JP2009084673A - Selective separation/recovery method for specified metal ion - Google Patents

Selective separation/recovery method for specified metal ion Download PDF

Info

Publication number
JP2009084673A
JP2009084673A JP2007259973A JP2007259973A JP2009084673A JP 2009084673 A JP2009084673 A JP 2009084673A JP 2007259973 A JP2007259973 A JP 2007259973A JP 2007259973 A JP2007259973 A JP 2007259973A JP 2009084673 A JP2009084673 A JP 2009084673A
Authority
JP
Japan
Prior art keywords
metal
indium
metal ion
metal ions
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007259973A
Other languages
Japanese (ja)
Inventor
Takaaki Chuma
高明 中馬
Nobuhiro Oda
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007259973A priority Critical patent/JP2009084673A/en
Publication of JP2009084673A publication Critical patent/JP2009084673A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a selective separation/recovery method for a specified metal ion where, from a solution comprising two or more kinds of metal ions, only one kind of metal ion is selectively separated/recovered. <P>SOLUTION: By the contact of a compound forming a metal complex such as oxalic acid, control is performed in such a manner that metal ions other than one kind of metal ion as the object for separation/recovery are made into a nondissociated state, and thereafter, only at least one kind of metal ion in a dissociated state is selectively separated/recovered by a cation exchange means. This invention is industrially useful as the method where, from an etching waste liquid produced when the indium-containing material to be etched such as an ITO film is subjected to etching treatment with an oxalic acid solution, and in which metal components such as indium and tin are present as complex compounds together with oxalic acid, the indium whose separation/recovery are extremely difficult owing to its low concentration is selectively separated/recovered. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2種以上の金属イオンを含む溶液中から1種の金属イオンのみを分離回収する特定金属イオンの選択的分離回収方法に係り、特に、インジウム含有廃液からインジウムを選択的に分離回収する方法に関する。   The present invention relates to a selective separation and recovery method for specific metal ions in which only one metal ion is separated and recovered from a solution containing two or more types of metal ions, and in particular, selective separation and recovery of indium from indium-containing waste liquid. On how to do.

インジウムイオンは各種の金属製錬プロセス、液晶製造プロセス、その他の化学的処理工程から得られる澱物や液中に低濃度で分布して含有されて排出される場合が多い。例えば、金属精錬プロセスから排出される廃液は、通常、低濃度のインジウムイオンを含有し、これに対して極めて多量のインジウム以外の金属イオンを含有している。
このようなインジウム含有廃液や澱物は、高価な希少金属であるインジウムの採集源として有望である。
Indium ions are often distributed and contained at low concentrations in starches and liquids obtained from various metal smelting processes, liquid crystal manufacturing processes, and other chemical treatment processes. For example, the waste liquid discharged from the metal refining process usually contains a low concentration of indium ions, while it contains a very large amount of metal ions other than indium.
Such indium-containing waste liquid and starch are promising as a collection source for indium, which is an expensive rare metal.

このようなインジウム源からインジウムを採集する方法として、澱物の場合にはこれを酸で溶解して溶液とし、得られたインジウム低濃度含有液に対して溶媒抽出法を適用する方法が提案されている。例えば、抽出溶媒として、イソプロピルエーテル、トリブチルホスフエート、メチルイソブチルケトン、あるいは第三級飽和脂肪酸類等の有機溶媒を用い、液−液抽出を行って、インジウムを濃縮する方法が報告されている。   As a method for collecting indium from such an indium source, in the case of starch, a method is proposed in which this is dissolved in an acid to form a solution, and a solvent extraction method is applied to the resulting indium-containing solution. ing. For example, a method for concentrating indium by performing liquid-liquid extraction using an organic solvent such as isopropyl ether, tributyl phosphate, methyl isobutyl ketone, or tertiary saturated fatty acids as an extraction solvent has been reported.

このうち、抽出溶媒としてイソプロピルエーテル、トリブチルホスフエートあるいはメチルイソブチルケトンを用いる方法は、インジウムを選択的に抽出できる点で優れた方法であると言えるが、抽出時の水相条件として、高濃度塩酸を必要とする点、特に、イソプロピルエーテル、メチルイソブチルケトンは水相への溶解量が大きく、使用寿命が非常に短い点で問題がある。また、第三級飽和脂肪酸による方法は、溶媒が安価でありかつ酸の種類やインジウム濃度に制限を受けない点で優れているが、水相の共存金属塩類の種類と濃度によっては抽出率が大幅に低下すると云う問題がある。
加えて、溶媒抽出法は、共通の問題として、残液中に溶媒が液滴の形で取り込まれたり溶解したりするという欠点を有している。
Among these, the method using isopropyl ether, tributyl phosphate or methyl isobutyl ketone as an extraction solvent is an excellent method in that indium can be selectively extracted. However, as an aqueous phase condition during extraction, high concentration hydrochloric acid is used. In particular, isopropyl ether and methyl isobutyl ketone have a problem that they have a large amount of dissolution in an aqueous phase and a very short service life. In addition, the method using tertiary saturated fatty acid is excellent in that the solvent is inexpensive and the type of acid and the concentration of indium are not limited, but the extraction rate depends on the type and concentration of coexisting metal salts in the aqueous phase. There is a problem of a significant drop.
In addition, the solvent extraction method has a common problem that the solvent is taken in or dissolved in the form of droplets in the residual liquid.

そこで従来は、例えば特公平1−43590号公報に記載される方法を用いて、pH調整を行った後、キレート樹脂によってインジウムを回収することが行われていた。しかしながら、キレート樹脂は一般に高価であり、また特定金属イオンの選択的吸着能力は優れているものの、再生回収の観点からは再生効率が悪く、再生剤を多量に用いなければならないという問題があった。   Therefore, conventionally, for example, after adjusting the pH using a method described in JP-B-1-43590, indium is recovered with a chelate resin. However, although chelate resins are generally expensive and have excellent selective adsorption ability for specific metal ions, there is a problem that regeneration efficiency is poor from the viewpoint of regeneration and recovery, and a large amount of regenerant must be used. .

ところで、液晶表示装置、エレクトロルミネッセンス(EL)表示装置などの透明電極として、インジウム含有被エッチング材、例えば、酸化インジウム−酸化スズ(Indium−Tin−Oxide、以下ITOと略す。)膜を所定のパターンにエッチング処理したものが使用されている。ITO透明電極は、ガラス等の基板上にITO膜を形成し、レジストマスクを施して、ITO膜をエッチング処理して形成される。従って、このような液晶製造プロセスからは、インジウムイオンとスズ等の他の金属イオンを含んだエッチング廃液が排出される。
ITO膜をエッチングする場合、エッチング液としては一般に、シュウ酸と界面活性剤を混合したシュウ酸溶液が用いられる。このエッチング液は、ITO基板に吹き付けるなどしてエッチングに使用され、エッチング速度が鈍化して使用に耐えられなくなるまで循環使用される。その後、エッチング能力が損なわれたエッチング廃液は系外へ排出され、通常はそのまま廃棄されている。
By the way, as a transparent electrode of a liquid crystal display device, an electroluminescence (EL) display device or the like, an indium-containing material to be etched, for example, indium-tin-oxide (hereinafter abbreviated as ITO) film, has a predetermined pattern. Etching is used. The ITO transparent electrode is formed by forming an ITO film on a substrate such as glass, applying a resist mask, and etching the ITO film. Therefore, from such a liquid crystal manufacturing process, an etching waste liquid containing indium ions and other metal ions such as tin is discharged.
When etching an ITO film, an oxalic acid solution in which oxalic acid and a surfactant are mixed is generally used as an etching solution. This etching solution is used for etching, for example, by spraying on the ITO substrate, and is circulated until the etching rate becomes slow and cannot be used. Thereafter, the etching waste liquid whose etching ability is impaired is discharged out of the system and is usually discarded as it is.

近年、透明電極であるITOは液晶、有機ELなどに欠かせない素材として注目を集めており、希少金属でありながらその需要は増加の一途をたどり、結果として価格の高騰が続いている。従って、インジウムを含むエッチング廃液を廃棄することは、廃液中の高価な希少金属であるインジウムを廃棄することとなり、コスト面でも、希少金属資源の有効利用の面でも問題がある。しかしながら、従来において、インジウムを低濃度に含むエッチング廃液からインジウムを選択的に分離回収する方法として、十分に満足し得る方法は提供されていない。
特公平1−43590号公報
In recent years, ITO, which is a transparent electrode, has attracted attention as an indispensable material for liquid crystal, organic EL, etc., and its demand continues to increase despite being a rare metal, and as a result, the price continues to rise. Therefore, discarding the etching waste liquid containing indium results in the disposal of indium, which is an expensive rare metal in the waste liquid, and there are problems in terms of cost and effective use of rare metal resources. However, a method that can be satisfactorily satisfied as a method for selectively separating and recovering indium from an etching waste liquid containing indium at a low concentration has not been provided.
Japanese Patent Publication No. 1-343590

本発明は上記従来の実情に鑑みてなされたものであり、2種以上の金属イオンを含む溶液中から、有機溶媒を用いることなく、安価にかつ効率的に特定の1種の金属イオンのみを選択的に分離回収する方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and from a solution containing two or more types of metal ions, only one specific type of metal ions can be efficiently and inexpensively used without using an organic solvent. An object is to provide a method of selectively separating and recovering.

本発明者は、上記課題を解決すべく鋭意検討した結果、錯体の生成しやすさを利用してイオン化の程度を調整することで分離回収目的とする金属イオン以外の金属イオンを金属錯体として非解離状態とし、解離状態の分離回収目的の金属イオンをカチオン交換手段により効率的に分離回収することができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventor has made metal ions other than those intended for separation and recovery as a metal complex by adjusting the degree of ionization using the ease of formation of the complex. The present invention was completed by finding that the metal ions in the dissociated state can be efficiently separated and recovered by the cation exchange means.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 2種以上の金属イオンを含む溶液中から1種の金属イオンのみを分離回収する特定金属イオンの選択的分離回収方法であって、該溶液に、金属錯体を生成する化合物を接触させることにより、該溶液中の該1種の金属イオンを除く金属イオンが非解離状態となるように調整し、その後カチオン交換手段により解離状態の該1種の金属イオンのみを選択的に分離回収することを特徴とする特定金属イオンの選択的分離回収方法。 [1] A method for selectively separating and recovering a specific metal ion by separating and recovering only one metal ion from a solution containing two or more metal ions, wherein the solution is brought into contact with a compound that forms a metal complex. Thus, the metal ions excluding the one kind of metal ions in the solution are adjusted to be in a non-dissociated state, and then only the one kind of metal ions in the dissociated state are selectively separated and recovered by cation exchange means. A method for selectively separating and recovering a specific metal ion.

[2] [1]において、該金属錯体を生成する化合物がシュウ酸であることを特徴とする特定金属イオンの選択的分離回収方法。 [2] The method for selectively separating and recovering a specific metal ion according to [1], wherein the compound that forms the metal complex is oxalic acid.

[3] [1]又は[2]において、選択的分離回収する該1種の金属イオンが他の金属イオンよりも錯生成定数が小さいことを特徴とする特定金属イオンの選択的分離回収方法。 [3] The method for selectively separating and recovering specific metal ions according to [1] or [2], wherein the one metal ion to be selectively separated and recovered has a smaller complex formation constant than other metal ions.

[4] [1]〜[3]のいずれかにおいて、選択的分離回収する該1種の金属イオンがインジウムイオンであることを特徴とする特定金属イオンの選択的分離回収方法。 [4] The method for selectively separating and recovering a specific metal ion according to any one of [1] to [3], wherein the one metal ion to be selectively separated and recovered is an indium ion.

[5] [1]〜[4]のいずれかにおいて、該カチオン交換手段がカチオン交換樹脂を含むことを特徴とする特定金属イオンの選択的分離回収方法。 [5] The method for selectively separating and recovering a specific metal ion according to any one of [1] to [4], wherein the cation exchange means contains a cation exchange resin.

本発明の方法によれば、有機溶媒を用いることなく、2種以上の金属イオンを含む溶液中から1種の金属イオンのみを容易かつ効率的に選択的に分離回収することができる。   According to the method of the present invention, it is possible to easily and efficiently selectively separate and recover only one metal ion from a solution containing two or more metal ions without using an organic solvent.

本発明における金属錯体生成による金属の非解離状態の形成について、インジウムイオンとスズイオンを含む溶液を例示して以下に説明する。   The formation of the non-dissociated state of the metal by the formation of the metal complex in the present invention will be described below by exemplifying a solution containing indium ions and tin ions.

このような溶液に、金属錯体を生成する化合物(以下「金属錯体生成剤」と称す場合がある。)としてシュウ酸を添加すると、インジウムイオン(In3+)とスズイオン(Sn2+)はそれぞれシュウ酸イオン(:COOとの錯体を生成し、錯体自体はアニオンとなる。しかし、錯生成定数の違いによって、錯生成定数の小さいインジウムは一部解離してインジウムイオンとなり、一方スズは殆ど解離せず錯体として存在する。従って、系内にはアニオン性のシュウ酸金属錯体(シュウ酸インジウム錯体、シュウ酸スズ錯体)とインジウムイオンが存在することになるので、カチオン交換手段によりインジウムイオンのみを選択的に分離回収することができる。 When oxalic acid is added to such a solution as a compound that forms a metal complex (hereinafter sometimes referred to as a “metal complex forming agent”), indium ions (In 3+ ) and tin ions (Sn 2+ ) are each oxalic acid. A complex with the ion (: COO ) 2 is generated, and the complex itself becomes an anion. However, due to the difference in complex formation constant, indium with a small complex formation constant is partially dissociated into indium ions, while tin hardly dissociates and exists as a complex. Therefore, since anionic metal oxalate complexes (indium oxalate complex, tin oxalate complex) and indium ions are present in the system, only indium ions can be selectively separated and recovered by cation exchange means. Can do.

以下、本発明の特定金属イオンの選択的分離回収方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the selective separation and recovery method for specific metal ions of the present invention will be described in detail.

本発明の特定金属イオンの選択的分離回収方法は、処理対象溶液中の分離回収目的とする1種の金属イオンを除く金属イオンが非解離状態となる条件下で、カチオン交換手段により、解離状態となっている分離回収目的の1種の金属イオンのみを選択的に分離回収する方法であり、具体的には、金属錯体生成剤としてシュウ酸を添加するなどして、分離回収目的の特定の金属イオン以外の金属イオンに対して非解離性の錯体を生成させた上で、分離回収目的の特定の金属イオンをカチオン交換手段により選択的に分離して回収するというものである。   The selective separation and recovery method for a specific metal ion of the present invention is a dissociation state by a cation exchange means under the condition that a metal ion except for one kind of metal ion for separation and recovery purpose in a solution to be treated is in a non-dissociation state. This is a method for selectively separating and recovering only one kind of metal ion for the purpose of separation and recovery. Specifically, by adding oxalic acid as a metal complex forming agent, a specific purpose of separation and recovery is specified. A non-dissociable complex is generated with respect to metal ions other than metal ions, and then specific metal ions for separation and recovery are selectively separated and recovered by cation exchange means.

本発明において選択的に分離回収する金属種としては、通常、エッチング廃液等に含有されて排出され、低濃度のため分離回収が極めて困難であり、高価な希少金属であるインジウムが好ましい。   As the metal species to be selectively separated and recovered in the present invention, indium which is an expensive rare metal is preferable because it is usually contained and discharged in an etching waste liquid and is very difficult to separate and recover due to its low concentration.

また、本発明において非解離状態とする金属種としては特に限定されないが、錯生成によって非解離状態とする場合は、分離回収目的とする金属イオンよりも錯生成定数が大きい金属イオンである必要がある。この場合、分離回収目的とする金属イオンとそれ以外の金属イオンとの錯生成定数の差は大きい程好ましい。例えば、クエン酸に対するFe3+とCu2+の錯生成定数は、Fe3+が11.9、Cu2+は5.2であるから、クエン酸はCu2+よりもFe3+と錯体を生成しやすい。 In the present invention, the metal species to be brought into a non-dissociated state is not particularly limited. However, when the metal species is brought into a non-dissociated state by complex formation, it is necessary to be a metal ion having a complex formation constant larger than the metal ion intended for separation and recovery. is there. In this case, the larger the difference in complex formation constant between the metal ion intended for separation and recovery and the other metal ions, the better. For example, complex formation constant of Fe 3+ and Cu 2+ with respect to citric acid is from Fe 3+ is 11.9, Cu 2+ is 5.2, citric acid tends to generate Fe 3+ complexes than Cu 2+.

また、本発明において、金属錯体生成剤としては、シュウ酸が好適に用いられる。ただし、金属錯体生成剤はシュウ酸に何ら限定されず、分離回収目的とする金属イオン以外の金属イオンと金属錯体を生成し易いものであれば良い。
金属錯体生成剤は2種以上のものを併用しても良い。また、金属錯体生成剤の使用量は、溶液中の分離回収目的の金属イオン以外の金属イオンが非解離状態となり、分離回収目的の金属イオンが解離状態として存在するような量であればよい。
Moreover, in this invention, oxalic acid is used suitably as a metal complex production | generation agent. However, the metal complex generating agent is not limited to oxalic acid, and any metal complex generating agent may be used as long as it can easily generate a metal complex other than the metal ion intended for separation and recovery.
Two or more metal complex forming agents may be used in combination. The amount of the metal complex forming agent used may be an amount such that metal ions other than the metal ions for separation / recovery in the solution are in a non-dissociated state and the metal ions for separation / recovery are present in a dissociated state.

また、本発明に有効なカチオン交換手段としては、例えばカチオン交換樹脂、キレート樹脂、電気再生型脱イオン装置などが挙げられるが、キレート樹脂は高価で再生効率が低いという問題があり、また電気再生型脱イオン装置では多流量の処理では十分な効果を得ることが難しく、場合によって析出を生じるという問題があるため、カチオン交換樹脂を用い、分離回収目的の金属イオン以外の金属イオンが非解離状態であり、分離回収目的の金属イオンのみが解離状態となっている液を、カチオン交換樹脂充填カラムに通液するなどして、カチオン交換樹脂に接触させる方法が好ましい。   Examples of cation exchange means effective for the present invention include cation exchange resins, chelate resins, and electroregenerative deionizers. However, chelate resins are expensive and have low regeneration efficiency. In the type deionizer, it is difficult to obtain a sufficient effect in the treatment with a high flow rate, and there is a problem that precipitation occurs in some cases, so that cation exchange resin is used, and metal ions other than metal ions for separation and recovery are in a non-dissociated state. A method in which a liquid in which only metal ions for separation and recovery are in a dissociated state is brought into contact with the cation exchange resin by passing the liquid through a cation exchange resin packed column is preferable.

カチオン交換樹脂を用いて分離回収目的とする金属イオン分離回収するには、カチオン交換樹脂に、分離回収目的の金属イオンが解離状態として存在し、その他の金属イオンが非解離状態として存在する溶液(以下「被処理液」と称す。)を接触させて、解離状態の金属イオンのみをカチオン交換樹脂に吸着させて分離させれば良い。この場合、カチオン交換樹脂を被処理液に投入して撹拌混合してもよく、またカチオン交換樹脂をカラムに充填して被処理液を通液してもよい。いずれの場合も、解離状態の金属イオンのみがカチオン交換樹脂に吸着分離され、非解離状態の他の金属イオンはカチオン交換樹脂に吸着されることなく、そのまま被処理液中に存在することにより、分離回収目的の金属イオンのみが選択的に分離される。   In order to separate and recover metal ions for separation and recovery using a cation exchange resin, a solution in which metal ions for separation and recovery exist in a dissociated state and other metal ions exist in a non-dissociated state in the cation exchange resin ( Hereinafter referred to as “liquid to be treated”), and only the dissociated metal ions may be adsorbed and separated by the cation exchange resin. In this case, the cation exchange resin may be added to the liquid to be treated and mixed with stirring, or the column may be filled with the cation exchange resin and the liquid to be treated may be passed. In any case, only the metal ions in the dissociated state are adsorbed and separated on the cation exchange resin, and the other metal ions in the non-dissociated state are not adsorbed on the cation exchange resin and are present in the liquid to be treated as they are. Only metal ions for separation and recovery are selectively separated.

このように、カチオン交換手段としてカチオン交換樹脂を用いた場合、カチオン交換樹脂が非解離状態の金属イオンを吸着することにより、その分離回収性能が飽和するため、定期的に再生剤を通液して再生する必要がある。この再生剤としては2〜10重量%程度の塩酸などの強酸を用いることができる。しかして、分離回収目的の金属イオンは、この再生廃液中に濃縮して溶離されるので、これを容易に回収することが可能となる。   As described above, when a cation exchange resin is used as a cation exchange means, the separation and recovery performance is saturated by adsorbing the metal ions in a non-dissociated state, so that a regenerant is periodically passed through. Need to play. As this regenerant, about 2 to 10% by weight of strong acid such as hydrochloric acid can be used. Thus, the metal ions for separation and recovery are concentrated and eluted in the regeneration waste solution, and can be easily recovered.

本発明において、処理対象液のpHが強酸性の場合はシュウ酸がイオンとして存在できず分子状態で存在してしまうため、金属錯体を生成できず金属イオン回収率の低下につながる。従ってこのような場合は、予め処理対象液に酸又はアルカリを添加して中和することによりpHを中性領域(例えば6.5〜8.0)に調整した後に本発明を行うのが好ましい。   In the present invention, when the pH of the solution to be treated is strongly acidic, oxalic acid cannot exist as ions and exists in a molecular state, so that a metal complex cannot be generated, leading to a reduction in metal ion recovery rate. Therefore, in such a case, it is preferable to carry out the present invention after adjusting the pH to a neutral range (for example, 6.5 to 8.0) by adding an acid or alkali to the liquid to be treated and neutralizing it beforehand. .

本発明の方法は、特に、処理対象液がITOエッチング廃液である場合、エッチング成分としてのシュウ酸が既に存在するため、金属錯体生成剤としての化学物質を新たに添加する必要がないことから、有利である。ただし、必要に応じて更に金属錯体生成剤を添加してもよい。   In the method of the present invention, in particular, when the liquid to be treated is an ITO etching waste liquid, oxalic acid as an etching component already exists, so it is not necessary to newly add a chemical substance as a metal complex forming agent. It is advantageous. However, you may add a metal complex production | generation agent further as needed.

ここで、シュウ酸エッチング廃液は、前述の如く、ITO膜などのインジウム含有被エッチング材をシュウ酸溶液でエッチン処理した際に生ずる廃液である。このシュウ酸エッチング廃液には、インジウム、スズなどの金属成分がシュウ酸と共に錯体化合物として存在するが、前述の如く、インジウムはスズよりも錯生成定数が小さいため、一部が解離してインジウムイオンとして存在するため、カチオン交換手段による選択的分離回収が可能となる。   Here, the oxalic acid etching waste liquid is a waste liquid generated when an indium-containing material to be etched such as an ITO film is etched with an oxalic acid solution as described above. In this oxalic acid etching waste liquid, metal components such as indium and tin are present as a complex compound together with oxalic acid. However, as described above, indium has a smaller complex formation constant than tin, so that a part of it is dissociated to form indium ions. Therefore, selective separation and recovery by cation exchange means becomes possible.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
カチオン交換樹脂(ダウ・ケミカル社製「ダウ650C」)10mlをビーカーに計り採り、ITOエッチング廃液(シュウ酸4重量%水溶液、インジウム濃度180ppm、スズ濃度50ppm)100ml中に投入した。続いて、これを300rpmで30分攪拌した後、間隙0.45μmの濾紙で濾過し、濾液を試料としてIn濃度およびSn濃度をICP−発光分光分析装置で測定する試験を3回行ったところ、表1に示す結果が得られた。
Example 1
10 ml of a cation exchange resin (“Dow 650C” manufactured by Dow Chemical Co., Ltd.) was weighed in a beaker and charged into 100 ml of an ITO etching waste solution (4% by weight oxalic acid aqueous solution, indium concentration 180 ppm, tin concentration 50 ppm). Subsequently, after stirring for 30 minutes at 300 rpm, the mixture was filtered with a filter paper having a gap of 0.45 μm, and the test using the filtrate as a sample to measure the In concentration and the Sn concentration with an ICP-luminescence spectrometer was performed three times. The results shown in Table 1 were obtained.

また、この樹脂をカラムに充填し、5重量%濃度の塩酸30mlを通液し、その後、70mlの純水で押し出したところ(全液量100ml)、塩酸中にインジウムの溶離が確認され、各々、表1に示す濃度となった。   Moreover, when this resin was packed in a column, and 30 ml of 5% by weight hydrochloric acid was passed through it, and then extruded with 70 ml of pure water (total liquid volume: 100 ml), elution of indium in hydrochloric acid was confirmed. The concentrations shown in Table 1 were obtained.

比較例1
カチオン交換樹脂の代りにキレート樹脂(三菱化学社製「CR20」)を用いたこと以外は実施例1と同様にして試験を行い、結果を表1に示した。
Comparative Example 1
A test was conducted in the same manner as in Example 1 except that a chelate resin (“CR20” manufactured by Mitsubishi Chemical Corporation) was used instead of the cation exchange resin, and the results are shown in Table 1.

Figure 2009084673
Figure 2009084673

表1より明らかなように、シュウ酸により金属錯体が生成しているITOエッチング廃液をカチオン交換樹脂で処理した後、塩酸で溶離することで、インジウムイオンのみを塩化インジウムとして選択的に回収することができた。   As is clear from Table 1, the ITO etching waste liquid in which the metal complex is formed with oxalic acid is treated with a cation exchange resin and then eluted with hydrochloric acid to selectively recover only indium ions as indium chloride. I was able to.

なお、カチオン交換樹脂の代りにキレート樹脂を用いた場合は、カチオン交換樹脂よりもインジウムイオンの吸着量は多いものの、スズイオンも吸着されており、インジウムに対する選択的吸着性が低くインジウムを選択的に回収できなかった。   When a chelate resin is used in place of the cation exchange resin, although the amount of indium ions adsorbed is larger than that of the cation exchange resin, tin ions are also adsorbed, and the selective adsorptivity to indium is low and indium is selectively absorbed. It could not be recovered.

本発明の特定金属イオンの選択的分離回収方法は、特に、ITO膜などのインジウム含有被エッチング材をシュウ酸溶液でエッチン処理した際に生ずるインジウム、スズなどの金属成分がシュウ酸と共に錯体化合物として存在するエッチング廃液から、低濃度のため分離回収が極めて困難な、高価な希少金属であるインジウムを選択的に分離回収する方法として工業的に有用である。   The selective separation / recovery method for specific metal ions of the present invention is such that indium, tin, and other metal components generated when an indium-containing material to be etched such as an ITO film is etched with an oxalic acid solution are combined with oxalic acid as a complex compound. This is industrially useful as a method for selectively separating and recovering indium, which is an expensive rare metal, which is extremely difficult to separate and recover from existing etching waste liquid because of its low concentration.

Claims (5)

2種以上の金属イオンを含む溶液中から1種の金属イオンのみを分離回収する特定金属イオンの選択的分離回収方法であって、
該溶液に、金属錯体を生成する化合物を接触させることにより、該溶液中の該1種の金属イオンを除く金属イオンが非解離状態となるように調整し、その後カチオン交換手段により解離状態の該1種の金属イオンのみを選択的に分離回収することを特徴とする特定金属イオンの選択的分離回収方法。
A method for selectively separating and recovering a specific metal ion, wherein only one metal ion is separated and recovered from a solution containing two or more metal ions,
The solution is adjusted so that the metal ions except the one metal ion in the solution are brought into a non-dissociated state by bringing the solution into contact with a compound that forms a metal complex. A method for selectively separating and recovering specific metal ions, wherein only one kind of metal ions is selectively separated and recovered.
請求項1において、該金属錯体を生成する化合物がシュウ酸であることを特徴とする特定金属イオンの選択的分離回収方法。   The method for selectively separating and recovering a specific metal ion according to claim 1, wherein the compound that forms the metal complex is oxalic acid. 請求項1又は2において、選択的分離回収する該1種の金属イオンが他の金属イオンよりも錯生成定数が小さいことを特徴とする特定金属イオンの選択的分離回収方法。   3. The method for selectively separating and recovering a specific metal ion according to claim 1, wherein the one metal ion to be selectively separated and recovered has a smaller complex formation constant than the other metal ions. 請求項1乃至3のいずれか1項において、選択的分離回収する該1種の金属イオンがインジウムイオンであることを特徴とする特定金属イオンの選択的分離回収方法。   4. The method for selectively separating and collecting specific metal ions according to claim 1, wherein the one kind of metal ions to be selectively separated and recovered is indium ions. 請求項1乃至4のいずれか1項において、該カチオン交換手段がカチオン交換樹脂を含むことを特徴とする特定金属イオンの選択的分離回収方法。   5. The selective separation and recovery method for specific metal ions according to claim 1, wherein the cation exchange means includes a cation exchange resin.
JP2007259973A 2007-10-03 2007-10-03 Selective separation/recovery method for specified metal ion Pending JP2009084673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259973A JP2009084673A (en) 2007-10-03 2007-10-03 Selective separation/recovery method for specified metal ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259973A JP2009084673A (en) 2007-10-03 2007-10-03 Selective separation/recovery method for specified metal ion

Publications (1)

Publication Number Publication Date
JP2009084673A true JP2009084673A (en) 2009-04-23

Family

ID=40658472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259973A Pending JP2009084673A (en) 2007-10-03 2007-10-03 Selective separation/recovery method for specified metal ion

Country Status (1)

Country Link
JP (1) JP2009084673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149001A (en) * 2011-01-18 2012-08-09 Kurita Water Ind Ltd Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP2013044588A (en) * 2011-08-23 2013-03-04 Hitachi-Ge Nuclear Energy Ltd Method and system for treatment of waste resin of nuclear power plant
CN114196835A (en) * 2021-12-17 2022-03-18 郑州大学 Method for selectively leaching tin from tin-containing metallurgical slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149001A (en) * 2011-01-18 2012-08-09 Kurita Water Ind Ltd Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP2013044588A (en) * 2011-08-23 2013-03-04 Hitachi-Ge Nuclear Energy Ltd Method and system for treatment of waste resin of nuclear power plant
CN114196835A (en) * 2021-12-17 2022-03-18 郑州大学 Method for selectively leaching tin from tin-containing metallurgical slag
CN114196835B (en) * 2021-12-17 2023-10-03 郑州大学 Method for selectively leaching tin from tin-containing metallurgical slag

Similar Documents

Publication Publication Date Title
JP3671644B2 (en) Photoresist developing waste liquid recycling method and apparatus
JP2008013379A (en) Method for recovering iodine from waste fluid in polarizing film production
JP2004226989A (en) Regeneration treatment method for waste photoresist developing solution
JP4142432B2 (en) Process for removing onium hydroxide from solutions containing onium compounds
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
JP2007181833A (en) Method for treating tetraalkylammonium ion-containing solution
JP2009084673A (en) Selective separation/recovery method for specified metal ion
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
WO2013062100A1 (en) Method for producing tetraalkylammonium salt solution
TWI380953B (en) Recovery of High Purity Oxalic Acid Aqueous Solution
TWI423836B (en) Process for recovering and purifying tetraalkyl ammonium hydroxide from waste solution containing the same
JP2008081791A (en) Method and apparatus for recovering phosphoric acid from phosphoric ion-containing water
JP2008013795A (en) Method for recovering indium component from oxalic-acid etching waste liquid
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP3656338B2 (en) Photoresist development waste liquid processing method
JP4561967B2 (en) Method and apparatus for recovering water from waste water containing tetraalkylammonium ions
JP3531403B2 (en) Hydrogen peroxide water purification method
JP3364308B2 (en) Wastewater treatment method and apparatus
JPH11142380A (en) Method for recycling photoresist developer waste solution
JP4773313B2 (en) Method for producing ferrous chloride liquid
JP3949450B2 (en) Method for regenerating cation exchange resin or chelate resin
Yanase et al. Regeneration technology of tetramethylammonium hydroxide using ion exchange resin
JP2008100849A (en) Method for producing ferrous chloride solution
JP2000093955A (en) Method for treating spent photoresist developer
JP2002233773A (en) Method for recovering water containing high purity boron and device for treating boron eluting solution eluted from resin selectively adsorbing boron