JP4359211B2 - Aluminum alloy foam - Google Patents

Aluminum alloy foam Download PDF

Info

Publication number
JP4359211B2
JP4359211B2 JP2004265601A JP2004265601A JP4359211B2 JP 4359211 B2 JP4359211 B2 JP 4359211B2 JP 2004265601 A JP2004265601 A JP 2004265601A JP 2004265601 A JP2004265601 A JP 2004265601A JP 4359211 B2 JP4359211 B2 JP 4359211B2
Authority
JP
Japan
Prior art keywords
foam
aluminum alloy
aluminum
foamed
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265601A
Other languages
Japanese (ja)
Other versions
JP2006077317A (en
Inventor
康博 有賀
浩一 槙井
誠治 西
鉄二 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2004265601A priority Critical patent/JP4359211B2/en
Publication of JP2006077317A publication Critical patent/JP2006077317A/en
Application granted granted Critical
Publication of JP4359211B2 publication Critical patent/JP4359211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、例えば、自動車の構造部材など、衝突時に圧縮の衝撃荷重を受けた際に変形して衝撃エネルギを吸収する、衝撃エネルギ吸収部材として用いられるアルミニウム合金発泡体に関するものである。   The present invention relates to an aluminum alloy foam used as an impact energy absorbing member that deforms and absorbs impact energy when subjected to a compressive impact load at the time of a collision, such as an automobile structural member.

上記したような衝撃エネルギ吸収部材(クラッシュボックス)として、通常、自動車の構造部材には、閉断面を有する鋼製の中空部材が汎用されている。鋼製の中空部材は、軸方向や断面方向の圧縮の衝撃入力を受けると潰れ変形して、その衝撃エネルギを吸収する。この際、限られた変形量で、より大きなエネルギを吸収可能とするには、部材の寸法や肉厚を大きくすることが有効である。しかし、これは鋼製中空部材の体積や重量の増加を招いてしまい、燃費が悪化したり車両同士の衝突時における相手車両に与えるダメージが大きくなったりして好ましくない。また、軟鋼板に代わって、高強度鋼板(ハイテン)を使用して、鋼製中空部材の体積や重量の増加を抑制することも実際に行なわれているが、高強度鋼板は成形性が劣るため、部材形状が制約を受けることや、成形工程が増加することといった不都合がある。   As the impact energy absorbing member (crash box) as described above, a steel hollow member having a closed cross section is generally used as a structural member of an automobile. The steel hollow member is crushed and deformed to absorb the impact energy when it receives a compression impact input in the axial direction or the cross-sectional direction. At this time, in order to be able to absorb a larger amount of energy with a limited amount of deformation, it is effective to increase the size and thickness of the member. However, this leads to an increase in the volume and weight of the steel hollow member, which is not preferable because fuel consumption deteriorates and damage to the opponent vehicle at the time of collision between vehicles increases. Moreover, in place of a mild steel plate, a high-strength steel plate (HITEN) is used to suppress an increase in the volume and weight of the steel hollow member, but the high-strength steel plate is inferior in formability. Therefore, there are inconveniences such that the member shape is restricted and the molding process is increased.

これに対して、近年では、これら衝撃エネルギ吸収部材として、リサイクル性の良好な発泡アルミニウムなどの発泡金属が注目されている。このクラッシュボックスは、発泡アルミニウムを角柱状の形状としたものである。そして、この角柱軸芯方向を衝突方向に一致させるように配置し、衝突時に圧縮応力を受けて圧壊することにより衝突エネルギを吸収し、乗員や構造体への衝撃を減少させるようにしたものである。   On the other hand, in recent years, foam metal such as foam aluminum having good recyclability has attracted attention as these impact energy absorbing members. This crash box is made of foamed aluminum in a prismatic shape. And this prismatic axis direction is arranged to coincide with the collision direction, and it absorbs the collision energy by receiving the compressive stress and collapsing at the time of collision, and reduces the impact on the occupant and the structure. is there.

このような発泡アルミニウムを用いたクラッシュボックスへの適用例としては、自動車車体のサイドメンバなどの構造部材として、断面形状が略円形状あるいは多角形状をなす鋼製の管体の中空部に、発泡アルミニウムを充填したものが知られている(特許文献1、2、3、4、5参照)。   As an application example to such a crash box using aluminum foam, as a structural member such as a side member of an automobile body, foaming is performed in a hollow portion of a steel tube having a substantially circular or polygonal cross-sectional shape. What filled aluminum is known (refer patent documents 1, 2, 3, 4, 5).

これは、一定の反力を示しつつ圧縮変形する発泡アルミニウムの特性を利用したものであって、管体の圧縮変形を制御することによって、衝撃エネルギの吸収能を高めることが可能になる。   This utilizes the characteristic of foamed aluminum that compresses and deforms while exhibiting a constant reaction force. By controlling the compressive deformation of the tubular body, it is possible to increase the ability to absorb impact energy.

更に、発泡アルミニウム自体の衝撃エネルギ吸収能を高めるために、アルミニウム組成として、重量%で、Cu:0.1〜7%、Ca:0.2〜5%、Zn:0.1〜10%、Mg:0.1〜20%、Ti:0.1〜5%からなる群の1種又は2種以上を含み、残部がアルミニウム及び不可避的不純物からなるアルミニウム合金が、相対密度が0.20以下、平均気泡粒径が3.7mm以下とともに提案されている(特許文献6、7参照)。
特開平8−164869号公報 (特許請求の範囲、図1) 特開平11−59298号公報 (特許請求の範囲、図1) 特開2003−19977号公報 (特許請求の範囲、図1) 特開2003−28224号公報 (特許請求の範囲、図1) 特開2004−108541号公報 (特許請求の範囲、図1) 特開平11−302765号公報 (特許請求の範囲、図1) 特開2000−328155号公報 (特許請求の範囲、図1)
Furthermore, in order to increase the impact energy absorption capacity of the foamed aluminum itself, the aluminum composition is, by weight, Cu: 0.1-7%, Ca: 0.2-5%, Zn: 0.1-10%, An aluminum alloy containing one or more of the group consisting of Mg: 0.1 to 20% and Ti: 0.1 to 5%, with the balance being aluminum and inevitable impurities, has a relative density of 0.20 or less The average cell diameter is 3.7 mm or less (see Patent Documents 6 and 7).
JP-A-8-164869 (Claims, FIG. 1) Japanese Patent Laid-Open No. 11-59298 (Claims, FIG. 1) JP 2003-19977 A (Claims, FIG. 1) Japanese Patent Laying-Open No. 2003-28224 (Claims, FIG. 1) JP 2004-108541 A (Claims, FIG. 1) Japanese Patent Laid-Open No. 11-302765 (Claims, FIG. 1) JP 2000-328155 A (Claims, FIG. 1)

ところが、上記したような鋼製の管体や中空部材の中空部に発泡アルミニウムを充填したタイプのクラッシュボックスは、その皮材としての鋼製の管体や中空部材によって、初期瞬間応力、即ち、荷重−変位関係(特性)における最大荷重が高くなるとともに、プラトー応力(圧縮変形の際の圧縮応力)の安定性にも欠けるという問題がある。このため、実際問題として、発泡アルミニウム自体の衝撃エネルギ吸収性を活かし得ていない。   However, the crush box of the type in which foamed aluminum is filled in the hollow portion of the steel pipe body or hollow member as described above has an initial instantaneous stress, that is, by the steel pipe body or hollow member as its skin material, that is, There is a problem that the maximum load in the load-displacement relationship (characteristic) becomes high and the stability of the plateau stress (compressive stress at the time of compressive deformation) is lacking. For this reason, as a practical problem, the impact energy absorption property of the foamed aluminum itself cannot be utilized.

また、発泡アルミニウム単体としてのクラッシュボックスを想定した場合、上記したような従来技術の各発泡アルミニウムでは、プラトー応力が不足している。例えば、前記特許文献6、7のような、特定アルミニウム合金組成と、微細気泡および特定相対密度からなる、発泡アルミニウムでも、圧縮試験におけるプラトー応力は、その図面などで示している通り、2MPa程度しかない。   Further, when a crush box as a foam aluminum simple substance is assumed, the plateau stress is insufficient in each foam aluminum of the related art as described above. For example, even in the case of foamed aluminum composed of a specific aluminum alloy composition, fine bubbles and specific relative density as in Patent Documents 6 and 7, the plateau stress in the compression test is only about 2 MPa as shown in the drawings. Absent.

即ち、前記したような従来の発泡アルミニウムでは、近年益々高くなっている、衝撃エネルギ吸収部材としての上記要求エネルギ吸収量に対応できていない。このため、発泡アルミニウム製構造部材は、軽量化の利点があっても、自動車などの高張力鋼板製の構造部材には代替できていない。   That is, the conventional foamed aluminum as described above cannot cope with the required energy absorption amount as an impact energy absorbing member, which has been increasing in recent years. For this reason, even if the structural member made of aluminum foam has the advantage of weight reduction, it cannot be replaced by a structural member made of high-tensile steel plate such as an automobile.

例えば、近年の自動車の衝突安全基準としては、従来の5mile/h 程度の低速衝突から、16km/h、64km/hなどの中高速衝突に対応できる車体前面構造が求められるようになっている。即ち、このような中高速衝突でも、低速衝突時と同様に、自動車車体の左右のサイドメンバなどの構造部材が、軸方向の圧壊変形による衝突エネルギ吸収ができる設計が必要になってきている。   For example, in recent years, automobile safety standards have been demanded for vehicle body front structures that can cope with medium-to-high-speed collisions such as 16km / h and 64km / h from conventional low-speed collisions of about 5mile / h. That is, even in such a medium-high speed collision, as in the case of a low-speed collision, it is necessary to design the structural members such as the left and right side members of the automobile body so as to absorb collision energy due to axial crushing deformation.

これに対して、現在、一般的に使用されている440MPa級高張力鋼板製のクラッシュボックスでは、クラッシュボックスが50%変形するまでに6.0kJ/kg程度のエネルギ吸収量がある。このため、発泡アルミニウムが、このような高張力鋼板製のクラッシュボックスに代替できるようにするためには、発泡アルミニウム単体クラッシュボックスとして、高張力鋼板製クラッシュボックスと同等の体積を有することを前提に、高張力鋼板製クラッシュボックスと同等か、それ以上のエネルギ吸収量が必要である。なお、高張力鋼板製クラッシュボックスと同等の体積を有しなければ、発泡アルミニウムを高張力鋼板製クラッシュボックスに代替する軽量化の利点が生じない。   On the other hand, a crush box made of a 440 MPa class high-tensile steel sheet that is currently used generally has an energy absorption amount of about 6.0 kJ / kg before the crush box is deformed by 50%. For this reason, in order for aluminum foam to be able to replace such a high tensile steel plate crash box, it is assumed that the aluminum foam crash box has the same volume as the high tensile steel plate crash box. An energy absorption amount equivalent to or higher than that of a high tensile steel plate crash box is required. In addition, if it does not have a volume equivalent to the high tensile steel plate crash box, the advantage of weight reduction that substitutes foam aluminum for the high tensile steel plate crash box does not occur.

前記した440MPa級高張力鋼板製のクラッシュボックスの、50%変形までの6.0kJ/kg程度のエネルギ吸収量の性能を、圧縮試験における圧縮応力(プラトー応力)としてみた場合、発泡アルミニウム単体としてプラトー応力が4MPa以上必要である。   When the performance of energy absorption amount of about 6.0 kJ / kg up to 50% deformation of the crash box made of the above-mentioned 440 MPa class high-tensile steel plate is seen as compression stress (plateau stress) in the compression test, The stress needs to be 4 MPa or more.

本発明はこのような課題を解決するためになされたものであって、高張力鋼板製の衝撃エネルギ吸収部材に代替できるアルミニウム合金発泡体を提供することである。   The present invention has been made to solve such problems, and it is an object of the present invention to provide an aluminum alloy foam that can be substituted for an impact energy absorbing member made of a high-strength steel plate.

この目的を達成するために、本発明のアルミニウム合金発泡体の要旨は、エネルギ吸収部材として用いられるアルミニウム合金発泡体であって、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなり、発泡の平均粒径が5mm以下、相対密度が0.1以上であるとともに、発泡のセル壁の平均硬さが60Hv以上であることとする。   In order to achieve this object, the gist of the aluminum alloy foam of the present invention is an aluminum alloy foam used as an energy absorbing member, and is in mass%, Zn: 1.0 to 20.0%, Ca: 0.1% to 5.0%, Ti: 0.1% to 5.0%, Mg: 0.1% to 5.0%, respectively, and a foamed aluminum alloy composed of the balance aluminum and inevitable impurities The average particle diameter of the foam is 5 mm or less, the relative density is 0.1 or more, and the average hardness of the cell wall of the foam is 60 Hv or more.

本発明者らは、前記した従来のアルミニウム合金発泡体(以下、発泡アルミニウムとも言う)のプラトー応力が低いのは、発泡のセル壁の平均硬さが低いためであることを知見した。前記特許文献6、7のような、特定アルミニウム合金組成と微細気泡および特定相対密度からなるアルミニウム合金発泡体は、発泡のセル壁の平均硬さが低いために、プラトー応力が2MPa程度と低くなる。   The present inventors have found that the plateau stress of the above-described conventional aluminum alloy foam (hereinafter also referred to as foamed aluminum) is low because the average hardness of the foamed cell walls is low. Since the average hardness of the foamed cell wall is low, the plateau stress of the aluminum alloy foam composed of the specific aluminum alloy composition, fine bubbles and specific relative density as in Patent Documents 6 and 7 is as low as about 2 MPa. .

このように、発泡のセル壁の平均硬さとアルミニウム合金発泡体の圧縮応力とは相関しており、発泡のセル壁の平均硬さを高めるほど、アルミニウム合金発泡体のプラトー応力(圧縮試験における圧縮応力)を高めることができる。即ち、アルミニウム合金発泡体の発泡のセル壁の平均硬さを高めるほど、アルミニウム合金発泡体単体製クラッシュボックスのエネルギ吸収量と、初期最大瞬間応力とを高めることができる。   Thus, the average hardness of the foam cell wall and the compressive stress of the aluminum alloy foam are correlated, and the plateau stress of the aluminum alloy foam (compression in the compression test) increases as the average hardness of the foam cell wall increases. Stress). That is, as the average hardness of the foamed cell wall of the aluminum alloy foam is increased, the energy absorption amount and the initial maximum instantaneous stress of the crash box made of the aluminum alloy foam alone can be increased.

因みに、通常の発泡アルミニウムの製法では、発泡後の冷却は放冷であるため、また、室温まで放冷するために、発泡粒径を平均粒径として微細化させても、必然的に、発泡のセル壁の平均硬さが低くならざるを得ない。   By the way, in the usual process for producing foamed aluminum, the cooling after foaming is allowed to cool, and even if the foamed particle size is reduced to the average particle size in order to cool to room temperature, foaming is inevitably performed. The average hardness of the cell walls must be low.

このため、本発明のように、特定合金組成からなる発泡アルミニウムの発泡粒径を、平均粒径として微細気泡化した上で、上記発泡のセル壁の平均硬さをより高くするためには、後述する通り、特別な製造方法が必要である。   For this reason, in order to further increase the average hardness of the foamed cell wall after making the foamed particle diameter of the foamed aluminum comprising the specific alloy composition into fine bubbles as the average particle diameter as in the present invention, As will be described later, a special manufacturing method is required.

本発明では、更に、発泡のセル壁の平均硬さと、発泡アルミニウムの圧縮試験における圧縮応力(プラトー応力)との関係を、定量的に把握した。そして、発泡アルミニウムのプラトー応力を4MPa以上とするためには、発泡のセル壁の平均硬さが60Hv以上とする必要があることを認識した。   In the present invention, the relationship between the average hardness of the foamed cell wall and the compression stress (plateau stress) in the compression test of foamed aluminum was quantitatively grasped. And in order to make plateau stress of foaming aluminum into 4 Mpa or more, it recognized that the average hardness of the cell wall of foaming needs to be 60 Hv or more.

このように、本発明によれば、高張力鋼板製の構造部材に代替可能な、高い衝撃エネルギ吸収量を達成できる、アルミニウム合金発泡体を提供できる。   Thus, according to the present invention, it is possible to provide an aluminum alloy foam that can achieve a high impact energy absorption that can be substituted for a structural member made of a high-tensile steel plate.

(発泡の平均粒径)
本発明では、前提的な要件として、アルミニウム合金発泡体の発泡径(気泡径、あるいは気泡粒径)を制御し、平均粒径を5mm以下とする。発泡の平均粒径を5mm以下とすることにより、発泡粒径の均一性が保障される。アルミニウム合金発泡体の発泡の平均粒径が5mmを超えた場合、発泡のセル壁の平均硬さを60Hv以上とすることが困難となるとともに、圧縮強度や衝撃吸収特性が低下する。
(Average particle size of foam)
In the present invention, as a prerequisite, the foam diameter (bubble diameter or bubble particle diameter) of the aluminum alloy foam is controlled so that the average particle diameter is 5 mm or less. By setting the average particle diameter of the foam to 5 mm or less, the uniformity of the foam particle diameter is ensured. When the average particle diameter of the foam of the aluminum alloy foam exceeds 5 mm, it becomes difficult to set the average hardness of the foamed cell wall to 60 Hv or more, and the compressive strength and impact absorption characteristics are lowered.

この発泡の平均粒径は、アルミニウム合金発泡体における発泡の高輝度X線源を用いた透過粒径測定法によって測定でき、視野内の粒径を平均化して求められる。透過粒径測定における高輝度X線源はSPring8の産業界ビームラインBL16B2などを用いる。そして、粒径測定のための撮影視野面積が必要なため、パノラマ撮影を行なうことが好ましい。発泡の平均粒径が5mm以下であれば、このパノラマ撮影により、10×30mm程度の視野と、十分な測定発泡セル数が確保できる。このパノラマ撮影映像を、トレース法と画像解析ソフトを用いて、円換算の発泡粒径を決定し、発泡粒径の標準偏差を求める。これらの測定は、1試料につき3箇所行い、その平均をとる。図1に、実際に撮影したアルミニウム合金発泡体の発泡(10×30mm程度の視野)のパノラマ撮影映像を、図面代用写真として示す。   The average particle diameter of the foam can be measured by a transmission particle diameter measurement method using a foaming high-intensity X-ray source in an aluminum alloy foam, and is obtained by averaging the particle diameters in the visual field. As a high-intensity X-ray source for transmission particle size measurement, an industry beam line BL16B2 of SPring8 or the like is used. And since the imaging | photography visual field area for a particle size measurement is required, it is preferable to perform panoramic imaging. If the average particle diameter of foaming is 5 mm or less, this panoramic photography can secure a field of view of about 10 × 30 mm and a sufficient number of measurement foamed cells. For this panoramic image, a foaming particle diameter in terms of a circle is determined using a tracing method and image analysis software, and a standard deviation of the foaming particle diameter is obtained. These measurements are performed at three locations per sample and the average is taken. FIG. 1 shows a panoramic image of a foamed aluminum alloy foam (viewing field of about 10 × 30 mm) actually taken as a drawing substitute photograph.

(発泡のセル壁の平均硬さ)
本発明では、発泡のセル壁の平均硬さを60Hv以上と規定する。アルミニウム合金発泡体における発泡のセル壁は、各発泡(気泡)の周囲壁あるいは各発泡同士を仕切る壁と定義される。この発泡のセル壁の平均硬さを60Hv未満の場合は、上記発泡粒径の微細化を果たしても、アルミニウム合金発泡体のプラトー応力を4MPa以上とすることができない。
アルミニウム合金発泡体の発泡セル壁の硬さは、マイクロビッカース硬度計にて、当該発泡セル壁測定部分に、50gの荷重を加えて、例えば5箇所などの複数箇所行い、それらの平均値として求める。
(Average hardness of foamed cell wall)
In the present invention, the average hardness of the foamed cell wall is defined as 60 Hv or more. The cell wall of foaming in the aluminum alloy foam is defined as a wall surrounding each foam (bubble) or a wall partitioning each foam. When the average hardness of the foamed cell wall is less than 60 Hv, the plateau stress of the aluminum alloy foam cannot be made 4 MPa or more even if the foamed particle size is reduced.
The hardness of the foamed cell wall of the aluminum alloy foam is obtained as an average value by applying a load of 50 g to the foamed cell wall measurement portion with a micro Vickers hardness tester, for example, at a plurality of locations such as 5 locations. .

(発泡体の相対密度)
更に、アルミニウム合金発泡体のプラトー応力を得るための条件として、上記発泡粒径の微細化や、発泡粒径の均一性とともに、発泡体(発泡)の相対密度を0.1以上とすることが好ましい。発泡体の相対密度が0.1未満では、上記発泡粒径の微細化や、発泡粒径の均一性を果たしても、アルミニウム合金発泡体の前記プラトー応力が得られない可能性がある。発泡体の相対密度の上限は特に規定しないが、相対密度が高いほど重量が大きくなり、自動車などの軽量化に対する寄与が小さくなる。用途によっては、軽量化効果よりも変形応力が高い方が要求される場合もあるので、1.0以下が好ましい。なお、この発泡体の相対密度は、合金組成や製造条件、設備条件などに応じて、発泡剤(TiH2 )の添加量を調整して制御する。相対密度は、発泡体から50×50×50mm(125cm3 )の試料を切り出し、この試料の重量を測定して、水の相当体積125cm3 =125gで割って求める。
(Relative density of foam)
Further, as a condition for obtaining the plateau stress of the aluminum alloy foam, the relative density of the foam (foam) is set to 0.1 or more together with the refinement of the foam particle size and the uniformity of the foam particle size. preferable. If the relative density of the foam is less than 0.1, the plateau stress of the aluminum alloy foam may not be obtained even if the foamed particle size is reduced or the foamed particle size is uniform. The upper limit of the relative density of the foam is not particularly defined, but the higher the relative density, the larger the weight and the smaller the contribution to weight reduction of automobiles and the like. Depending on the application, a higher deformation stress may be required than the weight reduction effect, so 1.0 or less is preferable. The relative density of the foam is controlled by adjusting the amount of foaming agent (TiH 2 ) added according to the alloy composition, production conditions, equipment conditions, and the like. The relative density is obtained by cutting a 50 × 50 × 50 mm (125 cm 3 ) sample from the foam, measuring the weight of the sample, and dividing by a corresponding volume of water 125 cm 3 = 125 g.

(プラトー応力)
本発明では、アルミニウム合金発泡体のプラトー応力(圧縮試験における圧縮応力)を4MPa以上と規定する。プラトー応力が4MPa未満では、高張力鋼板製クラッシュボックスと同等の体積を有することを前提に、高張力鋼板製クラッシュボックスと同等か、それ以上のエネルギ吸収量が確保できない。具体的には、クラッシュボックスが50%変形するまでに、6.0kJ/kg程度のエネルギ吸収量が確保できない。
(Plateau stress)
In the present invention, the plateau stress (compressive stress in the compression test) of the aluminum alloy foam is defined as 4 MPa or more. If the plateau stress is less than 4 MPa, an energy absorption amount equal to or higher than that of a high-strength steel plate crash box cannot be secured on the assumption that the plateau has a volume equivalent to that of a high-strength steel plate crash box. Specifically, an energy absorption amount of about 6.0 kJ / kg cannot be secured until the crash box is deformed by 50%.

(発泡用アルミニウム合金組成)
アルミニウム合金発泡体の、エネルギ吸収部材として必要強度やエネルギ吸収能などの特性を満たすとともに、発泡の均一性にも関わる、発泡用アルミニウム合金組成を以下に説明する。
(Aluminum alloy composition for foaming)
The aluminum alloy composition for foaming, which satisfies the characteristics of the aluminum alloy foam, such as required strength and energy absorbing ability as an energy absorbing member, and also relates to the uniformity of foaming, will be described below.

本発明において、発泡用アルミニウム合金の組成は、前記プラトー応力など、発泡体としての必要特性を満たすために、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるものとする。   In the present invention, the composition of the aluminum alloy for foaming is such that Zn: 1.0 to 20.0%, Ca: 0.1 to 5 in mass% in order to satisfy the necessary properties as a foam, such as the plateau stress. 0.0%, Ti: 0.1 to 5.0%, Mg: 0.1 to 5.0%, respectively, and the balance being aluminum and inevitable impurities.

(Zn)
Znは、Mgと共存した際に強度向上に有効な元素でもあるが、凝固収縮する作用があり、セル壁の一部に膜厚の薄い部分を形成させ、圧縮変形能を高める作用がある。この作用を発揮させるためには、1.0%以上の含有が必要である。しかし、20.0%を超えて過度に含有すると、発泡アルミニウムの気泡粒径の安定化を阻害し、気泡が粗くなってしまい、圧縮強度を低下させる。従って、Znの含有量は1.0〜20.0%の範囲とする。
(Zn)
Zn is an element effective for improving the strength when coexisting with Mg, but has the effect of coagulating and shrinking, and has the effect of increasing the compressive deformability by forming a thin part of the cell wall. In order to exert this effect, the content of 1.0% or more is necessary. However, if it exceeds 20.0% and it contains excessively, stabilization of the bubble particle diameter of foaming aluminum will be inhibited, a bubble will become coarse, and compressive strength will be reduced. Therefore, the Zn content is in the range of 1.0 to 20.0%.

(Ca)
Caは、発泡アルミニウムの製造時におけるアルミニウム合金溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にするとともに、発泡の微細化、均一性を達成するための、発泡作用を有する。その効果を得るためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。従って、Caの含有量は0.1〜5.0%の範囲とする。
(Ca)
Ca increases the viscosity of the molten aluminum alloy at the time of producing foamed aluminum and stabilizes the bubbles to make the foam homogeneous and to achieve foam refinement and uniformity. Have. In order to obtain the effect, the content of at least 0.1% is necessary. On the other hand, if the content exceeds 5.0% excessively, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and it becomes difficult to disperse the foaming agent. And reduce the compressive strength. Therefore, the Ca content is in the range of 0.1 to 5.0%.

(Mg)
Mgは、強度向上に有効な元素であり、また、上記した通り、Znと共同して発泡アルミニウムの製造時に、溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にする作用を有する。その効果を得るためには、Mgを少なくとも0.1%以上含有する必要がある。一方、5.0%を超えて過度に含有すると、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。したがって、Mg含有量は0.1〜5.0%の範囲とする。
(Mg)
Mg is an element effective for improving the strength, and as described above, during the production of foamed aluminum in cooperation with Zn, the viscosity of the molten metal is increased and the bubbles are stabilized to make the foam homogeneous. Has an effect. In order to obtain the effect, it is necessary to contain at least 0.1% of Mg. On the other hand, if the content exceeds 5.0% excessively, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and it becomes difficult to disperse the foaming agent. And reduce the compressive strength. Therefore, the Mg content is in the range of 0.1 to 5.0%.

(Ti)
Tiは、発泡アルミニウムの強度向上に有効な元素である。その効果を引き出すためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の流動性を低下させ、晶出することにより、アルミニウムを脆くする。したがって、Tiの含有量は0.1〜5.0%の範囲とする。
(Ti)
Ti is an element effective for improving the strength of foamed aluminum. In order to bring out the effect, it is necessary to contain at least 0.1% or more. On the other hand, when it contains excessively exceeding 5.0%, the fluidity | liquidity of a molten metal will be reduced and it will crystallize and it will make aluminum brittle. Therefore, the Ti content is in the range of 0.1 to 5.0%.

なお、Cuは発泡過程での発泡粒径の均一性を阻害する可能性がある。このため、本発明ではCuは不純物であり、Cu含有量は極力少ない方が好ましい。また、この他の元素も不純物であり、含有量が極力少ない方が好ましい。ただ、この他の元素の含有量を下げるための溶解、精錬など、発泡アルミニウム製造上のコストの問題もあり、発泡アルミニウムの特性を低下させない、通常の発泡アルミニウムにおける不純物量範囲、不純物レベルでの含有は許容する。   In addition, Cu may inhibit the uniformity of the foamed particle diameter in the foaming process. For this reason, in the present invention, Cu is an impurity, and the Cu content is preferably as low as possible. Further, other elements are also impurities, and it is preferable that the content is as small as possible. However, there are also problems in the production of foamed aluminum, such as melting and refining to reduce the content of these other elements, and it does not degrade the characteristics of foamed aluminum. Inclusion is allowed.

(製造条件)
次に、本発明発泡アルミニウムを製造するための、好ましい製造条件について以下に説明する。本発明では、発泡アルミニウムの製造工程自体は、従来と同様である。但し、前記した通り、特定合金組成からなる発泡アルミニウムの発泡粒径を、平均粒径として微細気泡化した上で、発泡のセル壁の平均硬さを60Hv以上とするためには、後述する通り、特に、炉から鋳型を出した後に(発泡完了後に)約100〜200℃の範囲まで一旦冷却した後、この温度範囲で10分以上保持する熱処理を行なうことが必要である。
(Production conditions)
Next, preferable production conditions for producing the foamed aluminum of the present invention will be described below. In the present invention, the manufacturing process itself of the foamed aluminum is the same as the conventional one. However, as described above, in order to make the foamed particle diameter of the foamed aluminum having the specific alloy composition into fine bubbles as the average particle diameter and to make the average hardness of the foamed cell wall 60Hv or more, as described later. In particular, after the mold is taken out of the furnace (after completion of foaming), it is necessary to cool it once to a range of about 100 to 200 ° C. and then perform a heat treatment for holding at this temperature range for 10 minutes or more.

先ず、溶解炉内で、工業用純アルミニウムに対し、上記Zn:1.0〜20.0%、Mg:0.1〜5.0%などの合金成分元素と、カルシウム0.1〜5.0%を添加し、大気中で溶湯を例えば約5分程度攪拌して増粘させる。   First, in a melting furnace, alloy component elements such as Zn: 1.0 to 20.0% and Mg: 0.1 to 5.0% and calcium 0.1 to 5. 0% is added, and the molten metal is stirred in the atmosphere for about 5 minutes to increase the viscosity.

そして、この増粘後の溶湯を600〜700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンを所定量添加する。その後、例えば1〜10分間攪拌した後、攪拌機を取り除き、鋳型を前記温度範囲の大気溶解炉内で、1〜10分間程度保持して発泡を完了させる。   And after pouring the molten metal after this thickening into the casting_mold | template in a 600-700 degreeC atmospheric melting furnace, a predetermined amount of titanium hydride is added. Then, for example, after stirring for 1 to 10 minutes, the stirrer is removed, and the mold is held in the atmospheric melting furnace in the temperature range for about 1 to 10 minutes to complete foaming.

従来は、この保持後に、炉から鋳型を出し、室温まで放冷するために、必然的に、発泡のセル壁の平均硬さが低くならざるを得ない。   Conventionally, after this holding, the mold is taken out of the furnace and allowed to cool to room temperature. Therefore, the average hardness of the foamed cell walls inevitably decreases.

これに対して、発泡のセル壁の平均硬さを本発明のように高くするためには、この放冷の際に、上記従来のように室温まで冷却するのではなく、約100〜200℃の範囲まで一旦冷却した後、この温度範囲で10分以上保持する熱処理を行なう必要がある。この熱処理を行なうことによって、前記室温までの冷却よりも、発泡のセル壁の平均硬さを60Hv以上と硬くすることができる。   On the other hand, in order to increase the average hardness of the foamed cell wall as in the present invention, at the time of cooling, it is not cooled to room temperature as in the conventional case, but is about 100 to 200 ° C. It is necessary to perform a heat treatment for 10 minutes or more in this temperature range after the temperature is once cooled to this range. By performing this heat treatment, it is possible to make the average hardness of the foamed cell wall as hard as 60 Hv or more than the cooling to room temperature.

このような冷却後に、鋳型から発泡体を取り出し、機械加工して、角柱や角形など、所望形状の製品アルミニウム合金発泡体とする。   After such cooling, the foam is taken out from the mold and machined to obtain a product aluminum alloy foam having a desired shape such as a prism or square.

以下に本発明の実施例を説明する。表2に示す発泡後の冷却(放冷)停止温度や保持時間(熱処理条件)などを変えて、表1に示す各化学成分組成のアルミニウム合金発泡体を製造し、発泡体の、発泡平均粒径、相対密度、セル壁硬さと、圧縮強度特性とを評価した。   Examples of the present invention will be described below. By changing the cooling (cooling) stop temperature and holding time (heat treatment conditions) after foaming shown in Table 2, aluminum alloy foams having the chemical composition shown in Table 1 were produced, The diameter, relative density, cell wall hardness, and compressive strength properties were evaluated.

具体的には、先ず、溶解炉内で、工業用純アルミニウムに対し、Zn、Mg、Caなどの合金成分元素を添加し、大気中で溶湯を約5分程度攪拌して増粘させた。そして、この増粘後の溶湯を、約700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンをTiとして0.1〜5.0%程度添加した。その後、約2分間攪拌した後、攪拌機を取り除き、鋳型を前記約700℃の大気溶解炉内で、約4分間程度保持して発泡を完了させた。   Specifically, first, alloy component elements such as Zn, Mg, and Ca were added to industrial pure aluminum in a melting furnace, and the molten metal was stirred in the atmosphere for about 5 minutes to increase the viscosity. And after pouring the molten metal after this thickening into the casting_mold | template in an about 700 degreeC air melting furnace, about 0.1 to 5.0% of titanium hydride was added as Ti. Then, after stirring for about 2 minutes, the stirrer was removed, and the mold was held in the atmospheric melting furnace at about 700 ° C. for about 4 minutes to complete foaming.

この保持後に、炉から鋳型を出し、表2に示す各冷却停止温度まで放冷した。そして、発明例は、これら各冷却停止温度で、表2に示す所定時間保持する熱処理を行なった。このような冷却後に、鋳型から発泡体を取り出した。   After this holding, the mold was taken out of the furnace and allowed to cool to each cooling stop temperature shown in Table 2. In the inventive examples, heat treatment was performed at these cooling stop temperatures for a predetermined time shown in Table 2. After such cooling, the foam was removed from the mold.

これらアルミニウム合金発泡体から、機械加工にて高さ50mm×幅50mm×長さ10mmの試験片を切り出し、発泡の平均粒径を、前記した高輝度X線源を用いた透過粒径測定法によって各々測定した。この際、通常の発泡アルミニウムの断面を観察して各発泡の粒径を測定する、断面測定法による発泡の平均粒径も参考までに求めた。
また、これらアルミニウム合金発泡体の相対密度を前記した方法で求めた。そして、これらアルミニウム合金発泡体の発泡セル壁の硬さも、マイクロビッカース硬度計にて、50gの荷重を加えて5箇所行い、それらの平均値として各々求めた。
A test piece having a height of 50 mm, a width of 50 mm, and a length of 10 mm was cut out from these aluminum alloy foams by machining, and the average particle size of the foam was determined by the transmission particle size measurement method using the high-intensity X-ray source described above. Each was measured. Under the present circumstances, the average particle diameter of the foaming by the cross-section measuring method which observes the cross section of normal foaming aluminum and measures the particle size of each foaming was also calculated | required for reference.
Moreover, the relative density of these aluminum alloy foams was determined by the method described above. And the hardness of the foaming cell wall of these aluminum alloy foams was also measured with a micro Vickers hardness tester by applying a load of 50 g, and calculating the average value thereof.

更に、前記アルミニウム合金発泡体から、機械加工にて高さ50mm×幅50mm×長さ50mmの試験片を切り出し、圧縮試験機を用いて長手方向に圧縮した際のプラトー応力を求めた。これらの結果も表2に示す。   Further, a test piece having a height of 50 mm, a width of 50 mm and a length of 50 mm was cut out from the aluminum alloy foam by machining, and the plateau stress when compressed in the longitudinal direction using a compression tester was determined. These results are also shown in Table 2.

表1、2から明らかな通り、本発明組成内のアルミニウム合金A〜Dである発明例1〜4は、放冷後、表2に示す冷却停止温度で所定時間保持する熱処理を行なっている。この結果、発泡の平均粒径が5mm以下であるとともに、発泡体の相対密度も0.1以上であり、発泡のセル壁の平均硬さが60Hv以上である。この結果、発明例1〜4は、アルミニウム合金発泡体のプラトー応力が4MPa以上である。因みに、発明例1のプラトー応力−変位特性を図2に示す。   As is clear from Tables 1 and 2, Invention Examples 1 to 4, which are aluminum alloys A to D within the composition of the present invention, are subjected to heat treatment that is held for a predetermined time at the cooling stop temperature shown in Table 2 after being allowed to cool. As a result, the average particle diameter of the foam is 5 mm or less, the relative density of the foam is 0.1 or more, and the average hardness of the cell wall of the foam is 60 Hv or more. As a result, in Examples 1 to 4, the plateau stress of the aluminum alloy foam is 4 MPa or more. Incidentally, the plateau stress-displacement characteristic of Invention Example 1 is shown in FIG.

これに対して、比較例5、7は、本発明組成内のアルミニウム合金A、Bであるが、従来同様、発泡体を室温まで放冷しており、発明例のような冷却停止温度で所定時間保持する熱処理を行なっていない。このため、発泡のセル壁の平均硬さが60Hv未満であり、圧縮応力も4MPa未満と低い。
比較例6は、本発明組成内のアルミニウム合金Aを用い、発明例のような冷却停止温度で所定時間保持する熱処理を行なっているが、時間が短過ぎて、熱処理の効果が出ていない。このため、発泡のセル壁の平均硬さが60Hv未満であり、圧縮応力も4MPa未満と低い。
On the other hand, Comparative Examples 5 and 7 are the aluminum alloys A and B within the composition of the present invention, but the foam is allowed to cool to room temperature as in the prior art, and is predetermined at the cooling stop temperature as in the inventive example. No heat treatment for holding time. For this reason, the average hardness of the foamed cell wall is less than 60 Hv, and the compressive stress is as low as less than 4 MPa.
In Comparative Example 6, the aluminum alloy A within the composition of the present invention was used and heat treatment was performed for a predetermined time at the cooling stop temperature as in the inventive example, but the time was too short and the heat treatment effect was not achieved. For this reason, the average hardness of the foamed cell wall is less than 60 Hv, and the compressive stress is as low as less than 4 MPa.

比較例8〜15は、Zn、Ca、Ti、Mgの含有量が、各々、本発明組成の下限、上限に外れている表1のアルミニウム合金E〜Lを用いている。このため、発明例のような冷却停止温度で所定時間保持する熱処理を行なっているものの、発泡のセル壁の平均硬さが60Hv未満であり、圧縮応力が4MPa未満と低い。   Comparative Examples 8 to 15 use aluminum alloys E to L in Table 1 in which the contents of Zn, Ca, Ti, and Mg deviate from the lower limit and the upper limit of the composition of the present invention, respectively. For this reason, although the heat processing hold | maintained for the predetermined time at the cooling stop temperature like the example of an invention is performed, the average hardness of the cell wall of foaming is less than 60 Hv, and compressive stress is as low as less than 4 MPa.

また、前記通常の断面測定法による発泡の平均粒径では、本発明の発泡粒径の標準偏差に比して、発明例と比較例とに、圧縮応力に対応した明確な相関関係が認められないことが分かる。   In addition, in the average particle diameter of the foam by the usual cross-sectional measurement method, a clear correlation corresponding to the compressive stress was recognized between the inventive example and the comparative example as compared with the standard deviation of the foamed particle diameter of the present invention. I understand that there is no.

以上の結果から、本発明アルミニウム合金発泡体における各要件の意義と好ましい製造条件の意義とが裏付けられる。   From the above results, the significance of each requirement in the aluminum alloy foam of the present invention and the significance of preferred production conditions are supported.

Figure 0004359211
Figure 0004359211

Figure 0004359211
Figure 0004359211

以上説明したように、本発明によれば、高張力鋼板製の衝撃エネルギ吸収部材に代替できるアルミニウム合金発泡体を提供することができる。この結果、自動車の構造部材など、衝突時に圧縮の衝撃荷重を受けた際に変形して衝撃エネルギを吸収する、衝撃エネルギ吸収部材に適用することができる。   As described above, according to the present invention, it is possible to provide an aluminum alloy foam that can replace an impact energy absorbing member made of a high-tensile steel plate. As a result, the present invention can be applied to an impact energy absorbing member that deforms and absorbs impact energy when subjected to a compressive impact load at the time of collision, such as a structural member of an automobile.

本発明アルミニウム合金発泡体の発泡の映像を示す、図面代用写真である。It is a drawing substitute photograph which shows the image | video of foaming of this invention aluminum alloy foam. 本発明アルミニウム合金発泡体の応力−変位特性を示す、説明図である。It is explanatory drawing which shows the stress-displacement characteristic of this invention aluminum alloy foam.

Claims (2)

エネルギ吸収部材として用いられるアルミニウム合金発泡体であって、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなり、発泡の平均粒径が5mm以下、相対密度が0.1以上であるとともに、発泡のセル壁の平均硬さが60Hv以上であることを特徴とするアルミニウム合金発泡体。   An aluminum alloy foam used as an energy absorbing member, and in mass%, Zn: 1.0-20.0%, Ca: 0.1-5.0%, Ti: 0.1-5.0% Mg: 0.1 to 5.0% of each, foamed aluminum alloy consisting of the balance aluminum and inevitable impurities, the average particle size of foaming is 5 mm or less, the relative density is 0.1 or more And the average hardness of the cell wall of foaming is 60 Hv or more, The aluminum alloy foam characterized by the above-mentioned. 前記アルミニウム合金発泡体が単体としてエネルギ吸収部材に用いられる請求項1に記載のアルミニウム合金発泡体。
The aluminum alloy foam according to claim 1, wherein the aluminum alloy foam is used as a simple substance for an energy absorbing member.
JP2004265601A 2004-09-13 2004-09-13 Aluminum alloy foam Expired - Fee Related JP4359211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265601A JP4359211B2 (en) 2004-09-13 2004-09-13 Aluminum alloy foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265601A JP4359211B2 (en) 2004-09-13 2004-09-13 Aluminum alloy foam

Publications (2)

Publication Number Publication Date
JP2006077317A JP2006077317A (en) 2006-03-23
JP4359211B2 true JP4359211B2 (en) 2009-11-04

Family

ID=36157009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265601A Expired - Fee Related JP4359211B2 (en) 2004-09-13 2004-09-13 Aluminum alloy foam

Country Status (1)

Country Link
JP (1) JP4359211B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0621470A2 (en) 2006-12-05 2011-12-13 Glycoscience Lab Inc therapeutic agent for degenerative arthritis
CN113481403A (en) * 2021-06-22 2021-10-08 安徽省新方尊自动化科技有限公司 High-strength wear-resistant foamed aluminum composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2006077317A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Hangai et al. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
US20090028743A1 (en) Forming magnesium alloys with improved ductility
JP6780679B2 (en) Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
JP2019014939A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2007254833A (en) Aluminum alloy extruded material for tube expanding
JP2009256754A (en) Aluminum sheet for battery case having excellent laser weldability
JP4694988B2 (en) Aluminum alloy foam and manufacturing method thereof
JP4359210B2 (en) Aluminum alloy foam
JP4359211B2 (en) Aluminum alloy foam
EP3842560A1 (en) Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor
JPH11302765A (en) Blowing metal excellent in impact absorption
KR20200036421A (en) Magnesium alloy sheet and method for manufacturing the same
JP2007217715A (en) FOAMED IMPACT ABSORBING MATERIAL MADE OF Zn-Al ALLOY HAVING EXCELLENT IMPACT ABSORPTION CHARACTERISTIC, AND ITS MANUFACTURING METHOD
JP2011099140A (en) Magnesium alloy and method for producing the same
EP1041165A1 (en) Shock absorbing material
JP4347137B2 (en) Method for producing high-strength aluminum alloy plate for secondary battery case
JP4539913B2 (en) Aluminum alloy plate for secondary battery case and manufacturing method thereof
JP4189368B2 (en) Aluminum alloy foam
JP4695052B2 (en) Aluminum alloy foam for energy absorbing members
JP4523529B2 (en) Aluminum alloy foam and manufacturing method thereof
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
Sowmiya et al. Development of metallic aluminium foam casting using calcium carbonate precursors for side impact beam application
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP6760584B2 (en) Extruded member of magnesium alloy

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20040928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees