JP4189368B2 - Aluminum alloy foam - Google Patents

Aluminum alloy foam Download PDF

Info

Publication number
JP4189368B2
JP4189368B2 JP2004277531A JP2004277531A JP4189368B2 JP 4189368 B2 JP4189368 B2 JP 4189368B2 JP 2004277531 A JP2004277531 A JP 2004277531A JP 2004277531 A JP2004277531 A JP 2004277531A JP 4189368 B2 JP4189368 B2 JP 4189368B2
Authority
JP
Japan
Prior art keywords
foam
aluminum alloy
aluminum
precipitate particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004277531A
Other languages
Japanese (ja)
Other versions
JP2006089813A (en
Inventor
康博 有賀
浩一 槙井
誠治 西
鉄二 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2004277531A priority Critical patent/JP4189368B2/en
Publication of JP2006089813A publication Critical patent/JP2006089813A/en
Application granted granted Critical
Publication of JP4189368B2 publication Critical patent/JP4189368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、自動車の構造部材など、衝突時に圧縮の衝撃荷重を受けた際に変形して衝撃エネルギを吸収する、衝撃エネルギ吸収部材として用いられるアルミニウム合金発泡体に関するものである。   The present invention relates to an aluminum alloy foam used as an impact energy absorbing member that deforms and absorbs impact energy when subjected to a compressive impact load at the time of a collision, such as an automobile structural member.

上記したような衝撃エネルギ吸収部材(クラッシュボックス)として、通常、自動車の構造部材には、閉断面を有する鋼製の中空部材が汎用されている。鋼製の中空部材は、軸方向や断面方向の圧縮の衝撃入力を受けると潰れ変形して、その衝撃エネルギを吸収する。この際、限られた変形量で、より大きなエネルギを吸収可能とするには、部材の寸法や肉厚を大きくすることが有効である。しかし、これは鋼製中空部材の体積や重量の増加を招いてしまい、燃費が悪化したり車両同士の衝突時における相手車両に与えるダメージが大きくなったりして好ましくない。また、軟鋼板に代わって、高強度鋼板(ハイテン)を使用して、鋼製中空部材の体積や重量の増加を抑制することも実際に行なわれているが、高強度鋼板は成形性が劣るため、部材形状が制約を受けることや、成形工程が増加することといった不都合がある。   As the impact energy absorbing member (crash box) as described above, a steel hollow member having a closed cross section is generally used as a structural member of an automobile. The steel hollow member is crushed and deformed to absorb the impact energy when it receives a compression impact input in the axial direction or the cross-sectional direction. At this time, in order to be able to absorb a larger amount of energy with a limited amount of deformation, it is effective to increase the size and thickness of the member. However, this leads to an increase in the volume and weight of the steel hollow member, which is not preferable because fuel consumption deteriorates and damage to the opponent vehicle at the time of collision between vehicles increases. Moreover, in place of a mild steel plate, a high-strength steel plate (HITEN) is used to suppress an increase in the volume and weight of the steel hollow member, but the high-strength steel plate has poor formability. Therefore, there are inconveniences such that the member shape is restricted and the molding process is increased.

これに対して、近年では、これら衝撃エネルギ吸収部材として、リサイクル性の良好な発泡アルミニウムなどの発泡金属が注目されている。このクラッシュボックスは、発泡アルミニウムを角柱状の形状としたものである。そして、この角柱軸芯方向を衝突方向に一致させるように配置し、衝突時に圧縮応力を受けて圧壊することにより衝突エネルギを吸収し、乗員や構造体への衝撃を減少させるようにしたものである。   On the other hand, in recent years, foam metal such as foam aluminum having good recyclability has attracted attention as these impact energy absorbing members. This crash box is made of foamed aluminum in a prismatic shape. And this prismatic axis direction is arranged to coincide with the collision direction, and it absorbs the collision energy by receiving the compressive stress and collapsing at the time of collision, and reduces the impact on the occupant and the structure. is there.

このような発泡アルミニウムを用いたクラッシュボックスへの適用例としては、自動車車体のサイドメンバなどの構造部材として、断面形状が略円形状あるいは多角形状をなす鋼製の管体の中空部に、発泡アルミニウムを充填したものが知られている(特許文献1、2、3、4、5参照)。   As an application example to such a crash box using aluminum foam, as a structural member such as a side member of an automobile body, foaming is performed in a hollow portion of a steel tube having a substantially circular or polygonal cross-sectional shape. What filled aluminum is known (refer patent documents 1, 2, 3, 4, 5).

これは、一定の反力を示しつつ圧縮変形する発泡アルミニウムの特性を利用したものであって、管体の圧縮変形を制御することによって、衝撃エネルギの吸収能を高めることが可能になる。   This utilizes the characteristic of foamed aluminum that compresses and deforms while exhibiting a constant reaction force. By controlling the compressive deformation of the tubular body, it is possible to increase the ability to absorb impact energy.

更に、発泡アルミニウム自体の衝撃エネルギ吸収能を高めるために、アルミニウム組成として、重量%で、Cu:0.1〜7%、Ca:0.2〜5%、Zn:0.1〜10%、Mg:0.1〜20%、Ti:0.1〜5%からなる群の1種又は2種以上を含み、残部がアルミニウム及び不可避的不純物からなるアルミニウム合金が、相対密度が0.20以下、平均気泡粒径が3.7mm以下とともに提案されている(特許文献6、7参照)。
特開平8−164869号公報 (特許請求の範囲、図1) 特開平11−59298号公報 (特許請求の範囲、図1) 特開2003−19977号公報 (特許請求の範囲、図1) 特開2003−28224号公報 (特許請求の範囲、図1) 特開2004−108541号公報 (特許請求の範囲、図1) 特開平11−302765号公報 (特許請求の範囲、図1) 特開2000−328155号公報 (特許請求の範囲、図1)
Furthermore, in order to increase the impact energy absorption capacity of the foamed aluminum itself, the aluminum composition is, by weight, Cu: 0.1-7%, Ca: 0.2-5%, Zn: 0.1-10%, An aluminum alloy containing one or more of the group consisting of Mg: 0.1 to 20% and Ti: 0.1 to 5%, with the balance being aluminum and inevitable impurities, has a relative density of 0.20 or less The average cell diameter is 3.7 mm or less (see Patent Documents 6 and 7).
JP-A-8-164869 (Claims, FIG. 1) Japanese Patent Laid-Open No. 11-59298 (Claims, FIG. 1) JP 2003-19977 A (Claims, FIG. 1) Japanese Patent Laying-Open No. 2003-28224 (Claims, FIG. 1) JP 2004-108541 A (Claims, FIG. 1) Japanese Patent Laid-Open No. 11-302765 (Claims, FIG. 1) JP 2000-328155 A (Claims, FIG. 1)

ところが、上記したような鋼製の管体や中空部材の中空部に発泡アルミニウムを充填したタイプのクラッシュボックスは、その皮材としての鋼製の管体や中空部材によって、初期瞬間応力、即ち、荷重−変位関係(特性)における最大荷重が高くなるとともに、プラトー応力(圧縮変形の際の圧縮応力)の安定性にも欠けるという問題がある。このため、実際問題として、発泡アルミニウム自体の衝撃エネルギ吸収性を活かし得ていない。   However, the crush box of the type in which foamed aluminum is filled in the hollow portion of the steel pipe body or hollow member as described above has an initial instantaneous stress, that is, by the steel pipe body or hollow member as its skin material, that is, There is a problem that the maximum load in the load-displacement relationship (characteristic) becomes high and the stability of the plateau stress (compressive stress at the time of compressive deformation) is lacking. For this reason, as a practical problem, the impact energy absorption property of the foamed aluminum itself cannot be utilized.

また、発泡アルミニウム単体としてのクラッシュボックスを想定した場合、上記したような従来技術の各発泡アルミニウムでは、プラトー応力が不足している。例えば、前記特許文献6、7のような、特定アルミニウム合金組成と、微細気泡および特定相対密度からなる、発泡アルミニウムでも、圧縮試験におけるプラトー応力は、その図面などで示している通り、2MPa程度しかない。   Further, when a crush box as a foam aluminum simple substance is assumed, the plateau stress is insufficient in each foam aluminum of the related art as described above. For example, even in the case of foamed aluminum composed of a specific aluminum alloy composition, fine bubbles and specific relative density as in Patent Documents 6 and 7, the plateau stress in the compression test is only about 2 MPa as shown in the drawings. Absent.

即ち、前記したような従来の発泡アルミニウムでは、近年益々高くなっている、衝撃エネルギ吸収部材としての上記要求エネルギ吸収量に対応できていない。このため、発泡アルミニウム製構造部材は、軽量化の利点があっても、自動車などの高張力鋼板製の構造部材には代替できていない。   That is, the conventional foamed aluminum as described above cannot cope with the required energy absorption amount as an impact energy absorbing member, which has been increasing in recent years. For this reason, even if the structural member made of aluminum foam has the advantage of weight reduction, it cannot be replaced by a structural member made of high-tensile steel plate such as an automobile.

例えば、近年の自動車の衝突安全基準としては、従来の5mile/h 程度の低速衝突から、16km/h、64km/hなどの中高速衝突に対応できる車体前面構造が求められるようになっている。即ち、このような中高速衝突でも、低速衝突時と同様に、自動車車体の左右のサイドメンバなどの構造部材が、軸方向の圧壊変形による衝突エネルギ吸収ができる設計が必要になってきている。   For example, in recent years, automobile safety standards have been demanded for vehicle body front structures that can cope with medium-to-high-speed collisions such as 16km / h and 64km / h from conventional low-speed collisions of about 5mile / h. That is, even in such a medium-high speed collision, as in the case of a low-speed collision, it is necessary to design the structural members such as the left and right side members of the automobile body so as to absorb collision energy due to axial crushing deformation.

これに対して、現在、一般的に使用されている440MPa級高張力鋼板製のクラッシュボックスでは、クラッシュボックスが50%変形するまでに6.0kJ/kg程度のエネルギ吸収量がある。このため、発泡アルミニウムが、このような高張力鋼板製のクラッシュボックスに代替できるようにするためには、発泡アルミニウム単体クラッシュボックスとして、高張力鋼板製クラッシュボックスと同等の体積を有することを前提に、高張力鋼板製クラッシュボックスと同等か、それ以上のエネルギ吸収量が必要である。なお、高張力鋼板製クラッシュボックスと同等の体積を有しなければ、発泡アルミニウムを高張力鋼板製クラッシュボックスに代替する軽量化の利点が生じない。   On the other hand, a crush box made of a 440 MPa class high-tensile steel sheet that is currently used generally has an energy absorption amount of about 6.0 kJ / kg before the crush box is deformed by 50%. For this reason, in order for aluminum foam to be able to replace such a high tensile steel plate crash box, it is assumed that the aluminum foam crash box has the same volume as the high tensile steel plate crash box. An energy absorption amount equivalent to or higher than that of a high tensile steel plate crash box is required. In addition, if it does not have a volume equivalent to the high tensile steel plate crash box, the advantage of weight reduction that substitutes foam aluminum for the high tensile steel plate crash box does not occur.

前記した440MPa級高張力鋼板製のクラッシュボックスの、50%変形までの6 .0kJ/kg程度のエネルギ吸収量の性能を、圧縮試験における圧縮応力(プラトー応力)としてみた場合、発泡アルミニウム単体としてのプラトー応力が4MPa以上必要である。   5. Up to 50% deformation of the crash box made of the above-mentioned 440 MPa class high strength steel plate. When the performance of the energy absorption amount of about 0 kJ / kg is seen as the compression stress (plateau stress) in the compression test, the plateau stress as the foamed aluminum simple substance needs to be 4 MPa or more.

本発明はこのような課題を解決するためになされたものであって、高張力鋼板製の衝撃エネルギ吸収部材に代替できるアルミニウム合金発泡体を提供することである。   The present invention has been made to solve such problems, and it is an object of the present invention to provide an aluminum alloy foam that can be substituted for an impact energy absorbing member made of a high-strength steel plate.

この目的を達成するために、本発明のアルミニウム合金発泡体の要旨は、エネルギ吸収部材として用いられるアルミニウム合金発泡体であって、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなり、相対密度が0.1以上であり、粒径が0.5nm以上で、50nm以下の析出物粒子が体積分率で1.0%以上分散した組織を有することとする。   In order to achieve this object, the gist of the aluminum alloy foam of the present invention is an aluminum alloy foam used as an energy absorbing member, and is in mass%, Zn: 1.0 to 20.0%, Ca: 0.1% to 5.0%, Ti: 0.1% to 5.0%, Mg: 0.1% to 5.0%, respectively, and a foamed aluminum alloy composed of the balance aluminum and inevitable impurities The relative density is 0.1 or more, the particle size is 0.5 nm or more, and the precipitate particles of 50 nm or less have a structure in which the volume fraction is 1.0% or more dispersed.

本発明者らは、アルミニウム合金発泡体(以下、発泡アルミニウムとも言う)の組織中に、微細な析出物粒子を分散させることで、プラトー応力を高められることを知見した。本発明で規定する、上記粒径が0.5nm以上で、50nm以下の微細な析出物粒子は、プラトー応力向上効果が、これより粗大な析出物粒子よりも、格段に大きい。   The inventors have found that the plateau stress can be increased by dispersing fine precipitate particles in the structure of an aluminum alloy foam (hereinafter also referred to as foamed aluminum). Fine precipitate particles having a particle size of 0.5 nm or more and 50 nm or less as defined in the present invention have a significantly larger plateau stress improving effect than coarser precipitate particles.

このため、上記規定のように、これら微細な析出物粒子を組織中に、できるだけ多く、分散乃至存在させることで、アルミニウム合金発泡体のプラトー応力を格段に高めることができる。そして、アルミニウム合金発泡体単体製クラッシュボックスのエネルギ吸収量を高めることができる。   For this reason, as described above, the plateau stress of the aluminum alloy foam can be remarkably increased by dispersing or existing as many of these fine precipitate particles as possible in the structure. And the energy absorption amount of the crash box made of a single aluminum alloy foam can be increased.

前記した従来のアルミニウム合金発泡体のプラトー応力が低いのは、上記微細な析出物粒子が少ないことにも一因がある。因みに、通常の発泡アルミニウムの製法では、発泡後の冷却は室温まで放冷するために、これら微細な析出物粒子はほとんど生成しない。このため、これら微細な析出物粒子を生成させる本発明アルミニウム合金発泡体に比して、プラトー応力が低くなる。   The reason why the plateau stress of the conventional aluminum alloy foam is low is also due to the fact that the fine precipitate particles are few. Incidentally, in the usual manufacturing method of foamed aluminum, since the cooling after foaming is allowed to cool to room temperature, these fine precipitate particles are hardly formed. For this reason, plateau stress becomes low compared with this invention aluminum alloy foam which produces | generates these fine precipitate particles.

本発明のように、特定合金組成からなる発泡アルミニウムの上記微細な析出物粒子を増すためには、後述する通り、特別な製造方法が必要である。   In order to increase the fine precipitate particles of foamed aluminum having a specific alloy composition as in the present invention, a special manufacturing method is required as described later.

本発明では、更に、上記微細な析出物の量と、発泡アルミニウムの圧縮試験における圧縮応力(プラトー応力)との関係を、定量的に把握した。そして、発泡アルミニウムのプラトー応力を4MPa以上とするためには、上記微細な析出物粒子が体積分率で1.0%以上分散する必要があることも認識した。   In the present invention, the relationship between the amount of the fine precipitates and the compression stress (plateau stress) in the compression test of foamed aluminum was quantitatively grasped. And in order to make the plateau stress of foam aluminum into 4 Mpa or more, it also recognized that the said fine precipitate particle | grains needed to disperse | distribute 1.0% or more by a volume fraction.

このように、本発明によれば、高張力鋼板製の構造部材に代替可能な、高い衝撃エネルギ吸収量を達成できる、アルミニウム合金発泡体を提供できる。   Thus, according to the present invention, it is possible to provide an aluminum alloy foam that can achieve a high impact energy absorption that can be substituted for a structural member made of a high-tensile steel plate.

(発泡体の相対密度)
アルミニウム合金発泡体の4MPa以上のプラトー応力を得るための前提条件として、発泡体(発泡)の相対密度を0.1以上とする。発泡体の相対密度が0.1未満では、粒径が0.5nm以上で、50nm以下の析出物粒子を体積分率で1.0%以上分散させた組織としても、アルミニウム合金発泡体の4MPa以上のプラトー応力が得られない可能性がある。発泡体の相対密度の上限は特に規定しないが、相対密度が高いほど重量が大きくなり、自動車などの軽量化に対する寄与が小さくなる。用途によっては、軽量化効果よりも変形応力が高い方が要求される場合もあるので、1.0以下が好ましい。
(Relative density of foam)
As a precondition for obtaining a plateau stress of 4 MPa or more of the aluminum alloy foam, the relative density of the foam (foam) is set to 0.1 or more. When the relative density of the foam is less than 0.1, even when the particle size is 0.5 nm or more and the precipitate particles of 50 nm or less are dispersed in a volume fraction of 1.0% or more, 4 MPa of the aluminum alloy foam The above plateau stress may not be obtained. The upper limit of the relative density of the foam is not particularly defined, but the higher the relative density, the larger the weight and the smaller the contribution to weight reduction of automobiles and the like. Depending on the application, a higher deformation stress may be required than the weight reduction effect, so 1.0 or less is preferable.

なお、この発泡体の相対密度は、合金組成や製造条件、設備条件などに応じて、発泡剤(TiH2 )の添加量を調整して制御する。相対密度は、発泡体から50×50×50mm(125cm3 )の試料を切り出し、この試料の重量を測定して、水の相当体積125cm3 =125gで割って求める。 The relative density of the foam is controlled by adjusting the amount of foaming agent (TiH 2 ) added according to the alloy composition, production conditions, equipment conditions, and the like. The relative density is obtained by cutting a 50 × 50 × 50 mm (125 cm 3 ) sample from the foam, measuring the weight of the sample, and dividing by a corresponding volume of water 125 cm 3 = 125 g.

(発泡の平均発泡径)
アルミニウム合金発泡体の前記プラトー応力を得るためには、アルミニウム合金発泡体の発泡径(発泡あるいは気泡の粒径)は微細なほど好ましい。粒径が0.5nm以上で、50nm以下の析出物粒子を体積分率で1.0%以上分散させた組織としても、平均発泡径(発泡の平均粒径)が粗大化した場合、アルミニウム合金発泡体の4MPa以上のプラトー応力が得られない可能性がある。その目安として、平均発泡径を5mm以下とすることが好ましい。平均発泡径を5mm以下の微細な発泡とすることにより、発泡粒径の均一性が保障され、圧縮強度や衝撃吸収特性が向上する。一方、アルミニウム合金発泡体の平均発泡径が5mmを超えて粗大化した場合、圧縮強度や衝撃吸収特性が低下する可能性が高い。
(Average foam diameter of foam)
In order to obtain the plateau stress of the aluminum alloy foam, the finer the foam diameter (foam or bubble particle diameter) of the aluminum alloy foam, the better. When the average foam diameter (foaming average particle diameter) is coarsened even when the structure has a structure in which the particle diameter is 0.5 nm or more and the precipitate particles of 50 nm or less are dispersed by 1.0% or more in terms of volume fraction, There is a possibility that a plateau stress of 4 MPa or more of the foam cannot be obtained. As a guideline, it is preferable that the average foam diameter is 5 mm or less. By setting the average foam diameter to a fine foam of 5 mm or less, the uniformity of the foamed particle diameter is ensured, and the compressive strength and impact absorption characteristics are improved. On the other hand, when the average foam diameter of the aluminum alloy foam exceeds 5 mm, the compressive strength and impact absorption characteristics are likely to deteriorate.

平均発泡径は、発泡アルミニウムの断面を観察して各発泡の粒径を測定する通常の断面測定法で、測定可能である。   The average foam diameter can be measured by an ordinary cross-section measurement method in which the cross-section of foamed aluminum is observed to measure the particle diameter of each foam.

(析出物粒子)
本発明では、特に、アルミニウム合金発泡体のプラトー応力を4MPa以上とするために、粒径が0.5nm以上で、50nm以下の析出物粒子が体積分率で1.0%以上分散した組織とする。これら微細な析出物粒子の存在量が、体積分率で1.0%未満では、アルミニウム合金発泡体のプラトー応力を4MPa以上とすることが困難となる。この析出物粒子の体積分率につき、上限は、合金元素含有量や製造条件により自ずと決まるため、特に定めないが、10%程度が上限となる。
(Precipitate particles)
In the present invention, in particular, in order to set the plateau stress of the aluminum alloy foam to 4 MPa or more, a structure in which precipitate particles having a particle size of 0.5 nm or more and 50 nm or less are dispersed in a volume fraction of 1.0% or more, To do. If the abundance of these fine precipitate particles is less than 1.0% in terms of volume fraction, it becomes difficult to set the plateau stress of the aluminum alloy foam to 4 MPa or more. The upper limit of the volume fraction of the precipitate particles is naturally determined by the alloy element content and manufacturing conditions, and is not particularly limited, but is about 10%.

この析出物粒子の主体は、合金元素であるZnやMg由来のZn−Mg化合物若しくはZn単体である。この析出物粒子としては、この他、Al、Ca、Ti化合物なども含まれる。したがって、本発明における析出物粒子とは、Al、Ca、Ti化合物なども加えた、主として、Zn−Mg化合物からなるものと、Zn単体である。なお、これら析出物の元素は後述するTEM観察にて識別と定量化が可能である。   The main body of the precipitate particles is Zn, which is an alloy element, a Zn-Mg compound derived from Mg, or Zn alone. In addition, the precipitate particles include Al, Ca, Ti compounds and the like. Accordingly, the precipitate particles in the present invention are mainly composed of a Zn-Mg compound and Al alone, to which Al, Ca, Ti compounds and the like are added. The elements of these precipitates can be identified and quantified by TEM observation described later.

一方、粒径が50nmを超える粗大な析出物粒子は、前記した通り、プラトー応力向上効果が小さい。このため、このような粗大な析出物粒子が多くなっても、アルミニウム合金発泡体のプラトー応力を4MPa以上とすることが困難となる。また、粒径が0.5nm未満の析出物粒子は、後述する透過型電子顕微鏡によっても検出、測定が困難であり、粒径が0.5nm以上で、50nm以下の析出物粒子に比べれば、やはりプラトー応力向上効果が小さい。   On the other hand, coarse precipitate particles having a particle size exceeding 50 nm have a small plateau stress improvement effect as described above. For this reason, even if such coarse precipitate particles increase, it becomes difficult to set the plateau stress of the aluminum alloy foam to 4 MPa or more. In addition, the precipitate particles having a particle size of less than 0.5 nm are difficult to detect and measure even with a transmission electron microscope described later. Compared with the precipitate particles having a particle size of 0.5 nm or more and 50 nm or less, After all, the plateau stress improvement effect is small.

アルミニウム合金発泡体組織中の、これら析出物粒子の識別と定量化は、10万〜30万倍の透過型電子顕微鏡(TEM)にて、組織を観察して行なう。本発明では、1μm×1μm(1μm2 )のTEM視野内の組織中に存在する、各析出物粒子の最大直径を各析出物粒子の粒径d として測定する。そして、これら粒径d が0.5〜50nmの範囲内に入る析出物粒子全ての合計面積率を求め、この値を、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率とする。勿論、再現性や発泡体組織の均一性を図るために、上記観察視野を、発泡体の各部位によって複数化しても良く、この場合の面積率や体積分率は、複数視野の測定結果を更に平均化したものとなる。 These precipitate particles in the aluminum alloy foam structure are identified and quantified by observing the structure with a transmission electron microscope (TEM) of 100,000 to 300,000 times. In the present invention, the maximum diameter of each precipitate particle present in the structure in the TEM field of 1 μm × 1 μm (1 μm 2 ) is measured as the particle diameter d of each precipitate particle. Then, the total area ratio of all the precipitate particles whose particle diameter d falls within the range of 0.5 to 50 nm is obtained, and this value is calculated as the volume fraction of the precipitate particles having a particle diameter of 0.5 nm or more and 50 nm or less. Rate. Of course, in order to achieve reproducibility and uniformity of the foam structure, the observation field of view may be made plural for each part of the foam. In this case, the area ratio and volume fraction are obtained by measuring the results of multiple fields of view. Further averaged.

したがって、本発明では、前記粒径d (最大直径)が0.5nm未満の析出物粒子や、粒径d が50nmを超える析出物粒子を、上記体積分率の測定対象とはしない。   Therefore, in the present invention, precipitate particles having a particle diameter d (maximum diameter) of less than 0.5 nm or precipitate particles having a particle diameter d of more than 50 nm are not measured for the volume fraction.

言い換えると、本発明では、粒径が0.5nm以上で、50nm以下の析出物粒子が体積分率で1.0%以上分散した組織であれば、アルミニウム合金発泡体のプラトー応力などの要求特性を阻害しにない範囲で、粒径d が50nmを超える粗大な析出物粒子や、あるいは粒径d が0.5nm未満の析出物粒子の存在を許容する。   In other words, in the present invention, if the grain size is 0.5 nm or more and the precipitate particles of 50 nm or less are dispersed in a volume fraction of 1.0% or more, the required characteristics such as plateau stress of the aluminum alloy foam are obtained. In the range that does not impede, the presence of coarse precipitate particles having a particle diameter d of more than 50 nm or precipitate particles having a particle diameter d of less than 0.5 nm is allowed.

(プラトー応力)
本発明では、アルミニウム合金発泡体のプラトー応力(圧縮試験における圧縮応力)を好ましくは4MPa以上とする。プラトー応力が4MPa未満では、高張力鋼板製クラッシュボックスと同等の体積を有することを前提に、高張力鋼板製クラッシュボックスと同等か、それ以上のエネルギ吸収量が確保できない。具体的には、クラッシュボックスが50%変形するまでに、8.0kJ/kg程度のエネルギ吸収量が確保できない。
(Plateau stress)
In the present invention, the plateau stress (compressive stress in the compression test) of the aluminum alloy foam is preferably 4 MPa or more. If the plateau stress is less than 4 MPa, an energy absorption amount equal to or higher than that of a high-strength steel plate crash box cannot be secured on the assumption that the plateau has a volume equivalent to that of a high-strength steel plate crash box. Specifically, an energy absorption amount of about 8.0 kJ / kg cannot be secured until the crash box is deformed by 50%.

(発泡用アルミニウム合金組成)
アルミニウム合金発泡体の、エネルギ吸収部材として必要強度やエネルギ吸収能などの特性を満たすとともに、発泡の均一性にも関わる、発泡用アルミニウム合金組成を以下に説明する。
(Aluminum alloy composition for foaming)
The aluminum alloy composition for foaming, which satisfies the characteristics of the aluminum alloy foam, such as required strength and energy absorbing ability as an energy absorbing member, and also relates to the uniformity of foaming, will be described below.

本発明において、発泡用アルミニウム合金の組成は、前記微細な析出物量を確保するために、また、前記プラトー応力など、発泡体としての必要特性を満たすために、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるものとする。   In the present invention, the composition of the aluminum alloy for foaming is such that, in order to ensure the amount of fine precipitates and to satisfy the necessary properties as a foam, such as the plateau stress, Zn: 1.0 -20.0%, Ca: 0.1-5.0%, Ti: 0.1-5.0%, Mg: 0.1-5.0%, respectively, from the remaining aluminum and unavoidable impurities Shall be.

(Zn)
Znは、Zn単体で析出するほか、Mgと共存して、上記析出物粒子の主体であるZn−Mg化合物を形成する。また、Mgと共存した際の強度向上にも有効な元素でもある。更に、凝固収縮する作用があり、セル壁の一部に膜厚の薄い部分を形成させ、圧縮変形能を高める作用がある。これらの作用を発揮させるためには、1.0%以上の含有が必要である。しかし、20.0%を超えて過度に含有すると、粗大なZn−Mg化合物を形成し、却って、プラトー応力を低下させる。また、発泡アルミニウムの気泡粒径の安定化を阻害し、気泡が粗くなってしまい、圧縮強度を低下させる。従って、Znの含有量は1.0〜20.0%の範囲とする。
(Zn)
Zn precipitates as a simple substance of Zn and coexists with Mg to form a Zn—Mg compound that is the main component of the precipitate particles. It is also an effective element for improving the strength when coexisting with Mg. Further, it has an effect of coagulating and shrinking, and an effect of increasing the compressive deformability by forming a thin film portion on a part of the cell wall. In order to exert these actions, the content of 1.0% or more is necessary. However, when it exceeds 20.0% and it contains excessively, a coarse Zn-Mg compound will be formed and a plateau stress will be reduced on the contrary. Moreover, stabilization of the bubble particle diameter of foaming aluminum will be inhibited, a bubble will become coarse, and compressive strength will be reduced. Therefore, the Zn content is in the range of 1.0 to 20.0%.

(Mg)
Mgは、Znと共存して、上記析出物粒子の主体であるZn−Mg化合物を形成する。また、強度向上に有効な元素であり、更に、Znと共同して発泡アルミニウムの製造時に、溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にする作用を有する。その効果を得るためには、Mgを少なくとも0.1%以上含有する必要がある。一方、5.0%を超えて過度に含有すると、粗大なZn−Mg化合物を形成し、却って、プラトー応力を低下させる。また、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。したがって、Mg含有量は0.1〜5.0%の範囲とする。
(Mg)
Mg coexists with Zn to form a Zn—Mg compound that is the main component of the precipitate particles. In addition, it is an element effective for improving the strength, and further has the effect of increasing the viscosity of the molten metal and stabilizing the bubbles to make the foam homogeneous during the production of foamed aluminum in cooperation with Zn. In order to obtain the effect, it is necessary to contain at least 0.1% of Mg. On the other hand, when it contains excessively exceeding 5.0%, a coarse Zn-Mg compound will be formed and a plateau stress will be reduced on the contrary. Further, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and the foaming agent is difficult to disperse. On the other hand, the fineness and uniformity of the foam are inhibited, and the compressive strength is lowered. Therefore, the Mg content is in the range of 0.1 to 5.0%.

(Ca)
Caは、発泡アルミニウムの製造時におけるアルミニウム合金溶湯の粘性を増加させ、かつ気泡を安定化させて、発泡体を均質にするとともに、発泡の微細化、均一性を達成するための、発泡作用を有する。その効果を得るためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の粘性を過度に高め、溶湯の流動性を著しく低下させ、発泡剤の分散が困難となり、却って、発泡の微細化、均一性が阻害され、圧縮強度を低下させる。従って、Caの含有量は0.1〜5.0%の範囲とする。
(Ca)
Ca increases the viscosity of the molten aluminum alloy at the time of producing foamed aluminum and stabilizes the bubbles to make the foam homogeneous and to achieve foam refinement and uniformity. Have. In order to obtain the effect, the content of at least 0.1% is necessary. On the other hand, if the content exceeds 5.0% excessively, the viscosity of the molten metal is excessively increased, the fluidity of the molten metal is remarkably lowered, and it becomes difficult to disperse the foaming agent. And reduce the compressive strength. Therefore, the Ca content is in the range of 0.1 to 5.0%.

(Ti)
Tiは、発泡アルミニウムの強度向上に有効な元素である。その効果を引き出すためには、少なくとも0.1%以上の含有が必要である。一方、5.0%を超えて過度に含有すると、溶湯の流動性を低下させ、晶出することにより、アルミニウムを脆くする。したがって、Tiの含有量は0.1〜5.0%の範囲とする。
(Ti)
Ti is an element effective for improving the strength of foamed aluminum. In order to bring out the effect, it is necessary to contain at least 0.1% or more. On the other hand, when it contains excessively exceeding 5.0%, the fluidity | liquidity of a molten metal will be reduced and it will crystallize and it will make aluminum brittle. Therefore, the Ti content is in the range of 0.1 to 5.0%.

なお、Cuは発泡過程での発泡粒径の均一性を阻害する可能性がある。このため、本発明ではCuは不純物であり、Cu含有量は極力少ない方が好ましい。また、この他の元素も不純物であり、含有量が極力少ない方が好ましい。ただ、この他の元素の含有量を下げるための溶解、精錬など、発泡アルミニウム製造上のコストの問題もあり、発泡アルミニウムの特性を低下させない、通常の発泡アルミニウムにおける不純物量範囲、不純物レベルでの含有は許容する。   In addition, Cu may inhibit the uniformity of the foamed particle diameter in the foaming process. For this reason, in the present invention, Cu is an impurity, and the Cu content is preferably as low as possible. Further, other elements are also impurities, and it is preferable that the content is as small as possible. However, there are also problems in the production of foamed aluminum, such as melting and refining to reduce the content of these other elements, and it does not degrade the characteristics of foamed aluminum. Inclusion is allowed.

(製造条件)
次に、本発明発泡アルミニウムを製造するための、好ましい製造条件について以下に説明する。本発明では、発泡アルミニウムの製造工程自体は、従来と同様である。但し、前記した通り、特定合金組成からなる発泡アルミニウムの発泡粒径を、平均粒径として微細気泡化した上で、50nm以下の析出物粒子が体積分率で1.0%以上分散した組織とするためには、後述する通り、特に、炉から鋳型を出した後に(発泡完了後に)約100〜150℃の範囲まで一旦冷却(放冷)した後、この温度範囲で3時間以上、100時間程度以下程度保持する、熱処理を行なうことが必要である。
(Production conditions)
Next, preferable production conditions for producing the foamed aluminum of the present invention will be described below. In the present invention, the manufacturing process itself of the foamed aluminum is the same as the conventional one. However, as described above, after the foamed particle diameter of the foamed aluminum having the specific alloy composition is made into fine bubbles as an average particle diameter, a structure in which precipitate particles of 50 nm or less are dispersed in a volume fraction of 1.0% or more and In order to do this, as described later, in particular, after removing the mold from the furnace (after completion of foaming), it is once cooled (cooled) to a range of about 100 to 150 ° C., and then at this temperature range for 3 hours or more and 100 hours. It is necessary to carry out a heat treatment that is held to a degree or less.

先ず、溶解炉内で、工業用純アルミニウムに対し、上記Zn:1.0〜20.0%、Mg:0.1〜5.0%などの合金成分元素と、カルシウム0.1〜5.0%を添加し、大気中で溶湯を例えば約5分程度攪拌して増粘させる。   First, in a melting furnace, alloy component elements such as Zn: 1.0 to 20.0% and Mg: 0.1 to 5.0% and calcium 0.1 to 5. 0% is added, and the molten metal is stirred in the atmosphere for about 5 minutes to increase the viscosity.

そして、この増粘後の溶湯を600〜700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンを所定量添加する。その後、例えば1〜10分間攪拌した後、攪拌機を取り除き、鋳型を前記温度範囲の大気溶解炉内で、1〜10分間程度保持して発泡を完了させる。   And after pouring the molten metal after this thickening into the casting_mold | template in a 600-700 degreeC atmospheric melting furnace, a predetermined amount of titanium hydride is added. Then, for example, after stirring for 1 to 10 minutes, the stirrer is removed, and the mold is held in the atmospheric melting furnace in the temperature range for about 1 to 10 minutes to complete foaming.

従来は、この保持後に、炉から鋳型を出し、室温まで放冷するために、必然的に、析出物粒子がほとんど析出せず、組織中に前記微細な析出物粒子を必要量分散させることができない。また、発泡のセル壁の平均硬さが低くならざるを得ない。   Conventionally, after this holding, the mold is taken out from the furnace and allowed to cool to room temperature. Therefore, the precipitate particles are inevitably hardly precipitated, and the fine precipitate particles can be dispersed in the required amount in the structure. Can not. In addition, the average hardness of the foamed cell walls must be low.

これに対して、本発明のように、組織中に前記微細な析出物粒子を必要量分散させるためには、上記発泡完了後の放冷の際に、従来のように室温まで冷却するのではなく、約100〜150℃の範囲まで一旦冷却した後、この温度範囲で3時間以上、100時間程度以下程度保持する、熱処理を行なう必要がある。   On the other hand, as in the present invention, in order to disperse the necessary amount of the fine precipitate particles in the structure, it is not necessary to cool to room temperature as in the prior art upon cooling after completion of the foaming. However, after cooling to the range of about 100 to 150 ° C., it is necessary to perform a heat treatment in which the temperature is maintained for about 3 hours or more and about 100 hours or less in this temperature range.

このような、比較的低温、かつ長時間の熱処理を行なうことによって、組織中に、粒径が0.5nm以上で、50nm以下の析出物粒子を体積分率で1.0%以上分散させることができる。また、前記室温までの冷却よりも、発泡のセル壁の平均硬さを向上させることができる。   By carrying out such a relatively low temperature and long-time heat treatment, precipitate particles having a particle size of 0.5 nm or more and 50 nm or less are dispersed in the structure by 1.0% or more by volume fraction. Can do. Moreover, the average hardness of the foamed cell wall can be improved as compared with the cooling to the room temperature.

勿論、成分組成その他の条件にもよるが、この保持温度が低過ぎても、保持時間が短過ぎても、上記熱処理による効果が無くなる。一方、保持温度が高過ぎても、あるいは保持時間が長過ぎても、析出物粒子を却って粗大化させる。   Of course, depending on the component composition and other conditions, even if the holding temperature is too low or the holding time is too short, the effect of the heat treatment is lost. On the other hand, even if the holding temperature is too high or the holding time is too long, the precipitate particles are coarsened instead.

このような冷却後に、鋳型から発泡体を取り出し、機械加工して、角柱や角形など、所望形状の製品アルミニウム合金発泡体とする。   After such cooling, the foam is taken out from the mold and machined to obtain a product aluminum alloy foam having a desired shape such as a prism or square.

以下に本発明の実施例を説明する。表2に示す発泡後の冷却(放冷) 停止温度や保持時間(熱処理条件)などを変えて、表1に示す各化学成分組成のアルミニウム合金発泡体を製造し、発泡体の、平均発泡径、相対密度、セル壁硬さ、析出物の体積分率と、圧縮強度特性とを評価した。   Examples of the present invention will be described below. Cooling after foaming (cooling) shown in Table 2 Stopping temperature, holding time (heat treatment conditions), etc. were changed, and aluminum alloy foams having the respective chemical composition shown in Table 1 were produced. The relative density, cell wall hardness, volume fraction of precipitates, and compressive strength characteristics were evaluated.

具体的には、先ず、溶解炉内で、工業用純アルミニウムに対し、Zn、Mg、Caなどの合金成分元素を添加し、大気中で溶湯を約5分程度攪拌して増粘させた。そして、この増粘後の溶湯を、約700℃の大気溶解炉中の鋳型に注湯した後、水素化チタンをTiとして0.1〜5.0%程度添加した。その後、約2分間攪拌した後、攪拌機を取り除き、鋳型を前記約700℃の大気溶解炉内で、約4分間程度保持して発泡を完了させた。   Specifically, first, alloy component elements such as Zn, Mg, and Ca were added to industrial pure aluminum in a melting furnace, and the molten metal was stirred in the atmosphere for about 5 minutes to increase the viscosity. And after pouring the molten metal after this thickening into the casting_mold | template in an about 700 degreeC air melting furnace, about 0.1 to 5.0% of titanium hydride was added as Ti. Then, after stirring for about 2 minutes, the stirrer was removed, and the mold was held in the atmospheric melting furnace at about 700 ° C. for about 4 minutes to complete foaming.

この保持後に、炉から鋳型を出し、表2に示す各冷却停止温度まで放冷した。そして、これら各冷却停止温度で、表2に示す所定時間保持する熱処理を行なった。このような冷却後に、鋳型から発泡体を取り出した。   After this holding, the mold was taken out of the furnace and allowed to cool to each cooling stop temperature shown in Table 2. And heat processing which hold | maintains for the predetermined time shown in Table 2 at each of these cooling stop temperature was performed. After such cooling, the foam was removed from the mold.

これらアルミニウム合金発泡体の発泡セルの一部から、Φ3mmの薄膜試料を切り出し、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率を前記した方法で測定した。測定部位は5箇所とし、体積分率はその平均とした。なお、これら析出物粒子の組成を前記した方法で確認したところ、主体は、Zn−Mg化合物とZn単体であった。   A Φ3 mm thin film sample was cut out from a part of the foamed cells of these aluminum alloy foams, and the volume fraction of precipitate particles having a particle size of 0.5 nm or more and 50 nm or less was measured by the method described above. There were five measurement sites, and the volume fraction was the average. In addition, when the composition of these precipitate particles was confirmed by the method described above, the main components were a Zn—Mg compound and Zn alone.

また、上記試料の平均発泡径を前記した断面測定法により測定し、これら試料の相対密度も前記した方法で求めた。そして、これら試料の発泡セル壁の硬さも、マイクロビッカース硬度計にて、50gの荷重を加えて5箇所行い、それらの平均値として各々求めた。   Moreover, the average foam diameter of the sample was measured by the above-described cross-sectional measurement method, and the relative density of these samples was also determined by the method described above. And the hardness of the foamed cell wall of these samples was also measured with a micro Vickers hardness tester by applying a load of 50 g at five locations, and the average values thereof were obtained.

更に、前記アルミニウム合金発泡体から、機械加工にて高さ50mm×幅50mm×長さ50mmを切り出し、圧縮試験機を用いて長手方向に圧縮した際のプラトー応力を求めた。これらの結果も表2に示す。   Further, from the aluminum alloy foam, 50 mm high × 50 mm wide × 50 mm long were cut out by machining and the plateau stress when compressed in the longitudinal direction using a compression tester was determined. These results are also shown in Table 2.

表1、2から明らかな通り、本発明組成内のアルミニウム合金A〜Dである発明例1〜5は、放冷後、表2に示す冷却停止温度で所定時間保持する熱処理を行なっている。この結果、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率が1.0%以上である。また、平均発泡径が5mm以下であるとともに、発泡体の相対密度も0.1以上であり、発泡のセル壁の平均硬さが60Hv以上である。この結果、発明例1〜5は、アルミニウム合金発泡体のプラトー応力が4MPa以上である。因みに、発明例1のプラトー応力−変位特性を図1に示す。   As is apparent from Tables 1 and 2, Invention Examples 1 to 5, which are aluminum alloys A to D within the composition of the present invention, are subjected to heat treatment that is held for a predetermined time at the cooling stop temperature shown in Table 2 after being allowed to cool. As a result, the volume fraction of the precipitate particles having a particle diameter of 0.5 nm or more and 50 nm or less is 1.0% or more. Further, the average foam diameter is 5 mm or less, the relative density of the foam is 0.1 or more, and the average hardness of the foamed cell wall is 60 Hv or more. As a result, in Invention Examples 1 to 5, the plateau stress of the aluminum alloy foam is 4 MPa or more. Incidentally, the plateau stress-displacement characteristic of Invention Example 1 is shown in FIG.

これに対して、比較例6は、本発明組成内のアルミニウム合金Aであるが、従来同様、発泡体を室温まで放冷しており、発明例のような冷却停止温度で所定時間保持する熱処理を行なっていない。このため、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率が1.0%未満である。また、発泡のセル壁の平均硬さが60Hv未満であり、圧縮応力も4MPa未満と低い。   On the other hand, Comparative Example 6 is an aluminum alloy A within the composition of the present invention, but, as in the prior art, the foam is allowed to cool to room temperature and is kept at a cooling stop temperature as in the inventive example for a predetermined time. Is not done. For this reason, the volume fraction of the precipitate particles having a particle size of 0.5 nm or more and 50 nm or less is less than 1.0%. Moreover, the average hardness of the foamed cell wall is less than 60 Hv, and the compressive stress is as low as less than 4 MPa.

比較例7、8、9、10は、本発明組成内のアルミニウム合金Aを用いている。但し、比較例7は保持時間が2時間と短過ぎる。比較例8は保持時間が100時間を超えており、長過ぎる。比較例9は保持温度が100℃未満と低過ぎる。比較例10は保持温度が150℃を超えて高過ぎる。   Comparative Examples 7, 8, 9, and 10 use the aluminum alloy A within the composition of the present invention. However, the holding time of Comparative Example 7 is too short, 2 hours. In Comparative Example 8, the holding time exceeds 100 hours and is too long. In Comparative Example 9, the holding temperature is too low at less than 100 ° C. In Comparative Example 10, the holding temperature exceeds 150 ° C. and is too high.

このため、比較例7、8、9、10は、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率が1.0%未満である。また、発泡のセル壁の平均硬さが60Hv未満であり、圧縮応力も4MPa未満と低い。   For this reason, Comparative Examples 7, 8, 9, and 10 have a particle size of 0.5 nm or more and a volume fraction of precipitate particles of 50 nm or less being less than 1.0%. Moreover, the average hardness of the foamed cell wall is less than 60 Hv, and the compressive stress is as low as less than 4 MPa.

比較例11〜18は、Zn、Ca、Ti、Mgの含有量が、各々、本発明組成の下限、あるいは上限に外れている表1のアルミニウム合金E〜Lを用いている。このため、発明例のような冷却停止温度で所定時間保持する熱処理を行なって、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率が1.0%以上である例もあるが、総じて、圧縮応力が4MPa未満と低い。   Comparative Examples 11 to 18 use aluminum alloys E to L in Table 1 in which the contents of Zn, Ca, Ti, and Mg deviate from the lower limit or the upper limit of the composition of the present invention, respectively. For this reason, there is also an example in which the heat treatment is performed for a predetermined time at the cooling stop temperature as in the invention example, and the volume fraction of the precipitate particles having a particle diameter of 0.5 nm or more and 50 nm or less is 1.0% or more. However, generally, the compressive stress is as low as less than 4 MPa.

以上の結果から、本発明アルミニウム合金発泡体における各要件の意義と好ましい製造条件の意義とが裏付けられる。   From the above results, the significance of each requirement in the aluminum alloy foam of the present invention and the significance of preferred production conditions are supported.

また、同じアルミニウム合金Aを用いた、発明例1と2との比較において、表2に示す冷却停止温度が比較的高く、保持時間が比較的長い発明例1の方が、発明例2よりも、粒径が0.5nm以上で、50nm以下の析出物粒子の体積分率が高く、プラトー応力も比較的高くなっている。これと、前記比較例7、8、9、10の条件と結果とを合わせると、本発明における、冷却停止温度と保持時間などを含めた、アルミニウム合金発泡体の熱処理と、その条件の意味も裏付けられる。   Further, in comparison between Invention Examples 1 and 2 using the same aluminum alloy A, Invention Example 1 in which the cooling stop temperature shown in Table 2 is relatively high and the retention time is relatively long is more than that of Invention Example 2. The volume fraction of the precipitate particles having a particle size of 0.5 nm or more and 50 nm or less is high, and the plateau stress is also relatively high. When this is combined with the conditions and results of Comparative Examples 7, 8, 9, and 10, the heat treatment of the aluminum alloy foam including the cooling stop temperature and the holding time in the present invention, and the meaning of the conditions are also included. It is supported.

Figure 0004189368
Figure 0004189368

Figure 0004189368
Figure 0004189368

以上説明したように、本発明によれば、高張力鋼板製の衝撃エネルギ吸収部材に代替できるアルミニウム合金発泡体を提供することができる。この結果、自動車の構造部材など、衝突時に圧縮の衝撃荷重を受けた際に変形して衝撃エネルギを吸収する、衝撃エネルギ吸収部材に適用することができる。   As described above, according to the present invention, it is possible to provide an aluminum alloy foam that can replace an impact energy absorbing member made of a high-tensile steel plate. As a result, the present invention can be applied to an impact energy absorbing member that deforms and absorbs impact energy when subjected to a compressive impact load at the time of collision, such as a structural member of an automobile.

本発明アルミニウム合金発泡体の応力−変位特性を示す、説明図である。It is explanatory drawing which shows the stress-displacement characteristic of this invention aluminum alloy foam.

Claims (3)

エネルギ吸収部材として用いられるアルミニウム合金発泡体であって、質量%で、Zn:1.0〜20.0%、Ca:0.1〜5.0%、Ti:0.1〜5.0%、Mg:0.1〜5.0%を各々含有し、残部アルミニウムおよび不可避的不純物からなるアルミニウム合金を発泡させてなり、相対密度が0.1以上であり、粒径が0.5nm以上で、50nm以下の析出物粒子が体積分率で1.0%以上分散した組織を有することを特徴とするアルミニウム合金発泡体。   An aluminum alloy foam used as an energy absorbing member, and in mass%, Zn: 1.0-20.0%, Ca: 0.1-5.0%, Ti: 0.1-5.0% , Mg: 0.1 to 5.0% of each, foamed aluminum alloy consisting of the balance aluminum and inevitable impurities, the relative density is 0.1 or more, the particle size is 0.5 nm or more An aluminum alloy foam characterized by having a structure in which precipitate particles of 50 nm or less are dispersed in a volume fraction of 1.0% or more. アルミニウム合金発泡体のプラトー応力が4MPa以上である請求項1に記載のアルミニウム合金発泡体。   The aluminum alloy foam according to claim 1, wherein the plateau stress of the aluminum alloy foam is 4 MPa or more. 前記アルミニウム合金発泡体が単体としてエネルギ吸収部材に用いられる請求項1または2に記載のアルミニウム合金発泡体。
The aluminum alloy foam according to claim 1 or 2, wherein the aluminum alloy foam is used as an element for an energy absorbing member.
JP2004277531A 2004-09-24 2004-09-24 Aluminum alloy foam Expired - Fee Related JP4189368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277531A JP4189368B2 (en) 2004-09-24 2004-09-24 Aluminum alloy foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277531A JP4189368B2 (en) 2004-09-24 2004-09-24 Aluminum alloy foam

Publications (2)

Publication Number Publication Date
JP2006089813A JP2006089813A (en) 2006-04-06
JP4189368B2 true JP4189368B2 (en) 2008-12-03

Family

ID=36231067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277531A Expired - Fee Related JP4189368B2 (en) 2004-09-24 2004-09-24 Aluminum alloy foam

Country Status (1)

Country Link
JP (1) JP4189368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095527A (en) * 2006-10-06 2008-04-24 Toyota Motor Corp Exhaust device for internal combustion engine

Also Published As

Publication number Publication date
JP2006089813A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
US20090028743A1 (en) Forming magnesium alloys with improved ductility
EP3842558A1 (en) Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor
EP3872203A1 (en) Aluminum alloy sheet for battery lid for forming integrated explosion prevention valve, and method for producing same
JP4694988B2 (en) Aluminum alloy foam and manufacturing method thereof
CN111094605B (en) Aluminum alloy plate for battery cover for forming integrated explosion-proof valve and manufacturing method thereof
EP3842559A1 (en) Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor
JPH11302765A (en) Blowing metal excellent in impact absorption
KR20200036421A (en) Magnesium alloy sheet and method for manufacturing the same
EP3842557A1 (en) Aluminum alloy sheet for battery lid for molding integrated explosion-proof valve and production method therefor
US20030041925A1 (en) Al-Mg-Si based aluminum alloy extrusion
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP4189368B2 (en) Aluminum alloy foam
JP4523529B2 (en) Aluminum alloy foam and manufacturing method thereof
JP2007217715A (en) FOAMED IMPACT ABSORBING MATERIAL MADE OF Zn-Al ALLOY HAVING EXCELLENT IMPACT ABSORPTION CHARACTERISTIC, AND ITS MANUFACTURING METHOD
JP3909543B2 (en) Aluminum alloy extruded material with excellent axial crushing properties
JP4359211B2 (en) Aluminum alloy foam
JP4359210B2 (en) Aluminum alloy foam
EP3862449A1 (en) Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP4695052B2 (en) Aluminum alloy foam for energy absorbing members
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP6760584B2 (en) Extruded member of magnesium alloy
JP2910920B2 (en) Aluminum alloy door beam material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees