JP2008100126A - Manufacturing method of ferrous chloride solution - Google Patents

Manufacturing method of ferrous chloride solution Download PDF

Info

Publication number
JP2008100126A
JP2008100126A JP2006282264A JP2006282264A JP2008100126A JP 2008100126 A JP2008100126 A JP 2008100126A JP 2006282264 A JP2006282264 A JP 2006282264A JP 2006282264 A JP2006282264 A JP 2006282264A JP 2008100126 A JP2008100126 A JP 2008100126A
Authority
JP
Japan
Prior art keywords
ferrous chloride
chloride solution
anion exchange
exchange resin
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282264A
Other languages
Japanese (ja)
Other versions
JP4773313B2 (en
Inventor
Shiroshi Matsuki
詩路士 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Tsurumi Soda Co Ltd
Original Assignee
Toagosei Co Ltd
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Tsurumi Soda Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2006282264A priority Critical patent/JP4773313B2/en
Publication of JP2008100126A publication Critical patent/JP2008100126A/en
Application granted granted Critical
Publication of JP4773313B2 publication Critical patent/JP4773313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of obtaining a ferrous chloride solution of high purity by removing heavy metals in a crude ferrous chloride solution containing heavy metals up to a low level by a simple means using an anion exchange resin regenerated by a simple technique. <P>SOLUTION: The manufacturing method of the ferrous chloride solution is a method for removing heavy metals from the crude ferrous chloride solution (e.g., the etching waste solution of an ITO material or the like using ferric chloride). Concretely, heavy metal impurities in the crude ferrous chloride solution are removed using the anion exchange resin having a tertiary amino group or a quaternary ammonium group. The heavy metal impurities are indium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、粗塩化第一鉄液中に存在する重金属類を効果的に除去して塩化第一鉄液を製造する方法に関するものである。   The present invention relates to a method for producing a ferrous chloride solution by effectively removing heavy metals present in a crude ferrous chloride solution.

液晶モニターやプラズマモニター等に、透明電極としてITO(インジウム・錫・酸化物)材やIZO(インジウム・亜鉛・酸化物)材が多く用いられている。この透明電極は、一般的にガラス材等の表面にITOまたはIZOが薄膜として形成され、これを用いて電極回路を形成する。この回路形成のためフォトエッチング等が使用され、特にITO材では、エッチング剤として塩化第二鉄と塩酸の混合液や王水等が多く用いられている。そしてエッチング剤は高速エッチングや微細回路パターン形成に必要な高エッチファクターを得るために塩化第二鉄と塩酸の混合液が使われる事が多い。
このエッチングにより、エッチング廃液には、ITO材に由来するインジウムと錫が含まれるが、特にインジウムは資源量が少ないことから、過去多くの回収方法が提案されている。塩化鉄からのインジウム回収として特開2004−75463号公報(特許文献1)に、ニッケル共存下、鉄粉でインジウムと錫とを除去及び回収する方法が開示されている。しかし、本件は高価なニッケルを共存させる必要があること、および回収されたインジウム以外の成分、即ち鉄やニッケルの含有量が高く、インジウムを高濃度で回収することが難しかった。
An ITO (indium / tin / oxide) material or an IZO (indium / zinc / oxide) material is often used as a transparent electrode in a liquid crystal monitor or a plasma monitor. This transparent electrode is generally formed of ITO or IZO as a thin film on the surface of a glass material or the like, and an electrode circuit is formed using this. Photoetching or the like is used to form this circuit, and in particular for ITO materials, a mixed solution of ferric chloride and hydrochloric acid, aqua regia, and the like are often used as an etching agent. As the etchant, a mixture of ferric chloride and hydrochloric acid is often used to obtain a high etch factor necessary for high-speed etching and fine circuit pattern formation.
Due to this etching, the etching waste liquid contains indium and tin derived from the ITO material. In particular, since indium has a small amount of resources, many recovery methods have been proposed in the past. As a method for recovering indium from iron chloride, Japanese Patent Application Laid-Open No. 2004-75463 (Patent Document 1) discloses a method for removing and recovering indium and tin with iron powder in the presence of nickel. However, this case requires the coexistence of expensive nickel, and the content of components other than recovered indium, that is, iron and nickel, is high, and it is difficult to recover indium at a high concentration.

イオン交換樹脂やキレート樹脂により不純物を除去および回収する方法も多く提案されている。例えば、特開2003−266065号公報(特許文献2)では、塩化第二鉄液中に含まれるコバルトおよび/または亜鉛を、除去および回収するために、該液に鉄板等を加え一旦塩化第一鉄に還元して、更に濃度調整を行って前記樹脂に吸着/脱着させることにより、塩化鉄液からの不純物除去(その後塩素等によって塩化第一鉄は塩化第二鉄に酸化して再生)および不純物液からの金属類の回収が開示されている。   Many methods for removing and recovering impurities using ion exchange resins or chelate resins have been proposed. For example, in Japanese Patent Application Laid-Open No. 2003-266065 (Patent Document 2), in order to remove and recover cobalt and / or zinc contained in a ferric chloride solution, an iron plate or the like is added to the solution once to obtain first chloride. Reduction to iron, further concentration adjustment and adsorption / desorption to the resin, removal of impurities from the iron chloride solution (then ferrous chloride is oxidized to ferric chloride and regenerated by chlorine etc.) and Recovery of metals from impurity liquids is disclosed.

特開昭60−19087号公報(特許文献3)では、塩化第一鉄や塩化第二鉄などの水溶液中からエチレンイミン重合体を母体とするアミノ基−NHR−(R:水素原子または炭素数10以下のアルキルアミノ基)を有するキレート樹脂または弱塩基性陰イオン交換樹脂を用いてクロム、ニッケル、亜鉛、鉛、銅、水銀などの重金属除去方法が開示されている。   In JP-A-60-19087 (Patent Document 3), an amino group -NHR- (R: hydrogen atom or carbon number) based on an ethyleneimine polymer from an aqueous solution such as ferrous chloride or ferric chloride. A method for removing heavy metals such as chromium, nickel, zinc, lead, copper, and mercury using a chelate resin or a weakly basic anion exchange resin having 10 or less alkylamino groups) is disclosed.

オキシム基、アミノアルキレンリン酸基、オキシン基、ジチオカルバミン酸基および前記官能基の金属塩から選ばれた少なくとも一種の官能基を有するキレート樹脂と、インジウムを含有する溶液を接触させて、インジウムを回収する方法が特開昭58−172256(特許文献3)に開示されている。このインジウムを含有する溶液は、海水または亜鉛、鉛を精製する際の副産物の硫酸浸出液である。
2種以上のイオン価を有する金属のイオンが共存するインジウム等の希有金属含有水溶液をキレート樹脂と接触させて選択的に希有金属を吸着し回収する方法において、上記2種以上のイオン価を有する金属のイオンを最も低いイオン価として行なうことを特徴とする希有金属の回収方法が特開昭62−176914(特許文献4)に開示されている。このキレート樹脂としては、分子中に=NOH、−P+(R)3、−PO(OR)2、−PH(OR)3、−SR、−N(R)2またはオキシン基(但し、上式中Rは水素、フェニル基、アルキル基またはアルケニル基を示し、2個以上の場合は同一または異なっていてもよい。)で表わされる官能基もしくはその無機塩から選ばれる少なくとも一種の基を有するものである。
Indium is recovered by bringing a chelate resin having at least one functional group selected from an oxime group, an aminoalkylene phosphate group, an oxine group, a dithiocarbamic acid group and a metal salt of the functional group into contact with a solution containing indium. This method is disclosed in Japanese Patent Laid-Open No. 58-172256 (Patent Document 3). This solution containing indium is a sulfuric acid leaching solution of by-products when purifying seawater, zinc, or lead.
In the method of selectively adsorbing and recovering a rare metal by bringing a rare metal-containing aqueous solution such as indium coexisting with ions of a metal having two or more kinds of ionic valence into contact with a chelate resin, the ionic valence having two or more kinds Japanese Patent Application Laid-Open No. 62-176914 (Patent Document 4) discloses a rare metal recovery method characterized by performing metal ions at the lowest ionic value. As this chelate resin, = NOH, -P + (R) 3 , -PO (OR) 2 , -PH (OR) 3 , -SR, -N (R) 2 or an oxine group (provided that In the formula, R represents hydrogen, a phenyl group, an alkyl group or an alkenyl group, and in the case of two or more, they may have the same or different functional group) or at least one group selected from inorganic salts thereof. Is.

ITOを有するLCD廃パネルを塩酸で処理して得たインジウム含有塩酸溶液を第4級アンモニウム基または第3級アミノ基を有する陰イオン交換樹脂に接触させてインジウムを吸着させ、この陰イオン交換樹脂からインジウムを回収することが報告されている(非特許文献1参照)。   An indium-containing hydrochloric acid solution obtained by treating a waste LCD panel with ITO with hydrochloric acid is brought into contact with an anion exchange resin having a quaternary ammonium group or a tertiary amino group to adsorb indium, and the anion exchange resin It has been reported that indium is recovered from (see Non-Patent Document 1).

特開2004−75463号公報JP 2004-75463 A 特開2003−266065号公報JP 2003-266065 A 特開昭60−19087号公報JP-A-60-19087 特開昭58−172256号公報JP 58-172256 A 特開昭62−176914号公報JP 62-176914 A 本馬隆道,外1名,「LCD廃パネルよりのマテリアル回収」,シャープ技報,2005年8月,第92号,p.17−22.Takamichi Honma, 1 outside, “Material Recovery from LCD Waste Panel”, Sharp Technical Report, August 2005, No. 92, p. 17-22.

本発明の課題は、重金属不純物を含有する粗塩化第一鉄液中の重金属を簡単な手段で低レベルまで除去して高純度の塩化第一鉄液を得る方法を提供するものである。また、簡単な手法で再生した陰イオン交換樹脂を用いて高純度の塩化第一鉄液を得る方法を提供することである。   An object of the present invention is to provide a method for obtaining a high-purity ferrous chloride solution by removing heavy metals in a crude ferrous chloride solution containing heavy metal impurities to a low level by simple means. Another object of the present invention is to provide a method for obtaining a high purity ferrous chloride solution using an anion exchange resin regenerated by a simple technique.

本発明者は、粗塩化第一鉄液(例えば、ITO材等の塩化第二鉄によるエッチング廃液を鉄材等で処理して得たもの)から重金属を除去して再生する方法を鋭意検討した結果、官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を用いることにより塩化第一鉄液を得ることができることを見出し本発明を完成させたのである。即ち、具体的には、
<1>官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を用いて粗塩化第一鉄液中の重金属不純物を除去することを特徴とする塩化第一鉄液の製造方法であり、
<2>前記重金属不純物がインジウムである前記1に記載の塩化第一鉄液の製造方法であり、
<3>粗塩化第一鉄液のpHが2以下である前記1または2に記載の塩化第一鉄液の製造方法であり、
<4>粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂から水、希塩酸および/または希塩化第一鉄液を用いて重金属を除去する、官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂の再生方法であり、
<5>前記4記載の再生方法により再生した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を使用する前記1〜3のいずれか1つに記載の塩化第一鉄液の製造方法であり、
<6>前記1、2、3、または5のいずれか1つに記載の塩化第一鉄液の製造方法により得た塩化第一鉄を酸化して得た塩化第二鉄である。
As a result of earnest examination of a method for removing heavy metals from a crude ferrous chloride solution (for example, obtained by treating an etching waste solution of ferric chloride such as an ITO material with an iron material, etc.). The present inventors have found that a ferrous chloride solution can be obtained by using an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group. That is, specifically,
<1> A ferrous chloride solution characterized by removing heavy metal impurities in a crude ferrous chloride solution using an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group Manufacturing method,
<2> The method for producing a ferrous chloride liquid according to 1 above, wherein the heavy metal impurity is indium.
<3> The method for producing a ferrous chloride solution according to 1 or 2, wherein the pH of the crude ferrous chloride solution is 2 or less,
<4> Water, dilute hydrochloric acid and / or dilute ferrous chloride solution from an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group to which heavy metal impurities in the crude ferrous chloride solution are adsorbed. A method for regenerating an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group, wherein the heavy metal is removed using
<5> The first chloride as described in any one of 1 to 3 above, wherein an anion exchange resin having a tertiary amino group or a quaternary ammonium group is used as a functional group regenerated by the regeneration method described in 4 above. A method for producing an iron liquid,
<6> Ferric chloride obtained by oxidizing ferrous chloride obtained by the method for producing ferrous chloride liquid according to any one of 1, 2, 3, or 5.

本発明の塩化第一鉄液の製造方法により、粗塩化第一鉄液を複雑な希釈やpH調整することなく重金属不純物を除去できることから、高純度の塩化第一鉄液を容易に得ることができる。このことから、この高純度の塩化第一鉄液からエッチング等に使用できる塩化第二鉄を簡単に得ることができる。   The method for producing ferrous chloride solution of the present invention can remove heavy metal impurities without complicated dilution or pH adjustment of the crude ferrous chloride solution, so that a high-purity ferrous chloride solution can be easily obtained. it can. Therefore, ferric chloride that can be used for etching or the like can be easily obtained from this high-purity ferrous chloride solution.

以下、本発明を詳細に説明する。なお、「%」は特に明記しない限り「重量%」を示し、「ppm」は特に明記しない限り「重量ppm」を示す。
塩化第二鉄系でのITOエッチング液は、一般に塩酸と混合されており、このものが市場で多く流通している。例えば、ITOエッチング液は、35%塩酸と40〜50度ボーメの塩化第二鉄液とを3:1〜1:10の重量比で混合したものであり、多用されているものは、3:2〜1:2の範囲のものである。
The present invention will be described in detail below. Note that “%” indicates “% by weight” unless otherwise specified, and “ppm” indicates “weight ppm” unless otherwise specified.
Ferric chloride ITO etching solution is generally mixed with hydrochloric acid, and this is widely distributed in the market. For example, an ITO etching solution is a mixture of 35% hydrochloric acid and 40-50 degree Baume ferric chloride solution in a weight ratio of 3: 1 to 1:10. The range of 2 to 1: 2.

本発明において粗塩化第一鉄液とは、インジウム、ニッケル、クロム、モリブデン、スズ、亜鉛、および/または銅等の重金属を含有する塩化第一鉄溶液あでる。粗塩化第一鉄液に含まれる重金属としては、インジウム、ニッケルおよび/またはスズ等であればより良く、インジウムおよび/またはニッケルであれば更に良い。本発明の塩化第一鉄液の製造方法において、粗塩化第一鉄液中に含まれる重金属がこれらであると効率よく除去でき好ましい。   In the present invention, the crude ferrous chloride solution refers to a ferrous chloride solution containing heavy metals such as indium, nickel, chromium, molybdenum, tin, zinc, and / or copper. The heavy metal contained in the crude ferrous chloride solution is better if it is indium, nickel, and / or tin, and more preferably if it is indium and / or nickel. In the manufacturing method of the ferrous chloride liquid of this invention, it is preferable that the heavy metals contained in the crude ferrous chloride liquid can be efficiently removed.

本発明において粗塩化第一鉄液として特に好ましいものは、ガラス材等の表面にあるITO材等に対しITOエッチング液を用いてエッチングを施した後の廃液であり、この溶液中に含まれる塩化第二鉄を塩化第一鉄に変換したものでも良い。この塩化第二鉄から塩化第一鉄への変換は、電解又は、鉄材を加えて行ったものが好ましい。   Particularly preferred as the ferrous chloride liquid in the present invention is a waste liquid after etching with ITO etching liquid on the ITO material on the surface of the glass material or the like, and the chloride contained in this solution. What converted ferric iron into ferrous chloride may be used. The conversion from ferric chloride to ferrous chloride is preferably performed by electrolysis or by adding an iron material.

本発明において官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂としては、Amberlite−IRA96SB(商品名、Rohm & Haas社製)、Dowex−3(商品名、Dow Chemical社製)、Amberlite−IRA400(商品名、Rohm & Haas社製)、Amberlite−IRA410(商品名、Rohm & Haas社製)、Dowex−1(商品名、Dow Chemical社製)、Dowex−2(商品名、Dow Chemical社製)などがある。
本発明の製造方法において用いる陰イオン交換樹脂としては、第3級アミノ基を有する陰イオン交換樹脂がより重金属を除去できおよび再生できるので好ましい。
Examples of the anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group in the present invention include Amberlite-IRA96SB (trade name, manufactured by Rohm & Haas), Dowex-3 (trade name, Dow Chemical). Amberlite-IRA400 (trade name, manufactured by Rohm & Haas), Amberlite-IRA410 (trade name, manufactured by Rohm & Haas), Dowex-1 (trade name, manufactured by Dow Chemical), Dowex-2 (trade name) , Manufactured by Dow Chemical).
As the anion exchange resin used in the production method of the present invention, an anion exchange resin having a tertiary amino group is preferable because it can remove and regenerate heavy metals.

