JP2008106341A - Aluminum alloy foam for energy-absorbing member - Google Patents

Aluminum alloy foam for energy-absorbing member Download PDF

Info

Publication number
JP2008106341A
JP2008106341A JP2006292850A JP2006292850A JP2008106341A JP 2008106341 A JP2008106341 A JP 2008106341A JP 2006292850 A JP2006292850 A JP 2006292850A JP 2006292850 A JP2006292850 A JP 2006292850A JP 2008106341 A JP2008106341 A JP 2008106341A
Authority
JP
Japan
Prior art keywords
aluminum alloy
foam
alloy foam
aluminum
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006292850A
Other languages
Japanese (ja)
Other versions
JP4695052B2 (en
Inventor
Moriyoshi Kanamaru
守賀 金丸
Katsuyuki Yoshikawa
克之 吉川
Seishi Furuta
誠矢 古田
Takeshi Hamada
猛 濱田
Hidekatsu Kanehashi
秀豪 金橋
Yasuhiro Ariga
康博 有賀
Toshiaki Takagi
敏晃 高木
Tetsuji Miyoshi
鉄二 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2006292850A priority Critical patent/JP4695052B2/en
Publication of JP2008106341A publication Critical patent/JP2008106341A/en
Application granted granted Critical
Publication of JP4695052B2 publication Critical patent/JP4695052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy foam in which more deformation progresses in a state of a plateau stress being kept low and can provide excellent protection properties for pedestrians (leg). <P>SOLUTION: The aluminum alloy foam which is installed in front of a bumper beam and is suitable for an energy-absorbing member such as a protection member for pedestrians is produced by foaming an aluminum alloy comprising, by mass%, 0.5 to 20.0% Zn, 0.1 to 5.0% Ca, 0.1 to 5.0% Ti, 0.1 to 5.0% Mg, further at least one element of 0.1 to 5.0% Ag and 0.1 to 5.0% Zr, and the balance aluminum with unavoidable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車などにエネルギ吸収部材として用いられるアルミニウム合金発泡体に関するものである。本発明が対象とするエネルギ吸収部材は、例えば、自動車バンパビーム前面側に設けられた歩行者保護部材など、自動車と歩行者などの衝突時に、圧縮の衝撃荷重を受けて変形して、衝撃エネルギを吸収する、衝撃エネルギ吸収部材(エネルギ吸収部材)である。なお、アルミニウム合金発泡体を、以下、発泡アルミニウムとも言う。   The present invention relates to an aluminum alloy foam used as an energy absorbing member in automobiles and the like. The energy absorbing member targeted by the present invention is deformed by receiving a compressive impact load in the event of a collision between an automobile and a pedestrian, such as a pedestrian protection member provided on the front side of an automobile bumper beam. It is an impact energy absorbing member (energy absorbing member) that absorbs. Hereinafter, the aluminum alloy foam is also referred to as foamed aluminum.

自動車などの衝撃エネルギ吸収部材(クラッシュボックス)として、通常、自動車の構造部材には、閉断面を有する鋼製の中空部材が汎用されている。鋼製の中空部材は、軸方向や断面方向の圧縮の衝撃入力を受けると潰れ変形して、その衝撃エネルギを吸収する。この際、限られた変形量で、より大きなエネルギを吸収可能とするには、部材の寸法や肉厚を大きくすることが有効である。しかし、これは鋼製中空部材の体積や重量の増加を招いてしまい、燃費が悪化したり車両同士の衝突時における相手車両に与えるダメージが大きくなったりして好ましくない。また、軟鋼板に代わって、高強度鋼板(ハイテン)を使用して、鋼製中空部材の体積や重量の増加を抑制することも実際に行なわれているが、高強度鋼板は成形性が劣るため、部材形状が制約を受けることや、成形工程が増加することといった不都合がある。   As an impact energy absorbing member (crash box) for an automobile or the like, a steel hollow member having a closed cross section is generally used as a structural member of an automobile. The steel hollow member is crushed and deformed to absorb the impact energy when it receives a compression impact input in the axial direction or the cross-sectional direction. At this time, in order to be able to absorb a larger amount of energy with a limited amount of deformation, it is effective to increase the size and thickness of the member. However, this leads to an increase in the volume and weight of the steel hollow member, which is not preferable because fuel consumption deteriorates and damage to the opponent vehicle at the time of collision between vehicles increases. Moreover, in place of a mild steel plate, a high-strength steel plate (HITEN) is used to suppress an increase in the volume and weight of the steel hollow member, but the high-strength steel plate is inferior in formability. Therefore, there are inconveniences such that the member shape is restricted and the molding process is increased.

これに対して、近年では、これら衝撃エネルギ吸収部材として、リサイクル性の良好な発泡アルミニウムなどの発泡金属が注目されている。このクラッシュボックスは、発泡アルミニウムを角柱状の形状としたものである。そして、この角柱軸芯方向を衝突方向に一致させるように配置し、衝突時に圧縮応力を受けて圧壊することにより衝突エネルギを吸収し、乗員や構造体への衝撃を減少させるようにしたものである。   On the other hand, in recent years, foam metal such as foam aluminum having good recyclability has attracted attention as these impact energy absorbing members. This crash box is made of foamed aluminum in a prismatic shape. And this prismatic axis direction is arranged to coincide with the collision direction, and it absorbs the collision energy by receiving the compressive stress and collapsing at the time of collision, and reduces the impact on the occupant and the structure. is there.

このような発泡アルミニウムを用いたクラッシュボックスへの適用例としては、自動車車体のサイドメンバなどの構造部材として、断面形状が略円形状あるいは多角形状をなす鋼製の管体の中空部に、発泡アルミニウムを充填したものが知られている(特許文献1、2、3、4、5参照)。   As an application example to such a crash box using aluminum foam, as a structural member such as a side member of an automobile body, foaming is performed in a hollow portion of a steel tube having a substantially circular or polygonal cross-sectional shape. What filled aluminum is known (refer patent documents 1, 2, 3, 4, 5).

これは、一定の反力を示しつつ圧縮変形する発泡アルミニウムの特性を利用したものであって、管体の圧縮変形を制御することによって、衝撃エネルギの吸収能を高めることが可能になる。   This utilizes the characteristic of foamed aluminum that compresses and deforms while exhibiting a constant reaction force. By controlling the compressive deformation of the tubular body, it is possible to increase the ability to absorb impact energy.

更に、発泡アルミニウム自体の衝撃エネルギ吸収能を高めるために、アルミニウム組成として、重量%で、Cu:0.1〜7%、Ca:0.2〜5%、Zn:0.1〜10%、Mg:0.1〜20%、Ti:0.1〜5%からなる群の1種又は2種以上を含み、残部がアルミニウム及び不可避的不純物からなるアルミニウム合金が、相対密度が0.20以下、平均気泡粒径が3.7mm以下とともに提案されている(特許文献6、7参照)。   Furthermore, in order to increase the impact energy absorption capacity of the foamed aluminum itself, the aluminum composition is, by weight, Cu: 0.1-7%, Ca: 0.2-5%, Zn: 0.1-10%, An aluminum alloy containing one or more of the group consisting of Mg: 0.1 to 20% and Ti: 0.1 to 5%, with the balance being aluminum and inevitable impurities, has a relative density of 0.20 or less The average cell diameter is 3.7 mm or less (see Patent Documents 6 and 7).

ところが、上記したような鋼製の管体や中空部材の中空部に発泡アルミニウムを充填したタイプのクラッシュボックスは、その皮材としての鋼製の管体や中空部材によって、初期瞬間応力、即ち、荷重−変位関係(特性)における最大荷重が高くなるとともに、プラトー応力(圧縮変形の際の圧縮応力)の安定性にも欠けるという問題がある。このため、実際問題として、発泡アルミニウム自体の衝撃エネルギ吸収性を活かし得ていない。   However, the crush box of the type in which foamed aluminum is filled in the hollow portion of the steel pipe body or hollow member as described above has an initial instantaneous stress, that is, by the steel pipe body or hollow member as its skin material, that is, There is a problem that the maximum load in the load-displacement relationship (characteristic) becomes high and the stability of the plateau stress (compressive stress at the time of compressive deformation) is lacking. For this reason, as a practical problem, the impact energy absorption property of the foamed aluminum itself cannot be utilized.

このため、発泡アルミニウム単体のクラッシュボックスとして、軽量である利点を活かして、中高速衝突でも、低速衝突時と同様に、衝突エネルギの吸収ができ、現在使用されている高張力鋼板製の構造部材に代替できる、発泡アルミニウムも、これまで種々提案されている。   For this reason, as a crash box made of aluminum foam alone, taking advantage of its light weight, it is possible to absorb collision energy even in medium-high speed collisions, as in the case of low-speed collisions. Various types of foamed aluminum, which can be substituted for, have been proposed.

例えば、アルミニウム合金発泡体の組成を、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるものとし、更に、発泡の平均粒径を細粒化するとともに、相対密度を上げたアルミニウム合金とし、発泡粒径を均一化させることが提案されている(特許文献8)。また、このアルミニウム合金組成の発泡体のセル壁の平均硬さを上げることが提案されている(特許文献9)。更に、このアルミニウム合金組成の発泡体の50nm以下の析出物粒子を一定量分散した組織とすることも提案されている(特許文献10)。   For example, the composition of the aluminum alloy foam is as follows: Zn: 1.0-20.0%, Ca: 0.1-5.0%, Ti: 0.1-5.0%, Mg: 0.1-5 0.04% each, consisting of the balance aluminum and unavoidable impurities, and further reducing the average particle size of the foam and making it an aluminum alloy with a higher relative density to make the foam particle size uniform. Has been proposed (Patent Document 8). In addition, it has been proposed to increase the average hardness of the cell wall of the foam of this aluminum alloy composition (Patent Document 9). Furthermore, it has also been proposed to form a structure in which a predetermined amount of precipitate particles of 50 nm or less of the foam of this aluminum alloy composition is dispersed (Patent Document 10).

この他、発泡体のプラトー応力を高める、あるいは、応力と変形量との積で表されるプラトー変形領域を長くして、エネルギ吸収量を増加させることが提案されている(非特許文献1、2)。   In addition, it has been proposed to increase the energy absorption by increasing the plateau stress of the foam or lengthening the plateau deformation region represented by the product of the stress and the deformation (Non-Patent Document 1, 2).

これらの提案は、いずれもアルミニウム合金発泡体のプラトー応力を4MPa以上と高くして、現在使用されている440MPa級高張力鋼板製のクラッシュボックスのエネルギ吸収性能に見合ったものとしようとている。そして、アルミニウム合金発泡体を、クラッシュボックスとして、高張力鋼板に代替できるものにしようとしている。
特開平8−164869号公報 特開平11−59298号公報 特開2003−19977号公報 特開2003−28224号公報 特開2004−108541号公報 特開平11−302765号公報 特開2000−328155号公報 特開2006−77316号公報 特開2006−77317号公報 特開2006−89813号公報 日本金属学会春季大会講演概要(2004)、p139 Porous Metals and Metal Foaming Technology(2005)、p517
All of these proposals attempt to increase the plateau stress of the aluminum alloy foam to 4 MPa or more to meet the energy absorption performance of the currently used crush box made of 440 MPa class high-tensile steel plate. The aluminum alloy foam is being replaced with a high-tensile steel plate as a crash box.
JP-A-8-164869 JP-A-11-59298 Japanese Patent Laid-Open No. 2003-19977 JP 2003-28224 A JP 2004-108541 A JP-A-11-302765 JP 2000-328155 A JP 2006-77316 A JP 2006-77317 A JP 2006-89813 A Outline of the Spring Meeting of the Japan Institute of Metals (2004), p139 Porous Metals and Metal Foaming Technology (2005), p517

以上のように、これまでに開示されている発泡アルミニウム単体のクラッシュボックスは、あくまで他の車輌やその他の剛体(ガードレール、電信柱など)など「高剛性の物体」との衝突に際してのエネルギ吸収を前提としている。このため、上記した通り、高張力鋼板製のクラッシュボックスのエネルギ吸収性能に見合って、アルミニウム合金発泡体のプラトー応力を高めようとしている。   As described above, the crash box made of foam aluminum alone disclosed so far only absorbs energy when it collides with other vehicles and other rigid bodies (guardrails, telephone poles, etc.). It is assumed. For this reason, as described above, an attempt is made to increase the plateau stress of the aluminum alloy foam in accordance with the energy absorption performance of the crash box made of a high-strength steel plate.

一方、近年では、自動車のバンパーなどには、歩行者と衝突することを想定し、歩行者の特に脚部 (下肢、膝) を保護するような性能が求められるようになっている。このような歩行者の特に脚部を保護する場合、バンパーが歩行者衝突により加わった衝突エネルギを吸収して、歩行者の脚部を保護する性能が求められる。   On the other hand, in recent years, bumpers of automobiles and the like have been demanded to protect pedestrians, particularly their legs (lower limbs and knees), assuming that they collide with pedestrians. When protecting the leg part of such a pedestrian, the performance which protects a pedestrian's leg part by absorbing the collision energy which the bumper added by the pedestrian collision is calculated | required.

このような課題に対して、バンパービームの前面側にアルミニウム合金発泡体を配置し、歩行者と自動車(前端あるいは後端)との衝突際に、その衝突荷重エネルギを、配置されたアルミニウム合金発泡体が、断面(幅)方向や軸(長手)方向に変形して吸収すれば、歩行者の保護につながる。   In response to such a problem, an aluminum alloy foam is disposed on the front side of the bumper beam, and when the pedestrian collides with the automobile (front end or rear end), the impact load energy is applied to the disposed aluminum alloy foam. If the body is deformed and absorbed in the cross-section (width) direction or the axial (longitudinal) direction, it will lead to protection of pedestrians.

実際の歩行者保護は、バンパービーム前面側であって、バンパーカバーの裏側に、発泡ウレタン材や発泡スチロール材などの比較的厚いアブソーバ(クッション材、エネルギ吸収部材)を設けることによって対応されているが、アブソーバの性能や厚みには限界や制約がある。   Actual pedestrian protection is supported by providing a relatively thick absorber (cushion material, energy absorbing member) such as urethane foam or polystyrene on the front side of the bumper beam and the back side of the bumper cover. There are limits and restrictions on the performance and thickness of the absorber.

これに対して、アルミニウム合金発泡体は軽量であり、場合によっては、アブソーバを省略乃至薄肉化できるために、自動車車体にとって、あまり重量増加とはならない利点もある。更に、前記した「高剛性の物体」との衝突に際してのエネルギ吸収を前提としたバンパービームの強度やエネルギ性能(圧壊性能)を、歩行者保護のために、低下させずに済む利点も大きい。   On the other hand, since the aluminum alloy foam is lightweight and in some cases the absorber can be omitted or thinned, there is an advantage that the weight of the automobile body does not increase so much. Furthermore, there is a great advantage that the bumper beam strength and energy performance (collapse performance) on the premise of energy absorption at the time of collision with the above-mentioned “high-rigidity object” do not need to be lowered for pedestrian protection.

しかし、前記したようにアルミニウム合金発泡体のプラトー応力が高いと、歩行者、特に、歩行者脚部と自動車(前部あるいは後部)との衝突時の際には、歩行者脚部に負荷される加速度が大きくなって、歩行者保護部材としては使用できない。   However, as described above, when the plateau stress of the aluminum alloy foam is high, a pedestrian, particularly a pedestrian leg and a vehicle (front or rear), is loaded on the pedestrian leg when a collision occurs. Therefore, it cannot be used as a pedestrian protection member.

歩行者保護に対応するべく、バンパビーム前面側に設けられる歩行者保護部材(エネルギ吸収部材、衝撃エネルギ吸収部材)には、歩行者衝突時の発生荷重や加速度等を低くできることが好ましい。衝突に際して、歩行者の脚部を保護する場合には、前記車体同士や車体と他の構造物などとの衝突時よりも遥かに小さい衝突荷重で、断面(幅)方向や軸(長手)方向に変形して、エネルギを吸収する必要がある。   In order to cope with pedestrian protection, the pedestrian protection member (energy absorption member, impact energy absorption member) provided on the front side of the bumper beam can preferably reduce the generated load, acceleration, and the like during a pedestrian collision. When protecting the legs of pedestrians in the event of a collision, the cross-section (width) direction and the axial (longitudinal) direction with a much smaller collision load than the collision between the vehicle bodies or between the vehicle body and other structures. Need to absorb the energy.

この点、アルミニウム合金発泡体にも、このような歩行者保護部材として適用される場合においては、上記したこれまでのアルミニウム合金発泡体とは違い、プラトー応力を低く保持したままで、より多くの変形が進む特性、即ち、歩行者(脚部)の保護特性に優れることが求められている。   In this respect, when applied to such an aluminum alloy foam as such a pedestrian protection member, unlike the above-described conventional aluminum alloy foam, more and more plateau stress can be maintained. It is required to have excellent characteristics for progressing deformation, that is, excellent protection characteristics for pedestrians (legs).

本発明はこのような課題を解決するためになされたものであって、プラトー応力を低く保持したままで、より多くの変形が進む特性を有し、歩行者(脚部)の保護特性に優れるアルミニウム合金発泡体を提供することである。   The present invention has been made in order to solve such a problem, and has a characteristic that more deformation proceeds while keeping the plateau stress low, and is excellent in protection characteristics of a pedestrian (leg). It is to provide an aluminum alloy foam.

この目的を達成するために、本発明のエネルギ吸収部材用アルミニウム合金発泡体の要旨は、質量%で、Zn:0.5〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、更に、Ag:0.1〜5.0%、Zr:0.1〜5.0%の一種または二種を含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなることとする。   In order to achieve this object, the gist of the aluminum alloy foam for an energy absorbing member of the present invention is mass%, Zn: 0.5-20.0%, Ca: 0.1-5.0%, Ti : 0.1 to 5.0%, Mg: 0.1 to 5.0%, respectively, and Ag: 0.1 to 5.0%, Zr: 0.1 to 5.0% Alternatively, the aluminum alloy containing two types and the balance aluminum and unavoidable impurities is foamed.

プラトー応力を低く保持したままでより多くの変形が進む、歩行者(脚部)の保護特性としては、前記アルミニウム合金発泡体が、85%以下の変形領域で5MPa以下の低いプラトー応力が維持される特性を有することが好ましい。   As for the protective characteristics of pedestrians (legs), the plateau stress is kept low, and the aluminum alloy foam maintains a low plateau stress of 5 MPa or less in a deformation region of 85% or less. It is preferable to have the following characteristics.

本発明アルミニウム合金発泡体のエネルギ吸収部材用途としては、歩行者(脚部)の保護が必要な自動車車体用であることが好ましい。そして、エネルギ吸収部材が、バンパビーム前面側に設けられた歩行者保護部材であることが好ましい。   The use of the aluminum alloy foam of the present invention as an energy absorbing member is preferably for an automobile body that requires protection of pedestrians (legs). And it is preferable that an energy absorption member is a pedestrian protection member provided in the bumper beam front side.

本発明アルミニウム合金発泡体は、上記本発明成分組成とすることで、アルミニウム合金発泡体のプラトー応力を低く保持したままで、より多くの変形が進む特性を向上させることができる。この結果、バンパビーム前面側に設けられた歩行者保護部材(エネルギ吸収部材、衝撃エネルギ吸収部材)として、歩行者衝突時の発生荷重や加速度等を低くすることができる。   By making the aluminum alloy foam of the present invention have the above-described composition of the present invention, it is possible to improve the characteristics of more deformation while keeping the plateau stress of the aluminum alloy foam low. As a result, as a pedestrian protection member (energy absorbing member, impact energy absorbing member) provided on the front side of the bumper beam, it is possible to reduce the generated load, acceleration, and the like at the time of a pedestrian collision.

(発泡用アルミニウム合金組成)
アルミニウム合金発泡体の、エネルギ吸収部材としての、必要強度などの基本的な特性や、プラトー応力を低く保持したままでより多くの変形が進むような歩行者保護特性を満たす、発泡用アルミニウム合金組成を以下に説明する。
(Aluminum alloy composition for foaming)
Aluminum alloy composition for foaming that satisfies basic characteristics such as necessary strength of energy-absorbing member of aluminum alloy foam and pedestrian protection characteristics that allow more deformation to proceed while keeping plateau stress low Is described below.

本発明において、発泡用アルミニウム合金の前提としての組成は、発泡体としての強度、圧縮変形能などの基本的な特性(必要特性)を満たすために、質量%で、Zn:0.5〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有する。そして、歩行者保護部材として、プラトー応力を低く保持したままでより多くの変形が進むような歩行者保護特性を満たすために、Ag:0.1〜5.0%、Zr:0.1〜5.0%の一種または二種を含有する。更に、残部組成(残部)はアルミニウムおよび不可避的不純物からなるものとする。   In the present invention, the composition as a premise of the aluminum alloy for foaming is Zn: 0.5 to 20 in mass% in order to satisfy basic properties (required properties) such as strength and compression deformability as a foam. 0.0%, Ca: 0.1 to 5.0%, Ti: 0.1 to 5.0%, and Mg: 0.1 to 5.0%, respectively. As a pedestrian protection member, Ag: 0.1 to 5.0%, Zr: 0.1 to 0.1 in order to satisfy pedestrian protection characteristics such that more deformation proceeds while keeping the plateau stress low. Contains one or two of 5.0%. Further, the balance composition (balance) is made of aluminum and inevitable impurities.

(Zn)
Znは、Zn単体で析出するほか、Mgと共存して、上記析出物粒子の主体であるZn−Mg化合物を形成する。また、Mgと共存した際の強度向上にも有効な元素でもある。更に、凝固収縮する作用があり、セル壁の一部に膜厚の薄い部分を形成させ、圧縮変形能を高める作用がある。これらの作用を発揮させるためには、0.5%以上の含有が必要である。しかし、20.0%を超えて過度に含有すると、粗大なZn−Mg化合物を形成し、却って、プラトー応力を低下させる。また、発泡アルミニウムの気泡粒径の安定化を阻害し、気泡が粗くなってしまい、圧縮強度を低下させる。従って、Znの含有量は0.5〜20.0%の範囲とする。
(Zn)
Zn precipitates as a simple substance of Zn and coexists with Mg to form a Zn—Mg compound that is the main component of the precipitate particles. It is also an effective element for improving the strength when coexisting with Mg. Further, it has an effect of coagulating and shrinking, and an effect of increasing the compressive deformability by forming a thin film portion on a part of the cell wall. In order to exert these actions, the content of 0.5% or more is necessary. However, when it exceeds 20.0% and it contains excessively, a coarse Zn-Mg compound will be formed and a plateau stress will be reduced on the contrary. Moreover, stabilization of the bubble particle diameter of foaming aluminum will be inhibited, a bubble will become coarse, and compressive strength will be reduced. Therefore, the Zn content is in the range of 0.5 to 20.0%.

(Mg)
Mgは、Znと共存して、上記析出物粒子の主体であるZn−Mg化合物を形成する。また、強度向上に有効な元素であり、更に、Znと共同して発泡アルミニウムの製造時に、溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にする作用を有する。その効果を得るためには、Mgを少なくとも0.1%以上含有する必要がある。一方、5.0%を超えて過度に含有すると、粗大なZn−Mg化合物を形成し、却って、プラトー応力を低下させる。また、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。したがって、Mg含有量は0.1〜5.0%の範囲とする。
(Mg)
Mg coexists with Zn to form a Zn—Mg compound that is the main component of the precipitate particles. In addition, it is an element effective for improving the strength, and further has the effect of increasing the viscosity of the molten metal and stabilizing the bubbles to make the foam homogeneous during the production of foamed aluminum in cooperation with Zn. In order to obtain the effect, it is necessary to contain at least 0.1% of Mg. On the other hand, when it contains excessively exceeding 5.0%, a coarse Zn-Mg compound will be formed and a plateau stress will be reduced on the contrary. Further, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and the foaming agent is difficult to disperse. On the other hand, the fineness and uniformity of the foam are inhibited, and the compressive strength is lowered. Therefore, the Mg content is in the range of 0.1 to 5.0%.

(Ca)
Caは、発泡アルミニウムの製造時におけるアルミニウム合金溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にするとともに、発泡の微細化、均一性を達成するための、発泡作用を有する。その効果を得るためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。従って、Caの含有量は0.1〜5.0%の範囲とする。
(Ca)
Ca increases the viscosity of the molten aluminum alloy at the time of producing foamed aluminum and stabilizes the bubbles to make the foam homogeneous and to achieve foam refinement and uniformity. Have. In order to obtain the effect, the content of at least 0.1% is necessary. On the other hand, if the content exceeds 5.0% excessively, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and it becomes difficult to disperse the foaming agent. And reduce the compressive strength. Therefore, the Ca content is in the range of 0.1 to 5.0%.

(Ti)
Tiは、発泡アルミニウムの強度向上に有効な元素である。その効果を引き出すためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の流動性を低下させ、晶出することにより、アルミニウムを脆くする。したがって、Tiの含有量は0.1〜5.0%の範囲とする。
(Ti)
Ti is an element effective for improving the strength of foamed aluminum. In order to bring out the effect, it is necessary to contain at least 0.1% or more. On the other hand, when it contains excessively exceeding 5.0%, the fluidity | liquidity of a molten metal will be reduced and it will crystallize and it will make aluminum brittle. Therefore, the Ti content is in the range of 0.1 to 5.0%.

(Ag、Zr)
本発明では、バンパビーム前面側に設けられる歩行者保護部材として、プラトー応力を低く保持したままでより多くの変形が進むような歩行者保護特性を満たすために、Ag、Zrの一種または二種を含有することを特徴とする。Ag、Zrは、アルミニウム合金発泡体に含有されることで、アルミニウム合金発泡体を85%以下の変形領域で5MPa以下の低いプラトー応力が維持される特性を有するものとする。
(Ag, Zr)
In the present invention, as a pedestrian protection member provided on the front side of the bumper beam, one or two of Ag and Zr is used in order to satisfy a pedestrian protection characteristic in which more deformation proceeds while keeping the plateau stress low. It is characterized by containing. By containing Ag and Zr in the aluminum alloy foam, the aluminum alloy foam has a characteristic that a low plateau stress of 5 MPa or less is maintained in a deformation region of 85% or less.

Ag、Zrの含有量が少なすぎると、この効果が発揮されずに、アルミニウム合金発泡体が60〜70%の変形でプラトー応力が5MPaを超えて高くなる。この結果、プラトー応力を低く保持したままでより多くの変形が進むことができずに、歩行者(脚部)の保護部材として適用できなくなる。   If the content of Ag and Zr is too small, this effect is not exhibited, and the plateau stress becomes higher than 5 MPa due to deformation of the aluminum alloy foam by 60 to 70%. As a result, more deformation cannot proceed while keeping the plateau stress low, and it cannot be applied as a protective member for pedestrians (legs).

一方で、Ag、Zrの含有量が多すぎると、Ag、Zrの比重が大きいために、相対密度が大きくなり、却って、プラトー応力が高くなって、やはり、85%以下の変形領域で5MPa以下の低いプラトー応力が維持される特性を、アルミニウム合金発泡体が有することができなくなる。また、Ag、Zrの添加に要するコストも大幅に増加する。したがって、Ag、Zrの一種または二種の含有量は、各々Ag:0.1〜5.0%、Zr:0.1〜5.0%の範囲とする。   On the other hand, if the content of Ag and Zr is too large, the relative density increases because the specific gravity of Ag and Zr is large. On the other hand, the plateau stress increases, and the deformation region of 85% or less is 5 MPa or less. Therefore, the aluminum alloy foam cannot have the characteristic that the low plateau stress is maintained. Moreover, the cost required for the addition of Ag and Zr is also greatly increased. Therefore, the content of one or two of Ag and Zr is in the ranges of Ag: 0.1 to 5.0% and Zr: 0.1 to 5.0%, respectively.

(その他の元素)
その他の元素は基本的に不純物である。規制すべきその他の元素として、混入しやすいCuは、発泡過程での発泡粒径の均一性を阻害する可能性がある。このため、本発明ではCuは不純物であり、Cu含有量は極力少ない方が好ましい。また、Cu以外の不純物元素も含有量は極力少ない方が好ましい。ただ、これらCuなどの不純物元素の含有量を低減するために、溶解、精錬などの発泡アルミニウム製造上のコストが増加する問題もある。したがって、発泡アルミニウムの特性を低下させない、通常の発泡アルミニウムにおける不純物量範囲、不純物レベルでの含有は許容する。例えば、前記したCuは上限で3質量%までの含有は許容する。
(Other elements)
Other elements are basically impurities. As another element to be regulated, Cu that is likely to be mixed may hinder the uniformity of the foamed particle diameter in the foaming process. For this reason, in the present invention, Cu is an impurity, and the Cu content is preferably as low as possible. Further, it is preferable that the content of impurity elements other than Cu is as small as possible. However, in order to reduce the content of these impurity elements such as Cu, there is a problem that the cost for producing foamed aluminum such as melting and refining increases. Therefore, the inclusion in the impurity amount range and impurity level in normal foamed aluminum that does not deteriorate the properties of foamed aluminum is allowed. For example, the above-described Cu is allowed to contain up to 3% by mass at the upper limit.

(発泡体の相対密度)
その他の発泡体要件として、密度を上げずに(軽量化効果を損なわずに)、エネルギ吸収量を向上するために、アルミニウム合金発泡体(発泡)の相対密度を0.1以上とすることが好ましい。発泡体の相対密度が0.1未満では、アルミニウム合金発泡体が、十分な衝撃吸収能(エネルギ吸収能)を得られない可能性がある。
(Relative density of foam)
As another foam requirement, the relative density of the aluminum alloy foam (foam) may be set to 0.1 or more in order to improve the energy absorption amount without increasing the density (without impairing the lightening effect). preferable. If the relative density of the foam is less than 0.1, the aluminum alloy foam may not be able to obtain a sufficient impact absorption capacity (energy absorption capacity).

一方、アルミニウム合金発泡体(発泡)の相対密度が高いほど、重量が大きくなり、発泡体の利点である軽量化効果が損なわれ、自動車などの軽量化に対する寄与が小さくなる。ただ、用途によっては、軽量化効果よりも変形応力が高い方が要求される場合もある。この点、相対密度は1.0以下が好ましい。   On the other hand, the higher the relative density of the aluminum alloy foam (foam), the greater the weight, and the weight reduction effect that is an advantage of the foam is impaired, and the contribution to weight reduction of automobiles and the like is reduced. However, depending on the application, a higher deformation stress than the weight reduction effect may be required. In this respect, the relative density is preferably 1.0 or less.

なお、この発泡体の相対密度は、合金組成や製造条件、設備条件などに応じて、発泡剤(TiH2 )の添加量を調整して制御する。この相対密度は、発泡体から50×50×50mm(125cm3 )の試料を切り出し、この試料の重量を測定して、水の相当体積125cm3 =125gで割って求める。 The relative density of the foam is controlled by adjusting the amount of foaming agent (TiH 2 ) added according to the alloy composition, production conditions, equipment conditions, and the like. The relative density is obtained by cutting a 50 × 50 × 50 mm (125 cm 3 ) sample from the foam, measuring the weight of the sample, and dividing by a corresponding volume of water of 125 cm 3 = 125 g.

(プラトー応力)
本発明では、アルミニウム合金発泡体のプラトー応力(圧縮試験における圧縮応力)を好ましくは5MPa以下とする。プラトー応力が5MPaを超えると、前記した、プラトー応力を低く保持したままでより多くの変形が進む、歩行者(脚部)の保護特性が得られない可能性が高い。即ち、アルミニウム合金発泡体が、85%以下の変形領域で5MPa以下の低いプラトー応力が維持される特性を有せない可能性が高い。
(Plateau stress)
In the present invention, the plateau stress (compressive stress in the compression test) of the aluminum alloy foam is preferably 5 MPa or less. When the plateau stress exceeds 5 MPa, it is highly possible that the pedestrian (leg) protection characteristic cannot be obtained, as described above, while the plateau stress is kept low and more deformation proceeds. That is, there is a high possibility that the aluminum alloy foam does not have a characteristic that a low plateau stress of 5 MPa or less is maintained in a deformation region of 85% or less.

(製造条件)
次に、本発明発泡アルミニウムを製造するための、好ましい製造条件について以下に説明する。本発明では、発泡アルミニウムの製造工程自体は、従来と同様である。
(Production conditions)
Next, preferable production conditions for producing the foamed aluminum of the present invention will be described below. In the present invention, the manufacturing process itself of the foamed aluminum is the same as the conventional one.

先ず、溶解炉内で、工業用純アルミニウムに対し、上記Zn:0.5〜20.0%、Mg:0.1〜5.0%、更に、Ag:0.1〜5.0%、Zr:0.1〜5.0%の一種または二種などの合金成分元素と、カルシウム0.1〜5.0%を添加し、大気中で溶湯を例えば約5分程度攪拌して増粘させる。   First, in the melting furnace, the above Zn: 0.5-20.0%, Mg: 0.1-5.0%, further Ag: 0.1-5.0%, with respect to industrial pure aluminum Zr: 0.1 to 5.0% of one or two alloying element elements and calcium 0.1 to 5.0% are added, and the molten metal is stirred in the atmosphere for about 5 minutes to increase the viscosity. Let

そして、この増粘後の溶湯を600〜700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンを所定量(アルミニウム合金中のTiとして0.1〜5.0%となるように)添加する。その後、例えば1〜10分間攪拌した後、攪拌機を取り除き、鋳型を前記温度範囲の大気溶解炉内で、1〜10分間程度保持して発泡を完了させる。   And after pouring the molten metal after this thickening into a mold in an atmospheric melting furnace at 600 to 700 ° C., a predetermined amount of titanium hydride (to 0.1 to 5.0% as Ti in the aluminum alloy) To). Then, for example, after stirring for 1 to 10 minutes, the stirrer is removed, and the mold is held in the atmospheric melting furnace in the temperature range for about 1 to 10 minutes to complete foaming.

この発泡完了後、炉内で放冷し、冷却後に鋳型からアルミニウム合金発泡体を取り出し、機械加工して、角柱や角形など、バンパビーム前面側に設けられた歩行者保護部材(エネルギ吸収部材)としての所望形状の、製品アルミニウム合金発泡体とする。   After this foaming is completed, it is allowed to cool in the furnace, and after cooling, the aluminum alloy foam is taken out from the mold, machined, and used as a pedestrian protection member (energy absorbing member) provided on the front side of the bumper beam, such as a prism or square. It is set as the product aluminum alloy foam of the desired shape.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

以下に本発明の実施例を説明する。表1に示す各化学成分組成のアルミニウム合金発泡体を製造した。これら発泡体の特性として、相対密度、プラトー応力−変形量曲線を測定、評価した。相対密度、85%の変形時のプラトー応力(MPa)を表1に示す。また、エネルギ吸収特性としてのプラトー応力−変形量曲線を図1に示す。   Examples of the present invention will be described below. Aluminum alloy foams having respective chemical component compositions shown in Table 1 were produced. As the characteristics of these foams, a relative density and a plateau stress-deformation curve were measured and evaluated. Table 1 shows the relative density and plateau stress (MPa) at the time of deformation of 85%. FIG. 1 shows a plateau stress-deformation curve as an energy absorption characteristic.

具体的には、先ず、溶解炉内で、工業用純アルミニウムに対し、Zn、Mg、Caなどとともに、更に、Ag、Zrの一種または二種などの合金成分元素を添加し、大気中で溶湯を約5分程度攪拌して増粘させた。そして、この増粘後の溶湯を、700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンをTiとして0.1〜5.0%程度添加した。その後、2分間攪拌した後、攪拌機を取り除き、鋳型を700℃の大気溶解炉内で、4分間程度保持して発泡を完了させた。この発泡完了後、炉内で放冷し、冷却後に鋳型からアルミニウム合金発泡体を取り出し、高さ50mm×幅50mm×長さ50mmの角柱形状に機械加工した。この発泡体の特性を上記の通り調査した。   Specifically, first, in addition to Zn, Mg, Ca and the like, alloy component elements such as one or two of Ag and Zr are added to industrial pure aluminum in a melting furnace, and the molten metal is melted in the atmosphere. Was stirred for about 5 minutes to increase the viscosity. And after pouring the molten metal after this thickening into the casting_mold | template in a 700 degreeC air melting furnace, about 0.1 to 5.0% of titanium hydride was added as Ti. Then, after stirring for 2 minutes, the stirrer was removed, and the mold was held in an atmospheric melting furnace at 700 ° C. for about 4 minutes to complete foaming. After completion of the foaming, the product was allowed to cool in a furnace, and after cooling, the aluminum alloy foam was taken out of the mold and machined into a prismatic shape having a height of 50 mm, a width of 50 mm, and a length of 50 mm. The properties of this foam were investigated as described above.

(相対密度)
発泡体の相対密度は、前記した方法で求めた。即ち、得られた発泡体から50×50×50mm(125cm3 )の試料を切り出し、この試料の重量を測定して、水の相当体積125cm3 =125gで割って求めた。
(Relative density)
The relative density of the foam was determined by the method described above. That is, a 50 × 50 × 50 mm (125 cm 3 ) sample was cut out from the obtained foam, and the weight of this sample was measured, and divided by an equivalent volume of water of 125 cm 3 = 125 g.

(プラトー応力)
前記機械加工後のアルミニウム合金発泡体を、インストロン社製万能圧縮試験機を用いて、その長手方向に静的に圧縮試験し、荷重応力−変位量曲線と、85%の変形時のプラトー応力(MPa)を求めた。
(Plateau stress)
The machined aluminum alloy foam was subjected to a static compression test in the longitudinal direction using a universal compression tester manufactured by Instron, and a load stress-displacement curve and a plateau stress at the time of deformation of 85%. (MPa) was determined.

表1から明らかな通り、発明例1〜6は、本発明において特徴的なAg、Zrを含む、本発明アルミニウム合金組成範囲内であり、上記適正条件で製造されている。この結果、相対密度が最大でも0.36の比較的低い密度レベルであり、85%変形時のプラトー応力が5MPa以下である。また、図1の応力−変位曲線の通り、発明例を代表して示す発明例1、2 (発明例1:濃く細い実線、発明例2:濃く太い実線)は、プラトー応力を5MPa以下と低く保持したままでより多くの変形が進み、エネルギ吸収量も高く、歩行者(脚部)の保護特性が優れている。   As is apparent from Table 1, Invention Examples 1 to 6 are within the composition range of the aluminum alloy of the present invention containing Ag and Zr, which are characteristic in the present invention, and are manufactured under the above appropriate conditions. As a result, the relative density is a relatively low density level of 0.36 at the maximum, and the plateau stress at 85% deformation is 5 MPa or less. In addition, as shown in the stress-displacement curve of FIG. 1, Invention Examples 1 and 2 (Invention Example 1: a thick and thin solid line, Invention Example 2: a thick and thick solid line), which are representative of the invention examples, have a plateau stress as low as 5 MPa or less. While holding, more deformation proceeds, the energy absorption amount is high, and the protection characteristics of pedestrians (legs) are excellent.

これに対して、比較例7、9は、Zn、Ca、Ti、Mgは各々諸定量含有し、上記適正条件で製造されているものの、本発明において特徴的なAg、Zrの含有量が下限未満であり少なすぎる。また、比較例11、12は、Zn、Ca、Ti、Mgは各々諸定量含有し、上記適正条件で製造されているものの、Ag、Zrを含有していない従来例である。   On the other hand, Comparative Examples 7 and 9 contain various amounts of Zn, Ca, Ti, and Mg, respectively, and are manufactured under the above-mentioned appropriate conditions, but the contents of Ag and Zr that are characteristic in the present invention are the lower limits. Less than and too little. Comparative Examples 11 and 12 are conventional examples that contain various amounts of Zn, Ca, Ti, and Mg, respectively, and are manufactured under the appropriate conditions, but do not contain Ag or Zr.

このため、比較例7、9、11、12は、相対密度は比較的低い密度レベルであるものの、85%変形時のプラトー応力が5MPaを超えて高い。また、図1の応力−変位曲線の通り、比較例を代表して示す比較例9、11(比較例9:細い点線、比較例11:薄く太い実線)は、変形が進むにつれてプラトー応力が5MPaを超えて高くなっており、歩行者(脚部)の保護特性が劣っている。   For this reason, in Comparative Examples 7, 9, 11, and 12, although the relative density is a relatively low density level, the plateau stress at 85% deformation exceeds 5 MPa. In addition, as shown in the stress-displacement curve of FIG. 1, in Comparative Examples 9 and 11 (Comparative Example 9: thin dotted line, Comparative Example 11: thin thick solid line) shown as a comparative example, the plateau stress becomes 5 MPa as the deformation progresses. The protective properties of pedestrians (legs) are inferior.

また、比較例8、10は、Zn、Ca、Ti、Mgは各々諸定量含有し、上記適正条件で製造されているものの、本発明において特徴的なAg、Zrの含有量が上限を超えて多すぎる。このため、比較例8、10は、相対密度が0.5を超えて大きく、軽量化できていない。更に、85%変形時のプラトー応力は、計測できないほど高くなっていた。   Further, Comparative Examples 8 and 10 contain various amounts of Zn, Ca, Ti, and Mg, respectively, and are manufactured under the above appropriate conditions, but the contents of Ag and Zr characteristic in the present invention exceed the upper limit. Too many. For this reason, Comparative Examples 8 and 10 have a relative density exceeding 0.5 and cannot be reduced in weight. Furthermore, the plateau stress at 85% deformation was so high that it could not be measured.

以上の結果から、本発明アルミニウム合金発泡体における各要件の意義と好ましい製造条件の意義とが裏付けられる。   From the above results, the significance of each requirement in the aluminum alloy foam of the present invention and the significance of preferred production conditions are supported.

Figure 2008106341
Figure 2008106341

以上説明したように、本発明アルミニウム合金発泡体によれば、プラトー応力を低く保持したままでより多くの変形が進む、歩行者(脚部)の優れた保護特性が得られる。この結果、本発明アルミニウム合金発泡体は、バンパビーム前面側に設けられた歩行者保護部材などのエネルギ吸収部材(衝撃エネルギ吸収部材)などに好適である。   As described above, according to the aluminum alloy foam of the present invention, excellent protection characteristics for pedestrians (legs) can be obtained in which more deformation proceeds while the plateau stress is kept low. As a result, the aluminum alloy foam of the present invention is suitable for an energy absorbing member (impact energy absorbing member) such as a pedestrian protection member provided on the front side of the bumper beam.

実施例の各応力−変位曲線を示す説明図である。It is explanatory drawing which shows each stress-displacement curve of an Example.

Claims (4)

質量%で、Zn:0.5〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、更に、Ag:0.1〜5.0%、Zr:0.1〜5.0%の一種または二種を含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなることを特徴とするエネルギ吸収部材用アルミニウム合金発泡体。   In mass%, Zn: 0.5-20.0%, Ca: 0.1-5.0%, Ti: 0.1-5.0%, Mg: 0.1-5.0%, respectively Further, it is made by foaming an aluminum alloy containing one or two of Ag: 0.1 to 5.0% and Zr: 0.1 to 5.0%, and the balance aluminum and unavoidable impurities. An aluminum alloy foam for an energy absorbing member. 前記アルミニウム合金発泡体が85%以下の変形領域で5MPa以下のプラトー応力が維持される特性を有する請求項1に記載のアルミニウム合金発泡体。   The aluminum alloy foam according to claim 1, wherein the aluminum alloy foam has a characteristic that a plateau stress of 5 MPa or less is maintained in a deformation region of 85% or less. 前記アルミニウム合金発泡体が自動車用エネルギ吸収部材である請求項1または2に記載のアルミニウム合金発泡体。   The aluminum alloy foam according to claim 1, wherein the aluminum alloy foam is an automobile energy absorbing member. 前記アルミニウム合金発泡体が自動車バンパビーム前面側に設けられた歩行者保護部材である請求項1乃至3のいずれか1項に記載のアルミニウム合金発泡体。   The aluminum alloy foam according to any one of claims 1 to 3, wherein the aluminum alloy foam is a pedestrian protection member provided on the front side of an automobile bumper beam.
JP2006292850A 2006-10-27 2006-10-27 Aluminum alloy foam for energy absorbing members Expired - Fee Related JP4695052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292850A JP4695052B2 (en) 2006-10-27 2006-10-27 Aluminum alloy foam for energy absorbing members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292850A JP4695052B2 (en) 2006-10-27 2006-10-27 Aluminum alloy foam for energy absorbing members

Publications (2)

Publication Number Publication Date
JP2008106341A true JP2008106341A (en) 2008-05-08
JP4695052B2 JP4695052B2 (en) 2011-06-08

Family

ID=39439949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292850A Expired - Fee Related JP4695052B2 (en) 2006-10-27 2006-10-27 Aluminum alloy foam for energy absorbing members

Country Status (1)

Country Link
JP (1) JP4695052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177159A (en) * 2013-03-14 2014-09-25 Honda Motor Co Ltd Shock absorption mechanism for vehicle
CN105134872A (en) * 2015-06-19 2015-12-09 苏州亚思科精密数控有限公司 Damping device for large machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328155A (en) * 1999-05-19 2000-11-28 Kenji Azuma Foamed metal excellent in energy absorption characteristic
JP2006233336A (en) * 2006-03-22 2006-09-07 Kobe Steel Ltd Method for producing automobile energy absorbing member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328155A (en) * 1999-05-19 2000-11-28 Kenji Azuma Foamed metal excellent in energy absorption characteristic
JP2006233336A (en) * 2006-03-22 2006-09-07 Kobe Steel Ltd Method for producing automobile energy absorbing member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177159A (en) * 2013-03-14 2014-09-25 Honda Motor Co Ltd Shock absorption mechanism for vehicle
CN105134872A (en) * 2015-06-19 2015-12-09 苏州亚思科精密数控有限公司 Damping device for large machine tool

Also Published As

Publication number Publication date
JP4695052B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
Banhart Aluminium foams for lighter vehicles
CN103290278B (en) The high energy absorption capacity aluminium alloy of a kind of body of a motor car
JPH11302765A (en) Blowing metal excellent in impact absorption
JP4695052B2 (en) Aluminum alloy foam for energy absorbing members
Abdulqadir Design a new energy absorber longitudinal member and compare with S-shaped design to enhance the energy absorption capability
JP4694988B2 (en) Aluminum alloy foam and manufacturing method thereof
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP2007217715A (en) FOAMED IMPACT ABSORBING MATERIAL MADE OF Zn-Al ALLOY HAVING EXCELLENT IMPACT ABSORPTION CHARACTERISTIC, AND ITS MANUFACTURING METHOD
JP2908929B2 (en) Aluminum alloy automobile shock absorber
JP5946425B2 (en) Method for producing aluminum alloy extruded material
Salehi et al. Compressive and energy absorption behavior of multilayered foam filled tubes
CN107267818A (en) A kind of bumper aluminium alloy and preparation method thereof
JP2005344153A (en) Method for producing member made of foamed aluminum alloy
JP4359211B2 (en) Aluminum alloy foam
JP4359210B2 (en) Aluminum alloy foam
Robert et al. Thixoinfiltration: a new approach to produce cellular and other low density metallic materials
JP4189368B2 (en) Aluminum alloy foam
JP2003105407A (en) Porous energy-absorbing member, and member for car body frame
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP2009045655A (en) Method for casting aluminum alloy foam
JP2000328155A (en) Foamed metal excellent in energy absorption characteristic
JP3961324B2 (en) Hollow shock absorbing member with excellent bellows-like crushability
JP2002003974A (en) Al-Mg-Si ALLOY EXTRUDED ARTICLE EXCELLENT IN IMPACT-ENERGY ABSORBABILITY
Lorenzi et al. Aluminum foam applications for impact energy absorbing structures
KR101637735B1 (en) Aluminum alloy having excellent formability and elasticity, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4695052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees