査光の走査速度は、10面のポリゴンミラーを回転数30000rpmで行った。支持部材の直径は260mmの図5(a)に示される支持部材を使用し、支持部材への防湿フィルムの抱き角θ4(図5を参照)を210°とした。検査光の光源は、素子としてガリウム砒素を使用し、波長405nmの半導体レーザ(直径12μm)をレーザ出力5mWとした。fθレンズの表面と接点との距離は10cmとし、平面鏡の反射面と接点との距離は10cmとした。平面鏡の高さを10mmとし、平面鏡の幅は防湿フィルムの幅に対して100%とした。平面鏡の角度θ3(図3を参照)は照射される検査光の角度に合わせて配置した。検査光(レーザ光)の照射範囲は、接点での法線の接点からの下方向の距離Wを検査光(レーザ光)の径の1%とした。   The foreign matter inspection conditions were as follows. The conveyance speed of the moisture-proof film was 5 m / min, and the scanning speed of the inspection light was 10 polygon mirrors rotated at 30000 rpm. The support member shown in FIG. 5A having a diameter of 260 mm was used, and the holding angle θ4 (see FIG. 5) of the moisture-proof film to the support member was 210 °. As a light source for inspection light, gallium arsenide was used as an element, and a semiconductor laser having a wavelength of 405 nm (diameter: 12 μm) was set to a laser output of 5 mW. The distance between the surface of the fθ lens and the contact point was 10 cm, and the distance between the reflecting surface of the plane mirror and the contact point was 10 cm. The height of the plane mirror was 10 mm, and the width of the plane mirror was 100% with respect to the width of the moisture-proof film. The angle θ3 (see FIG. 3) of the plane mirror was arranged according to the angle of the inspection light to be irradiated. The irradiation range of the inspection light (laser light) was such that the downward distance W from the normal contact point at the contact point was 1% of the diameter of the inspection light (laser light).

光導棒の配設位置は、支持部材と防湿フィルムの接点での法線に対して、0°(法線上に配設してあることを意味する)で、光導棒の中心と接点との距離は80mmとした。光導棒は、アクリル樹脂製で、幅は防湿フィルムの幅に対して120%とした。光導棒の直径は、60mmのものを使用した。尚、検出された異物の高さに対する検証は、検出された箇所を(株)キーエンス製 デジタルマイクロスコープで測定して確認した。   The arrangement position of the light rod is 0 ° (meaning that it is disposed on the normal line) with respect to the normal line at the contact point between the support member and the moisture-proof film, and the distance between the center of the light beam and the contact point. Was 80 mm. The light rod is made of acrylic resin, and the width is 120% with respect to the width of the moisture-proof film. The diameter of the light rod was 60 mm. In addition, the verification with respect to the height of the detected foreign material was confirmed by measuring the detected location with a digital microscope manufactured by Keyence Corporation.

Figure 2008107132
Figure 2008107132

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例5
(シート状被検査体の準備)
実施例4と同じ方法で同じ帯状の防湿フィルムを製造した。
Example 5
(Preparation of sheet-like object to be inspected)
The same band-shaped moisture-proof film was produced in the same manner as in Example 4.

(表面異物検査)
準備した防湿フィルムの防湿層の全長を、図1に示す異物検査装置で表5に示す様に受光部に使用する光導棒の設置位置を変えて異物検出試験No.501〜513を行い、実施例1と同じ評価ランクに従って評価した結果を表5に示す。
(Surface foreign matter inspection)
The total length of the moisture-proof layer of the prepared moisture-proof film was changed by changing the installation position of the light rod used in the light receiving part as shown in Table 5 in the foreign substance inspection apparatus shown in FIG. Table 5 shows the results of evaluation in accordance with the same evaluation rank as in Example 1 after performing 501 to 513.

尚、異物検査条件は次の条件で行った。防湿フィルムの搬送速度5m/minとし、検査光の走査速度は、10面のポリゴンミラーを回転数30000rpmで行った。支持部材の直径は260mmの図5(a)に示される支持部材を使用し、支持部材への防湿フィルムの抱き角θ4(図5を参照)を210°とした。検査光の光源は、素子としてガリウム砒素を使用し、波長405nmの半導体レーザ(直径12μm)をレーザ出力5mWとした。fθレンズの表面と接点との距離は10cmとし、平面鏡の反射面と接点との距離は10cmとした。平面鏡の高さを10mmとし、平面鏡の幅は防湿フィルムの幅に対して100%とした。平面鏡の角度θ3(図3を参照)は照射される検査光の角度に合わせて配置した。検査光(レーザ光)の照射範囲は、接点での法線の接点からの下方向の距離Wを検査光(レーザ光)の径の2%とした。照射される検査光の角度θ2(図3を参照)は90°とした。尚、照射される検査光の角度は支持部材と防湿フィルムの接点での法線に対する角度を示す。光導棒は、アクリル樹脂製で、幅は防湿フィルムの幅に対して120%とした。光導棒の直径は、60mmのものを使用した。尚、検出された異物の高さに対する検証は、検出された箇所を(株)キーエンス製 デジタルマイクロスコープで測定して確認した。   The foreign matter inspection conditions were as follows. The conveyance speed of the moisture-proof film was 5 m / min, and the scanning speed of the inspection light was 10 polygon mirrors rotated at 30000 rpm. The support member shown in FIG. 5A having a diameter of 260 mm was used, and the holding angle θ4 (see FIG. 5) of the moisture-proof film to the support member was 210 °. As a light source for inspection light, gallium arsenide was used as an element, and a semiconductor laser having a wavelength of 405 nm (diameter: 12 μm) was set to a laser output of 5 mW. The distance between the surface of the fθ lens and the contact point was 10 cm, and the distance between the reflecting surface of the plane mirror and the contact point was 10 cm. The height of the plane mirror was 10 mm, and the width of the plane mirror was 100% with respect to the width of the moisture-proof film. The angle θ3 (see FIG. 3) of the plane mirror was arranged according to the angle of the inspection light to be irradiated. The irradiation range of the inspection light (laser light) was such that the downward distance W from the normal contact point at the contact point was 2% of the diameter of the inspection light (laser light). The angle θ2 of the irradiated inspection light (see FIG. 3) was 90 °. In addition, the angle of the test | inspection light irradiated shows the angle with respect to the normal line in the contact point of a support member and a moisture-proof film. The light rod is made of acrylic resin, and the width is 120% with respect to the width of the moisture-proof film. The diameter of the light rod was 60 mm. In addition, the verification with respect to the height of the detected foreign material was confirmed by measuring the detected location with a digital microscope manufactured by Keyence Corporation.

Figure 2008107132
Figure 2008107132

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

異物検査装置の模式図である。It is a schematic diagram of a foreign material inspection apparatus. 図1の概略平面図である。FIG. 2 is a schematic plan view of FIG. 1. 図1のD−D′に沿った概略断面図である。It is a schematic sectional drawing in alignment with DD 'of FIG. 図2のZで示される部分の拡大概略図である。FIG. 3 is an enlarged schematic view of a portion indicated by Z in FIG. 2. 断面形状が異なる支持部材で支持されたシート状被検査体の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the sheet-like to-be-inspected object supported by the supporting member from which cross-sectional shape differs.

符号の説明Explanation of symbols

1 異物検査装置
101 照射部
101a 光源
101b ポリゴンミラー
101c fθレンズ
101d 平面鏡
102 受光部
102a 光導棒
102b 光電子倍増管
103 画像処理部
2、2′ 支持部材
3、3′ シート状被検査体
4 異物
5 接点
θ1、θ2、θ3 角度
θ4、θ4′ 角度(抱き角)
S、T、U、W、X 距離
V 径
DESCRIPTION OF SYMBOLS 1 Foreign substance inspection apparatus 101 Irradiation part 101a Light source 101b Polygon mirror 101c f (theta) lens 101d Plane mirror 102 Light receiving part 102a Light guide rod 102b Photomultiplier tube 103 Image processing part 2, 2 'Support member 3, 3' Sheet-like to-be-inspected object 4 Foreign object 5 Contact θ1, θ2, θ3 angles θ4, θ4 'angles (holding angles)
S, T, U, W, X Distance V Diameter

Claims (12)

支持部材により支持され連続的に搬送されるシート状被検査体の表面の異物を、照射部と、受光部と、画像処理部とを有する異物検査装置を使用し、前記異物を検査する異物検査方法において、
前記照射部は光源部と、走査部とを有し、
前記光源部からの検査光を、前記走査部により、前記支持部材と前記シート状被検査体との接点での法線に対して角度80°〜90°で、前記支持部材と前記シート状被検査体との接線方向に照射し、
前記異物に照射され散乱した前記検査光の散乱光を前記受光部で受光し、
前記受光部の情報を、前記画像処理部により解析することを特徴とする異物検査方法。
Foreign matter inspection for inspecting foreign matter using a foreign matter inspection device having an irradiation unit, a light receiving unit, and an image processing unit for foreign matter on the surface of a sheet-like object to be inspected that is supported and supported continuously by a support member In the method
The irradiation unit has a light source unit and a scanning unit,
Inspection light from the light source unit is scanned by the scanning unit at an angle of 80 ° to 90 ° with respect to a normal line at a contact point between the support member and the sheet-like object to be inspected. Irradiate in the direction tangential to the specimen,
The scattered light of the inspection light irradiated and scattered on the foreign matter is received by the light receiving unit,
A foreign matter inspection method, wherein information of the light receiving unit is analyzed by the image processing unit.
前記走査部は光源部からの検査光を、支持部材とシート状被検査体との接点を基準として、該検査光の直径の1%〜30%が、該接点での法線の下方向を照射する様に、接線方向に照射し走査することを特徴とする請求項1に記載の異物検査方法。 The scanning unit uses the inspection light from the light source unit as a reference with respect to the contact point between the support member and the sheet-like object to be tested, and 1% to 30% of the diameter of the inspection light is below the normal line at the contact point 2. The foreign matter inspection method according to claim 1, wherein irradiation is performed in a tangential direction so as to perform irradiation. 前記走査部は、光源部からの検査光を平行光に変換する平行光変換手段と、該検査光の照射方向の対面に、該検査光の照射角度と同じ角度で配置された光学的反射手段とを有し、該光学的反射手段は支持部材とシート状被検査体との接点を通過し、該平行光変換手段で変換された検査光を、接線方向に反射させる様に構成されていることを特徴とする請求項1又は2に記載の異物検査方法。 The scanning unit includes a parallel light conversion unit that converts inspection light from the light source unit into parallel light, and an optical reflection unit that is disposed on the opposite side of the inspection light irradiation direction at the same angle as the irradiation angle of the inspection light. The optical reflecting means passes through the contact point between the support member and the sheet-like object to be inspected and is configured to reflect the inspection light converted by the parallel light converting means in the tangential direction. The foreign matter inspection method according to claim 1 or 2. 前記受光部は、光導棒と光受光素子とを有し、該光導棒は支持部材とシート状被検査体との接点での法線に対して、−60°〜+60°の範囲で、該接点の上部に10mm〜250mmの位置に配設されていることを特徴とする請求項1から3の何れか1項に記載の異物検査方法。 The light receiving unit includes a light guide and a light receiving element, and the light guide is in a range of −60 ° to + 60 ° with respect to a normal line at a contact point between the support member and the sheet-like object to be inspected. The foreign matter inspection method according to any one of claims 1 to 3, wherein the foreign matter inspection method is disposed at a position of 10 mm to 250 mm above the contact. 前記検査光がレーザ光であり、平行光変換手段により平行光に変換されていることを特徴とする請求項1から4の何れか1項に記載の異物検査方法。 The foreign matter inspection method according to claim 1, wherein the inspection light is laser light and is converted into parallel light by parallel light conversion means. 前記異物の高さが、0.02μm〜10μmであることを特徴とする請求項1から5の何れか1項に記載の異物検査方法。 The foreign matter inspection method according to claim 1, wherein a height of the foreign matter is 0.02 μm to 10 μm. 支持部材により支持され連続的に搬送されるシート状被検査体の表面の異物を検査する、検査光の照射部と、受光部と、画像処理部とを有する異物検査装置において、
前記照射部は光源部と、走査部とを有し、
前記光源部からの検査光を、前記走査部により、前記支持部材と前記シート状被検査体との接点での法線に対して角度80°〜90°で、前記支持部材と前記シート状被検査体との接線方向に前記検査光を照射する様に走査し、
前記異物に照射され散乱した前記検査光の散乱光を前記受光部で受光し、
前記受光部の情報を、前記画像処理部により解析することを特徴とする異物検査装置。
In a foreign matter inspection apparatus having an inspection light irradiation unit, a light receiving unit, and an image processing unit that inspects foreign matter on the surface of a sheet-like object to be inspected that is supported and supported continuously by a support member.
The irradiation unit has a light source unit and a scanning unit,
Inspection light from the light source unit is scanned by the scanning unit at an angle of 80 ° to 90 ° with respect to a normal line at a contact point between the support member and the sheet-like object to be inspected. Scan to irradiate the inspection light in the tangential direction with the inspection object,
The scattered light of the inspection light irradiated and scattered on the foreign matter is received by the light receiving unit,
A foreign matter inspection apparatus, wherein the information of the light receiving unit is analyzed by the image processing unit.
前記走査部で検査光を、支持部材とシート状被検査体との接点を基準として、該検査光の直径の1%〜30%が、該接点での法線の下方向を照射する様に、接線方向に照射し走査することを特徴とする請求項7に記載の異物検査装置。 With respect to the inspection light at the scanning unit, 1% to 30% of the diameter of the inspection light is irradiated in the downward direction of the normal line at the contact point with respect to the contact point between the support member and the sheet-like object to be inspected. The foreign matter inspection apparatus according to claim 7, wherein irradiation is performed in a tangential direction and scanning is performed. 前記走査部は、光源部からの検査光を平行光に変換する平行光変換手段と、該検査光の照射方向の対面に、該検査光の照射角度と同じ角度で配置された光学的反射手段とを有し、
該光学的反射手段は支持部材とシート状被検査体との接点を通過し、該平行光変換手段で変換された検査光を、接線方向に反射させる様に構成されていることを特徴とする請求項7又は8に記載の異物検査装置。
The scanning unit includes a parallel light conversion unit that converts inspection light from the light source unit into parallel light, and an optical reflection unit that is disposed on the opposite side of the inspection light irradiation direction at the same angle as the irradiation angle of the inspection light. And
The optical reflecting means passes through a contact point between the support member and the sheet-like object to be inspected, and is configured to reflect inspection light converted by the parallel light converting means in a tangential direction. The foreign matter inspection apparatus according to claim 7 or 8.
前記受光部は、光導棒と光受光素子とを有し、該光導棒は支持部材とシート状被検査体との接点での法線に対して、−60°〜+60°の範囲で該接点の上部に10mm〜250mmの位置に配設されていることを特徴とする請求項7から9の何れか1項に記載の異物検査装置。 The light receiving portion includes a light guide and a light receiving element, and the light guide is in the range of −60 ° to + 60 ° with respect to the normal line at the contact between the support member and the sheet-like object to be inspected. The foreign matter inspection device according to claim 7, wherein the foreign matter inspection device is disposed at a position of 10 mm to 250 mm in an upper portion of the head. 前記検査光がレーザ光であることを特徴とする請求項7から10の何れか1項に記載の異物検査装置。 The foreign matter inspection apparatus according to claim 7, wherein the inspection light is laser light. 前記異物の高さが、0.02μm〜10μmであることを特徴とする請求項7から11の何れか1項に記載の異物検査装置。 The foreign object inspection apparatus according to claim 7, wherein a height of the foreign object is 0.02 μm to 10 μm.
JP2006288436A 2006-10-24 2006-10-24 Foreign matter inspection method and foreign matter inspection system Pending JP2008107132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288436A JP2008107132A (en) 2006-10-24 2006-10-24 Foreign matter inspection method and foreign matter inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288436A JP2008107132A (en) 2006-10-24 2006-10-24 Foreign matter inspection method and foreign matter inspection system

Publications (1)

Publication Number Publication Date
JP2008107132A true JP2008107132A (en) 2008-05-08

Family

ID=39440607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288436A Pending JP2008107132A (en) 2006-10-24 2006-10-24 Foreign matter inspection method and foreign matter inspection system

Country Status (1)

Country Link
JP (1) JP2008107132A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256539A (en) * 2007-04-05 2008-10-23 Konica Minolta Holdings Inc Optical measuring device and optical measuring method
JP2010537219A (en) * 2008-02-19 2010-12-02 エスエヌユー プレシジョン カンパニー,リミテッド Dark field inspection device
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2015184053A (en) * 2014-03-20 2015-10-22 バンドー化学株式会社 Surface monitoring device, cleaning device, and transport device
WO2015184086A1 (en) * 2014-05-29 2015-12-03 Corning Incorporated Method for particle detection on flexible substrates
JP2018162504A (en) * 2017-03-27 2018-10-18 住友金属鉱山株式会社 Foreign matter detection method of long-sized belt
JP7343781B2 (en) 2020-01-22 2023-09-13 日本製鉄株式会社 Metal plate surface defect inspection equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256539A (en) * 2007-04-05 2008-10-23 Konica Minolta Holdings Inc Optical measuring device and optical measuring method
JP2010537219A (en) * 2008-02-19 2010-12-02 エスエヌユー プレシジョン カンパニー,リミテッド Dark field inspection device
US8223326B2 (en) 2008-02-19 2012-07-17 Snu Precision Co., Ltd. Dark-field examination device
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
JP2015184053A (en) * 2014-03-20 2015-10-22 バンドー化学株式会社 Surface monitoring device, cleaning device, and transport device
WO2015184086A1 (en) * 2014-05-29 2015-12-03 Corning Incorporated Method for particle detection on flexible substrates
CN106461571A (en) * 2014-05-29 2017-02-22 康宁股份有限公司 Method for particle detection on flexible substrates
US9588056B2 (en) 2014-05-29 2017-03-07 Corning Incorporated Method for particle detection on flexible substrates
JP2018162504A (en) * 2017-03-27 2018-10-18 住友金属鉱山株式会社 Foreign matter detection method of long-sized belt
JP7343781B2 (en) 2020-01-22 2023-09-13 日本製鉄株式会社 Metal plate surface defect inspection equipment

Similar Documents

Publication Publication Date Title
JP2008107132A (en) Foreign matter inspection method and foreign matter inspection system
TWI354956B (en)
KR102522383B1 (en) Method for producing optical display panel and system for producing optical display panel
US7705978B2 (en) Method and apparatus for inspection of multi-junction solar cells
TW201113598A (en) Method and system for continuously manufacturing liquid-crystal display element
TW201005334A (en) Material roll set and method of manufacturing material roll
JP2011226957A (en) Defect inspection method and defect inspection device of polarizing plate
WO2009125684A1 (en) Optical display device manufacturing method
JP2008058270A (en) Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
WO2015182541A1 (en) Laminated polarizing film defect inspection method, production method, and production device
JP2008175940A (en) Method of marking defect of optical film
EP2899515A1 (en) Terahertz-wave detection element, production method therefor, joined body, and observation device
KR101965028B1 (en) Optical film manufacturing device and bonding system
JP2021135219A5 (en)
JP5181125B2 (en) Optical display unit inspection method and optical display unit manufacturing method using the inspection method
JP2008107131A (en) Foreign matter inspection method and foreign matter inspection system
JP2013253906A (en) Inspection method and inspection device of web conveyance material
JP2012194509A (en) System for continuously manufacturing liquid crystal display panel, method for continuously manufacturing liquid crystal display panel, inspection device, and inspection method
JP2019109532A (en) Method for manufacturing optical display panel and system for manufacturing optical display panel
JP2013140061A (en) Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
TWI634226B (en) Optical inspection system, processing system for processing of a material on a flexible substrate, and methods of inspecting a flexible substrate
JP5866691B2 (en) Inspection method for surface defects of transparent resin film
KR101774623B1 (en) Method for manufacturing liquid-crystal display element and system for manufacturing liquid-crystal display element
JP2010127910A (en) Film inspecting device, translucent film manufacturing apparatus equipped therewith, film inspecting method, and translucent film manufacturing method using the same
JP2017067664A (en) Method of inspecting polarizer and method for producing polarizing plate