本発明における粗塩化第一鉄液は、塩化第一鉄の含有量として、10〜48%が好ましく、25〜48%がより好ましく、30〜42%が更に好ましく、33〜39%が最も好ましい。塩化第一鉄の含有量が10%未満の粗塩化第一鉄液であっても本発明の製造方法を適用できるが、得られた塩化第一鉄液は、濃度を上げて製品にする必要があるため製造効率が悪いので好ましくない。   The content of ferrous chloride in the present invention is preferably 10 to 48%, more preferably 25 to 48%, still more preferably 30 to 42%, and most preferably 33 to 39% as the content of ferrous chloride. . Although the production method of the present invention can be applied even to a crude ferrous chloride solution having a ferrous chloride content of less than 10%, it is necessary to increase the concentration of the obtained ferrous chloride solution into a product. This is not preferable because the production efficiency is poor.

本発明における粗塩化第一鉄液は、塩化第二鉄の含有量が5%以下であり、3%以下が好ましく、2%以下がより好ましく、1%以下が更に好ましい。粗塩化第一鉄液に塩化第二鉄を含む場合は、塩化第二鉄の含有量が0.01%以上が好ましく、0.05%以上がより好ましい。当該粗塩化第一鉄液中の塩化第二鉄の含有量がこの濃度であると、重金属不純物の除去を効率よくできるので好ましい。なお、粗塩化第一鉄液中の塩化第二鉄含有量は、鉄を用いて還元して塩化第一鉄とすることができる。   The crude ferrous chloride solution in the present invention has a ferric chloride content of 5% or less, preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less. When ferric chloride is contained in the crude ferrous chloride solution, the ferric chloride content is preferably 0.01% or more, and more preferably 0.05% or more. It is preferable that the content of ferric chloride in the crude ferrous chloride solution is at this concentration, because heavy metal impurities can be efficiently removed. The ferric chloride content in the crude ferrous chloride solution can be reduced to ferrous chloride by using iron.

本発明において用いる粗塩化第一鉄液は、pH測定器を用いて測定した場合、粗塩化第一鉄液のpHは、2以下が好ましく、1以下がより好ましく、0以下が更に好ましい。また、pHが−1.5以上が好ましく、−1.3以上がより好ましく、−1以上が更に好ましい。本発明においてpHがこの範囲であると、粗塩化第一鉄液中から効率よく重金属不純物を除去することができるので好ましい。   When the crude ferrous chloride solution used in the present invention is measured using a pH meter, the pH of the crude ferrous chloride solution is preferably 2 or less, more preferably 1 or less, and even more preferably 0 or less. Moreover, -1.5 or more is preferable, -1.3 or more is more preferable, and -1 or more is still more preferable. In the present invention, it is preferable that the pH is within this range because heavy metal impurities can be efficiently removed from the crude ferrous chloride solution.

粗塩化第一鉄液中の塩酸濃度は、0〜5%がより好ましく、0.1〜2%が更に好ましく、0.2〜1%が特に好ましい。本発明において塩酸濃度がこの範囲であると、粗塩化第一鉄液中から効率よく重金属不純物を除去することができるので好ましい。
本発明の製造方法において、pHが−2まで測定できるpH測定器を用いて、粗塩化第一鉄液のpHを測定することが、製造の効率面から好ましい。
The hydrochloric acid concentration in the crude ferrous chloride solution is more preferably 0 to 5%, further preferably 0.1 to 2%, and particularly preferably 0.2 to 1%. In the present invention, the hydrochloric acid concentration within this range is preferable because heavy metal impurities can be efficiently removed from the crude ferrous chloride solution.
In the production method of the present invention, it is preferable from the viewpoint of production efficiency to measure the pH of the crude ferrous chloride solution using a pH measuring device capable of measuring pH to −2.

本発明の製造方法における粗塩化第一鉄液中のニッケル、クロム、モリブデン、亜鉛、錫および/または銅等は200ppm以下が好ましく、より好ましくは100ppm以下であり、1ppm以上が好ましい。これらの不純物がこの濃度であると、本発明の製造方法により純度の高い塩化第一鉄水溶液を得ることができ好ましい。   In the production method of the present invention, nickel, chromium, molybdenum, zinc, tin, and / or copper in the crude ferrous chloride solution is preferably 200 ppm or less, more preferably 100 ppm or less, and preferably 1 ppm or more. It is preferable that these impurities have this concentration because a high-purity ferrous chloride aqueous solution can be obtained by the production method of the present invention.

本発明の製造方法における粗塩化第一鉄液中のインジウムの濃度は、溶解していれば如何様な濃度でも良いが、0.2%以下がより好ましく、更に好ましくは50〜1500ppmである。インジウムの濃度が上記範囲であると、本発明の製造方法により純度の高い塩化第一鉄水溶液と脱着液での高濃度インジウム液を得ることができ好ましい。   The concentration of indium in the crude ferrous chloride solution in the production method of the present invention may be any concentration as long as it is dissolved, but is preferably 0.2% or less, more preferably 50 to 1500 ppm. It is preferable that the concentration of indium is in the above range because a high-concentration ferrous chloride aqueous solution and a high-concentration indium solution in a desorption solution can be obtained by the production method of the present invention.

本発明において、該陰イオン交換樹脂の使用量は、粗塩化第一鉄液中の重金属の含有量により決定すればよい。例えば、該陰イオン交換樹脂からの溶出液中の重金属含有量をモニターして粗塩化第一鉄液の処理量を決めてもよい。   In the present invention, the amount of the anion exchange resin used may be determined by the content of heavy metal in the crude ferrous chloride solution. For example, the amount of crude ferrous chloride solution may be determined by monitoring the heavy metal content in the eluate from the anion exchange resin.

本発明の製造方法において、粗塩化第一鉄液と該陰イオン交換樹脂との処理時間は、例えば充填塔で吸着させる場合は空塔速度(以下SVと表記)で、SV=0.1〜20[1/h]、更に好ましくはSV=0.2〜10[1/h]、特に好ましくはSV=0.3〜5[1/h]で接触させることにより効率良く重金属を吸着する事ができる。この範囲であると効率良く重金属を除去することができることから好ましい。   In the production method of the present invention, the treatment time of the crude ferrous chloride solution and the anion exchange resin is, for example, a superficial velocity (hereinafter referred to as SV) when adsorbed in a packed tower, and SV = 0.1 20 [1 / h], more preferably SV = 0.2 to 10 [1 / h], and particularly preferably SV = 0.3 to 5 [1 / h] to contact heavy metal efficiently. Can do. This range is preferable because heavy metals can be efficiently removed.

本発明の製造方法において、操作温度は0℃から80℃程度であり、好ましくは5℃から60℃であり、より好ましくは10℃から50℃である。該陰イオン交換樹脂との接触温度がこの範囲であると粗塩化第一鉄液中の重金属を効率よく除去することができるので好ましい。   In the production method of the present invention, the operating temperature is about 0 ° C to 80 ° C, preferably 5 ° C to 60 ° C, more preferably 10 ° C to 50 ° C. It is preferable that the contact temperature with the anion exchange resin be in this range because heavy metals in the crude ferrous chloride solution can be efficiently removed.

例えば、粗塩化第一鉄液をカラムにつめた該陰イオン交換樹脂と0℃から80℃の間の温度で1時間接触させる流速で流して重金属イオンを除去して、高純度塩化第一鉄液を製造することができる。または、粗塩化第一鉄液と該陰イオン交換樹脂とをバッチで0℃から80℃の間の温度で例えば2時間接触させて重金属イオンを除去して、高純度塩化第一鉄液を製造することができる。   For example, high-purity ferrous chloride is removed by flowing heavy iron ions at a flow rate at which the crude ferrous chloride solution is brought into contact with the anion exchange resin packed in a column at a temperature between 0 ° C. and 80 ° C. for 1 hour. A liquid can be produced. Alternatively, the crude ferrous chloride solution and the anion exchange resin are contacted in batches at a temperature between 0 ° C. and 80 ° C. for 2 hours, for example, to remove heavy metal ions to produce a high purity ferrous chloride solution. can do.

本発明の製造方法を用いて製造した高純度塩化第一鉄液は、用途により濃度を調整して使用することができる。
本発明の製造方法を用いて製造した高純度塩化第一鉄液は、塩素等を用いて酸化して高純度塩化第二鉄として使用することができる。
The high-purity ferrous chloride liquid produced using the production method of the present invention can be used after adjusting the concentration depending on the application.
The high-purity ferrous chloride liquid produced using the production method of the present invention can be used as high-purity ferric chloride by oxidation with chlorine or the like.

本発明の製造方法において、重金属および/またはインジウムの除去に使用した陰イオン交換樹脂は、再生して本発明の製造方法に用いる陰イオン交換樹脂として再利用することができる。
当該陰イオン交換樹脂の再生方法としては、公知の方法を用いることができる。例えば、当該陰イオン交換樹脂の再生方法としては、水洗によるもの、水洗した後に希塩化第一鉄液によるもの、水洗した後に希塩酸によるもの、水洗した後に希塩化第一鉄液と希塩酸との混合液によるもの、希塩化第一鉄液によるもの、希塩化第一鉄液と希塩酸との混合液によるもの、および希塩酸によるものなどを挙げることができる。本発明の製造方法においては、水洗によるもの、水洗した後に希塩化第一鉄液によるもの、水洗した後に希塩酸によるもの、または水洗した後に希塩化第一鉄液と希塩酸との混合液による陰イオン交換樹脂の再生方法が好ましい。なお、希塩化第一鉄液の濃度は、10%未満の液であることが好ましく、5%以下がより好ましく、2%以下のものが更に好ましいものとして例示できる。また、希塩酸の濃度は、10%以下の液であることが好ましく、5%以下がより好ましく、2%以下のものが更に好ましいものとして例示できる。
In the production method of the present invention, the anion exchange resin used for removing heavy metals and / or indium can be recycled and reused as the anion exchange resin used in the production method of the present invention.
A known method can be used as a method for regenerating the anion exchange resin. For example, as a method for regenerating the anion exchange resin, washing with water, washing with water and dilute ferrous chloride, washing with dilute hydrochloric acid, washing with dilute ferrous chloride and dilute hydrochloric acid after washing Examples thereof include a liquid, a diluted ferrous chloride liquid, a mixed liquid of diluted ferrous chloride and dilute hydrochloric acid, and a dilute hydrochloric acid. In the production method of the present invention, anion by washing with water, washing with water after dilute ferrous chloride, washing with water and dilute hydrochloric acid, or washing with water and a mixture of dilute ferrous chloride and dilute hydrochloric acid A method for regenerating the exchange resin is preferred. The concentration of dilute ferrous chloride solution is preferably less than 10%, more preferably 5% or less, and even more preferably 2% or less. The concentration of dilute hydrochloric acid is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less.

本発明の製造方法において上記記載の水または水溶液の使用量は、当該陰イオン交換樹脂が再生できれば如何様な量でも良い。例えば当該陰イオン交換樹脂量に対して1.2〜10倍量が挙げられる。
本発明の製造方法において当該陰イオン交換樹脂の再生は、0〜80℃であり、10〜60℃が好ましい。
In the production method of the present invention, the amount of water or aqueous solution described above may be any amount as long as the anion exchange resin can be regenerated. For example, the amount is 1.2 to 10 times the amount of the anion exchange resin.
In the production method of the present invention, regeneration of the anion exchange resin is 0 to 80 ° C, preferably 10 to 60 ° C.

また、粗塩化第一鉄液中のインジウムを吸着させた陰イオン交換樹脂から、水および/または希塩化第一鉄水溶液および/または希塩酸を用いてインジウムを溶出させて、インジウム化合物を製造することができる。   In addition, an indium compound is produced by eluting indium from water and / or dilute ferrous chloride aqueous solution and / or dilute hydrochloric acid from an anion exchange resin adsorbing indium in the crude ferrous chloride solution. Can do.

また、本再生方法にて樹脂の再生を繰り返していると、インジウムより吸着性の高い鉄(III)やニッケル等の重金属類が樹脂内に留まり、吸着能力が低下する場合がある。この様な場合、例えば3〜20%の塩酸等の酸性液にて重金属類を脱離させ、その後水洗等にて、同様に再生を行うことによりインジウム等の吸着力を再生する事ができる。即ち、本発明の製造方法において重金属および/またはインジウムの除去に使用した該陰イオン交換樹脂は、上記記載の方法により再生することができる。   In addition, when the regeneration of the resin is repeated by this regeneration method, heavy metals such as iron (III) and nickel having a higher adsorptivity than indium may remain in the resin and the adsorption capacity may be reduced. In such a case, the adsorptive power of indium and the like can be regenerated by desorbing heavy metals with an acidic solution such as 3 to 20% hydrochloric acid and then performing similar regeneration by washing with water or the like. That is, the anion exchange resin used for the removal of heavy metals and / or indium in the production method of the present invention can be regenerated by the method described above.

○実施態様
粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を水を用いて重金属を除去する、官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂の再生方法。
粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基を有する陰イオン交換樹脂を水を用いて重金属を除去する、官能基として第3級アミノ基を有する陰イオン交換樹脂の再生方法。
粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を水を用いて再生した当該陰イオン交換樹脂を用いて、粗塩化第一鉄液中の重金属不純物を除去する塩化第一鉄液の製造方法。
粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基を有する陰イオン交換樹脂を水を用いて再生した当該陰イオン交換樹脂を用いて、粗塩化第一鉄液中の重金属不純物を除去する塩化第一鉄液の製造方法。
pHが−1.5〜2以下である粗塩化第一鉄液中の重金属不純物を官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂により除去する塩化第一鉄液の製造方法。
本発明の塩化第一鉄の製造方法で得た塩化第一鉄を、塩素酸化して製造した塩化第二鉄。
Embodiment An anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group adsorbed with heavy metal impurities in the crude ferrous chloride solution is removed with heavy water to remove the heavy metal. A method for regenerating an anion exchange resin having a tertiary amino group or a quaternary ammonium group.
Anion exchange resin having a tertiary amino group as a functional group adsorbed with heavy metal impurities in a crude ferrous chloride solution is removed using water to remove the heavy metal, and an anion exchange having a tertiary amino group as a functional group Resin regeneration method.
The anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group adsorbed with heavy metal impurities in the crude ferrous chloride solution is regenerated using water, and the A method for producing a ferrous chloride solution, which removes heavy metal impurities in the ferrous chloride solution.
In the crude ferrous chloride solution, the anion exchange resin having a tertiary amino group as a functional group adsorbed with heavy metal impurities in the crude ferrous chloride solution is regenerated with water. A method for producing ferrous chloride solution that removes heavy metal impurities.
A ferrous chloride solution for removing heavy metal impurities in a crude ferrous chloride solution having a pH of -1.5 to 2 or less with an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group. Manufacturing method.
Ferric chloride produced by chlorinating ferrous chloride obtained by the method for producing ferrous chloride of the present invention.

以下具体例を実施例にて説明するが、本発明はこれらの実施例だけにとどまるものではない。なお、%は重量%を、ppmは重量ppmを表す。   Specific examples will be described below with reference to examples, but the present invention is not limited to these examples. In addition,% represents weight% and ppm represents weight ppm.

インジウムを98ppm含む粗塩化第一鉄液(FeCl2濃度:34%、pHは−0.1であった)をアンバーライトIRA96SB(商品名、Cl型、第3級アミノ基を有する陰イオン交換樹脂)を充填した樹脂層高さ60cmのカラム(40℃に保温)に、SV=1hr-1で流し、塩化第一鉄液を製造した。なお1時間ごとに塩化第一鉄液の通過液を集め、それらのインジウム含有量を測定し(ICP発光分光分析による。なお、試料液に鉄を含んでいることからインジウムの検出限界が悪くなっている。)、結果を表1に記載した。 Crude ferrous chloride solution containing 98 ppm of indium (FeCl 2 concentration: 34%, pH was −0.1) and Amberlite IRA 96SB (trade name, Cl type, anion exchange resin having tertiary amino group) ) Packed in a column with a resin layer height of 60 cm (insulated at 40 ° C.) at SV = 1 hr −1 to produce a ferrous chloride solution. In addition, the passing liquid of ferrous chloride solution is collected every hour and the indium content thereof is measured (by ICP emission spectroscopic analysis. In addition, since the sample solution contains iron, the detection limit of indium deteriorates. The results are shown in Table 1.

Figure 2008100126
Figure 2008100126

インジウムを100ppm含む粗塩化第一鉄液(FeCl2濃度:34%、pHは−0.1であった)をアンバーライトIRA400(商品名、Cl型、第4級アンモニウム基を有する陰イオン交換樹脂)を充填した樹脂層高さ60cmのカラム(40℃に保温)に、SV=2hr-1で流し、塩化第一鉄液を製造した。なお1時間ごとに塩化第一鉄液の通過液を集め、インジウム含有量を測定し、結果を表2に記載した。 Crude ferrous chloride solution containing 100 ppm of indium (FeCl 2 concentration: 34%, pH was −0.1) and Amberlite IRA400 (trade name, Cl type, anion exchange resin having a quaternary ammonium group) ) Packed in a resin layer with a height of 60 cm (insulated at 40 ° C.) at SV = 2 hr −1 to produce a ferrous chloride solution. In addition, the passage liquid of the ferrous chloride liquid was collected every 1 hour, indium content was measured, and the result was described in Table 2.

Figure 2008100126
Figure 2008100126

実施例1において使用したアンバーライトIRA96SB(商品名)を水を流して再生した(40℃、SV=1hr-1)。この再生した樹脂に再度粗塩化第一鉄液を通液して塩化第一鉄液を製造した。なお、水での再生状況(1時間ごとに再生液を集め、この中のインジウム含有量を測定した)を表3に記載した。 Amberlite IRA96SB (trade name) used in Example 1 was regenerated by flowing water (40 ° C., SV = 1 hr −1 ). A crude ferrous chloride solution was again passed through the regenerated resin to produce a ferrous chloride solution. In addition, Table 3 shows the state of regeneration with water (collecting the regenerated solution every hour and measuring the indium content therein).

Figure 2008100126
Figure 2008100126

実施例2において使用したアンバーライトIRA400(商品名)を水で流して再生した(40℃、SV=4hr-1)。この再生した樹脂に再度粗塩化第一鉄液を通液して塩化第一鉄液を製造した。なお、水での再生状況(1時間ごとに再生液を集め、この中のインジウム含有量を測定した)を表4に記載した。 Amberlite IRA400 (trade name) used in Example 2 was regenerated by flushing with water (40 ° C., SV = 4 hr −1 ). A crude ferrous chloride solution was again passed through the regenerated resin to produce a ferrous chloride solution. In addition, Table 4 shows the state of regeneration with water (collecting the regeneration solution every hour and measuring the indium content therein).

Figure 2008100126
Figure 2008100126

3価の鉄を400ppm含有する粗塩化第一鉄液を用いた以外は、実施例1と同様に操作して塩化第一鉄液を製造した。この結果、6時間通液してもIn濃度は20ppm以下であった。   A ferrous chloride solution was produced in the same manner as in Example 1 except that a crude ferrous chloride solution containing 400 ppm of trivalent iron was used. As a result, the In concentration was 20 ppm or less even after passing through for 6 hours.

3価の鉄を0.4%含有する粗塩化第一鉄液を用いた以外は、実施例1と同様に操作して塩化第一鉄液を製造した。この結果、6時間通液してもIn濃度は20ppm以下であった。   A ferrous chloride solution was produced in the same manner as in Example 1 except that a crude ferrous chloride solution containing 0.4% of trivalent iron was used. As a result, the In concentration was 20 ppm or less even after passing through for 6 hours.

3価の鉄を0.8%含有する粗塩化第一鉄液を用いた以外は、実施例1と同様に操作して塩化第一鉄液を製造した。この結果、4時間通液してもIn濃度は20ppm以下であった。   A ferrous chloride solution was produced in the same manner as in Example 1 except that a crude ferrous chloride solution containing 0.8% of trivalent iron was used. As a result, the In concentration was 20 ppm or less even after passing through for 4 hours.

水の替わりに2%塩酸または5%塩酸を用いた以外は実施例3と同様に処理した。この結果を表5に記載した。   The treatment was performed in the same manner as in Example 3 except that 2% hydrochloric acid or 5% hydrochloric acid was used instead of water. The results are shown in Table 5.

Figure 2008100126
Figure 2008100126

本発明の製造方法は、液晶モニターやプラズマモニター等に透明電極として使用されているITO(インジウム・錫・酸化物)材やIZO(インジウム・亜鉛・酸化物)材のエッチングに使用した塩化第二鉄系溶液等の再生に適用することができる。   The manufacturing method of the present invention is a second chloride used for etching an ITO (indium / tin / oxide) material or an IZO (indium / zinc / oxide) material used as a transparent electrode in a liquid crystal monitor or a plasma monitor. It can be applied to the regeneration of iron-based solutions and the like.

Claims (6)

官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を用いて粗塩化第一鉄液中の重金属不純物を除去することを特徴とする塩化第一鉄液の製造方法。   A method for producing a ferrous chloride solution, comprising removing heavy metal impurities in a crude ferrous chloride solution using an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group. 前記重金属不純物がインジウムである請求項1に記載の塩化第一鉄液の製造方法。   The method for producing a ferrous chloride solution according to claim 1, wherein the heavy metal impurity is indium. 粗塩化第一鉄液のpHが2以下である請求項1または2に記載の塩化第一鉄液の製造方法。   The method for producing a ferrous chloride solution according to claim 1 or 2, wherein the pH of the crude ferrous chloride solution is 2 or less. 粗塩化第一鉄液中の重金属不純物が吸着した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂から水、希塩酸および/または希塩化第一鉄液を用いて重金属を除去する、官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂の再生方法。   Heavy metal using water, dilute hydrochloric acid and / or dilute ferrous chloride solution from an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group adsorbed with heavy metal impurities in the crude ferrous chloride solution A method for regenerating an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group. 請求項4記載の再生方法により再生した官能基として第3級アミノ基または第4級アンモニウム基を有する陰イオン交換樹脂を使用する請求項1〜3のいずれか1つに記載の塩化第一鉄液の製造方法。   The ferrous chloride according to any one of claims 1 to 3, wherein an anion exchange resin having a tertiary amino group or a quaternary ammonium group as a functional group regenerated by the regeneration method according to claim 4 is used. Liquid manufacturing method. 請求項1、2、3、または5のいずれか1つに記載の塩化第一鉄液の製造方法により得た塩化第一鉄を酸化して得た塩化第二鉄。   Ferric chloride obtained by oxidizing ferrous chloride obtained by the method for producing a ferrous chloride solution according to any one of claims 1, 2, 3, or 5.
JP2006282264A 2006-10-17 2006-10-17 Method for producing ferrous chloride liquid Active JP4773313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282264A JP4773313B2 (en) 2006-10-17 2006-10-17 Method for producing ferrous chloride liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282264A JP4773313B2 (en) 2006-10-17 2006-10-17 Method for producing ferrous chloride liquid

Publications (2)

Publication Number Publication Date
JP2008100126A true JP2008100126A (en) 2008-05-01
JP4773313B2 JP4773313B2 (en) 2011-09-14

Family

ID=39434861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282264A Active JP4773313B2 (en) 2006-10-17 2006-10-17 Method for producing ferrous chloride liquid

Country Status (1)

Country Link
JP (1) JP4773313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626478A (en) * 2018-11-28 2019-04-16 中国地质大学(武汉) A kind of modified polyquaternium composite material and preparation method of probe, application

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172256A (en) * 1982-03-30 1983-10-11 住友化学工業株式会社 Recovery of indium
JPS6019087A (en) * 1983-07-12 1985-01-31 Toyo Soda Mfg Co Ltd Removal of heavy metal in aqueous iron salt solution
JPS62176914A (en) * 1986-01-29 1987-08-03 Sumitomo Chem Co Ltd Recovery of rare metal
JPH09235684A (en) * 1995-12-28 1997-09-09 Fuji Kasui Kogyo Kk Method for regenerating waste liquid etchant
JP2002001365A (en) * 2000-06-20 2002-01-08 Toagosei Co Ltd Manufacturing method of ferric chloride solution, system for the same and apparatus for the same
JP2003212548A (en) * 2002-01-18 2003-07-30 Jfe Steel Kk Refining method for iron containing solution
JP2003266065A (en) * 2002-03-18 2003-09-24 Toagosei Co Ltd Removing method and recovering method for cobalt and/ or zinc in iron chloride solution
JP2004075463A (en) * 2002-08-19 2004-03-11 Toagosei Co Ltd Method for removing and recovering indium from indium-containing ferric chloride etchant waste
WO2006006497A1 (en) * 2004-07-09 2006-01-19 Aquatech Corporation Indium adsorbing agent and method for separating indium
JP2007332006A (en) * 2006-06-19 2007-12-27 Sharp Corp Regeneration treatment method and regeneration treatment apparatus for indium- and/or tin-containing iron chloride solution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172256A (en) * 1982-03-30 1983-10-11 住友化学工業株式会社 Recovery of indium
JPS6019087A (en) * 1983-07-12 1985-01-31 Toyo Soda Mfg Co Ltd Removal of heavy metal in aqueous iron salt solution
JPS62176914A (en) * 1986-01-29 1987-08-03 Sumitomo Chem Co Ltd Recovery of rare metal
JPH09235684A (en) * 1995-12-28 1997-09-09 Fuji Kasui Kogyo Kk Method for regenerating waste liquid etchant
JP2002001365A (en) * 2000-06-20 2002-01-08 Toagosei Co Ltd Manufacturing method of ferric chloride solution, system for the same and apparatus for the same
JP2003212548A (en) * 2002-01-18 2003-07-30 Jfe Steel Kk Refining method for iron containing solution
JP2003266065A (en) * 2002-03-18 2003-09-24 Toagosei Co Ltd Removing method and recovering method for cobalt and/ or zinc in iron chloride solution
JP2004075463A (en) * 2002-08-19 2004-03-11 Toagosei Co Ltd Method for removing and recovering indium from indium-containing ferric chloride etchant waste
WO2006006497A1 (en) * 2004-07-09 2006-01-19 Aquatech Corporation Indium adsorbing agent and method for separating indium
JP2007332006A (en) * 2006-06-19 2007-12-27 Sharp Corp Regeneration treatment method and regeneration treatment apparatus for indium- and/or tin-containing iron chloride solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626478A (en) * 2018-11-28 2019-04-16 中国地质大学(武汉) A kind of modified polyquaternium composite material and preparation method of probe, application

Also Published As

Publication number Publication date
JP4773313B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5053587B2 (en) High-purity production method of alkali metal hydroxide
TWI608989B (en) Method for removing metal ions in phosphoric acid solution
JP5887279B2 (en) Method for producing tetraalkylammonium salt and method for producing tetraalkylammonium hydroxide using the same as raw material
Pachuau et al. Ferrate (VI) in wastewater treatment contaminated with metal (II)-iminodiacetic acid complexed species
JP2020001955A (en) Method for producing refined chloride
JP4773313B2 (en) Method for producing ferrous chloride liquid
JPWO2005102993A1 (en) Purification method of acid aqueous solution
JP2008031014A (en) Method for producing high purity alkali metal hydroxide
JP2013188720A (en) Method and apparatus for regenerating ion exchange resin, and copper etching liquid regenerating apparatus using the same
JP5049528B2 (en) Method for producing high purity alkali metal hydroxide
JP4745936B2 (en) Method for producing ferrous chloride liquid
JP4619955B2 (en) Uranium waste treatment method
JP4643541B2 (en) Method for producing indium compound from ferrous chloride solution
JP2008100850A (en) Method for producing indium from indium-containing ferrous chloride solution
JP4808093B2 (en) Recycling method of iron powder for arsenic removal
JP4996172B2 (en) Method for producing high purity alkali metal hydroxide
JP2003266065A (en) Removing method and recovering method for cobalt and/ or zinc in iron chloride solution
CN109173340B (en) Method for removing chlorine from strong acidic solution by adsorption
KR101389484B1 (en) Method for removing of copper-ion from solutions containing low concentration copper
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP2009084673A (en) Selective separation/recovery method for specified metal ion
JP2008050197A (en) Method for producing high-purity alkali metal hydroxide
JP4534591B2 (en) Recovery method of high purity oxalic acid aqueous solution
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
JP3520342B2 (en) Extraction and removal of pentavalent arsenic ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250